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On finite symmetries of simply connected
four-manifolds

Ioana Şuvaina

Abstract. For most positive integer pairs (a, b), the topological space

#aCP2#bCP2 is shown to admit infinitely many inequivalent smooth
structures which dissolve upon performing a single connected sum with
S2 × S2. This is then used to construct infinitely many nonequiva-
lent smooth free actions of suitable finite groups on the connected sum
#aCP2#bCP2. We then investigate the behavior of the sign of the
Yamabe invariant for the resulting finite covers, and observe that these
constructions provide many new counter-examples to the 4-dimensional
Rosenberg Conjecture.
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1. Introduction

The geometry of manifolds in dimension 4 is remarkably intricate, and in
key respects differs markedly from the corresponding story in any other di-
mension. For example, many compact topological 4-manifolds can be shown
to support infinitely many inequivalent smooth structures. Indeed, the re-
markable results of Freedman [Fre82] and Donaldson [Don83] show that
oriented simply-connected compact 4-manifolds without boundary are clas-
sified, up to homeomorphism, by just three invariants: the Euler character-
istic χ, the signature τ , and the parity of the intersection form on H2(Z);
consequently, any simply connected nonspin closed 4-manifold is homeomor-
phic to a connected sum #aCP2#bCP2, where CP2 and CP2 respectively
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denote the complex projective plane with its standard and nonstandard ori-
entations. By contrast, however, gauge theory gives rise to diffeomorphism
invariants, such as Seiberg–Witten basic classes, that can often be used
to show that pairs of 4-manifolds are nondiffeomorphic, even though the
above-mentioned results imply that they are actually homeomorphic. If a
4-manifold M is orientedly diffeomorphic to #aCP2#bCP2, equipped with
the familiar smooth structure arising from the standard smooth structure
on the complex projective plane via the connect-sum construction, we will
therefore find it useful to say that M carries the conventional smooth struc-
ture; on the other hand, if M is homeomorphic but not diffeomorphic to the
connected sum #aCP2#bCP2, we will then say that its differential structure
is exotic.

We first discuss the existence of exotic structures and the region in which
they can be exhibited, and emphasize a special property of these structures,
namely their solubility. We say that a nonspin 4-manifold is (S2 × S2)-
soluble or CP2-soluble, if after taking the connected sum with one copy of
S2 × S2 or with one copy of CP2, respectively, its differential structure is
the conventional structure. The (S2×S2)-solubility is more adequate if one
studies the general class of 4-manifolds, while the CP2-solubility is more
suitable to the study of complex surfaces or symplectic 4-manifolds. The
CP2-solubility property is equivalent to the almost complete decomposability
in the sense of Mandelbaum [Man80].

We study the geography of exotic structures on simply connected nonspin
(S2 × S2)-soluble manifolds. This generalizes the results on the geography
of symplectic manifolds of [BrKo05].

Theorem A. For any ε > 0 there is a constant Nε > 0 such that given
any integer pair (a, b) in the first quadrant satisfying either one of the two
conditions

b ≥
(

1

2
+ ε

)
a+Nε and a 6≡ 0 mod 8,(1)

b ≤ 2

1 + 2ε
(a−Nε) and b 6≡ 0 mod 8,(2)

the topological space M = #aCP2#bCP2 admits infinitely many pairwise
nondiffeomorphic smooth structures, which are all (S2 × S2)-soluble.

This result is used to exhibit an infinite number of inequivalent smooth
free actions on the conventional nonspin smooth structure on 4-manifolds:

Theorem B. Let d ≥ 2 be an integer and Γ any group of order d which acts
freely on the sphere S3. For any ε > 0 there exists a constant N ′ε > 0 such
that for any point (a, b) in the region Rε satisfying the divisibility conditions

(D1) and (D2), below, the manifold M = #aCP2#bCP2 has the following
properties:
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(B1) M admits infinitely many smooth orientation preserving free actions
of the group Γ, which we denote by Γi, i ∈ N.

(B2) the actions Γi are conjugate by homemorphisms, but are not conju-
gate by the diffeomorphisms of M.

The region Rε is defined as:

Rε,1 =

{
(a, b) ∈ N× N

∣∣∣∣ b ≥ (1

2
+ ε

)
a+N ′ε

}
Rε,2 =

{
(a, b) ∈ N× N

∣∣∣∣ b ≤ 2

1 + 2ε
(a−N ′ε)

}
Rε = Rε,1 ∪Rε,2

while the divisibility conditions are:

a+ 1 ≡ 0 mod d and b+ 1 ≡ 0 mod d,(D1) {
if (a, b) ∈ Rε,1 then a+1

d 6≡ 1 mod 8, or

if (a, b) ∈ Rε,2 then b+1
d 6≡ 1 mod 8.

(D2)

For any integer d there exists at least one group of order d which acts
freely on the 3-sphere, for example the finite cyclic group

Zd ∼= {ρ ∈ C| ρd = 1}

acting on S3 ⊂ C2 by multiplication. The divisibility condition (D1) is
necessary in order to assure that the quotient manifolds M/Γi have the
Betti numbers b+2 = 1+a

d − 1 and b−2 = 1+b
d − 1 integer valued. The constant

ε can be chosen to be arbitrary small. Unfortunately, due to the nature of
the constructions involved we are unable to compute the value of N ′ε. The
constant depends on the constant Nε from Theorem A and increases linearly
in d, for the exact formula see Equation (11) in Section §2. Nevertheless,
the region Rε covers all the integer lattice points in the first quadrant with
the exception of finitely many.

This theorem generalizes earlier work of Ue [Ue96, Main Theorem], Le-
Brun [LeB03, Theorem 2] and Hanke–Kotschick–Wehrheim [HKW03, The-
orem 12], putting an emphasis on the geography of the 4-manifolds. Torres
[Tor15, Theorems 1.6 and 1.7] also discusses similar results but with more
restrictive divisibility conditions and for a much smaller region. Using differ-
ent constructions, Akhmedov–Ishida–Park [AIP15] exhibited a similar be-
haviour for manifolds with zero signature. One of the aims of these papers
is to provide examples for which the Rosenberg Conjecture [Ros86, Con-
jecture 1.2] fails, meaning that there are manifolds with finite fundamental
group of odd order which do not admit metrics of positive scalar curvature,
while their universal cover does. Such a phenomenon can be detected by
a differential invariant of the manifold arising from Riemannian geometry,
the Yamabe invariant, see Equation (12) in Section §4. As CP2 admits a
metric of positive curvature, for example the Fubini–Study metric, then a
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result of Gromov–Lawson [GrLa80] tells us that this property is preserved

under the connected sum operation, and hence so does M = #aCP2#bCP2.
The Yamabe invariant of M is, then, positive. The existence of a symmetry
group on M has an immediate impact on the Riemannian properties of the
manifold. If we consider the manifold M endowed with one of the actions
Γi, we show that:

Proposition 3. For any integer d and any point (a, b) in the region Rε
satisfying the divisibility conditions (D1) and (D2) let g be a Γi-invariant

metric on the manifold M = #aCP2#bCP2, for any of the Γi actions defined
in Theorem B. Then the Yamabe invariant of the conformal class of g is
negative.

Remark 4. In some cases it can be shown that these actions also give ob-
structions to the existence of invariant Einstein metrics, see Şuvaina [Su08].

For the examples in Proposition 3 the Yamabe invariant of the confor-
mal class of a Γi-invariant metric, or equivalently of any conformal class on
M/Γi, is negative. Thus our constructions provide a large class of coun-
terexamples to the Rosenberg Conjecture. Moreover, the Yamabe invariant
of the conformal class is bounded away from zero. This is not necessary true
for an arbitrary action of Γ and Γ-invariant metrics.

Proposition 5. For any integer d ≥ 2 and any integer pair (a, b) in the
region:

R0 =

{
(a, b) ∈ N× N

∣∣∣∣ b ≥ 5a+ 12d+ 4, and
1 + a

d
6≡ 1 mod 8

}
⋃ {

(a, b) ∈ N× N
∣∣∣∣ b ≤ 1

5
(a− 12d− 4), and

1 + b

d
6≡ 1 mod 8

}
on the manifold M = #aCP2#bCP2 there exist infinitely many conjugate
homeomorphic conjugate nondiffeomoprhic actions of the group Γ, which
we denote by Γ′i, i ∈ N, such that the Yamabe invariant of the conformal
class of a Γ′i-invariant metric g is nonpositive and for different choices of
Γ′i-invariant metrics g the invariant can be made arbitrary close to zero.

As an immediate consequence of Propositions 3 and 5 we have:

Corollary 6. On any manifold M = #aCP2#bCP2 for (a, b) in the region
R0 ∩ Rε there are infinitely many, free actions of the group Γ, denoted by
Γi, i ∈ N, such that the Yamabe invariant of the manifold M/Γi is negative,
and there are also infinitely many free actions of the group Γ, denoted by
Γ′i, i ∈ N, such that the Yamabe invariant of the manifold M/Γ′i is zero.

2. Exotic smooth structures

In this section we discuss the existence of exotic smooth structures and
prove Theorem A.
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Proof of Theorem A. It is enough to prove the statement for the points
(a, b) satisfying the inequality (1). The second inequality is immediately
implied by the first if one considers a change in orientation. The solubil-
ity property is preserved under this operation as S2 × S2 admits a diffeo-
morphism which reverses its orientation, for example one can consider the
antipodal map on one of the factors and identity on the other.

The construction relies on a result of Braungardt–Kotschick, which proves
the following theorem about the geography of CP2-soluble symplectic man-
ifolds:

Theorem 7 ([BrKo05, Theorem 4]). For every ε > 0 there is a constant
Nε > 0 such that every lattice point (a, b) satisfying the conditions

a ≡ 1 mod 2(8)

b ≤ 4 + 5a(9)

b ≥
(

1

2
+ ε

)
a+Nε(10)

is realized by the Betti two invariants (a, b) = (b+2 , b
−
2 ) of infinitely many

pairwise nondiffeomorphic simply connected minimal symplectic manifolds
M(a,b,i), all of which are CP2-soluble.

As the manifolds considered are simply connected and symplectic then
a = b+2 must be odd, namely condition (8), and furthermore condition (10)
implies that a is a large integer. For minimal symplectic manifolds with
b+ > 1, Taubes [Tau96] showed that c2

1 = 4 + 5b+2 − b
−
2 ≥ 0, which is equiva-

lent to inequality (9). In the original paper, the geography statement is given
in terms of the Chern number c2

1, and the Todd number χh. These can be
computed as c2

1 = 2χ+3τ = 2+5b+2 −b
−
2 and χh = 1

4(χ+τ) = 1
2(1+b+2 ). After

relabeling the constants ε and Nε, the Kotschick-Braungardt inequality in
[BrKo05] can be formulated as inequality (10). The infinitely many smooth
structures in the theorem are constructed by doing logarithmic transforms
of different multiplicities along a symplectic 2-torus of self-intersection zero.
To prove that this construction generates infinitely many smooth structures,
one considers a smooth invariant called the bandwidth BW. This is defined
to be the highest divisibility of the difference between two distinct Seiberg–
Witten basic classes, see Ishida–LeBrun [IsLe02, Definition 2]. As the num-
ber of basic classes of a manifold is finite while sup

i∈N
BW (M(a,b,i)) = +∞, we

conclude that infinitely many diffeotypes are represented.
The blow-up of the manifold M(a,b,i) at p points is a symplectic manifold

diffeomorphic to M(a,b,i)#pCP2. Moreover, it is simply connected and CP2-
soluble. A trick of Wall [Wa64] tells us that if X is a nonspin manifold then

X#(S2×S2) is diffeomorphic to X#(CP2#CP2). Hence, M(a,b,i)#pCP2, p ≥
0, is also (S2 × S2)-soluble.
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We denote by Ej the exceptional 2-spheres of self-intersection (−1) in-
troduced by the blow-ups, and by ej = c1(Ej) the Poincare dual of the
homology class of Ej . If s is a basic class of M(a,b,i), then ±s+

∑p
j=1±ej are

basic classes of M(a,b,i)#pCP2. Hence BW (M(a,b,i)#pCP2) ≥ BW (M(a,b,i)),

and the bandwidth argument implies that the family M(a,b,i)#pCP2 con-
tains infinitely many diffeotypes. In particular, we showed that for each
integer pair (a, b) satisfying condition (8) and condition (10) there are in-
finitely many pairwise nondiffeomorphic simply connected S2 × S2-soluble
4-manifolds with (b+2 , b

−
2 ) = (a, b).

In order to generalize condition (8) in Theorem 7 we use the stable coho-
motopy Seiberg–Witten invariant, due to Bauer–Furuta [BaFu04, Bau04].
In [Bau04, Proposition 4.5], Bauer considers manifolds obtained by taking
the connected sum of k = 2, 3 or 4 manifolds X = X1# · · ·#Xk satisfying
b1(Xj) = 0, b+2 (Xj) ≡ 3 mod 4, and if k = 4,

∑4
1 b

+
2 (Xj) ≡ 4 mod 8. If

the Seiberg–Witten invariant of a basic class sj of Xj is odd, then X has a
nonvanishing Bauer–Furuta invariant for basic classes of the form

±s1 ± · · · ± sk, for k = 2, 3 or 4.

Let X1,i = M(a,b,i)#pCP2 and X2 = X3 = X4 = K3, the simply connected
complex surface with trivial canonical line bundle. The K3 surface can be
realized, for example, as a hypersurface of degree 4 in CP3, and has b+2 = 3
and b−2 = 19. Consider the following three families:

X1,i, X2,i = X1,i#X2,

X3,i = X1,i#X2#X3#X4, only when b+2 (X1,i) + 3 · 3 ≡ 4 mod 8.

As X1,i, X2, X3, X4 are symplectic manifolds with b+2 > 1, Taubes [Tau94]
showed that the Seiberg–Witten invariant associated to a canonical almost
complex structure is ±1. Hence we can apply Bauer’s theorem and the
bandwidth argument to conclude that infinitely many smooth structures are
represented. These three families cover all the points in the region defined
by inequality (1), up to a change of the constant Nε.

The K3 manifold is CP2-soluble [Man80]. As X1,i is (S2 × S2)-soluble,
for k = 2, we can now conclude that:

X2,i#(S2 × S2) ∼= X1,i#(S2 × S2)#K3 ∼= (a+ 1)CP2#(b+ p+ 1)CP2#K3

∼= (a+ 1 + 3)CP2#(b+ p+ 1 + 19)CP2.

A similar computation for k = 4 shows that X3,i is S2× S2-soluble. This
concludes the proof of Theorem A. �

3. Infinitely many free actions

In this section we use the examples in Theorem A to construct infinitely
many actions of finite groups on manifolds with the conventional smooth
structure and prove Theorem B.
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Proof of Theorem B. We only need to prove that the statement is true
for the points in the first subset, as considering the opposite orientation will
imply the result for the second subset.

For any finite group Γ acting freely on S3 consider the orientable rational
homology sphere SΓ with fundamental group π1(SΓ) = Γ and universal cover
#(d−1)(S2×S2), constructed by Ue [Ue96, Proposition 1-3]. Corollary 8 in
[IsLe03] shows that the Bauer–Furuta invariant of Xk,i#SΓ is nontrivial for
monopole classes of the form si ∈ H2(Xk,i,Z) ↪→ H2(Xk,i#SΓ,Z)/torsion,
where si is a basic class for the Bauer–Furuta invariant onXk,i, for k = 1, 2 or
3. The bandwidth argument can be used again to argue that we constructed
infinitely many diffeotypes.

Moreover, the universal cover of Xk,i#SΓ is diffeomorphic to

#dXk,i#(d− 1)(S2 × S2)

∼= [d · b+2 (Xk,i) + d− 1]CP2#[d · b−2 (Xk,i) + d− 1]CP2.

Hence, on the conventional smooth structure of

#aCP2#bCP2 = [d · b+2 (Xk,i) + d− 1]CP2#[d · b−2 (Xk,i) + d− 1]CP2

we constructed infinitely many free actions of the group Γ such that the
quotient spaces are homeomorphic but pairwise nondiffeomorphic.

It is easy to check that these constructions cover all the points in the
region Rε satisfying conditions (D1) and (D2) for

(11) N ′ε = dNε +

(
1

2
− ε
)

(d− 1),

as we consider all the manifolds Xk,i used in the proof of Theorem A. �

4. The sign of the Yamabe invariant

We consider next an invariant associated to Riemannian metrics. On a
closed 4-manifold M , given a Riemannian metric g, one defines the Yamabe
invariant of the conformal class [g] of g as:

Y (M, [g]) = inf
g̃∈[g]

∫
M sg̃dµg̃

V ol(g̃)
1
2

,

where [g] = {g̃ = efg| f : M → R smooth}, see for example [Sch84, LePa87].
The Yamabe invariant is a diffeomorphism invariant of the manifold and

is defined [Kob87, Sch87] as:

(12) Y (M) = sup
[g]

Y (M, [g]).

Proof of Proposition 3. Given one of the Γi actions on M constructed
in Theorem B the quotient M/Γi is diffeomorphic to Xk,i#SΓ, with the
previous notations. As the manifold Xk,i#SΓ has a nontrivial Bauer–Furuta
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invariant, then Y (Xk,i#SΓ) ≤ 0 [IsLe03]. Moreover, by [IsLe03, Proposition
12 and 14] the Yamabe invariant satisfies:

Y (Xk,i#SΓ) ≤ −4π

√√√√2c2
1(M(a,b,i)) + 2

k∑
j=2

c2
1(Xj) = −4π

√
2c2

1(M(a,b,i)),

where M(a,b,i) denotes the minimal symplectic manifold used in the proof
of Theorem A. Moreover, we can assume that M(a,b,i) is a symplectic

manifold of general type, meaning that c2
1(M(a,b,i)) > 0. This implies that

Y (Xk,i#SΓ) ≤ −4π
√

2 and, in particular, that there is a metric of negative
constant scalar curvature in the conformal class of π∗(g), where π∗ denotes
the push forward of the Γi-invariant metric g. Then the conformal class [g]
contains a negative constant scalar curvature metric (which is Γi-invariant)
and hence, its Yamabe invariant is negative [Sch84]. This concludes the
proof of the proposition. �

In order to prove Proposition 5 we need a different construction of group
actions.

Proof of Proposition 5. The main blocks in the construction are the el-
liptic surfaces. As they are well understood from the algebraic geometry,
differential topology, or Seiberg–Witten theory point of view, we give the
reader a textbook reference [GoSt99, Chapter 3], where all these aspects
are presented and complete references are included. We denote by E(n) the
simply connected elliptic surface with Euler characteristic χ(E(n)) = 12n
and signature τ(E(n)) = −8n which admits a section. Let E(n)p,q the com-
plex surface obtained by doing two logarithmic transforms of multiplicities
p and q on two generic fibers and require that (p, q) = 1, in order for the
manifold to be simply connected. It is well known that E(n)p,q is diffeomor-
phic to E(n)p′,q′ if and only if {p, q} = {p′, q′} for n ≥ 2, [GoSt99, Corollary
3.3.7] and when n = 1 if {p, q} = {p′, q′} or if 1 ∈ {p, q} ∩ {p′, q′} [GoSt99,
Theorem 3.3.8]. Moreover, E(n)p,q is spin if and only if n is even and pq is
odd [GoSt99, Lemma 3.3.4]. In particular, if n is odd or if n is even and pq
is even then the manifolds E(n)p,q are all nonspin and homeomorphic, for
a fixed n. Moreover, in this case E(n)p,q is CP2-soluble [Man80, Theorem
2.15]. Using Wall’s trick [Wa64], then this is also S2 × S2-soluble.

As before, Γ is a finite group of order d acting freely on S3 and SΓ is
Ue’s rational homology sphere with fundamental group Γ. We consider the
following three families of manifolds:

F1(n) = {E(n)p,q#kCP2#SΓ | k ∈ N, (p, q) = 1, pq even

and if n = 1 then p, q ≥ 2}

F2(n) = {E(n)p,q#kCP2#SΓ#E(2) | k ∈ N, (p, q) = 1, pq even

and n even}
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F3(n) = {E(n)p,q#kCP2#SΓ#3E(2) | k ∈ N, (p, q) = 1, pq even

and n ≡ 2 mod 4}.

For fixed n and k the manifolds in each family are homeomorphic, more-
over by using the bandwidth arguments due to [IsLe02] we conclude that
infinitely many diffeotypes are constructed. Their universal cover is the con-
ventional nonspin manifold. The topological invariants of the first family are
of the form

(a, b) = (b+2 , b
−
2 ) = (2n− 1, 10n− 1 + k), n ≥ 1, k ≥ 0,

covering the region

b ≥ 5a+ 4 for a odd.

Hence, their universal coverings cover all the integer lattice points in the
region:(

1 + b

d
− 1

)
≥ 5

(
1 + a

d
− 1

)
+ 4 or b ≥ 5a+ 4 for

1 + a

d
even.

A similar computation for the second and third families shows that we are
able to cover all the integer lattice points on the regions:

b ≥ 5a+ 4 + 4d when n =
1

2

(
1 + a

d
− 3

)
even,

or equivalently
1 + a

d
≡ 3 mod 4,

b ≥ 5a+ 4 + 12d when n =
1

2

(
1 + a

d
− 9

)
≡ 2 mod 4,

or
1 + a

d
≡ 5 mod 8.

The union of these sets covers the needed region.
The Yamabe invariant of the manifolds in the families F1,2,3 is zero, by

[IsLe03, Theorem A]. Hence, we can always choose a family of negative
constant scalar curvature metrics for which the scalar curvature converges
to zero. These lift to metrics on the universal covering such that the Yamabe
invariants of their conformal classes are negative and converge to zero. �

Proof Corollary 6. Propositions 3 and 5 provide the constructions for the
infinitely many actions for which the quotients have the Yamabe invariant
negative or zero, respectively. The quotient manifolds are all homeomorphic
by the Donaldson and Freedman’s classification [Don83, Fre82], as they are
all of the form M∗#SΓ, with the manifolds M∗ being simply connected
nonspin with the same topological invariants b+2 and b−2 . They are pair-
wise nondiffeomorphic, as the quotients in different families have different
Yamabe invariants while in the same family they are nondiffeomorphic by
construction. �
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Remark 13. If the Yamabe invariant of SΓ is positive, then we can also con-
struct an action onM such thatM/Γ is diffeomorphic to #mCP2#nCP2#SΓ

and has positive Yamabe invariant. This is true, if for example Γ = Z2 and
SZ2 is the quotient of S2×S2 by the diagonal antipodal map on each factor.
It is difficult to exhibit two homeomorphic, nondiffeomorphic structures with
positive Yamabe invariants as there are no known invariants to distinguish
such smooth structures.
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