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Three versions of categorical
crossed-product duality

S. Kaliszewski, Tron Omland and John Quigg

Abstract. In this partly expository paper we compare three different
categories of C∗-algebras in which crossed-product duality can be for-
mulated, both for actions and for coactions of locally compact groups.
In these categories, the isomorphisms correspond to C∗-algebra isomor-
phisms, imprimitivity bimodules, and outer conjugacies, respectively.

In each case, a variation of the fixed-point functor that arises from
classical Landstad duality is used to obtain a quasi-inverse for a crossed-
product functor. To compare the various cases, we describe in a formal
way our view of the fixed-point functor as an “inversion” of the process
of forming a crossed product. In some cases, we obtain what we call
“good” inversions, while in others we do not.

For the outer-conjugacy categories, we generalize a theorem of Peder-
sen to obtain a fixed-point functor that is quasi-inverse to the reduced-
crossed-product functor for actions, and we show that this gives a good
inversion. For coactions, we prove a partial version of Pedersen’s the-
orem that allows us to define a fixed-point functor, but the question
of whether it is a quasi-inverse for the crossed-product functor remains
open.
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1. Introduction

In crossed-product duality for C∗-algebras there are two problems that
are of interest, both stated for a fixed locally compact group G. The first,
and perhaps the original one, is: Given a crossed product Aoα G, how can
A and α be recovered? Secondly: How can we identify a C∗-algebra B as the
(full or reduced) crossed product of some other C∗-algebra A by an action
of G?

The simplest case to consider is where G is abelian. Then there is a dual

action of Ĝ on Aoα G defined for f ∈ Cc(G,A) by α̂χ(f)(t) = χ(t)f(t). In
this situation, a famous result of Takai [Tak75] tells us that

(Aoα G) oα̂ Ĝ ' A⊗K(L2(G)),

so we can recover A up to Morita equivalence (and if G is second countable,
up to stabilization). The generalization of Takai’s theorem to nonabelian
groups involves the dual coaction α̂ of G. This version is usually now called
Imai–Takai duality [IT78], and in a similar fashion it gives an isomorphism

(Aoα,r G) oα̂n G ' A⊗K(L2(G)),

where α̂n is our notation for the appropriate version of the dual coaction
on the reduced crossed product. However, Imai–Takai duality does not give
any useful answer to the question of when a C∗-algebra is a crossed product
by an action of G. In fact, what the theorem says is that, up to stabilization,
every C∗-algebra is a crossed product.

For reduced crossed products by actions, Landstad answered both of the
above questions up to isomorphism ([Lan79]). First, given a crossed product
Aoα,rG, we can recover A as a generalized fixed-point algebra of the crossed
product that depends on both the dual coaction α̂n of G on Aoα,rG and the
canonical embedding irG of G into M(Aoα,rG). Second, a given C∗-algebra
C is isomorphic to a reduced crossed product by an action of G if and only
if there exists a normal coaction of G on C and a unitary homomorphism
of G in M(C) that interact with one another like α̂n and irG would.1 The
dual questions, where actions are replaced by coactions, were answered in
[Qui92] (see Section 2.7 for more details).

These results, now called classical Landstad duality, have recently [KQ09,
KQR08] been recast in a categorical framework, so let us first consider two
categories of C∗-algebras and morphisms that are central in this context.

In the theory of C∗-algebras, and in particular in classification theory,
there are two types of equivalences that have an especially great impact;
C∗-isomorphisms and Morita equivalences. Therefore, there are two cat-
egories of C∗-algebras that are natural to study; the nondegenerate cate-
gory C∗nd, whose morphisms are nondegenerate C∗-homomorphisms, and
the enchilada category C∗en, whose morphisms are (isomorphism classes of)

1Landstad used reduced coactions, but his results can be applied to full coactions on
reduced crossed products using [Qui94].
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C∗-correspondences (see Section 2.3). The latter category does not have
such a long history, and was treated extensively in [EKQR06], although not
with the name “enchilada” attached. If we fix a locally compact group G,
then the nondegenerate and the enchilada categories give rise to equivariant
categories Acnd and Acen, where the objects are pairs (A,α) comprising a
C∗-algebra A and an action α of G on A, and where the morphisms are the
ones from C∗nd or C∗en, respectively, that are G-equivariant.

It was shown in [KQ09] that the nondegenerate category of actions is
equivalent to a certain comma category of maximal coactions. In that setup,
a quasi-inverse functor from this comma category into the category of actions
was constructed. We call this the fixed-point functor, since the image of
an object in the comma category gives a generalized fixed-point algebra
together with an action.

In this paper, we further develop this categorical perspective. In partic-
ular, a notion we call an inversion of a functor P : C → D is introduced.
Our motivation is that when P is not an equivalence, we wish to keep track

of what information it forgets. An inversion is therefore a category D̃ that
contains the data of both D and the extra structure that P forgets, an equiv-

alence P̃ : C → D̃, and a forgetful functor F : D̃ → D with F ◦ P̃ = P . Any

choice of quasi-inverse H : D̃ → C of P̃ is regarded as “inverting the process”
P .

As we explain in Section 5, categorical Landstad duality fits into this
setup. Indeed, the full-crossed-product functor (A,α)→ AoαG from Acnd
to C∗nd plays the role of P : C → D, and the comma category plays the

role of D̃. Moreover, this inversion is good, meaning in particular that the

forgetful functor D̃ → D enjoys a certain lifting property.
In the same way, we find an inversion for the crossed-product functor be-

tween enchilada categories. It turns out that the comma category analogous
to the one used for the nondegenerate category has too few morphisms to be
equivalent to the category of actions, so we need to consider a “semi-comma
category” instead (borrowing a concept and terminology from [HKRW11]).
With this modification we get an inversion, and the quasi-inverse is a fixed-
point functor. However, in this case the inversion is not good, essentially
because a C∗-algebra can be Morita equivalent to a crossed product without
being isomorphic to one.

We remark that, as a consequence of the Imai–Takai duality mentioned
above, a crossed-product functor that only keeps track of the dual coaction
defines an equivalence between the enchilada category of actions and the
enchilada category of coactions. This gives rise to an inversion as well.
However, we want to compare the various categories and functors in a more
direct way, so therefore the semi-comma category and the fixed-point functor
are used.

We think of our third example as lying between the two cases discussed
above. The underlying category in this example is still the nondegenerate
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one, but now the isomorphisms correspond to outer conjugacies. Inspired by
a theorem of Pedersen, which we generalize from abelian to arbitrary groups,
we define a certain “fixed-point equivariant category” of coactions, which is
equivalent with the “outer category” of actions. This gives an inversion of
the crossed-product functor from the outer category to C∗nd, which is also a
good inversion. The main innovation in this paper is the introduction and
study of these outer categories.

The paper is organized as follows. As an attempt to make it mostly
self-contained, we first provide a preliminary section recalling much of the
background material. Then, in Section 3 we prove the generalization of
Pedersen’s theorem for actions by nonabelian groups, and also give a version
for coactions.

Further, we introduce the category theoretical framework for inverting a
process in Section 4, and define the concept of a (good) inversion.

In Section 5 we show that the three versions of crossed-product duality
for actions fit into this categorical setup. In particular, we show that the
category equivalence arising from classical Landstad duality gives category
equivalences also in the enchilada and outer categories. We present our
results for full crossed products and the use of maximal coactions, but only
minor modifications are required to obtain similar results for the reduced-
crossed-product functor.

In the last section, for the nondegenerate and enchilada categories, we
produce abstract inversions of crossed-product duality for coactions similar
to the ones for actions. However, in this case, we work with normal coactions,
since this closely resembles the techniques applied for actions.

Finally, for the outer category, we use a version Pedersen’s theorem for
coactions that allows us to define a crossed-product functor in a manner
parallel to the one for actions, but our current version of Pedersen’s theorem
is not yet strong enough to give a category equivalence.

Acknowledgements. The second author would like to thank Johan Steen
and Martin Wanvik from NTNU for helpful e-mail correspondence on various
category-theoretic aspects.

2. Preliminaries

Throughout, G will be a locally compact (Hausdorff) group. By a homo-
morphism between C∗-algebras, we always mean a ∗-homomorphism. We
always use the minimal tensor product for C∗-algebras.

2.1. Actions and coactions. An action of G on a C∗-algebra A is a
strongly continuous homomorphism α : G → Aut(A). Because we typi-
cally consider the group G to be fixed and the actions to vary, we will
refer to the pair (A,α) as an action of G. It is also common to call the
triple (A,G, α) a C∗-dynamical system. One example of an action that
deserves special mention is the right translation action (C0(G), rt) defined
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by rtsf(t) = f(ts). Given a strictly continuous unitary homomorphism
V : G→M(A), which can equivalently be regarded as a nondegenerate ho-
momorphism V : C∗(G)→M(A), the associated inner action Adu of G on
A is defined by

(Adu)s(a) = Adus(a) = usau
∗
s.

To every action (A,α) we associate a full crossed product A oα G and
a reduced crossed product A oα,r G in the usual way. (A more detailed
discussion of crossed products can be found in [EKQR06, Appendix A].)
We denote the canonical universal covariant homomorphism of (A,α) in the
multiplier algebra M(AoαG) by (iαA, i

α
G), and we write Λα : AoαG→ Aoα,r

G for the regular representation; the canonical covariant homomorphism of
(A,α) in M(A oα,r G) is (iα,rA , iα,rG ) = (Λα ◦ iαA,Λα ◦ iαG). However, when
there is no potential ambiguity, we will abbreviate these as (iA, iG), Λ, and
(irA, i

r
G), respectively. For every covariant homomorphism (π, U) of (A,α) in

a C∗-algebra C, there is an integrated form π × U : Aoα G→ C such that
(π × U) ◦ iA = π and (π × U) ◦ iG = U . Moreover, if ker Λ ⊆ ker(π × U),
then π×U descends to a homomorphism π×r U : Aoα,rG→ C, also called
the integrated form of (π, U), such that (π ×r U) ◦ Λ = π × U .

If (A,α) and (B, β) are actions of G, a nondegenerate homomorphism
ϕ : A→M(B) is α− β-equivariant if

ϕ ◦ αs = βs ◦ ϕ for all s ∈ G.
Such a map induces nondegenerate homomorphisms ϕ o G : A oα G →
M(B oβ G) and ϕoG : Aoα,r G→M(B oβ,r G).

Two actions (A,α) and (B, β) are conjugate if there exists an α − β-
equivariant C∗-isomorphism ϕ : A→ B, in which case ϕoG and ϕorG are
isomorphisms of the respective crossed products.

A coaction of G on a C∗-algebra A is an injective nondegenerate homo-
morphism δ : A→M(A⊗C∗(G)) satisfying the (additional) nondegeneracy
condition

span{δ(A)(1⊗ C∗(G))} = A⊗ C∗(G)

and the coaction identity

(δ ⊗ id) ◦ δ = (id⊗ δG) ◦ δ.
Here the coaction δG of G on C∗(G) is the canonical map

C∗(G)→M(C∗(G)⊗ C∗(G))

given by the integrated form of s 7→ s ⊗ s. In analogy with actions, we
also refer to the pair (A, δ) as a coaction of G. Given a nondegenerate
homomorphism µ : C0(G) → M(A), the associated inner coaction Adµ is
given by

Adµ(a) = Ad(µ⊗ id)(wG)(a⊗ 1),

where wG denotes the unitary element of

M
(
C0(G)⊗ C∗(G)

)
= Cb

(
G,Mβ(C∗(G))

)
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associated to the canonical unitary embedding of G inside M(C∗(G)), and
where in turn Cb(G,M

β(C∗(G))) denotes the continuous bounded functions
from G to M(C∗(G)) with the strict topology.

As with full crossed products by actions, to each coaction (A, δ) we as-
sociate a crossed product C∗-algebra A oδ G, and the covariant homomor-
phisms of (A, δ) correspond, via the integrated form, to homomorphisms
of A oδ G. The canonical universal covariant homomorphism of (A, δ) in
M(A oδ G) is denoted by (jδA, j

δ
G), but as for actions, the notation is usu-

ally simplified to avoid clutter. When jA is injective, δ is called a normal
coaction.

If (A, δ) and (B, ε) are coactions of G, a nondegenerate homomorphism
ϕ : A→M(B) is δ − ε equivariant if

(2.1) (ϕ⊗ id) ◦ δ = ε ◦ ϕ,

and such a map induces a nondegenerate homomorphism

ϕoG : Aoδ G→M(B oε G)

between the corresponding crossed products.
Two coactions (A, δ) and (B, ε) are conjugate if there exists a δ− ε equi-

variant isomorphism ϕ : A → B, in which case ϕ o G is an isomorphism of
the crossed products.

For every action (A,α), there is a dual coaction α̂ of G on AoαG, defined
on generators by

α̂(iA(a)) = iA(a)⊗ 1 and α̂(iG(s)) = iG(s)⊗ s.

There is also a normal dual coaction α̂n on A oα,r G, defined similarly on
generators. Note that iG : C∗(G) → M(A oα G) is δG − α̂ equivariant; it
follows that if (B, β) is an action and ϕ : A → M(B) is α − β equivariant,
then the induced homomorphism ϕ o G : A oα G → M(B oβ G) will be

α̂ − β̂ equivariant, and ϕ or G : A oα,r G → M(B oβ,r G) will be α̂n − β̂n
equivariant.

Similarly, for every coaction (A, δ), there is a dual action δ̂ of G on AoδG
defined by

δ̂s = jA × (jG ◦ rts).

The canonical map jG : C0(G) → M(A oδ G) is rt − δ̂ equivariant, so if
(B, ε) is a coaction and ϕ : A→M(B) is δ−ε equivariant, then the induced

homomorphism ϕoG : Aoδ G→M(B oε G) will be δ̂ − ε̂ equivariant.
If (A, δ) is a coaction, then the pair(

(id⊗ λ) ◦ δ × (1⊗M), 1⊗ ρ
)
,

where λ and ρ are the left and right regular representations of G and M
is the multiplication representation of C0(G) on L2(G), is a covariant rep-

resentation of the dual action (A oδ G, δ̂), and the integrated form is a
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surjection

Φ: Aoδ Go
δ̂
G→ A⊗K(L2(G)),

called the canonical surjection, where K denotes the compact operators on
L2(G). The coaction δ is called maximal if Φ is an isomorphism, and by
[EKQ04, Theorem 2.2] δ is normal if and only if Φ factors through an iso-
morphism of the reduced crossed product AoδGo

δ̂,r
G onto A⊗K(L2(G)).

2.2. Normalization and maximalization. A normalization of a coac-
tion (A, δ) is a normal coaction (An, δn) together with a δ − δn equivariant
surjection η : A→ An such that

η oG : Aoδ G→ An oδn G

is an isomorphism. Every coaction has a normalization, and, given an-
other coaction (B, ε), if ϕ : A→M(B) is a nondegenerate δ− ε equivariant
homomorphism then there is a unique nondegenerate δn − εn equivariant
homomorphism ϕn making the following diagram commute:

A
ϕ
//

ηA

��

M(B)

ηB
��

An
ϕn
// M(Bn).

Consequently, normalizations are unique up to isomorphism.
Similarly, a maximalization of (A, δ) is a maximal coaction (Am, δm) to-

gether with a δm − δ equivariant surjection ψ : Am → A such that

ψ oG : Am oδm G→ Aoδ G

is an isomorphism. Every coaction has a maximalization, and, given an-
other coaction (B, ε), if ϕ : A→M(B) is a nondegenerate δ− ε equivariant
homomorphism then there is a unique nondegenerate δm − εm equivariant
homomorphism ϕm making the following diagram commute:

Am
ϕm
//

ψA
��

M(Bm)

ψB
��

A ϕ
// M(B).

Consequently, maximalizations are unique up to isomorphism.
If (A, δ) is a maximal coaction then the normalization ψ : A → An is

also a maximalization of the coaction (An, δn). If (B, ε) is another maximal
coaction, then the map ϕ 7→ ϕn gives a bijection between the sets of δ − ε
equivariant nondegenerate homomorphisms ϕ : A→M(B) and δn−εn equi-
variant nondegenerate homomorphisms ϕn : An →M(Bn), and moreover ϕ
is an isomorphism if and only if ϕn is.
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Given an action (A,α), the dual coaction α̂ on the full crossed product
A oα G is maximal, the dual coaction α̂n on the reduced crossed product
Aoα,r G is normal, and the regular representation

Λ: (Aoα G, α̂)→ (Aoα,r G, α̂
n)

is both a maximalization and a normalization.

2.3. C∗-correspondences. Let A and B be C∗-algebras. An A−B corre-
spondence is a (right) Hilbert B-module X together with a homomorphism
of A into the C∗-algebra L(X) of adjointable (hence bounded and B-linear)
maps on X. We say that the correspondence is nondegenerate if X is nonde-
generate as a left A-module, i.e., A ·X = X. For any A−B correspondence
X, we use M(X) to denote the set LB(B,X) of adjointable maps from
B to X, which is an M(A) −M(B) correspondence in a natural way (see
[EKQR06, Definition 1.14]).

Given an A − B correspondence X and a B − C correspondence Y , the
balanced tensor product X ⊗B Y is an A − C correspondence, and the
isomorphism class of X ⊗B Y depends only on the isomorphism classes of
X and Y ([EKQR06, Theorem 2.2]).

A Hilbert A−B bimodule is an A−B correspondence that also has a left A-
valued inner product A〈·, ·〉 that is compatible with the right B-valued inner
product 〈·, ·〉B in the sense that A〈x, y〉 · z = x · 〈y, z〉B for all x, y, z ∈ X.
An imprimitivity bimodule is a Hilbert A − B bimodule X that is both
left- and right-full, meaning that spanA〈X,X〉 = A and span〈X,X〉B = B.
Two C∗-algebras A and B are Morita equivalent if there exists an A − B
imprimitivity bimodule.

If X is a nondegenerate A − B correspondence, Y is a nondegenerate
C − D correspondence, and ϕ : A → M(C) and ψ : B → M(D) are homo-
morphisms, a linear map ζ : X →M(Y ) is a ϕ−ψ compatible correspondence
homomorphism if 〈ζ(x), ζ(y)〉M(D) = ψ(〈x, y〉B) and ϕ(a) · ζ(x) = ζ(a · x)
for all x, y ∈ X and a ∈ A. These properties imply that ζ(x) ·ψ(b) = ζ(x · b)
for all x ∈ X and b ∈ B. Sometimes we write

(ϕ, ζ, ψ) : (A,X,B)→ (M(C),M(Y ),M(D))

for the correspondence homomorphism. A correspondence homomorphism
(ϕ, ζ, ψ) is a correspondence isomorphism if ϕ : A → C and ψ : B → D are
C∗-isomorphisms and ζ : X → Y is bijective. In this case, if X and Y are
Hilbert bimodules, then (ϕ, ζ, ψ) also preserves this extra structure in the
sense that

C〈ζ(x), ζ(y)〉 = ϕ(A〈x, y〉) for all x, y ∈ X,
and we call (ϕ, ζ, ψ) a Hilbert bimodule isomorphism.

Given actions (A,α) and (B, β), an (A,α) − (B, β) correspondence ac-
tion (X, γ) is an A − B correspondence X equipped with an α − β com-
patible action γ ([EKQR06, Section 2.2]). To every such correspondence
action we associate a full crossed product correspondence X oγ G that is an
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(Aoα G)− (B oβ G) correspondence and comes with a canonical universal

iαA − i
β
B compatible correspondence homomorphism iγX of X in M(X oγ G)

such that X oγ G = span{iγX(X) · iβG(C∗(G))}. Similarly, there is a reduced
crossed product correspondence X oγ,rG that is an (Aoα,rG)− (Boβ,rG)

correspondence and comes with a canonical iα,rA − i
β,r
B compatible correspon-

dence homomorphism iγ,rX . Actions (A,α) and (B, β) are Morita equivalent
if there exists an (A,α)− (B, β) correspondence action (X, γ) such that X
is an A−B imprimitivity bimodule ([Com84]).

Given coactions (A, δ) and (B, ε), an (A, δ)− (B, ε) correspondence coac-
tion is an A−B correspondence X equipped with a δ−ε compatible coaction
ζ ([EKQR06, Section 2.3]). For example, the crossed product correspon-

dences X oγ G and X oγ,r G described above carry α̂ − β̂ and α̂n − β̂n-
compatible dual coactions γ̂ and γ̂n, respectively. To every correspondence
coaction we associate a crossed product correspondence X oζ G that is an

(Aoδ G)− (B oε G) correspondence, comes with a canonical jδA − jεB com-

patible correspondence homomorphism jζX of X in M(X oζ G) such that

X oζ G = span{jζX(X) · jεG(C0(G))}, and carries a δ̂− ε̂ compatible dual ac-

tion ζ̂. Two coactions (A, δ) and (B, ε) are Morita equivalent if there exists
an (A, δ) − (B, ε) correspondence coaction (X, γ) such that X is an A − B
imprimitivity bimodule.

2.4. Linking algebras. Let (A,α) and (B, β) be actions, let (X, γ) be
an (A,α) − (B, β) correspondence action, let K = K(X) be the algebra of
generalized compact operators, and let L = L(X) =

(
K X
∗ B

)
be the linking

algebra (see [EKQR06, Section 1.5]). Then by [EKQR06, Proposition 2.27]
there is a unique action σ of G on K such that γ is σ − β compatible, and
moreover the canonical nondegenerate homomorphism

ϕA : A→M(K) = L(X)

is α−σ equivariant. By [EKQR06, Lemma 2.21] there is an action τ =
( σ γ
∗ β
)

of G on L. There is a natural identification (more properly, an isomorphism,
but we blur the distinction)

(Loτ G, τ̂) =

((
K oσ G X oγ G
∗ B oβ G

)
,

(
σ̂ γ̂

∗ β̂

))
.

For the isomorphism of the crossed products, without the dual coactions, see
[Com84, EKQR00] — these references require that the B-valued inner prod-
uct be full, but the proof of the above isomorphism carries over. [EKQR06,
Lemma 3.3 and Proposition 3.5 together with its proof] states the above
isomorphism for reduced crossed products.

Dually, let (A, δ) and (B, ε) be coactions and let (X, ζ) be an (A, δ)−(B, ε)
correspondence coaction. Then by [EKQR06, Proposition 2.30] there is a
unique coaction µ of G on K such that ζ is µ− ε compatible, and moreover
the canonical nondegenerate homomorphism ϕA : A → M(K) = L(X) is
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δ−µ equivariant. By [EKQR06, Lemma 2.22] there is a coaction ν =
(
µ ζ
∗ ε
)

of G on L. By [EKQ04, Proposition 2.5] µ and ν are maximal if ε is. By
[EKQR06, Proposition 3.10] there is a natural identification (more properly,
an isomorphism, but we blur the distinction)

(Loν G, ν̂) =

((
K oµ G X oζ G
∗ B oε G

)
,

(
µ̂ ζ̂
∗ ε̂

))
.

[EKQR06, Proposition 3.10] only states this isomorphism for the crossed
products; the statement regarding the dual actions was apparently regarded
in [EKQR06] as being self-evident.

2.5. Exterior equivalence and outer conjugacy. Let (B, β) be an ac-
tion of G. A β-cocycle is a strictly continuous unitary map u : G → M(B)
such that

ust = usβs(ut) for all s, t ∈ G.
Given a β-cocycle u, the map s 7→ Adus ◦ βs gives an action Adu ◦ β
on B, which is said to be exterior equivalent to β. An action (A,α) is outer
conjugate to (B, β) if it is conjugate to Adu ◦ β for some β-cocycle u.

Now let (B, ε) be a coaction of G. An ε-cocycle is a unitary element
U ∈M(B ⊗ C∗(G)) such that

(i) (id⊗ δG)(U) = (U ⊗ 1)(ε⊗ id)(U), and
(ii) AdU ◦ ε(B)(1⊗ C∗(G)) ⊆ B ⊗ C∗(G).

Given an ε-cocycle, AdU ◦ ε is a coaction on B which is said to be exterior
equivalent to ε, and which is normal if ε is. A coaction (A, δ) is outer
conjugate to (B, ε) if it is conjugate to AdU ◦ ε for some ε-cocycle U .

Of the three properties discussed in Subsections 2.1, 2.3, and 2.5, con-
jugacy is stronger than outer conjugacy (for both actions and coactions),
and outer conjugacy is in turn stronger than Morita equivalence. Inciden-
tally, “outer” Morita equivalence of actions or coactions, if it were defined
in analogy with Section 2.5, would just coincide with the respective type of
equivariant Morita equivalence.

2.6. Classical Landstad duality for actions. As outlined in Section 1,
Landstad duality is a method of recovering an action or coaction up to
isomorphism from its crossed product, as a “generalized fixed-point algebra”.
Here we explain in more detail how this works for full crossed products by
actions, and also for crossed products by normal coactions.

We will begin by recalling Landstad duality for reduced crossed products
by actions. Theorem 2.1 below is a reformulation of [KQ07, Theorem 3.1],
modulo an addendum taken from [Lan79, Theorem 3]2.

Theorem 2.1 (Landstad duality for reduced crossed products). Let C be a
C∗-algebra and G a locally compact group. Then there exist an action (A,α)
and an isomorphism θ : A oα,r G → C if and only if there exist a normal

2Landstad used reduced, rather than full, coactions.
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coaction δ of G on C and a δG−δ equivariant nondegenerate homomorphism
V : C∗(G)→M(C).

Moreover, given δ and V as above, the action (A,α) and the isomorphism
θ can be chosen such that θ is α̂n−δ equivariant and θ◦ irG = V ; with such a

choice, if (B, β) is any action and σ : B oβ,r G→ C is a β̂n − δ equivariant
isomorphism such that σ ◦ irG = V , then there exists an α − β equivariant
isomorphism ϕ : A→ B such that σ ◦ (ϕor G) = θ.

In fact, we can take A to be the C∗-subalgebra of M(C) defined as all
elements a ∈M(C) satisfying Landstad’s conditions [Lan79, (3.6)–(3.8)]:

δ(a) = a⊗ 1,(2.2)

aV (f), V (f)a ∈ C for all f ∈ Cc(G),(2.3)

s 7→ AdVs(a) is norm continuous from G to C,(2.4)

and we can let α be the restriction to A of (the extension to M(C) of ) the
inner action AdV . Then, letting ι : A → M(C) be the inclusion map, the
pair (ι, V ) is a covariant homomorphism of (A,α) in M(C), whose integrated
form factors through an isomorphism Aoα,r G ' C.

In Theorem 2.2 below we give a parallel version of Theorem 2.1 for full
crossed products. Some of the facts are contained in [KQ07] and [KQ09].
The characterization in terms of Landstad’s conditions seems to be new,
however.

Theorem 2.2 (Landstad duality for full crossed products). Let C be a C∗-
algebra and G a locally compact group. Then there exist an action (A,α)
and an isomorphism θ : A oα G → C if and only if there exist a maximal
coaction δ of G on C and a δG−δ equivariant nondegenerate homomorphism
V : C∗(G)→M(C).

Moreover, given δ and V as above, the action (A,α) and the isomorphism
θ can be chosen such that θ is α̂ − δ equivariant and θ ◦ iG = V ; with such

a choice, if (B, β) is any action and σ : B oβ G→ C is a β̂ − δ equivariant
isomorphism such that σ ◦ iG = V , then there exists an α − β equivariant
isomorphism ϕ : A→ B such that σ ◦ (ϕoG) = θ.

In fact, we can take A to be the C∗-subalgebra of M(C) defined as all
elements a ∈ M(C) satisfying Landstad’s conditions (2.2)–(2.4), and we
can let α be the restriction to A of (the extension to M(C) of ) the inner
action AdV . Then, letting ι : A → M(C) be the inclusion map, the pair
(ι, V ) is a covariant homomorphism of (A,α) in M(C), whose integrated
form is an isomorphism Aoα G ' C.

Proof. The first two paragraphs are [KQ07, Theorem 3.2], modulo the slight
improvement indicated in [KQ09, Remark 5.2]. We must prove the third
paragraph, involving Landstad’s conditions, and we combine techniques of
the proofs of [Lan79, Lemma 3.1] and [Qui92, Proposition 3.2]: It follows
from the second paragraph of the theorem that there is a C∗-subalgebra A
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of M(C) such that AdV gives an action α of G on A, and, letting ιA : A→
M(C) be the inclusion, the pair (ιA, V ) is a covariant homomorphism of
(A,α) in M(C) whose integrated form is an isomorphism of AoαG onto C.

Let

B = {a ∈M(C) : Landstad’s conditions (2.2)–(2.4) hold}.
Note that A ⊆ B. Claim: B is a C∗-subalgebra of M(C). Obviously the set
of elements satisfying (2.2) is a C∗-subalgebra. For fixed f ∈ Cc(G), the set
of elements a ∈M(C) such that aV (f), V (f)a ∈ C is a closed subspace that
is closed under adjoints, and if it contains both a and b then abV (f) ∈ C
since bV (f) ∈ C, and V (f)ab ∈ C since V (f)a ∈ C. Thus the claim is
verified.

Note that AdV gives an action β of G on B, and, letting ιB : B →M(C)
be the inclusion, the pair (ιB, V ) is a covariant homomorphism of (B, β) in

M(C) whose integrated form ιB × V : B oβ G → C is a β̂ − δ equivariant
surjective homomorphism. Since ιB is injective, by [KQ07, Corollary 4.4]
ιB × V is an isomorphism.

Now let π : A → B be the inclusion. Then π is α − β equivariant, and
the induced homomorphism π o G : A oα G → B oβ G is an isomorphism
because the following diagram commutes:

Aoα G
πoG

//

ιA×V
'

((

B oβ G

ιB×V'
��

C.

Taking crossed products by the dual coactions and applying crossed-product
duality (the statement of [Rae87, Theorem 7] is perhaps most suitable for
the present purpose), we get a commutative diagram

Aoα Goα̂ G
πoGoG
'

//

'
��

B oβ Go
β̂
G

'
��

A⊗K(L2(G))
π⊗id

// B ⊗K(L2(G)).

Thus π ⊗ id, and hence π itself, must be an isomorphism, and therefore
A = B. �

The following definition applies to both Theorem 2.1 and Theorem 2.2.

Definition 2.3. Let δ be a coaction of G on a C∗-algebra C, and let
V : C∗(G)→M(C) be a δG − δ equivariant nondegenerate homomorphism.
Then we call the triple (C, δ, V ) an equivariant coaction. If δ is normal
or maximal, we denote the set of elements of M(C) satisfying Landstad’s
conditions (2.2)–(2.4) by Cδ,V , or just Cδ if V is understood, and we call
this the generalized fixed-point algebra of the equivariant coaction (C, δ, V ).
Further, we write αV for the action AdV on Cδ,V .
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Example 2.4. Starting with an action (A,α), let C = Aoα G, δ = α̂, and
V = iG. Then

iA : A→ (Aoα G)α̂,iG ⊆M(Aoα G)

is an α− αiG equivariant isomorphism.

Theorem 2.2 immediately implies the following characterization of the
image of A in the multipliers of the full crossed product:

Corollary 2.5. Let (A,α) be an action, and let m ∈ M(A oα G). Then
m ∈ iA(A) if and only if

(i) α̂(m) = m⊗ 1,
(ii) miG(f), iG(f)m ∈ Aoα G for all f ∈ Cc(G), and
(iii) s 7→ Ad iG(s)(m) is norm continuous from G to M(Aoα G).

We record a particular consequence of the above that we will need later:

Corollary 2.6. Suppose (C, δ, V ) is an equivariant maximal coaction and
ϕ : A → Cδ,V is an isomorphism. Then there exist an action α of G on A
and an α̂− δ equivariant isomorphism

Θ: Aoα G
'−→ C

such that

Θ ◦ iG = V

Θ ◦ iA = ϕ.

When we wish to appeal to Corollary 2.6 or any other aspect of the above
discussion, we will just say “by classical Landstad duality”.

2.7. Classical Landstad duality for coactions. The following result is
a reformulation of [Qui92, Theorem 3.3 and Proposition 3.2].

Theorem 2.7. Let C be a C∗-algebra and G a locally compact group. Then
there exist a normal coaction (A, δ) and an isomorphism θ : A oδ G → C
if and only if there exist an action α of G on C and a rt − α equivariant
nondegenerate homomorphism µ : C0(G)→M(C).

Moreover, given α and µ as above, the coaction (A, δ) and the isomor-

phism θ can be chosen such that θ is δ̂ − α equivariant and θ ◦ jG = µ; with
such a choice, if (B, ε) is any normal coaction and σ : BoεG→ C is a ε̂−α
equivariant isomorphism, then there exists a δ − ε equivariant isomorphism
ϕ : A→ B such that σ ◦ (ϕoG) = θ.

In fact, we can take A to be the unique C∗-subalgebra of M(C) char-
acterized by the following conditions, modeled upon [Qui92, (3.1)-(3.3) in
Proposition 3.2].

Adµ restricts to a normal coaction on A,(2.5)

span{Aµ(C0(G))} = C,(2.6)

αs(a) = a for all s ∈ G and a ∈ A,(2.7)
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and we can let δ be the restriction to A of (the extension to M(C) of ) the
inner coaction Adµ. Then, letting ι : A→ M(C) be the inclusion map, the
pair (ι, µ) is a covariant homomorphism of (A, δ) in M(C), whose integrated
form is an isomorphism Aoδ G ' C.

Definition 2.8. Let α be an action of G on a C∗-algebra C, and let
µ : C0(G) → M(C) be a rt − α equivariant nondegenerate homomorphism.
Then we call the triple (C,α, µ) an equivariant action. We denote the C∗-
subalgebra of M(C) characterized by the conditions (2.5)–(2.7) by Cα,µ, or
just Cα if µ is understood, and we call this the generalized fixed-point alge-
bra of the equivariant action (C,α, µ). Further, we write δµ for the coaction
Adµ on Cα,µ.

Example 2.9. Starting with a normal coaction (A, δ), let C = A oδ G,

α = δ̂, and µ = jG. Then

jA : A→ (Aoδ G)δ̂,jG ⊆M(Aoδ G)

is a δ − δjG equivariant isomorphism.

3. Pedersen’s theorem

Theorem 35 of [Ped82], stated more precisely as [RR88, Theorem 0.10],
says that actions (A,α) and (A, β) of an abelian group G are exterior equiv-

alent if and only if there is an α̂− β̂ equivariant isomorphism

Φ: Aoα G→ Aoβ G

such that

Φ ◦ iαA = iβA.

Pedersen’s arguments carry over to the nonabelian case, except that we

have to deal with the dual coaction of G rather than the dual action of Ĝ.
Since we need it, and the coaction version for nonabelian groups does not
seem to be readily available for reference in the literature, we include the
statement and proof for completeness.

Theorem 3.1. Let α and β be actions of a locally compact group G on a
C∗-algebra A. Then α and β are exterior equivalent if and only if there is an

α̂− β̂ equivariant isomorphism Φ: AoαG→ Aoβ G such that Φ ◦ iαA = iβA.
Moreover, there is a bijection between the set of β-cocycles u for which

α = Adu ◦ β and the set of α̂− β̂ equivariant isomorphisms

Φ: Aoα G→ Aoβ G

for which Φ ◦ iαA = iβA, given for s ∈ G by

(3.1) Φ ◦ iαG(s) = iβA(us)i
β
G(s).
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Proof. First suppose that u is a β-cocycle and α = Adu ◦ β. Define

V : G→M(Aoβ G)

by

Vs = iβA(us)i
β
G(s).

Then V is a strictly continuous unitary map, and is a homomorphism be-

cause u is a β-cocycle. Routine computations show that the pair (iβA, V )
is a covariant homomorphism of the action (A,α) in M(A oβ G), whose
integrated form Φ takes f ∈ Cc(G,A) to the element Φ(f) of Cc(G,A) given
by

Φ(f)(s) = f(s)us.

Thus Φ maps AoαG into AoβG. The α-cocycle u∗ gives a homomorphism
in the opposite direction that is easily verified to be an inverse of Φ.

We verify that Φ is α̂ − β̂ equivariant by checking the generators. For
a ∈ A,

(Φ⊗ id) ◦ α̂ ◦ iαA(a) = (Φ⊗ id)
(
iαA(a)⊗ 1

)
= Φ ◦ iαA(a)⊗ 1

= iβA(a)⊗ 1

= β̂ ◦ iβA(a)

= β̂ ◦ Φ ◦ iαA(a),

and for s ∈ G,

(Φ⊗ id) ◦ α̂ ◦ iαG(s) = (Φ⊗ id)
(
iαG(s)⊗ s

)
= Φ ◦ iαG(s)⊗ s

= iβA(us)i
β
G(s)⊗ s

=
(
iβA(us)⊗ 1

)(
iβG(s)⊗ s

)
= β̂ ◦ iβA(us)β̂ ◦ iβG(s)

= β̂
(
iβA(us)i

β
G(s)

)
= β̂ ◦ Φ ◦ iαG(s).

Note that the above construction takes a β-cocycle u and produces an

α̂− β̂ equivariant isomorphism Φ: Aoα G→ Aoβ G such that both

Φ ◦ iαA = iβA

and (3.1) hold. This construction is obviously injective from cocycles to
equivariant isomorphisms.

Now suppose that Υ: Aoα G→ Aoβ G is an α̂− β̂ equivariant isomor-

phism such that Υ ◦ iαA = iβA. Define U : G→M(Aoβ G) by

Us = Υ
(
iαG(s)

)
iβG(s)∗.
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Then U is a strictly continuous unitary map, and a quick calculation shows
that for s, t ∈ G we have

(3.2) Ust = Us Ad iβG(s)(Ut).

We claim that for all s ∈ G, the value Us is in the image iβA(M(A)). First

note that iβA(M(A)) = M(iβA(A)). So, we must show that for every a ∈ A the

products Usi
β
A(a) and iβA(a)Us are in iβA(A). We only give the argument for

the first product; the computations for the other product are very similar.

By Corollary 2.5, it is enough to verify that the element y = Usi
β
A(a) of

M(Aoβ G) satisfies the following conditions:

(i) β̂(y) = y ⊗ 1;

(ii) y iβG(f) and iβG(f) y are in Aoβ G for all f ∈ Cc(G);

(iii) t 7→ Ad iβG(t)(y) is norm continuous.

For (i), we have

β̂
(
Υ ◦ iαG(s)iβG(s)∗iβA(a)

)
= (Υ⊗ id) ◦ α̂ ◦ iαG(s)

(
iβG(s)∗iβA(a)⊗ s−1

)
= (Υ⊗ id)

(
iαG(s)⊗ s

))(
iβG(s)∗iβA(a)⊗ s−1

)
= Υ ◦ iαG(s)iβG(s)∗iβA(a)⊗ 1.

For (ii), the first product is obvious, and the second product is similar once
we note that

y = Υ ◦ iαG(s)iβA ◦ βs−1(a)iβG(s)∗

= Υ ◦ iαG(s)Υ ◦ iαA ◦ βs−1(a)iβG(s)∗

= Υ
(
iαA ◦ αs ◦ βs−1(a)iαG(s)

)
iβG(s)∗

= iβA ◦ αs ◦ βs−1(a)Us.

Condition (iii) follows from combining the identity

iβG(t)Usi
β
A(a)iβG(t)∗ = Ad iβG(t)(Us)i

β
A ◦ βt(a)

with the facts that t 7→ Ad iβG(t)(Us) is strictly continuous and norm bounded,

and t 7→ iβA ◦ βt(a) is norm continuous.

We have proved the claim that Us ∈ iβA(M(A)). Since iβA : A → iβA(A)
is an isomorphism, we conclude that there is a unique strictly continuous
unitary map u : G→M(A) such that

Us = iβA(us),

and then since iβA is β − Ad iβG equivariant it follows from (3.2) that u is
a β-cocycle. By construction, the isomorphism Υ arises from this cocycle
as in the first part of the proof, and this proves the second part of the
theorem. �
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Theorem 3.1 is the only version we will need. However, we record the
following version for reduced crossed products, since it might be useful else-
where.

Theorem 3.2. Let α and β be actions of a locally compact group G on a
C∗-algebra A. Then α and β are exterior equivalent if and only if there is

an α̂n − β̂n equivariant isomorphism Φ: A oα,r G → A oβ,r G such that

Φ ◦ iα,rA = iβ,rA .
Moreover, there is a bijection between the set of β-cocycles u for which

α = Adu ◦ β and the set of α̂n − β̂n equivariant isomorphisms

Φ: Aoα,r G→ Aoβ,r G

for which Φ ◦ iα,rA = iβ,rA , given for s ∈ G by

Φ ◦ iα,rG (s) = iβ,rA (us)i
β,r
G (s).

Proof. Recall from Subsection 2.2 that the dual coaction α̂ on a full crossed
product Aoα G is maximal, and the regular representation

Λ: (Aoα G, α̂)→ (Aoα,r G, α̂
n)

is a both a normalization and a maximalization, and consequently the map

Φ 7→ Φn gives a bijection between the sets of α̂− β̂ equivariant isomorphisms

Φ: Aoα G→ Aoβ G and α̂n − β̂n equivariant isomorphisms

Φ: Aoα,r G→ Aoβ,r G.

We need to know that Φ ◦ iαA = iβA if and only if Φn ◦ iα,rA = iβ,rA . One
direction is straightforward: a computation using the commutative diagram

Aoα G
Φ //

Λα

��

Aoβ G

Λβ

��

Aoα,r G
Φn
// Aoβ,r G

shows that Φ ◦ iαA = iβA implies Φn ◦ iα,rA = iβ,rA .
On the other hand, the converse implication seems to be a little harder,

requiring an indirect approach via cocycles again. Assume that

Φn ◦ iα,rA = iβ,rA .

Using the same technique as in the proof of Theorem 3.1 for the case of full
crossed products, but working in the reduced crossed products, we use the
isomorphism Φn to get a β-cocycle u such that

Φn ◦ iα,rG (s) = iβ,rA (us)i
β,r
G (s).

Applying Theorem 3.1 to this cocycle u gives an α̂− β̂ equivariant isomor-

phism Υ: AoαG→ AoβG such that Υ◦iαA = iβA and Υ◦iαG(s) = iβA(us)i
β
G(s).
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We check that the diagram

Aoα G
Υ //

Λα

��

Aoβ G

Λβ

��

Aoα,r G
Φn
// Aoβ,r G

commutes by computing on the generators:

Φn ◦ Λα ◦ iαA = Φn ◦ iα,rA = iβ,rA = Λβ ◦ iβA = Λβ ◦Υ ◦ iαA,

and for s ∈ G we have

Φn ◦ Λα ◦ iαG(s) = Φn ◦ iα,rG (s) = iβ,rA (us)i
β,r
G (s)

= Λβ
(
iβA(us)i

β
G(s)

)
= Λβ ◦Υ ◦ iαG(s).

Since the vertical maps Λα and Λβ are maximalizations, the isomorphism Υ

must coincide with Φ. Therefore Φ ◦ iαA = iβA, as required. �

Notation 3.3. In Theorem 3.1, given a β-cocycle u, we will denote the
associated isomorphism of Aoα G onto Aoβ G by Φu.

Remark 3.4. For actions α and β on A, we could say that α is “measurably
exterior equivalent” to β if there exists a measurable α-cocycle ν (in the sense
that t 7→ νt is measurable) such that β = Ad ν◦α. This is evidently a weaker
notion than exterior equivalence. However, we can adapt the technique of
proof of Proposition 3.1 by defining Φ on L1(G,A) instead of Cc(G,A), and
then we can use Proposition 3.1 to obtain a continuous α-cocycle u. Thus,
actions α and β are “measurably exterior equivalent” if and only if they are
exterior equivalent.

The following elementary lemma is presumably folklore; we include the
proof because we could not find a reference for it in the literature.

Lemma 3.5. If u is an α-cocycle and v is an Adu ◦ α-cocycle, then vu is
an α-cocycle, and

Φvu = Φu ◦ Φv.

Proof. First note that vu : G→M(A) is a strictly continuous unitary map,
and for s, t ∈ G,

(vu)st = vstust = vs(Adu ◦ α)s(vt)usαs(ut)

= vs(Adus ◦ αs)(vt)usαs(ut)
= vsusαs(vt)u

∗
susαs(ut)

= vsusαs(vt)αs(ut)

= vsusαs(vtut) = (vu)sαs
(
(vu)t

)
.

Thus vu is an α-cocycle.
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For the other part,

Φu ◦ Φv ◦ iAd v◦Adu◦α
A = Φu ◦ iAdu◦α

A = iαA = Φvu ◦ iAd vu◦α
A ,

and for s ∈ G

Φu ◦ Φv ◦ iAd v◦Adu◦α
G (s) = Φu

(
iAdu◦α
A (vs)i

Adu◦α
G (s)

)
= iαA(vs)i

α
A(us)i

α
G(s)

= iαA
(
(vu)s

)
iαG(s)

= Φvu ◦ iAd vu◦α
G (s)

= Φvu ◦ iAd v◦Adu◦α
G (s). �

Proposition 2.8 of [QR95], and its proof, imply the following partial ana-
logue of Pedersen’s theorem for coactions:

Proposition 3.6 (Pedersen’s theorem for coactions). Let δ be a normal
coaction of G on A. Let U be a δ-cocycle, and let ε = AdU ◦ δ. Then there

is a unique ε̂− δ̂ equivariant isomorphism

ΦU : Aoε G
'−→ Aoδ G

such that

ΦU ◦ jεA = jδA

(ΦU ⊗ id)
(
(jεG ⊗ id)(wG)

)
= (jδA ⊗ id)(U)(jδG ⊗ id)(wG).

However, for coactions the converse is still open.
The following elementary lemma, dual to Lemma 3.5, is presumably folk-

lore, and is included for completeness, because the computations are peculiar
to coactions.

Lemma 3.7. If U is a δ-cocycle and V is an Adu ◦ δ cocycle, then V U is
a δ-cocycle and

ΦV U = ΦU ◦ ΦV .

Proof. Clearly, V U is a unitary inM(A⊗C∗(G)), and routine computations
show that

(id⊗ δG)(V U) = (V U ⊗ 1)(AdV U ◦ δ(V U)),

AdV U ◦ δ(A)(1⊗ C∗(G)) ⊆ A⊗ C∗(G).

Thus V U is a δ-cocycle.
For the other part, let ε = AdU ◦ δ and ζ −AdV ◦ ε. We have

ΦU ◦ ΦV ◦ jζA = ΦU ◦ jεA = jδA = ΦV U ◦ jζA,
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and

(ΦU ◦ ΦV ⊗ id)
(
(jζG ⊗ id(wG)

)
= (ΦU ⊗ id)

(
(ΦV ⊗ id)

(
(jζG ⊗ id)(wG)

))
= (ΦU ⊗ id)

(
(jεA ⊗ id)(V )(jεG ⊗ id)(wG)

)
= (ΦU ◦ jεA ⊗ id)(V )(ΦU ⊗ id)

(
(jεG ⊗ id)(wG)

)
= (jδA ⊗ id)(V )(jδA ⊗ id)(U)(jδG ⊗ id)(wG)

= (jδA ⊗ id)(V U)(jδG ⊗ id)(wG).

It follows that ΦU ◦ ΦV = ΦV U . �

4. Abstractly inverting a process

Very often in mathematics we are studying a process P that takes inputs
x and produces outputs P (x), and several questions arise:

(i) Classify the outputs: For which objects y is there an input x
such that P (x) = y?

(ii) Classify the inputs: Given that y is an output, find all inputs x
such that P (x) = y.

(iii) Invert the process: Given that P (x) = y, what other data do we
need to recover x?

Typically we must interpret the above questions “up to isomorphism”. For
example, we should write P (x) ' y throughout, in (ii) we should classify
the x’s up to isomorphism, and in (iii) we should only expect to recover x
up to isomorphism.

Our strategy is to put everything in a categorical setting, so that the
process P is a functor, and in (iii) we want to convert P into a category
equivalence. We say “convert” here because most of the time the original
version of the process will not be an equivalence. When we inquire about
“other data”, which in mathematics are usually thought of as “extra struc-
ture”, we want to factor P as an equivalence followed by a specific type of
forgetful functor, and the “extra structure” is what we are forgetting.

We want to give some meaning to “inverting” a functor P . To begin,
we introduce some terminology — some standard, some ad-hoc — that is
convenient for our purposes.

Definition 4.1. Suppose P : C → D is a functor.

• An output of P is an object y of D for which there exists an object
x of C such that P (x) = y.
• An essential output of P is an object y of D for which there exists

an object x of C such that P (x) ' y.
• The image of P is the class of all outputs of P .
• The essential image of P is the class of all essential outputs of P .
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• For an output y of P , the inverse image of y under P is the class
P−1(y) of all objects x of C such that P (x) = y.
• For an essential output y of P , the essential inverse image under P

of y is the class of all objects x of C such that P (x) ' y.
• If every object in D is isomorphic to an output of P , then P is

called essentially surjective.
• If for all objects x, y in C, the map Mor(x, y)→ Mor(P (x), P (y)) is

surjective or injective, then P is full or faithful, respectively.
• If P is essentially surjective, full, and faithful, then P is a cate-

gory equivalence and has a quasi-inverse, i.e., there is some functor
H : D → C such that H ◦ P and P ◦H are naturally isomorphic to
the identity functors.
• P is called conservative if it reflects isomorphisms, that is, if for

every morphism f in C such that P (f) is an isomorphism in D,
then f is an isomorphism in C.
• An inversion of P is a commutative diagram

C P̃ //

P ��

D̃

F
��

D

of functors such that:
(i) P̃ is an equivalence of categories;

(ii) D̃ is a category whose objects are pairs (A, σ), where A is an
object of D and σ denotes some extra structure;

(iii) F is defined by F (A, σ) = A on objects, and is faithful.
• An inversion of P (as above) is good if the image of F is contained

in the essential image of P , and F has the following unique isomor-
phism lifting property : whenever y ∈ D and u ∈ F−1(y), for every
isomorphism θ in D with domain y there is a unique isomorphism

θu in D̃ with domain u such that F (θu) = θ. We write θ · u for the
codomain of θu.

We regard F : D̃ → D as a special type of forgetful functor that “forgets

extra structure”, and we regard any choice of quasi-inverse H : D̃ → C of P̃
as “inverting the process P”.

From a slightly different viewpoint, we can think about this as transform-
ing P into a forgetful functor F by replacing its domain category C by an

equivalent category D̃, in a way that makes it clear what extra structure
that is forgotten, i.e., what extra structure we need to invert the process.

We emphasize that the above is not an attempt to give a definition of
inversion that is completely satisfactory to category theorists, but we are
rather describing a situation that is easily recognizable. To shed further
light on this, let us for a moment ignore part (ii) and (iii) of the definition
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of inversion, and instead only require F to be faithful, so that it identifies
Mor(x, y) with a subset of Mor(F (x), F (y)). Then one may think of an ob-

ject x in D̃ as having an underlying D-object F (x), plus some extra structure

that F forgets. In this way, one can think of morphisms Mor(x, y) in D̃ as
those morphisms in Mor(F (x), F (y)) that are “compatible” with this extra
structure. To simplify the description, we denote the extra structure by a
symbol σ, making the definition less rigorous.

Moreover, the requirements that F is faithful and P̃ is an equivalence
mean that inversions only exist for functors P that are faithful. In fact, this

is the only obstruction: assuming P : C → D is faithful, define a category D̃
whose objects comprise all pairs (P (x), x) where x is an object in C, and in
which a morphism from (P (x), x) to (P (y), y) is just a morphism f : x→ y

in C. Define a functor P̃ : C → D̃ on objects by P̃ (x) = (P (x), x) and on

morphisms by P̃ (f) = f . Then P̃ is actually an isomorphism of categories,

and we have an inversion with the forgetful functor F : D̃ → D defined by
F (P (x), x) = P (x) and F (f) = P (f). This construction is rather artificial,
and the point we wish to make in this paper is that inversions arise quite
naturally, and can give useful information.

In a good inversion, the unique isomorphism lifting property implies that
the forgetful functor F will be conservative. It turns out that even for
inversions that are not good the functor F will frequently be conservative;
for example, this will be the case in all the examples we consider in this
paper. Note that F is conservative if and only if P is conservative.

In general, the unique isomorphism lifting does not carry over from F
to P . Indeed, suppose F has this property. For all y ∈ D, u ∈ P−1(y),
and θ ∈ IsoD(y, ·), there only exists some u′ ' u and θ′ ∈ IsoC(u

′, ·) such

that P (θ′) = θ, namely, u′ ∈ P̃−1(P̃ (u)) and θ′ ∈ P̃−1(F (θ
P̃ (u)

)). The

isomorphism u → u′ can be chosen in a canonical way for every choice of

quasi-inverse H for P̃ by letting u′ = (H ◦ P̃ )(u), and θu′ = H(θ
P̃ (u)

) is

unique up to isomorphism. In other words, for a good inversion to exist, P
must have a property that is very close to the unique lifting property in a
category-theoretical sense (the requirement that the image of F is contained
in the essential image of P does not impose any restrictions on what P can
be).

The unique isomorphism lifting property may of course be defined for any
functor, and has presumably been studied, but we could not find this precise
property in the category theory literature.

The unique isomorphism lifting property is very close to the requirement
that F be a covering of the underlying groupoids, except that we do not
require that F be surjective on objects.

Note that, even in good inversion, F is not full on the underlying groupoids
since the lift θu of θ does not necessarily belong to Iso(u, v), but rather to
Iso(u,w) for some possibly different w with F (v) = F (w).
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Suppose we have a good inversion of P . We emphasize that we do not
assume that the objects of D that are in the image of F form a particularly
large portion of the class of all objects of D; in particular, F will typically not
be essentially surjective, i.e., there typically will be objects of D that are not
isomorphic to anything in the image of F . However, good inversion requires
that the image of F is isomorphism-closed in the sense that any object of D
that is isomorphic to an output of F is an output of F . It follows from this
and the definition of good inversion that the essential image of P coincides
with the image of F .

Proposition 4.2. Suppose we have a good inversion of P as above. Then
for any essential output y of P , the essential inverse image of y under P
is classified up to isomorphism by the orbits of F−1(y) under the natural
action of Aut(y).

Proof. For an object x in C we have P (x) ' y if and only if there exists
u ∈ F−1(y) such that x ' H(u). For two such x1, x2, with xi ' H(ui),
ui ∈ F−1(y) (i = 1, 2), we have x1 ' x2 if and only if u1 ' u2, if and only if
u2 = θ · u1 for some automorphism θ of y. �

5. Inverting the crossed-product process — actions

We will give three examples of (categorically) inverting the crossed-pro-
duct process for actions. In all three cases the objects of the categories C,
D, D̃ will remain the same, but in some sense the first example will have
the fewest morphisms, the second example the most, and the third example
somewhere in between.

Broadly speaking, we will start with a category C of actions, and the basic
process will produce the full crossed product, which will be an object in a

category D of C∗-algebras, and the category D̃ will have objects comprising
C∗-algebras with a coaction and a certain kind of equivariant map (see
below).

In each example the objects of the category C will be actions (A,α) of
G, and the process P will be a functor that takes an object (A,α) to the

full crossed product C∗-algebra Aoα G. The objects of the category D̃ will
be equivariant maximal coactions (C, δ, V ), i.e., δ is a maximal coaction of
G on a C∗-algebra C and V : C∗(G) → M(C) is a nondegenerate δG − δ
equivariant homomorphism. The functor P̃ will take an object (A,α) to
(Aoα G, α̂, iG).

5.1. Nondegenerate Landstad duality for actions. This first example
of inverting the process will be based upon the nondegenerate category C∗nd
of C∗-algebras, in which a morphism ϕ : C → D is a nondegenerate homo-
morphism ϕ : C →M(D). A morphism ϕ is an isomorphism in the category
if and only if it is a C∗-isomorphism in the usual sense.
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The nondegenerate category Acnd of actions has actions (A,α) of G as
objects, and when we say ψ : (A,α) → (B, β) is a morphism in the cate-
gory we mean ψ : A → B is a morphism in C∗nd that is α − β equivariant.
Isomorphisms in the category are equivariant C∗-isomorphisms.

The nondegenerate equivariant category δG-Cond of coactions has equi-
variant maximal coactions (see Definition 2.3) (C, δ, V ) of G as objects, and
when we say ψ : (C, δ, V ) → (D, ε,W ) is a morphism in the category we
mean ψ : C → D is a morphism in C∗nd that is δ−ε equivariant and satisfies

W = ψ ◦ V.

The nondegenerate crossed-product functor CPnd is given on objects by
(A,α) 7→ Aoα G, and on morphisms by(

ϕ : (A,α)→ (B, β)
)
7→
(
ϕoG : Aoα G→ B oβ G

)
,

where we must keep in mind that ϕoG is to be interpreted as a morphism
in the nondegenerate category of C∗-algebras.

The nondegenerate equivariant crossed-product functor C̃Pnd is given on
objects by (A,α) 7→ (Aoα G, α̂, iG), and on morphisms by(

ϕ : (A,α)→ (B, β)
)
7→
(
ϕoG : (Aoα G, α̂, iG)→ (B oβ G, β̂, iG

)
,

where we recall that ϕoG is α̂− β̂ equivariant and takes iαG to iβG.

The functor C̃Pnd is an equivalence [KQ09, Theorem 5.1] and CPnd is the

composition of C̃Pnd followed by the forgetful functor F : δG-Cond → C∗nd
defined on objects by (C, δ, V ) 7→ C and on morphisms by f 7→ f . Hence,
F is precisely the type of forgetful functor that fits into the framework of
Section 4, and hence, this setup gives an inversion of the process CPnd. We
call this inversion nondegenerate Landstad duality for actions.

Moreover, it follows from [KQ09, proofs of Theorems 4.1 and 5.1] that
a quasi-inverse of the nondegenerate equivariant crossed-product functor is
given by the nondegenerate fixed-point functor Fixnd, defined on objects by
(C, δ, V ) 7→ (Cδ,V , αV ) (see Definition 2.3 for notation), and on morphisms
as follows: if ψ : (C, δ, V )→ (D, ε,W ) is a morphism in δG-Cond, then

Fixnd(ψ) : (Cδ,V , αV )→ (Dε,W , αW )

is the unique morphism in Acnd such that the diagram

(Cδ,V oαV G, α̂
V , iCδ,V )

Fixnd(ψ)oG
//

'
��

(Dε,W oαW G, α̂W , iDε,W )

'
��

(C, δ, V )
ψ

// (D, ε,W )

commutes in δG-Cond, where the vertical arrows are the canonical isomor-
phisms.
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Since we have chosen the object map of Fixnd to take an equivariant max-
imal coaction (C, δ, V ) to the C∗-subalgebra Cδ,V of M(C), in our setting
the nondegenerate homomorphism

Fixnd(ψ) : Cδ,V →M(Dε,W )

is the restriction of (the canonical extension to M(C) of) ψ. Thus, the
additional data required to recover the action from the full crossed product
A oα G consists of the dual coaction α̂ and the canonical homomorphism
iG.

Proposition 5.1. The above nondegenerate Landstad duality is a good in-
version.

Proof. We must check that the image of F is contained in the essential
image of CPnd, and the unique isomorphism lifting property. The first
follows immediately: if C = F (C, δ, V ), then by classical Landstad duality
(Corollary 2.6) there is an action (A,α) = Fixnd(C, δ, V ) such that C '
CPnd(A,α). For the unique isomorphism lifting property, given an object

(C, δ, V ) of δG-Cond and an isomorphism θ : C
'−→ D in C∗nd, we can use θ

to carry the coaction δ and the homomorphism V over to a coaction ε on D
and a δG−ε equivariant nondegenerate homomorphismW : C∗(G)→M(D),
and then θ gives an isomorphism

θ̃ : (C, δ, V )→ (D, ε,W )

in δG-Cond covering θ : C → D. Since the forgetful functor is faithful we

see that θ̃ is unique. �

5.2. Enchilada Landstad duality for actions. The enchilada category
C∗en of C∗-algebras has the same objects as C∗nd, but now when we say
[Y ] : C → D is a morphism in the category we mean [Y ] is the isomorphism
class of a nondegenerate C − D correspondence Y . Composition of mor-
phisms is given by balanced tensor products, and identity morphisms by
the C∗-algebras themselves, viewed as correspondences in the standard way.
A morphism [Y ] is an isomorphism in the category if and only if Y is an
imprimitivity bimodule.

The enchilada category Acen of actions has the same objects as Acnd,
but now when we say [X, γ] : (A,α)→ (B, β) is a morphism in the category
we mean [X] : A → B in C∗en and γ is an α − β compatible action of G on
X. Isomorphisms in the category are equivariant Morita equivalences.

The enchilada equivariant category δG-Coen of coactions has the same
objects as δG-Cond, but now when we say [Y, ζ] : (C, δ, V ) → (D, ε,W ) is
a morphism in the category we mean [Y ] : C → D in C∗en and ζ is a δ − ε
compatible coaction of G on Y . Note that this time the morphisms have
nothing to do with the equivariant homomorphisms V,W . In particular,
isomorphisms in the category are just equivariant Morita equivalences.
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While δG-Cond defined in the previous subsection is a so-called comma
category, δG-Coen is sometimes loosely said to be a “semi-comma category”.

The enchilada crossed-product functor CPen is the same as CPnd on ob-
jects, but is given on morphisms by(

[X, γ] : (A,α)→ (B, β)
)
7→
(
[X oγ G] : Aoα G→ B oβ G

)
.

The enchilada equivariant crossed-product functor C̃Pen is the same as

C̃Pnd on objects, but is given on morphisms by(
[X, γ] : (A,α)→ (B, β)

)
7→(

[X oγ G, γ̂] : (Aoα G, α̂, iG)→ (B oβ G, β̂, iG
)
.

Note that CPen is the composition of C̃Pen followed by the forgetful
functor F : (C, δ, V ) 7→ C.

We will prove that, although F and C̃Pen provide a way of inverting
CPen, in this case we do not have a good inversion. Propositions 5.2 and
5.4 below, which we express in noncategorical terms, form the crux of the
matter.

First we need “generalized fixed-point correspondences”:

Proposition 5.2. Let (C, δ, V ) and (D, ε,W ) be equivariant maximal coac-
tions, and let (Y, ζ) be a (C, δ)− (D, ε) correspondence coaction. Then there
are a (Cδ, αV )−(Dε, αW ) correspondence action (X, γ) and an isomorphism

Θ: (X oγ G, γ̂) ' (Y, ζ)

of (C, δ)− (D, ε) correspondence coactions, characterized by

Θ
(
iX(x) · iG(d)

)
= x ·W (d) for x ∈ X, d ∈ C∗(G).

Proof. Recall from Subsection 2.4 there is an associated maximal coaction
µ on the algebra K := K(Y ) of generalized compact operators on Y , and
a maximal coaction ν =

(
µ ζ
∗ ε
)

on the linking algebra L := L(Y ) =
(
K Y
∗ D

)
(where we do not bother to explicitly indicate the lower-left corners, since
they take care of themselves). The composition

U := ϕC ◦ V : C∗(G)→M(K)

(where ϕC : C →M(K) is the homomorphism associated to the left-module
structure) and the homomorphism Z :=

(
U 0
0 W

)
are equivariant from δG to

µ and ν, respectively. The projections p = ( 1 0
0 0 ) , q = ( 0 0

0 1 ) ∈ M(L) are
in the multiplier algebra of the generalized fixed-point algebra Lν , giving a
matrix decomposition

Lν =

(
Kµ X
∗ Dε

)
,

where we define X = pLνq. Thus X is a Kµ − Dε Hilbert bimodule, and
hence a Cδ − Dε correspondence, incorporating the nondegenerate homo-
morphism Fixnd(ϕC) : Cδ →M(Kµ).
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Now, L carries an inner action AdZ. The projections p, q ∈ M(L) are
AdZ-invariant, and the restrictions on the diagonal corners are

AdZ|pLp = AdU and AdZ|qLq = AdW,

so AdZ decomposes as a matrix of actions

AdZ =

(
AdU Ad(U,W )
∗ AdW

)
(where Ad(U,W ) denotes the action of G on Y whose value at s ∈ G is the
operator x 7→ Us · x ·W ∗s ). Thus the restriction αZ = AdZ|Lν decomposes
as a matrix

αZ =

(
αU γ
∗ αW

)
(where we define γs = αZs |X for s ∈ G). Moreover, γ is αU−αW compatible,
and hence αV − αW compatible, incorporating Fixnd(ϕC) again.

Classical Landstad duality (Corollary 2.6) gives an isomorphism

θL :
(
Lν oαZ G, α̂

Z
) '−→ (L, ν).

On the other hand, since the projection p is αZ-invariant, the projection
iLν (p) gives a matrix decomposition

Lν oαZ G =

(
Kµ oαU G X oγ G

∗ Dε oαW G

)
of full crossed products and

α̂Z =

(
α̂U γ̂

∗ α̂W

)
of dual coactions. Further, θL preserves the corner projections. Thus θL
restricts on the corners to a γ̂−ζ equivariant Hilbert-bimodule isomorphism

(θK ,Θ, θD) :
(
Kµ oαU G,X oγ G,D

ε oαW G
) '−→ (K,Y,D).

We also have an α̂V − δ equivariant isomorphism θC : Cδ oαV G
'−→ C, and

θK ◦ ϕCδo
αV

G = ϕC ◦ θC
by nondegenerate Landstad duality. Thus, incorporating the isomorphisms
θC and θD, Θ is an isomorphism of (C, δ)− (D, ε) correspondence coactions.

For the other part, we have

piLνq = iX and qZ = qZq = W,

and it follows that for x ∈ X, d ∈ C∗(G) we have

Θ
(
iX(x) · iG(d)

)
= x ·W (d). �

Notation 5.3. We denote the Cδ − Dε correspondence X constructed in
the above proof by Y ζ,V,W , or just Y ζ if confusion is unlikely, and we denote
the action γ by αV,W .
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Proposition 5.4. Let (A,α) and (B, β) be actions, and let (X, γ) be an
(A,α)− (B, β) correspondence action. Then iX : X →M(X oγ G) gives an
isomorphism

(X, γ)
'−→
(
(X oγ G)γ̂ , αi

α
G,i

β
G
)

of (A,α)− (B, β) correspondence actions.

Proof. We have associated actions (K = K(X), σ) and (L = L(X), τ), with
τ =

( σ γ
∗ β
)
, a dual coaction

(Loτ G, τ̂) =

((
K oσ G X oγ G
∗ B oβ G

)
,

(
σ̂ γ̂

∗ β̂

))
on the full crossed product, and an isomorphism

iL : (L, τ)
'−→
(
(Loτ G)τ̂ , αi

τ
G
)

by classical Landstad duality. On the other hand, we also have a decompo-
sition

(Loτ G)τ̂ =

(
(K oσ G)σ̂ (X oγ G)γ̂

∗ (B oβ G)β̂

)
,

and iL preserves the corner projections. Thus iL restricts on the corners to

a γ − αiσG,i
β
G equivariant Hilbert-bimodule isomorphism

(iK , iX , iB) : (K,X,B)
'−→
(
(K oσ G)σ̂, (X oγ G)γ̂ , (B oβ G)β̂

)
.

We also have an isomorphism iA : A
'−→ (Aoα G)α̂, and

iK ◦ ϕA = ϕ(AoαG)α̂ ◦ iA
by nondegenerate Landstad duality. Thus, incorporating the isomorphisms
iA and iB, iX is an isomorphism of (A,α)− (B, β) correspondence actions.

�

Theorem 5.5. The enchilada equivariant crossed-product functor C̃Pen is
an equivalence, and there is a quasi-inverse Fixen : δG-Coen → Acen with
morphism map(

[Y, ζ] : (C, δ, V )→ (D, ε,W )
)
7→
(
[Y ζ , αY ] : (Cδ, αV )→ (Dε, αW )

)
and the same object map as Fixnd : δG-Cond → Acnd.

Proof. It is clear that C̃Pen : Acen → δG-Coen is essentially surjective,
because it is essentially surjective for the nondegenerate categories, which
have the same objects and in which isomorphism is stronger than in the

enchilada categories. To see that C̃Pen is an equivalence, we must show that,

for any two objects (A,α), (B, β) in Acen, C̃Pen takes the set of morphisms

Mor((A,α), (B, β)) bijectively onto Mor((Aoα G, α̂, iG), (B oβ G, β̂, iG)).
For injectivity, if [X, γ] : (A,α)→ (B, β) in Acen, it suffices to note that

Proposition 5.4 tells us that (X, γ) can be recovered up to isomorphism from
the crossed product.
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We turn to the surjectivity. If [Y, ζ] : (AoαG, α̂, iG)→ (Boβ G, β̂, iG) in
δG-Coen, Proposition 5.2 (and Notation 5.3) give an isomorphism

Θ: (Y ζ o
α
iα
G
,i
β
G
G, α̂i

α
G,i

β
G)

'−→ (Y, ζ)

of (AoαG, α̂)− (Boβ G, β̂) correspondence coactions. Now, (Y γ , αi
α
G,i

β
G) is

an (
(Aoα G)α̂, αi

α
G
)
−
(
(B oβ G)β̂, αi

β
G
)

correspondence action. Incorporating the isomorphisms

(A,α) '
(
(Aoα G)α̂, αi

α
G
)

(B, β) '
(
(B oβ G)β̂, αi

β
G
)

from classical Landstad duality (Theorem 2.2), (Y ζ , αi
α
G,i

β
G) becomes an

(A,α) − (B, β) correspondence action, whose full crossed product is iso-
morphic to the given coaction (Y, ζ). Finally, the assertions regarding the
quasi-inverse Fixen follow immediately from the above constructions. �

Let F : δG-Coen → C∗en denote the forgetful functor defined on objects by

(C, δ, V ) 7→ C. The factoring of CPnd into a composition of C̃Pnd followed
by F gives an inversion of CPen, which we call enchilada Landstad duality
for actions.

Remark 5.6. Enchilada Landstad duality for actions is not a good inver-
sion. For if it were, the image of the forgetful functor (C, δ, V ) 7→ C from
δG-Coen to Coen would coincide with the essential image of CPen, and
it would follow that any C∗-algebra C that is Morita equivalent to a full
crossed product Aoα G would have extra structure δ, V such that (C, δ, V )
is an object in δG-Coen. But then by classical Landstad duality C would
be C∗-isomorphic to a full crossed product. We can easily see that this
is false in general — for instance, if G is finite of even order then every
finite-dimensional C∗-algebra isomorphic to a crossed product by G would
have even dimension, while every finite-dimensional C∗-algebra is Morita
equivalent to one of odd dimension.

Nevertheless, it is still the case that the forgetful functor

F : δG-Coen → C∗en

is conservative, i.e., a morphism [Y ] : (C, δ, V )→ (D, ε,W ) in δG-Coen is an
isomorphism in the category if and only if its image [Y ] : C → D under the
forgetful functor is an isomorphism in C∗en, i.e., Y is a C −D imprimitivity
bimodule — the problem is that isomorphisms do not always lift. Interest-
ingly, the enchilada crossed-product functor CPen has a special property: it
is essentially surjective, because every C∗-algebra is Morita equivalent to a
full crossed product, by crossed-product duality. In fact, we could use the
dual crossed product

(C, δ, V ) 7→ (C oδ G, δ̂)
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as an alternative quasi-inverse of C̃Pen, again by the properties of crossed-
product duality. This has the following consequence: the map

(C, δ, V ) 7→ (C, δ)

extends to an equivalence of enchilada categories that is actually surjective
on objects.

5.3. Outer Landstad duality for actions. We have seen that nonde-
generate Landstad duality is a good inversion, whereas enchilada Landstad
duality is not. In some sense the problem with the latter is that we have too
many morphisms. This led us to wonder whether there might be intermedi-
ate categories, with more morphisms than the nondegenerate but fewer than
the enchilada, where good inversion is possible. Here we present a nontrivial
example of such an intermediate choice of morphisms. However, this time
the domain and target categories involve an asymmetrical choice of mor-
phisms — in the domain category C of actions we start with nondegenerate

equivariant maps and throw in outer conjugacy, while in the category D̃ we
require the coaction-equivariant maps to respect the generalized fixed-point
algebras in some sense.

We base this third example of inverting the process upon the nondegen-
erate category C∗nd of C∗-algebras, as we did for nondegenerate Landstad
duality. The outer category Acou of actions has the same objects as Acnd,
but now when we say (ϕ, u) : (A,α)→ (B, β) is a morphism in the category
we mean u is a β-cocycle and ϕ : A → B is a morphism in C∗nd that is
α−Adu ◦ β equivariant.

Lemma 5.7. The category Acou introduced above is well-defined.

Proof. The crucial thing is to check that we can compose morphisms: let
(ϕ, u) : (A,α)→ (B, β) and (ψ, v) : (B, β)→ (C, γ) be morphisms in Acou.
Claim: (

ψ ◦ ϕ, (ψ ◦ u)v
)

: (A,α)→ (C, γ)

is a morphism. We need to show that:

(i) (ψ ◦ u)v is a γ-cocycle.
(ii) ψ ◦ ϕ is α−Ad

(
(ψ ◦ u)v

)
◦ γ equivariant.

For (i), note that ψ ◦ u is an Ad v ◦ γ cocycle since ψ is β − Ad v ◦ γ
equivariant, and hence it follows from Lemma 3.5 that (ψ◦u)v is a γ-cocycle.

For (ii), we reason as follows: ψ is β − Ad v ◦ γ equivariant and u is a
β-cocycle, so ψ ◦ u is an (Ad v ◦ γ)-cocycle and ψ is

Adu ◦ β −Ad(ψ ◦ u) ◦Ad v ◦ γ
equivariant. Note that

Ad(ψ ◦ u) ◦Ad v ◦ γ = Ad
(
(ψ ◦ u)v

)
◦ γ.

Since ϕ is α−Adu ◦ β equivariant, the composition ψ ◦ ϕ is

α−Ad
(
(ψ ◦ u)v

)
◦ γ
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equivariant.
This proves the claim, and so composition of morphisms is well-defined.
It is obvious that there are identity morphisms, and a routine computation

shows that composition is associative. �

The isomorphisms in the category are just outer conjugacies of actions
(and hence the name).

For Theorem 5.9 below we will need the fixed-point equivariant category
δG-Coou of coactions, which has the same objects as δG-Cond, and in which
a morphism ψ : (C, δ, V )→ (D, ε,W ) is a morphism ψ : C → D in C∗nd that
is δ − ε equivariant and satisfies

(5.1) Dε,W = Dε,ψ◦V .

However, there is a subtlety: it is not obvious to us how to give a direct
proof that composition of the above morphisms is well-defined. We will
in fact give an indirect argument for this below (see Theorem 5.9). To
outline our strategy, it will help to keep the following goal in mind: we want
to establish an equivalence between the outer category of actions and the
fixed-point equivariant category of coactions. Due to the above difficulty,
we will begin with a functor into an auxiliary category, and the properties
of this functor will allow us to eventually prove that it gives an equivalence
with a subcategory.

Here is the auxiliary category: the semi-comma equivariant category

δG-Cosc

of coactions has the same objects as δG-Cond, namely equivariant maximal
coactions, and a morphism ψ : (C, δ, V ) → (D, ε,W ) in the category is just
a morphism ψ : C → D in C∗nd that is δ − ε equivariant. The reason for
the name “semi-comma” is that the morphisms have nothing to do with V
and W . Note that once we have cleared up the issue with compositions,
our desired category δG-Coou will be a subcategory of δG-Cosc obtained by
keeping all the objects but placing a restriction on the morphisms.

Also note that the fixed-point condition on morphisms in δG-Coou does
not say that ψ takes the generalized fixed-point algebra Cδ,V to Dε,W , but
rather the two equivariant homomorphisms W,ψ ◦ V : C∗(G)→M(D) give
the same generalized fixed-point algebra. However, an isomorphism in the
category will preserve the generalized fixed-point algebras.

Let (A,α) be an action of G. For an α-cocycle u, write

Φu :
(
AoAdu◦α G, ̂Adu ◦ α

) '−→ (Aoα G, α̂
)

for the full-crossed-product isomorphism given by Pedersen’s theorem (Pro-
position 3.1).

Suppose (ϕ, u) : (A,α) → (B, β) in Acou. Then u is a β-cocycle, giving
an exterior-equivalent action γ = Adu ◦β, and ϕ : (A,α)→ (B, γ) in Acnd.
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Taking crossed products gives a morphism

ϕoG : (Aoα G, α̂, i
α
G)→ (B oγ G, γ̂, i

γ
G)

in the nondegenerate equivariant category δG-Cond of coactions. Forgetting
some structure,

ϕoG : Aoα G→ B oγ G

is an α̂− γ̂ equivariant morphism in C∗nd.

On the other hand, Pedersen’s theorem gives a γ̂ − β̂ equivariant isomor-
phism

Φu = iβB × (iβB ◦ u)iβG : B oγ G
'−→ B oβ G

in C∗nd. Then composition gives an α̂− β̂ equivariant morphism

Φu ◦ (ϕoG) : Aoα G→ B oβ G

in C∗nd.

Proposition 5.8. With the above notation, the assignments

(A,α) 7→ (Aoα G, α̂, i
α
G)(5.2)

(ϕ, u) 7→ Φu ◦ (ϕoG)(5.3)

give a functor C̃Psc : Acou → δG-Cosc that is faithful and essentially sur-
jective.

Proof. It follows immediately from the definitions that the object and mor-
phism maps (5.2)–(5.3) are well-defined and that (5.3) preserves identity

morphisms. To check that C̃Psc preserves compositions, given morphisms

(A,α)
(ϕ,u)

// (B, β)
(ψ,v)

// (C, γ)

in Acou, we have

C̃Psc(ψ, v) ◦ C̃Psc(ϕ, u) ◦ iA
=
(
Φv ◦ (ψ oG)

)
◦
(
Φu ◦ (ϕoG)

)
◦ iA

= Φv ◦ (ψ oG) ◦ Φu ◦ iAdu◦β
B ◦ ϕ

= Φv ◦ (ψ oG) ◦ iβB ◦ ϕ

= Φv ◦ iAd v◦γ
C ◦ ψ ◦ ϕ

= iγC ◦ ψ ◦ ϕ

= Φ(ψ◦u)v ◦ i
Ad(ψ◦u)v
C ◦ ψ ◦ ϕ

= Φ(ψ◦u)v ◦
(
(ψ ◦ ϕ) oG

)
◦ iA

= C̃Psc

(
ψ ◦ ϕ, (ψ ◦ u)v

)
◦ iA

= C̃Psc

(
(ψ, v) ◦ (ϕ, u)

)
◦ iA,
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and for s ∈ G
C̃Psc(ψ, v) ◦ C̃Psc(ϕ, u) ◦ iαG(s)

=
(
Φv ◦ (ψ oG)

)
◦
(
Φu ◦ (ϕoG)

)
◦ iαG(s)

= Φv ◦ (ψ oG) ◦ Φu ◦ iAdu◦β
G (s)

= Φv ◦ (ψ oG)
(
iβB(us)i

β
G(s)

)
= Φv

(
iAd v◦γ
C ◦ ψ(us)i

Ad v◦γ
G (s)

)
= iγC ◦ ψ(us)i

γ
C(vs)i

γ
G(s)

= iγC
(
(ψ ◦ u)svs

)
iγG(s)

= iγC

((
(ψ ◦ v)u

)
s

)
iγG(s)

= Φ(ψ◦u)v ◦ i
Ad((ψ◦u)v)◦γ
G (s)

= Φ(ψ◦u)v ◦
(
(ψ ◦ ϕ) oG

)
◦ iαG(s)

= C̃Psc

(
ψ ◦ ϕ, (ψ ◦ u)v

)
◦ iαG(s)

= C̃Psc

(
(ψ, v) ◦ (ϕ, u)

)
◦ iαG(s).

Thus C̃Psc : Acou → δG-Cosc is a functor.
It is clear that C̃Psc is essentially surjective, because it is essentially sur-

jective for the nondegenerate categories, which have the same objects, and
isomorphism in δG-Cond is stronger than in δG-Cosc.

To see that C̃Psc is faithful, suppose that we have morphisms

(ϕ, u), (ρ, v) : (A,α)→ (B, β)

in Acou such that

C̃Psc(ϕ, u) = C̃Psc(ρ, v) : (Aoα G, α̂, i
α
G)→ (B oβ G, β̂, i

β
G)

in δG-Cosc. By construction, we have

C̃Psc(ϕ, u) ◦ iαA = Φu ◦ (ϕoG) ◦ iαA
= Φu ◦ iAdu◦β

B ◦ ϕ

= iβB ◦ ϕ,
and similarly

C̃Psc(ρ, v) ◦ iαA = iβB ◦ ρ,
so ϕ = ρ since iβB is injective.

On the other hand, for s ∈ G we have

C̃Psc(ϕ, u) ◦ iαG(s) = Φu ◦ (ϕoG) ◦ iαG(s)

= Φu ◦ iAdu◦β
B (s)

= iβB(us)i
β
G(s),
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and similarly

C̃Psc(ρ, v) ◦ iαG(s) = iβB(vs)i
β
G(s),

so us = vs since iβG(s) is unitary and iβB is injective. Thus (ϕ, u) = (ρ, v). �

With the above functor C̃Psc in hand, we can achieve our goal:

Theorem 5.9. With the above notation, the category δG-Coou is a well-
defined subcategory of δG-Cosc, and the assignments (5.2)–(5.3) give a cat-

egory equivalence C̃Pou : Acou → δG-Coou.

Proof. We will first show that for objects (A,α) and (B, β) in Acou, the

functor C̃Psc gives a bijection

(5.4) MorAcou

(
(A,α), (B, β)

)
←→{

ψ ∈ MorδG-Cosc

(
C̃Psc(A,α), C̃Psc(B, β)

)
: ψ satisfies (5.1)

}
.

Given a morphism (ϕ, u) : (A,α) → (B, β) in Acou, let γ = Adu ◦ β, so
that ϕ : (A,α) → (B, γ) is a morphism in Acnd. Since (ϕ o G) ◦ iαG = iγG
and Φu is a γ̂ − β̂ equivariant isomorphism, we have

(B oβ G)β̂,i
β
G = iβB(B)

= Φu(iγB(B))

= Φu

(
(B oγ G)γ̂,i

γ
G
)

= (B oγ G)β̂,Φu◦i
γ
G

= (B oγ G)β̂,Φu◦(ϕoG)◦iαG

= (B oγ G)β̂,C̃Pou(ϕ,u)◦iαG ,

and hence C̃Psc(ϕ, u) satisfies (5.1).
Now suppose we are given a morphism

ψ : (Aoα G, α̂, i
α
G)→ (B oβ G, β̂, i

β
G)

in δG-Cosc that satisfies (5.1). Put

V = ψ ◦ iαG : G→M(B oβ G).

Since ψ satisfies (5.1), we have

iβB(B) = (B oβ G)β̂,i
β
G = (B oβ G)β̂,V .

Since iβB : B → iβB(B) is an isomorphism and (BoβG, β̂, V ) is an equivariant
maximal coaction, by classical Landstad duality (Corollary 2.6) there are an
action γ of G on B and an isomorphism

Θ: (B oγ G, γ̂, i
γ
G)

'−→ (B oβ G, β̂, V )

in δG-Cond such that

(5.5) Θ ◦ iγB = iβB.
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Forgetting some structure, we have a γ̂ − β̂ equivariant morphism

Θ: B oγ G→ B oβ G

satisfying (5.5), so by Pedersen’s theorem there is a unique β-cocycle u such
that γ = Adu ◦ β and Θ = Φu.

On the other hand, we can regard

ψ : (Aoα G, α̂, iG)→ (B oβ G, β̂, V )

as a morphism in δG-Cond, and thus the composition

Θ−1 ◦ ψ : (Aoα G, α̂, iG)→ (B oγ G, γ̂, iG)

is also a morphism in δG-Cond. By nondegenerate Landstad duality for ac-
tions discussed above [KQ09, Theorem 4.1], there exists a unique morphism

ϕ : (A,α)→ (B, γ)

in Acnd such that Θ−1 ◦ψ = ϕoG, and then by construction of the functor

C̃Psc we have

ψ = Θ ◦ (ϕoG) = Φu ◦ (ϕoG) = C̃Psc(ϕ, u) :

(Aoα G, α̂, i
α
G)→ (B oβ G, β̂, i

β
G)

in δG-Cosc. Thus we have established the desired bijection (5.4).
Now let

ψ : (D, δ, V )→ (E, ε,W )

ρ : (E, ε,W )→ (F, ζ, U)

be morphisms in δG-Cosc satisfying (5.1). We must show that the compo-
sition ρ ◦ψ also satisfies (5.1). By nondegenerate Landstad duality we have
actions (A,α), (B, β), and (C, γ) such that

(Aoα G, α̂, i
α
G) ' (D, δ, V )

(B oβ G, β̂, i
β
G) ' (E, ε,W )

(C oγ G, γ̂, i
γ
G) ' (F, ζ, U),

where the isomorphisms take place in the nondegenerate equivariant cate-
gory δG-Cond, i.e., there are C∗-isomorphisms

σ : Aoα G
'−→ D

τ : B oβ G
'−→ E

ω : C oγ G
'−→ F

that are equivariant for the dual coactions and the given coactions δ, ε, and
ζ, respectively, and that also satisfy

σ ◦ iαG = V, τ ◦ iβG = W, and ω ◦ iγG = U.
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Under these isomorphisms, the homomorphisms ψ and ρ are transferred to

ψ′ = τ−1 ◦ ψ ◦ σ : (Aoα G, α̂, i
α
G)→ (B oβ G, β̂, i

β
G)

ρ′ = ω−1 ◦ ρ ◦ τ : (B oβ G, β̂, i
β
G)→ (C oγ G, γ̂, i

γ
G)

in δG-Cosc, and because the isomorphisms σ, τ , and ω preserve all structure
we see that ψ′ and ρ′ will satisfy (5.1).

Since C̃Psc is bijective between morphism sets in Acou and sets of mor-
phism sets in δG-Cosc determined by the condition (5.1), there are unique
morphisms

(ϕ, u) : (A,α)→ (B, β)

(σ, v) : (B, β)→ (C, γ)

in Acou such that

ψ′ = C̃Psc(ϕ, u)

ρ′ = C̃Psc(σ, v).

Since C̃Psc is functorial we have

ρ′ ◦ ψ′ = C̃Psc

(
(σ, v) ◦ (ϕ, u)

)
.

Thus ρ′ ◦ ψ′ satisfies (5.1). Since the isomorphisms σ and ω preserve all
structure, the morphism

ρ ◦ ψ = σ−1 ◦ ρ′ ◦ ψ′ ◦ ω

also satisfies (5.1).
Thus we have proved the first statement of the theorem, establishing the

existence of the subcategory δG-Coou of δG-Cosc consisting of the same
objects but only those morphisms satisfying (5.1). In view of the bijections

(5.4), it now follows that C̃Psc gives a full and faithful functor

C̃Pou : Acou → δG-Coou,

which is essentially surjective since C̃Psc is, and therefore is a category
equivalence. �

Remark 5.10. Regarding the bijection (5.4), of course the injectivity also

follows from fidelity of the functor C̃Psc in Proposition 5.8. On the other
hand, the proof of surjectivity is the only place in the entire paper that the
full strength of Pedersen’s theorem is needed. Thus, Pedersen’s theorem is

what guarantees that the functor C̃Pou : Acou → δG-Coou is full.

We define a forgetful functor F : δG-Coou → C∗nd on objects just as for
F : δG-Cond → C∗nd, and on morphisms by taking

ψ : (C, δ, V )→ (D, ε,W )
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to the same map viewed as a morphism C → D in C∗nd. We define the outer
crossed-product functor as the composition

CPou := F ◦ C̃Pou : Acou → C∗nd.

This setting describes an inversion of CPou in the sense of Definition 4.1,
which we call outer Landstad duality for actions.

Proposition 5.11. The above outer Landstad duality for actions is a good
inversion.

Proof. We must check the unique isomorphism lifting property: given an

object (C, δ, V ) of δG-Coou and an isomorphism θ : C
'−→ D in C∗nd, since

nondegenerate Landstad duality for actions is a good inversion by Proposi-
tion 5.1, we have extra structure (ε,W ) for D such that θ gives an isomor-
phism

θ̃ : (C, δ, V )
'−→ (D, ε,W )

in δG-Cond, and hence an isomorphism in δG-Coou, covering θ, and since

the forgetful functor is faithful we see that θ̃ is unique. �

6. Inverting the crossed-product process — coactions

The exposition we give below will parallel what we did in the preceding
section for actions, especially for nondegenerate and enchilada dualities.
However, subsequent to Proposition 3.6, we remarked that we do not know
if the converse of Pedersen’s theorem holds for coactions. Consequently,
although we have complete versions of nondegenerate and enchilada dualities
for coactions, we do not have an outer duality.

As before, in all three cases the objects of the categories C,D, D̃ will re-
main the same: we start with a category C of normal coactions, the basic
process will produce the crossed-product C∗-algebra, and the objects in the

category D̃ will be equivariant actions. When the development is exactly
parallel to that in the preceding section, modulo a completely routine switch-
ing of “action” and “normal coaction”, together with routine adjustments in
the notation, we will merely mention the analogous results. However, com-
putations involving coactions are frequently of a different character than
those for actions, and in all appropriate cases we will include these compu-
tations.

6.1. Nondegenerate Landstad duality for coactions. The nondegen-
erate category Cond of coactions has normal coactions (A, δ) of G as objects,
and when we say ϕ : (A, δ)→ (B, ε) is a morphism in the category we mean
ϕ : A→ B is a morphism in C∗nd that is δ− ε equivariant. Isomorphisms in
the category are equivariant C∗-isomorphisms.

The nondegenerate equivariant category rt-Acnd of actions has equivari-
ant actions (see Definition 2.8) (C,α, µ) of G as objects, and when we say
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ψ : (C,α, µ)→ (D,β, ν) is a morphism in the category we mean ψ : C → D
is a morphism in C∗nd that is α− β equivariant and satisfies

ν = ψ ◦ µ.

The nondegenerate crossed-product functor CPnd is given on objects by
(A, δ) 7→ Aoδ G, and on morphisms by(

ϕ : (A, δ)→ (B, ε)
)
7→
(
ϕoG : Aoδ G→ B oε G

)
.

The nondegenerate equivariant crossed-product functor C̃Pnd is given on

objects by (A, δ) 7→ (Aoδ G, δ̂, jG), and on morphisms by(
ϕ : (A, δ)→ (B, ε)

)
7→
(
ϕoG : (Aoδ G, δ̂, jG)→ (B oε G, ε̂, jG

)
.

The functor C̃Pnd is an equivalence [KQR08, Theorem 4.2 and Corollary 4.3]

and CPnd is the composition of C̃Pnd followed by the forgetful functor
F : rt-Acnd → C∗nd defined on objects by (C,α, µ) 7→ C and on morphisms
by f 7→ f . Hence, F is precisely the type of forgetful functor that fits into
the framework of Section 4, and hence, this setup gives an inversion of the
process CPnd. We call this inversion nondegenerate Landstad duality for
coactions.

By [KQR08, Theorem 4.2 and Corollary 4.3] a quasi-inverse of the nonde-
generate equivariant crossed-product functor is given by the nondegenerate
fixed-point functor Fixnd, given on objects by (C,α, µ) 7→ (Cα,µ, δµ) (see
Definition 2.8 for the notation), and on morphisms as follows: if

ψ : (C,α, µ)→ (D,β, ν)

is a morphism in rt-Acnd, then

Fixnd(ψ) : (Cα,µ, δµ)→ (Dβ,ν , δν)

is the unique morphism in Cond such that the diagram

(Cα,µ oδµ G, δ̂µ, jCα,µ)
Fixnd(ψ)oG

//

'
��

(Dβ,ν oδν G, δ̂ν , jDβ,ν )

'
��

(C,α, µ)
ψ

// (D,β, ν)

commutes in rt-Acnd, where the vertical arrows are the canonical isomor-
phisms.

Since we have chosen the object map of Fixnd to take an equivariant
action (C,α, µ) to the C∗-subalgebra Cα,µ of M(C), in our setting the non-
degenerate homomorphism

Fixnd(ψ) : Cα,µ →M(Dβ,ν)

is the restriction of (the canonical extension to M(C) of) ψ.
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Thus, the additional data required to recover the coaction from the crossed

product A oδ G consists of the dual action δ̂ and the canonical homomor-
phism jG.

Proposition 6.1. The above nondegenerate Landstad duality is a good in-
version.

Proof. This is a routine adaptation from the action case. �

6.2. Enchilada Landstad duality for coactions. The enchilada cate-
gory Coen of coactions has the same objects as Cond, but now when we say
[X, ζ] : (A, δ)→ (B, ε) is a morphism in the category we mean [X] : A→ B
in C∗en and ζ is a δ − ε compatible action of G on X. Isomorphisms in the
category are equivariant Morita equivalences.

The enchilada equivariant category rt-Acen of actions has the same ob-
jects as rt-Acnd, but now when we say [Y, γ] : (C,α, µ) → (D,β, ν) is a
morphism in the category we mean [Y ] : C → D in C∗en and γ is a α − β
compatible coaction of G on Y . The isomorphisms in the category are pre-
cisely the equivariant Morita equivalences of the actions.

The enchilada crossed-product functor CPen is the same as CPnd on ob-
jects, but is given on morphisms by(

[X, ζ] : (A, δ)→ (B, ε)
)
7→
(
[X oζ G] : Aoδ G→ B oε G

)
.

The enchilada equivariant crossed-product functor C̃Pen is the same as

C̃Pnd on objects, but is given on morphisms by(
[X, ζ] : (A, δ)→ (B, ε)

)
7→(
[X oζ G, ζ̂] : (Aoδ G, δ̂, jG)→ (B oε G, ε̂, jG

)
.

The following two results are routine modifications of the corresponding
Propositions 5.2 and 5.4.

In the following proposition, the existence of the Cα−Dβ correspondence
X is established (with greater generality) in [BE15, Corollary 6.4]. The
construction, which is based upon a technique introduced in [EKQR06], is
essentially the same one that we used in Proposition 5.2.

Proposition 6.2. Let (C,α, µ) and (D,β, ν) be equivariant actions, and let
(Y, γ) be a (C,α)−(D,β) correspondence action. Then there are a (Cα, δµ)−
(Dβ, δν) correspondence coaction (X, ζ) and an isomorphism

Θ: (X oζ G, ζ̂)
'−→ (Y, γ)

of (C,α)− (D,β) correspondence coactions, characterized by

Θ
(
jX(x) · jG(f)

)
= x · ν(f) for x ∈ X, f ∈ C0(G).
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Proof. The argument is completely parallel to that of Proposition 5.2, and
so we omit the details. The only point we should mention is that the de-
composition of the associated inner coaction on the linking algebra (see
Subsection 2.4) L(Y ) =

(
K Y
∗ D

)
takes the form(

Adκ Ad(κ, ν)
∗ Ad ν

)
,

where κ and ν are nondegenerate homomorphisms of C0(G) into M(K) and
M(D), respectively, and Ad(κ, ν) denotes the coaction of G on Y given by
y 7→ κ⊗ id(wG) · (y ⊗ 1) · ν ⊗ id(w∗G). �

Notation 6.3. We denote the Cα − Dβ correspondence X constructed in
the above proof by Y γ,µ,ν , or just Y γ if confusion is unlikely, and we denote
the coaction ζ by δµ,ν .

Proposition 6.4. Let (A, δ) and (B, ε) be normal coactions, and let (X, ζ)
be an (A, δ) − (B, ε) correspondence coaction. Then jX : X → M(X oζ G)
gives an isomorphism

(X, ζ)
'−→
(
(X oζ G)ζ̂ , δj

δ
G,j

ε
G
)

of (A, δ)− (B, ε) correspondence coactions.

Proof. The argument is completely parallel to that of Proposition 5.4, and
so we omit the details. �

As for the case of actions, the above two results imply the following.

Theorem 6.5. The enchilada equivariant crossed-product functor C̃Pen is
an equivalence, and there is a quasi-inverse Fixen : rt-Acen → Coen with
morphism map(

[Y, γ] : (C,α, µ)→ (D,β, ν)
)
7→
(
[Y γ , δµ,ν ] : (Cα, δµ)→ (Dβ, δν)

)
and the same object map as Fixnd : rt-Acnd → Cond.

Proof. The argument is completely parallel to that of Proposition 5.5, and
so we omit the details. �

Let F : rt-Acen → C∗en denote the forgetful functor defined on objects by

(C, δ, V ) 7→ C. The factoring of CPen into a composition of C̃Pen followed
by F gives an inversion of CPen, which we call enchilada Landstad duality
for actions.

Remark 6.6. This inversion is not good, since when G is abelian the coac-
tions become actions of the dual group, and we have observed earlier that
enchilada Landstad duality for actions is not a good inversion. Nevertheless,
just as for actions, the forgetful functor is faithful and essentially surjective
(because we can again use crossed-product duality).
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Remark 6.7. It might be of interest to note that our use of category-theory
technique in the above proof obviated the need to directly establish that the
morphism map [Y, γ] 7→ [Y γ , δµ,ν ] is functorial; this would have required
that we prove an isomorphism of the form

(Y ⊗D Z)γ⊗ρ ' Y γ ⊗Dβ Zρ,

whereas in fact this follows from the properties of category equivalences.
In contrast, the functoriality in [BE15, Corollary 6.4] depends upon [BE15,
Proposition 6.1], which proves such a tensor-product isomorphism; this was
necessary in [BE15] because their fixed-point correspondence functor was
not presented as a quasi-inverse to a known functor.

6.3. Outer Landstad duality for coactions. The outer category Coou

of coactions has the same objects as Cond, but now when we say

(ϕ,U) : (A, δ)→ (B, ε)

is a morphism in the category we mean U is an ε-cocycle and ϕ : A→ B is
a morphism in C∗nd that is δ −AdU ◦ ε equivariant.

Lemma 6.8. The category Coou introduced above is well-defined.

Proof. The outline of the proof is completely parallel to that of Lemma 5.7;
we only include those calculations that are peculiar to coactions. The cru-
cial thing is to check that we can compose morphisms: given morphisms
(ϕ,U) : (A,α)→ (B, β) and (ψ, V ) : (B, β)→ (C, ζ) in Coou, we must show

(i) (ψ ⊗ id)(U)V is a ζ-cocycle;
(ii) ψ ◦ ϕ is δ −Ad

[
(ψ ⊗ id)(U)V

]
◦ ζ equivariant.

For (i), as we show below, (ψ ⊗ id)(U) is an AdV ◦ ζ cocycle, and hence
it follows from Lemma 3.7 that (ψ ⊗ id)(U)V is a ζ-cocycle.

For (ii), we appeal to [Fis04, Remark 1.14], concerning naturality of co-
cycles: ψ is ε − AdV ◦ ζ equivariant and U is an ε-cocycle, so (ψ ⊗ id)(U)
is an AdV ◦ ζ cocycle and ψ is

AdU ◦ ε−Ad(ψ ⊗ id)(U) ◦AdV ◦ ζ

equivariant. Note that

Ad(ψ ⊗ id)(U) ◦AdV ◦ ζ = Ad[(ψ ⊗ id)(U)V ] ◦ ζ.

Since ϕ is δ −AdU ◦ ε equivariant, the composition ψ ◦ ϕ is

δ −Ad
[
(ψ ⊗ id)(U)V

]
◦ ζ

equivariant. This proves the claim, and so composition of morphisms is
well-defined.

It is obvious that there are identity morphisms, and a routine computation
shows that composition is associative. �
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Isomorphisms in the category are just outer conjugacies of normal coac-
tions.

Parallel to the fixed-point equivariant category of coactions, we would
now like to define the fixed-point equivariant category rt-Acou of actions in
which the objects are the same as in rt-Acnd, and in which a morphism
ψ : (C,α, µ) → (D,β, ν) is a morphism ψ : C → D in C∗nd that is α − β
equivariant and satisfies

(6.1) Dβ,ν = Dβ,ψ◦µ.

However, just as before we do not see how to prove directly that composition
of morphisms will be well-defined. Moreover, in this case we cannot use the
indirect approach that we did for δG-Coou because we have no fully working
version of Pedersen’s theorem for outer conjugacy of coactions.

Consequently, in this case we need to modify the definition of morphisms
in the category. In fact, we will replace (6.1) by a condition that is for-
mally weaker (see Remark 6.11), but for all we know the two definitions are
equivalent — fortunately, our result will not depend upon the answer to this
question.

So, we start over: we define the fixed-point equivariant category rt-Acou
of actions to have the same objects as rt-Acnd, namely equivariant actions,
and when we say ψ : (C,α, µ) → (D,β, ν) is a morphism in rt-Acou, we
mean that ϕ : C → D is a morphism in C∗nd that is α − β equivariant and
for which the canonical extension

ϕ : M(C)→M(D)

restricts to a nondegenerate homomorphism

ϕ| : Cα,µ →M(Dβ,ν).

Lemma 6.9. With the above definition of morphism, the category rt-Acou
is well-defined.

Proof. We must check that composition of morphisms is defined. Once we
have done this it will be obvious that composition is associative and that we
have identity morphisms. Suppose that ρ : (D,β, ν) → (E, γ, τ) is another
morphism, so that ρ restricts to a nondegenerate homomorphism

ρ| : Dβ,ν →M(Eγ,τ ).

The composition of ψ and ρ in C∗nd is the α− γ equivariant nondegenerate
homomorphism

ρ ◦ ψ : C →M(E).

On the other hand, the composition of the nondegenerate homomorphisms
ψ| and ρ| is the nondegenerate homomorphism

ρ| ◦ ψ| : Cα,µ →M(Eγ,τ ).

It is clear from the definitions that this composition is the restriction of
ρ ◦ ψ = ρ ◦ ψ to Cα,µ. �
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Remark 6.10. If ψ : (C,α, µ) → (D,β, ν) is a morphism in the nondegen-
erate category rt-Acnd of equivariant actions, then we can apply the functor
Fixnd to get the nondegenerate homomorphism

Fixnd(ψ) = ψ| : Cα,µ →M(Dβ,ν).

Thus rt-Acnd is a subcategory of rt-Acou with the same objects.

Remark 6.11. Given equivariant actions (C,α, µ) and (D,β, ν), if ψ : C →
D is an α− β equivariant morphism in C∗nd that satisfies (6.1), then ψ is a
morphism in rt-Acou, because we have a morphism

ψ : (C,α, ν)→ (D,β, ψ ◦ µ)

in rt-Acnd, and hence in rt-Acou, i.e., ψ restricts to a nondegenerate ho-
momorphism

ψ| : Cα,µ →M(Dβ,ψ◦µ) = M(Dβ,ν).

We do not know whether the converse holds — for all we know, the mor-
phisms in rt-Acou might be precisely those equivariant nondegenerate ho-
momorphisms satisfying (6.1), completely parallel with δG-Coou. We should
mention that it is not hard to show that the converse does hold for isomor-
phisms.

Theorem 6.12. With the above notation, the assignments

(A, δ) 7→ (Aoδ G, δ̂, j
δ
G)

(ϕ,U) 7→ ΦU ◦ (ϕoG)

give a functor C̃Pou : Coou → rt-Acou that is essentially surjective and
faithful.

Proof. The first thing to check is that if (ϕ,U) : (A, δ) → (B, ε) is a mor-
phism in Coou then

C̃Pou(ϕ,U) = ΦU ◦ (ϕoG) : (Aoδ G, δ̂, j
δ
G)→ (B oε G, ε̂, j

ε
G)

is a morphism in rt-Acou. Let ζ = AdU ◦ ε. Then we have a morphism

ϕoG : (Aoδ G, δ̂, j
δ
G)→ (B oζ G, ζ̂, j

ζ
G)

in rt-Acnd, and hence in rt-Acou. Next, we have a ζ̂ − ε̂ equivariant mor-
phism

ΦU : B oζ G→ B oε G

in C∗nd, and we have a nondegenerate homomorphism

ΦU ◦ jζB = jεB : B →M(B oε G),

and so ΦU restricts to a nondegenerate homomorphism from

jζB(B) = (B oζ G)ζ̂,j
ζ
G

to
M(jεB(B)) = M

(
(B oε G)ε̂,j

ε
G
)
.
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Thus we have a morphism

ΦU : (B oζ G, ζ̂, j
ζ
G)→ (B oε G, ε̂, j

ε
G)

in rt-Acou. Therefore the composition

C̃Pou(ϕ,U) = ΦU ◦ (ϕoG)

is a morphism in rt-Acou.
Now let (ψ, V ) : (B, ε)→ (C, ζ) be another morphism in Coou. Then

C̃Pou(ψ, V ) ◦ C̃Pou(ϕ,U) ◦ jA = C̃Pou

(
(ψ, V ) ◦ (ϕ,U)

)
◦ jA

by computations parallel to Proposition 5.8. On the other hand,(
C̃Pou(ψ, V ) ◦ C̃Pou(ϕ,U) ◦ jδG ⊗ id

)
(wG)

=
(
ΦV ◦ (ψ oG) ◦ ΦU ◦ (ϕoG) ◦ jδG ⊗ id

)
(wG)

=
(
ΦV ◦ (ψ oG)⊗ id

)(
(ΦU ◦ jAdU◦ε

G ⊗ id)(wG)
)

=
(
ΦV ◦ (ψ oG)⊗ id

)(
(jεB ⊗ id)(U)(jεG ⊗ id)(wG)

)
=
(
ΦV ◦ (ψ oG) ◦ jεB ⊗ id

)
(U)
(
ΦV ◦ (ψ oG) ◦ jεG ⊗ id

)
(wG)

=
(
ΦV ◦ jAdV ◦ζ

C ◦ ψ ⊗ id
)
(U)
(
ΦV ◦ jAdV ◦ζ

G ⊗ id
)
(wG)

= (jζC ◦ ψ ⊗ id)(U)(jζC ⊗ id)(V )(jζG ⊗ id)(wG)

= (jζC ⊗ id)
(
(ψ ⊗ id)(U)V

)
(jζG ⊗ id)(wG)

=
(
Φ(ψ⊗id)(U)V ◦ (ψ ◦ ϕoG) ◦ jδG ⊗ id

)
(wG)

=
(

C̃Pou

(
ψ ◦ ϕ, (ψ ⊗ id)(U)V

)
◦ jδG ⊗ id

)
(wG)

=
(

C̃Pou

(
(ψ, V ) ◦ (ϕ,U)

)
◦ jδG ⊗ id

)
(wG),

which implies

C̃Pou(ψ, V ) ◦ C̃Pou(ϕ,U) ◦ jδG = C̃Pou

(
(ψ, V ) ◦ (ϕ,U)

)
◦ jδG.

For fidelity, given morphisms

(ϕ,U), (ρ, V ) : (A, δ)→ (B, ε)

in Coou such that

C̃Pou(ϕ,U) = C̃Pou(ρ, V ) : (Aoδ G, δ̂, j
δ
G)→ (B oε G, ε̂, j

ε
G)

in rt-Acou, we have

C̃Pou(ϕ,U) ◦ jδA = ΦU ◦ (ϕoG) ◦ jδA
= ΦU ◦ jAdU◦ε

B ◦ ϕ
= jεB ◦ ϕ,

and similarly

C̃Pou(ρ, V ) ◦ jδA = jεB ◦ ρ,
so ϕ = ρ since jεB is injective by normality of ε.
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On the other hand,(
C̃Pou(ϕ,U) ◦ jδG ⊗ id

)
(wG) =

(
ΦU ◦ (ϕoG) ◦ jδG ⊗ id

)
(wG)

= (jεB ⊗ id)(U)(jεG ⊗ id)(wG),

and similarly(
C̃Pou(ρ, V ) ◦ jδG ⊗ id

)
(wG) = (jεB ⊗ id)(V )(jεG ⊗ id)(wG),

so (jεB ⊗ id)(U) = (jεB ⊗ id)(V ) since (jεG ⊗ id)(wG) is unitary. Since jεB is
injective by normality of the coaction ε, so is

jεB ⊗ id : B ⊗ C∗(G)→M
(
(B oε G)⊗ C∗(G)

)
.

Thus U = V , and hence (ϕ,U) = (ρ, V ). �

Remark 6.13. It can be shown by a computation similar to the first part
of the proof of Theorem 6.12 that if ϕ is a morphism in Acou then the

morphism C̃Pou(ϕ) in δG-Coou actually satisfies the formally stronger con-
dition (6.1). Thus, if we had a converse of Pedersen’s theorem for coactions,
then we would be able to (re)define a category rt-Acou subject to (6.1),
and get a category equivalence Coou ∼ rt-Acou dual to the equivalence
Acou ∼ δG-Coou of Subsection 5.3. Moreover, this would give rise to an
outer Landstad duality for coactions, which would be a good inversion, since
we could show that the forgetful functor has the required properties using a
routine adaption of the argument for outer duality for actions.

Remark 6.14. In Section 5 we worked with full crossed products by ac-
tions, and consequently the dual coactions were maximal. As we remarked
at the end of that section, it is possible to give an alternative development,
involving reduced crossed products, in which case the dual coactions would
be normal. In Section 6 we chose to work with crossed products by normal
coactions, rather than maximal ones, because this allowed for a development
that was quite parallel to the one in Section 5. It is possible to prove ana-
logues of the results of Section 6 for maximal coactions, but this requires
substantial modification of the techniques, principally because the gener-
alized fixed-point algebras will then be in a different place. We felt that
to present all of this here would distract from the main point, namely the
description of a general procedure for “inverting the process”. We will give
an alternative development in terms of maximal coactions in a forthcoming
paper.
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