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A short proof that Diffc(M) is perfect

Kathryn Mann

Abstract. In this note, we follow the strategy of Haller, Rybicki and
Teichmann to give a short, self contained, and elementary proof that
Diff0(M) is a perfect group, given a theorem of Herman on diffeomor-
phisms of the circle.
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1. Introduction

Let M be a smooth manifold of dimension n > 1 and let Diffc(M) denote
the group of diffeomorphisms supported on compact sets and isotopic to the
identity through a compactly supported isotopy. Note that if M is compact,
then Diffc(M) = Diff0(M), the group of isotopically trivial diffeomorphisms.
That Diffc(M) is a perfect group was first proved by Thurston, as announced
in [Th74]. The proof relies on the relationship between the homology of
Diffc(M) and certain classifying spaces of foliations. Recently, Haller, Rybicki
and Teichmann gave a fundamentally different proof in [HT03] and [HRT13].
In fact, they prove a stronger form of “smooth perfection” and give bounds
on commutator width of Diffc(M) for some manifolds.

Bounds on commutator width have also been given in [BIP08], [Ts09]
and [Ts12]. In particular, given the result that Diffc(Rn) is perfect, Burago,
Ivanov, and Polterovich show in [BIP08, Lemma 2.2] that any element of
Diffc(Rn) can be written as a product of two commutators; an isotopically
trivial diffeomorphism of a compact 3-manifold can be written as a product of
10 commutators, and an element of Diff0(Sn) as a product of 4 commutators.
Related results were obtained by Tsuboi in [Ts08], who later gave general
bounds on commutator width of Diff0(M), depending on M ([Ts09], [Ts12]).
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The purpose of this note is to show that if one only wants to show that
Diffc(M) is perfect, then the techniques of Haller, Rybicki and Teichmann
provide a remarkably simple proof. Our exposition closely follows the strategy
of [HT03], but avoids discussion of the tame Fréchet manifold structure on
Diff0(M). As the perfectness of these diffeomorphism groups is widely cited,
we thought it worthwhile to make available this short and widely accessible
proof. We show the following.

Theorem 1.1. Let M be a smooth manifold, M 6= R. Then Diffc(M) is
perfect. In fact, any compactly supported diffeomorphism g can be written as
a product of commutators g = [g1, f1][g2, f2] . . . [gr, fr] where each fi is the
time one map of a (time independent) vector field Xi on M .

In particular, this result can then be fed into Lemma 2.2 of [BIP08] to
obtain their bounds on commutator width. The assumption M 6= R seems
essential to this proof, although Diffc(R) is also perfect. The proof uses only
one deep theorem, a result of Herman on circle diffeomorphisms.

Theorem 1.2 ([He79]). There is a neighborhood U of the identity in Diff0(S1)
and a dense set of rotations Rθ by angles θ ∈ [0, 2π) such that any g ∈ U
can be written as Rλ[g0, Rθ] for some rotation Rλ and some g0 ∈ Diff0(S1).
Moreover, λ and g0 can be chosen to vary smoothly in g, with λ = 0 and
g0 = id at g = id.

“Vary smoothly in g” can be made precise with reference to the Fréchet
structure on Diff0(M), but for our purposes the reader may take it to mean
the following.

Definition 1.3. A smooth family in Diffc(M) is a family {gt : t ∈ [0, 1]}
such that the map (x, t) 7→ (gt(x), t) is a smooth diffeomorphism of M× [0, 1].
A map φ : Diffc(M)→ Diffc(N) varies smoothly if it maps smooth families
to smooth families.

A more general version of Herman’s theorem on diffeomorphisms of the
n-dimensional torus is used in both Thurston’s original proof and the Haller-
Rybciki-Teichmann proof, though Haller, Rybciki and Teichmann state that
their methods work using only Herman’s theorem for S1. This note provides
the details.

2. Reduction to M = Rn and diffeomorphisms near identity

Recall that the support of a diffeomorphism g is the closure of the set
{x ∈M | g(x) 6= x}. The first step in the proof of Theorem 1.1 is to reduce
it to the case of compactly supported diffeomorphisms on M = Rn. This
reduction is a consequence of the well-known fragmentation property. For
simplicity, we assume M is compact.

Lemma 2.1 (Fragmentation). Let {Ui} be a finite open cover of M . Then
any g ∈ Diff0(M) can be written as a composition g1 ◦ g2 ◦ · · · ◦ gn of
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diffeomorphisms where each gi has support contained in some element of
{Ui}.
Proof. The proof is straightforward, for completeness we outline it here,
following [Ba97, Ch. 2]. Let gt be an isotopy from g0 = id to g1 = g. By
writing

g = g1/r ◦ (g−1
1/r g2/r) ◦ · · · ◦ (g−1

r−1/r g1)

for r large, and working separately with each factor g−1
k−1/r gk/r, we may

assume that g and gt lie in an arbitrarily small neighborhood of the identity.
Take a partition of unity λi subordinate to {Ui} and define

µk :=
∑
i≤k

λi.

Now define ψk(x) := gµk(x)(x). This is a C∞ map, and can be made as close
to the identity as we like by taking gt close to the identity. Although ψk
is not a priori invertible, being invertible with smooth inverse is an open
condition. Thus, ψk being sufficiently close to the identity implies that it
is a diffeomorphism. By definition, ψk agrees with ψk−1 outside of Uk, and
hence g = (ψ−1

0 ψ1)(ψ−1
1 ψ2) . . . (ψ−1

n−1ψn) is the desired decomposition of g

with each diffeomorphism ψ−1
k−1ψk supported on Uk. �

To prove Theorem 1.1, it is also sufficient to prove that some neighborhood
of the identity in Diffc(Rn) is perfect, because any neighborhood of the
identity generates Diffc(Rn). The strategy is to first prove perfectness of
a neighborhood of the identity for S1, move to R2, and then induct on
dimension.

3. Proof for S1 and diffeomorphisms preserving vertical lines

Perfectness of Diff0(S1) is a consequence of Herman’s theorem together
with the fact that PSL(2,R) is perfect, so any rotation can be written as a
commutator.

Lemma 3.1 (Perfectness for S1). There is a neighborhood U of the identity
in Diff0(S1) and f1, . . . , f4 ∈ Diff0(S1) such that any g ∈ U can be written
g = [g1, f1] . . . [g4, f4], with each gi depending smoothly on g.

Furthermore, we may take fi = exp(Xi) to be the time one map of a vector
field, and may take gi = id when g = id.

Proof. Let U be a neighborhood of the identity as in Herman’s theorem
and let g ∈ U . Then g can be written as Rλ[g0, Rθ] with λ and g0 depending
smoothly on g. Let f4 = Rθ; this is indeed the time one map of a (constant)
vector field. We need to write the rotation Rλ as a product of commutators
[g1, f1][g2, f2][g3, f3] with gi depending smoothly on λ, and will do this
working inside of PSL(2,R) ⊂ Diff0(S1). This can be done completely
explicitly: take f1 = f3 = exp

((
0 1
0 0

))
and f2 = exp

((
0 0
1 0

))
, and define

gα =
(
α 0
0 α−1

)
.
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Then

[gα, f1][gβ, f2][gα, f3] =
(

1 α2−1
0 1

)( 1 0
β−2−1 1

)(
1 α2−1
0 1

)
=

(
1 + (α2 − 1)(β−2 − 1) 2(α2 − 1) + (α2 − 1)2(β−2 − 1)

β−2 − 1 1 + (α2 − 1)(β−2 − 1)

)
.

This is the matrix of rotation by λ := sin−1(β−2 − 1) provided that
−(β−2 − 1) = 2(α2 − 1) + (α2 − 1)2(β−2 − 1). If α is close to 1, then there
exists β (close to 1) satisfying this equation, namely

β =

(
−2(α2 − 1)

1 + (α2 − 1)2
+ 1

)−1/2

.

In fact, the inverse function theorem implies that α 7→
(
−2(α2−1)
1+(α2−1)2

+ 1
)−1/2

is a local diffeomorphism of R at α = 1. Since β 7→ sin−1(β−2 − 1) is also a
local diffeomorphism at β = 1 onto a neighborhood of 0, this shows that α
and β can be chosen to smoothly depend on λ, and approach 1 as λ→ 0.

Alternatively, one can see that such fi exist from the fact that PSL(2,R)
is a three dimensional perfect Lie group. See [HT03, Sect. 4] for details and
further generalizations. �

Remark 3.2. Above, we showed that every diffeomorphism in a neighbor-
hood of the identity could be written as a product of four commutators of
a specific form. Relaxing this condition allows one to (easily) write every
element g in a neighborhood of id in Diff(S1) as a product of two commuta-
tors, g = [a1, b1][a2, b2] with ai and bi depending smoothly on g. To do so,
Herman’s theorem again implies that it suffices to write a rotation Rλ as
[a1, b1], with a1 and b1 depending smoothly on λ, and this can be done in
PSL(2,R), either explicitly or with an elementary argument using hyperbolic
geometry as in [Gh01, Prop 5.11].

As a consequence, we now prove a perfectness result for compactly sup-
ported diffeomorphisms of Rn that preserve vertical lines.

Proposition 3.3. Let U ⊂ Rn = Rn−1 × R be precompact, and V a neigh-
borhood of the closure of U . There exist vector fields Y1, . . . , Y4 supported on
V with the following property:

• If g ∈ Diffc(Rn) is supported on U , sufficiently close to the identity,
and preserves each vertical line Rn−1×{x}, then g can be decomposed
as

g = [g1, exp(Y1)] . . . [g4, exp(Y4)]

with gi supported on V and depending smoothly on g.

Proof. LetBn−1 be a ball in Rn−1. There exists an embedding φ of S1×Bn−1

in Rn with U ⊂ φ(S1×{b}) ⊂ V , and such that for each b ∈ Bn−1 the image
φ(S1 × {b}) ∩ U is a vertical line segment as in Figure 1.
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U

Figure 1. An embedding of S1 ×B1 in R2 giving a vertical
foliation of U

If g preserves vertical lines, then we can consider it as a diffeomorphism
R× Rn−1 → R× Rn−1 of the form (x, y) 7→ (x, ĝ(x, y)). For each x ∈ Rn−1

let gx(y) denote ĝ(x, y). Then gx has support on a vertical line in U so we can
consider it as a diffeomorphism of S1 by pulling it back to S1×{b} via φ. Using
Lemma 3.1, write the pullback φ∗(gx) = [gx,1, exp(X1)] . . . [gx,4, exp(X4)].
Now push the vector fields Xi on each S1 × {b} forward to Rn to get vector
fields on φ(S1 × B) tangent to φ(S1 × {b}) and extend these smoothly to
vector fields Yi with support in V . The smooth dependence of gx,i on gx
and hence on x means that the functions φgx,iφ

−1 on the vertical lines
φ(S1 × {b}) piece together to form smooth functions gi on the image of φ.
Since g = id on the boundary of the image of φ, Lemma 3.1 implies that
gi = id as well, so it can be extended (trivially) to a diffeomorphism of Rn.
Now g = [g1, exp(Y1)] . . . [g4, exp(Y4)] on the image of φ by construction, and
both are equal to the identity everywhere else. �

4. Proof for Rn

The proof of Theorem 1.1 for Rn will follow from a short inductive argument
using Proposition 3.3 and the following lemma.

Lemma 4.1. There is a neighborhood U of the identity in Diffc(Rn) such
that any f ∈ U can be written as g ◦ h, where h preserves each vertical line
and g preserves each horizontal hyperplane. Moreover, g and h can be chosen
to depend smoothly on f .

In other words, if x = (x1, . . . , xn−1), this Lemma says that we may take h

to be of the form h(x, y) = (x, ĥ(x, y)) and g of the form g(x, y) = (ĝ(x, y), y).

Proof. Let πi : Rn → R denote projection to the ith coordinate. Suppose
f : Rn → Rn is compactly supported and sufficiently C∞ close to the identity.
Then for any point (x, y) = (x1, . . . , xn−1, y) the map fx : R→ R given by
fx(y) = πnf(x, y) is a diffeomorphism. (Injectivity follows from the fact that
tangent vectors to vertical lines remain nearly vertical under a diffeomorphism
close to the identity – if πnf(x, y1) = πnf(x, y2) for some y1 6= y2, then the
image of fx has horizontal tangent at some point y ∈ [y1, y2].)
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Now given f , define h and g : Rn−1 × R→ Rn−1 × R by

h(x, y) = (x, fx(y)),

g(x, y) = (g1(x, y), . . . gn−1(x, y), y),

where gi(x, y) = πi(x, f
−1
x (y)) ∈ R. Then f = g ◦ h and g and h vary

smoothly with f . �

Proof of Theorem 1.1. We induct on the dimension n. The case n = 2
follows from Lemma 4.1 using n = 2, together with Proposition 3.3 applied
to g and h in the decomposition (Proposition 3.3 works just as well for the
diffeomorphism g, which preserves horizontal rather than vertical lines).

Now suppose Theorem 1.1 holds for n = k, and let f ∈ Diffc(Rk+1)
be close to the identity. By Lemma 4.1, f = g ◦ h, where h preserves
each vertical line and g preserves each horizontal hyperplane in Rk+1, and
g and h are close to the identity. By our inductive assumption, there are
smooth vector fields X1, . . . , Xr(k) tangent to each horizontal hyperplane such
that g = [g1, exp(X1)] . . . [gr, exp(Xr(k))] where the gi preserve horizontal
hyperplanes as well. Technically speaking, our hypothesis gives vector fields
Xi and diffeomorphisms gi defined separately on each Rk–hyperplane, but the
proof of Proposition 3.3 allows us to choose them so that they vary smoothly
and form global vector fields or diffeomorphisms on Rk+1. By Proposition 3.3,
there are also vector fields Y1, . . . , Y4 supported on a neighborhood of supp(h)
so that h = [h1, exp(Y1)] . . . [h4, exp(Y4)]. Thus, f = g ◦ h is a product of
commutators as desired. �
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