
New York Journal of Mathematics
New York J. Math. 22 (2016) 341–349.

On pointwise estimates involving sparse
operators

Andrei K. Lerner

Abstract. We obtain an alternative approach to recent results by
M. Lacey and Hytönen–Roncal–Tapiola about a pointwise domination
of ω-Calderón–Zygmund operators by sparse operators. This approach
is rather elementary and it also works for a class of nonintegral singular
operators.
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1. Introduction

This paper is motivated by several recent works about a domination of
Calderón–Zygmund operators by sparse operators. Such a domination was
first established by the author [11] in terms of X-norms, where X is an
arbitrary Banach function space. This result was used in order to give an
alternative proof of the A2 theorem obtained earlier by T. Hytönen [6].

The X-norm estimate in [11] was proved for a class of ω-Calderón–Zyg-
mund operators with the modulus of continuity ω satisfying the logarithmic

Dini condition
∫ 1

0 ω(t) log 1
t
dt
t <∞. After that, under the same assumption

on ω, the X-norm bound was improved by a pointwise bound independently
and simultaneously by J. Conde-Alonso and G. Rey [2], and by the author
and F. Nazarov [12].
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Later, M. Lacey [10] found a new method allowing him to relax the
log-Dini condition in the pointwise bound to the classical Dini condition∫ 1

0 ω(t)dtt < ∞. Very recently, T. Hytönen, L. Roncal and O. Tapiola [9]
elaborated the proof in [10] to get a precise linear dependence on the Dini
constant with a subsequent application to rough singular integrals.

In the present note we modify a main idea from Lacey’s work [10] with
the aim to give a rather short and elementary proof of the result in [9]. This
yields a further simplification of the A2 theorem and related bounds. Our
modification consists in a different cubic truncation of a Calderón–Zygmund
operator T with the help of an auxiliary “grand maximal truncated” opera-
torMT . This way of truncation allows to get a very simple recursive relation
for T , and, as a corollary, the pointwise bound by a sparse operator.

Notice also that our proof has an abstract nature, and, in particular, it is
easily generalized to a class of singular non-kernel operators.

2. Main definitions

2.1. Sparse families and operators. By a cube in Rn we mean a half-
open cube Q =

∏n
i=1[ai, ai + h), h > 0. Given a cube Q0 ⊂ Rn, let D(Q0)

denote the set of all dyadic cubes with respect to Q0, that is, the cubes
obtained by repeated subdivision of Q0 and each of its descendants into 2n

congruent subcubes.
We say that a family S of cubes from Rn is η-sparse, 0 < η < 1, if for

every Q ∈ S, there exists a measurable set EQ ⊂ Q such that |EQ| ≥ η|Q|,
and the sets {EQ}Q∈S are pairwise disjoint. Usually η will depend only on
the dimension, and when this parameter is unessential we will skip it.

Denote fQ = 1
|Q|
∫
Q f . Given a sparse family S, define a sparse operator

AS by

ASf(x) =
∑
Q∈S

fQχQ(x).

2.2. ω-Calderón–Zygmund operators. Let ω : [0, 1] → [0,∞) be a
modulus of continuity, that is, ω is increasing, subadditive and ω(0) = 0.

We say that T is an ω-Calderón-Zygmung operator if T is L2 bounded,
represented as

Tf(x) =

∫
Rn

K(x, y)f(y)dy for all x 6∈ supp f

with kernel K satisfying the size condition |K(x, y)| ≤ CK
|x−y|n , x 6= y, and

the smoothness condition

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ ω
(
|x− x′|
|x− y|

)
1

|x− y|n

for |x− y| > 2|x− x′|.
We say that ω satisfies the Dini condition if ‖ω‖Dini =

∫ 1
0 ω(t)dtt <∞.
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3. The Lacey–Hytönen–Roncal–Tapiola Theorem

As was mentioned in the introduction, we give here an alternative proof
of a recent result by T. Hytönen et al. [9], which in turn is a revised version
of Lacey’s domination theorem [10].

Theorem 3.1. Let T be an ω-Calderón–Zygmund operator with ω satisfying
the Dini condition. Then, for every compactly supported f ∈ L1(Rn), there
exists a sparse family S such that for a.e. x ∈ Rn,

(3.1) |Tf(x)| ≤ cn(‖T‖L2→L2 + CK + ‖ω‖Dini)AS |f |(x).

We will need a number of auxiliary maximal operators. The key role in
the proof is played by the maximal operator MT defined by

MT f(x) = sup
Q3x

ess sup
ξ∈Q

|T (fχRn\3Q)(ξ)|,

where the supremum is taken over all cubes Q ⊂ Rn containing x. This
object can be called the grand maximal truncated operator. Recall that the
standard maximal truncated operator is defined by

T ?f(x) = sup
ε>0

∣∣∣∣∣
∫
|y−x|>ε

K(x, y)f(y)dy

∣∣∣∣∣.
Given a cube Q0, for x ∈ Q0 define a local version of MT by

MT,Q0f(x) = sup
Q3x,Q⊂Q0

ess sup
ξ∈Q

|T (fχ3Q0\3Q)(ξ)|.

Finally, let M be the standard Hardy–Littlewood maximal operator.

Lemma 3.2. The following pointwise estimates hold:

(i) For a.e. x ∈ Q0,

|T (fχ3Q0)(x)| ≤ cn‖T‖L1→L1,∞ |f(x)|+MT,Q0f(x).

(ii) For all x ∈ Rn,

MT f(x) ≤ cn(‖ω‖Dini + CK)Mf(x) + T ?f(x).

Proof. (i) Suppose that x ∈ intQ0, and let x be a point of approximate
continuity of T (fχ3Q0) (see, e.g., [4, p. 46]). Then for every ε > 0, the sets

Es(x) = {y ∈ B(x, s) : |T (fχ3Q0)(y)− T (fχ3Q0)(x)| < ε}

satisfy lims→0
|Es(x)|
|B(x,s)| = 1, where B(x, s) is the open ball centered at x of

radius s.
Denote by Q(x, s) the smallest cube centered at x and containing B(x, s).

Let s > 0 be so small that Q(x, s) ⊂ Q0. Then for a.e. y ∈ Es(x),

|T (fχ3Q0(x)| < |T (fχ3Q0)(y)|+ ε ≤ |T (fχ3Q(x,s))(y)|+MT,Q0f(x) + ε.
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Therefore, applying the weak type (1, 1) of T yields

|T (fχ3Q0(x)| ≤ ess inf
y∈Es(x)

|T (fχ3Q(x,s))(y)|+MT,Q0f(x) + ε

≤ ‖T‖L1→L1,∞
1

|Es(x)|

∫
3Q(x,s)

|f |+MT,Q0f(x) + ε.

Assuming additionally that x is a Lebesgue point of f and letting subse-
quently s→ 0 and ε→ 0, we obtain (i).

(ii) Let x, ξ ∈ Q. Denote by Bx the closed ball centered at x of radius
2 diamQ. Then 3Q ⊂ Bx, and we obtain

|T (fχRn\3Q)(ξ)| ≤ |T (fχRn\Bx
)(ξ)− T (fχRn\Bx

)(x)|
+ |T (fχBx\3Q)(ξ)|+ |T (fχRn\Bx

)(x)|.
By the smoothness condition,

|T (fχRn\Bx
)(ξ)− T (fχRn\Bx

)(x)|

≤
∫
|y−x|>2 diamQ

|f(y)|ω
(

diamQ

|x− y|

)
1

|x− y|n
dy

≤
∞∑
k=1

(
1

(2kdiamQ)n

∫
2kBx

|f |
)
ω(2−k) ≤ cn‖ω‖DiniMf(x).

Next, by the size condition,

|T (fχBx\3Q)(ξ)| ≤ cnCK
1

|Bx|

∫
Bx

|f | ≤ cnCKMf(x).

Finally, |T (fχRn\Bx
)(x)| ≤ T ?f(x). Combining the obtained estimates

proves (ii). �

Denote CT = ‖T‖L2→L2 + CK + ‖ω‖Dini. An examination of standard
proofs (see, e.g., [5, Ch. 8.2]) shows that

(3.2) max(‖T‖L1→L1,∞ , ‖T ?‖L1→L1,∞) ≤ cnCT .

Proof of Theorem 3.1. Fix a cube Q0 ⊂ Rn. Let us show that there
exists a 1

2 -sparse family F ⊂ D(Q0) such that for a.e. x ∈ Q0,

(3.3) |T (fχ3Q0)(x)| ≤ cnCT
∑
Q∈F
|f |3QχQ(x).

It suffices to prove the following recursive claim: there exist pairwise
disjoint cubes Pj ∈ D(Q0) such that

∑
j |Pj | ≤

1
2 |Q0| and

(3.4) |T (fχ3Q0)(x)|χQ0 ≤ cnCT |f |3Q0 +
∑
j

|T (fχ3Pj )|χPj

a.e. on Q0. Indeed, iterating this estimate, we immediately get (3.3) with
F = {P kj }, k ∈ Z+, where {P 0

j } = {Q0}, {P 1
j } = {Pj} and {P kj } are the

cubes obtained at the k-th stage of the iterative process.
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Next, observe that for arbitrary pairwise disjoint cubes Pj ∈ D(Q0),

|T (fχ3Q0)|χQ0 = |T (fχ3Q0)|χQ0\∪jPj
+
∑
j

|T (fχ3Q0)|χPj

≤ |T (fχ3Q0)|χQ0\∪jPj
+
∑
j

|T (fχ3Q0\3Pj
)|χPj

+
∑
j

|T (fχ3Pj )|χPj .

Hence, in order to prove the recursive claim, it suffices to show that one can
select pairwise disjoint cubes Pj ∈ D(Q0) with

∑
j |Pj | ≤

1
2 |Q0| and such

that for a.e. x ∈ Q0,

(3.5) |T (fχ3Q0)|χQ0\∪jPj
+
∑
j

|T (fχ3Q0\3Pj
)|χPj ≤ cnCT |f |3Q0 .

By Lemma 3.2(ii) and by (3.2), ‖MT ‖L1→L1,∞ ≤ αnCT . Therefore, one
can choose cn such that the set

E = {x ∈ Q0 : |f | > cn|f |3Q0} ∪ {x ∈ Q0 :MT,Q0f > cnCT |f |3Q0}
will satisfy |E| ≤ 1

2n+2 |Q0|.
The Calderón–Zygmund decomposition applied to the function χE on Q0

at height λ = 1
2n+1 produces pairwise disjoint cubes Pj ∈ D(Q0) such that

1

2n+1
|Pj | ≤ |Pj ∩ E| ≤

1

2
|Pj |

and |E \ ∪jPj | = 0. It follows that
∑

j |Pj | ≤
1
2 |Q0| and Pj ∩ Ec 6= ∅.

Therefore,
ess sup
ξ∈Pj

|T (fχ3Q0\3Pj
)(ξ)| ≤ cnCT |f |3Q0 .

Also, by Lemma 3.2(i) and by (3.2), for a.e. x ∈ Q0 \ ∪jPj ,
|T (fχ3Q0)(x)| ≤ cnCT |f |3Q0 ,

which, along with the previous estimate, proves (3.5) and so (3.3).
Take now a partition of Rn by cubes Rj such that supp (f) ⊂ 3Rj for

each j. For example, take a cube Q0 such that supp (f) ⊂ Q0 and cover
3Q0 \ Q0 by 3n − 1 congruent cubes Rj . Each of them satisfies Q0 ⊂ 3Rj .
Next, in the same way cover 9Q0 \ 3Q0, and so on. The union of resulting
cubes, including Q0, will satisfy the desired property.

Having such a partition, apply (3.3) to each Rj . We obtain a 1
2 -sparse

family Fj ⊂ D(Rj) such that (3.3) holds for a.e. x ∈ Rj with |Tf | on the
left-hand side. Therefore, setting F = ∪jFj , we obtain that F is 1

2 -sparse
and for a.e. x ∈ Rn,

|Tf(x)| ≤ cnCT
∑
Q∈F
|f |3QχQ(x).

Thus, (3.1) holds with a 1
2·3n -sparse family S = {3Q : Q ∈ F}. �
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4. Remarks and complements

Remark 4.1. Given a sparse family S and 1 ≤ r <∞, define for f ≥ 0,

Ar,Sf(x) =
∑
Q∈S

(
1

|Q|

∫
Q
f r
)1/r

χQ(x).

Next, notice that the definition of MT can be given for arbitrary (non-
kernel) sublinear operator T . Then, the proof of Theorem 3.1 with minor
modifications allows to get the following result.

Theorem 4.2. Assume that T is of weak type (q, q) and MT is of weak
type (r, r), where 1 ≤ q ≤ r < ∞. Then, for every compactly supported
f ∈ Lr(Rn), there exists a sparse family S such that for a.e. x ∈ Rn,

(4.1) |Tf(x)| ≤ KAr,S |f |(x),

where K = cn,q,r(‖T‖Lq→Lq,∞ + ‖MT ‖Lr→Lr,∞).

Indeed, Lemma 3.2(i) works with ‖T‖L1→L1,∞ replaced by ‖T‖Lq→Lq,∞ .
Next, Lemma 3.2(ii) (the only part in the proof of Theorem 3.1 where the
kernel assumptions were used) is replaced by the postulate that MT is of
weak type (r, r). Finally, under trivial changes in the definition of the set
E, we obtain that the key estimate (3.4) holds with cnCT |f |3Q0 replaced by

K
(

1
|3Q0|

∫
3Q0
|f |r
)1/r

. The rest of the proof is identically the same.

Recently, F. Bernicot, D. Frey and S. Petermichl [1] obtained sharp
weighted estimates for a large class of singular nonintegral operators in a
rather general setting using similar ideas based on a domination by sparse
operators. However, the main result in [1] and Theorem 4.2 include some
nonintersecting cases.

Remark 4.3. It is easy to see that the cubes of the resulting sparse family S
in Theorem 3.1 (and so in Theorem 4.2) are not dyadic. But approximating
an arbitrary cube by cubes from a finite number of dyadic grids (as was
shown in [7, Lemma 2.5] or [12, Theorem 3.1]) yields

(4.2) Ar,Sf(x) ≤ cn,r
3n∑
j=1

Ar,Sjf(x),

where Sj is a sparse family from a dyadic grid Dj .

Remark 4.4. Recall that a weight (that is, a nonnegative locally integrable
function) w satisfies the Ap, 1 < p <∞, condition if

[w]Ap = sup
Q

( 1

|Q|

∫
Q
w dx

)( 1

|Q|

∫
Q
w
− 1

p−1 dx
)p−1

<∞.

The following lemma is well known (its variations and extensions can be
found in [3, 8, 12, 13]).
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Lemma 4.5. For every η-sparse family S and for all 1 ≤ r < p <∞,

(4.3) ‖Ar,Sf‖Lp(w) ≤ cn,p,r,η[w]
max
(

1, 1
p−r

)
Ap/r

‖f‖Lp(w).

Notice that S in the above mentioned works is a sparse family of dyadic
cubes. Thus, the case of an arbitrary sparse family can be treated by means
of (4.2). On the other hand, (4.2) is not necessary for deriving Lemma 4.5.
In order to keep this paper essentially self-contained, we give a proof of
Lemma 4.5 (avoiding (4.2)) in the Appendix.

Theorem 4.2 along with Lemma 4.5 implies the following.

Corollary 4.6. Assume that T is of weak type (q, q) and MT is of weak
type (r, r), where 1 ≤ q ≤ r <∞. Then, for all r < p <∞,

‖T‖Lp(w) ≤ C[w]
max
(

1, 1
p−r

)
Ap/r

,

where C = cn,p,q,r(‖T‖Lq→Lq,∞ + ‖MT ‖Lr→Lr,∞).

Remark 4.7. Consider a class of rough singular integrals Tf = p.v.f ∗K,

where K(x) = Ω(x)
|x|n with Ω homogeneous of degree zero, Ω ∈ L∞(Sn−1) and∫

Sn−1 Ω(x)dσ(x) = 0.

It was shown in [9] that ‖T‖L2(w) ≤ cn‖Ω‖L∞ [w]2A2
, and it was conjectured

there that the squared dependence on [w]A2 can be replaced by the linear
one. Since T is of weak type (1, 1) (as was proved by A. Seeger [14]), by
Corollary 4.6, it would suffice to prove that MT is of weak type (1, 1), too.
However, it is even not clear to us whether MT is an L2 bounded operator
in this setting.

5. Appendix

Let us prove (4.3). Denote σ = w
− 1

p−1 and ν = w
− r

p−r . Let EQ be
pairwise disjoint subsets of Q ∈ S.

Since 1
w(3Q)

∫
Q g ≤ infQM

c
w(gw−1), where M c

w is the centered weighted

maximal operator with respect to w, we obtain∑
Q∈S

( 1

w(3Q)

∫
Q
g
)p′
w(EQ) ≤

∑
Q∈S

∫
EQ

M c
w(gw−1)p

′
w

≤ ‖M c
w(gw−1)‖p

′

Lp′ (w)
≤ cn,p‖g‖p

′

Lp′ (σ)
.

Similarly, ∑
Q∈S

( 1

ν(3Q)

∫
Q
f r
)p/r

ν(EQ) ≤ cn,p,r‖f‖pLp(w).

Therefore, multiplying and dividing by

Tp,r(w;Q) =
w(3Q)

w(EQ)1/p′
ν(3Q)1/r

ν(EQ)1/p

1

|Q|1/r
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along with Hölder’s inequality yields∑
Q∈S

( 1

|Q|

∫
Q
f r
)1/r

∫
Q
g ≤ cn,p,r sup

Q
Tp,r(w;Q)‖f‖Lp(w)‖g‖Lp′ (σ),

which, by duality, is equivalent to

‖Ar,Sf‖Lp(w) ≤ cn,p,r sup
Q
Tp,r(w;Q)‖f‖Lp(w).

It remains to show that

sup
Q
Tp,r(w;Q) ≤ cn,p,r,η[w]

max
(

1, 1
p−r

)
Ap/r

.

By Hölder’s inequality,

|Q|p/r ≤ η−p/r|EQ| ≤ η−p/rw(EQ)ν(EQ)
p
r
−1.

From this,

w(3Q)

w(EQ)

( ν(3Q)

ν(EQ)

) p
r
−1
≤ η−p/rw(3Q)

|Q|

(ν(3Q)

|Q|

) p
r
−1
≤ (3n/η)p/r[w]Ap/r

,

and therefore,

Tp,r(w;Q) =

[
w(3Q)

|Q|

(ν(3Q)

|Q|

) p
r
−1
]1/p (w(3Q)

w(EQ)

)1/p′( ν(3Q)

ν(EQ)

)1/p

≤ 3n/r[w]
1/p
Ap/r

[
w(3Q)

w(EQ)

( ν(3Q)

ν(EQ)

) p
r
−1
]max

(
1
p′ ,

r
p(p−r)

)

≤ cn,p,r,η[w]
1
p

+max
(

1
p′ ,

r
p(p−r)

)
Ap/r

= cn,p,r,η[w]
max
(

1, 1
p−r

)
Ap/r

.

Acknowledgement. I am grateful to Javier Duoandikoetxea for valuable
remarks on an earlier version of this paper.

References

[1] Bernicot, Frédéric; Frey, Dorothee; Petermichl, Stefanie. Sharp weighted
norm estimates beyond Calderón–Zygmund theory. Preprint, 2015. arXiv:1510.00973.

[2] Conde-Alonso, Jose M.; Rey, Guillermo. A pointwise estimate for positive
dyadic shifts and some applications. Preprint, 2014. arXiv:1409.4351.

[3] Cruz-Uribe, David; Martell, José Maŕıa; Pérez, Carlos. Sharp weighted
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