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The colored Jones polynomial of singular
knots

Khaled Bataineh, Mohamed Elhamdadi
and Mustafa Hajij

Abstract. We generalize the colored Jones polynomial to 4-valent
graphs. This generalization is given as a sequence of invariants in which
the first term is a one variable specialization of the Kauffman–Vogel
polynomial. We use the invariant we construct to give a sequence of
singular braid group representations.
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1. Introduction

The study of singular knots, or equivalently rigid 4-valent graphs, and
their invariants was generated largely by the theory of Vassiliev invariants.
Many existing knot invariants have been extended to singular knot invari-
ants. In [2], Birman introduced braids in the theory of Vassiliev via the
singular braids and conjectured that the monoid of singular braids maps
injectively into the group algebra of the braid group. A proof of this con-
jecture was given by Paris in [25]. Fiedler extended the Kauffman state
models of the Jones and Alexander polynomials to the context of singular
knots [6]. In [7] Gemein investigated extensions of the Artin representation
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and the Burau representation to the singular braid monoid and the relations
between them. Juyumaya and Lambropoulou constructed a Jones-type in-
variant for singular links using a Markov trace on a variation of the Hecke
algebra [15]. In [20] Kauffman and Vogel defined a polynomial invariant of
embedded 4-valent graph in R3 extending an invariant for links in R3 called
the Kauffman polynomial [17]. The latter is a two variable polynomial that
takes value in Z[a, a−1, z] and is an invariant of regular isotopy for links.
The Kauffman polynomial of a link L is denoted by [L] and is defined via
the following axioms:

(1)

[ ]
−

[ ]
= z

([ ]
−

[ ])
.

(2)

[ ]
= a

[ ]
and

[ ]
= a−1

[ ]
.

(3)
[ ]

= 1.

The Kauffman polynomial is also called the Dubrovnik polynomial. This
invariant was extended to a 3-variable function for embedded 4-valent graphs
in R3 to the Kauffman–Vogel polynomial [20] by adding the following axiom:[ ]

=

[ ]
−A

[ ]
−B

[ ]
where A and B are commuting variables and A−B = z. A specialization of
the Kauffman–Vogel polynomial invariant can be obtained using the skein
theory associated with the Kauffman bracket [19]. This version is a one
variable specialization of the Kauffman–Vogel polynomial and it is defined
by using Jones–Wenzl projector [12,34]. The purpose of this paper is to give
a generalization of this version of the Kauffman–Vogel polynomial. Our
generalization is given in the form of a sequence of invariants whose first
term is the one variable specialization of the Kauffman–Vogel polynomial.
The sequence of invariants gives us naturally a sequence of singular braid
representations.

The organization of the paper is as follows. In Section 2 we give the
necessary background needed in this paper. In Section 3 the one variable
specialization of the Kauffman–Vogel polynomial is defined. In Section 4 we
introduce our generalization of this polynomial. In Section 5 we show how
to use this invariant to give a sequence of singular braid representations.

2. The Kauffman bracket skein module

In this section we review the definition of the Kauffman bracket skein
module of a 3-manifold M over a commutative ring R. A framed link in
M is an oriented embedding of a disjoint union of oriented annuli in M . A
framed point in the boundary ∂M of M is a closed interval in ∂M . Let x
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and y be framed points in ∂M . A band in M is an oriented embedding of
I × I into M that meets ∂M orthogonally at x and y.

Definition 2.1. [26] Let M be a 3-oriented manifold and R be a commu-
tative ring with a unit and an invertible element A. Let LM denotes the
set of all isotopy classes of unoriented framed links in M . Here we consider
the empty link to be an element of LM . Let RLM be the free R-module
generated by LM . The Kauffman bracket skein module of the 3-manifold M
and the ring R is the quotient given by:

(2.1) S(M,R, A) = RLM/R(M),

where R(M) is the submodule of RLM generated by all expressions of the
form

(1) −A − A−1 , (2) L t + (A2 +A−2)L,

where Lt consists of a framed link L in M and the trivial framed knot

.

We will sometimes drop the ring R from the notation and refer to the
Kauffman bracket skein module of the manifold M and the ring R sim-
ply by S(M) when the context is clear. The definition of the Kauffman
bracket skein module can be extended to 3-manifolds with boundaries. Let
x1, · · · , x2n be a set, possibly empty, of designated framed points on ∂M .
Let LM be the set of all surfaces in M decomposed into a union of finite
number of framed links and bands joining the points {xi}2ni=1. The relative
Kauffman bracket skein module is defined to be

(2.2) S(M,R, A, {xi}2ni=1) = RLM/R(M).

It can be shown that the definition of the relative Kauffman bracket skein
module is independent of the choice of the position of the points {xi}2ni=1.
Furthermore, the construction of the relative Kauffman bracket skein module
is functorial in the sense that an embedding of oriented 3-manifolds with 2n
(framed) points on the boundaries

(2.3) j : (M, {xi}2ni=1) ↪→ (N, {yi}2ni=1)

induces a homomorphism of R-modules

(2.4) S(M,R, A, {xi}2ni=1)→ S(N,R, A, {yi}2ni=1).

When the 3-manifold M is homeomorphic to F × I where S an oriented
surface with a finite set of points (possibly empty) in its boundary ∂F and
I is an interval, then one can project framed links in M to link diagrams in
F .

The first example of the Kauffman bracket skein module that we will con-
sider in this paper is the Kauffman bracket skein module of the 3-sphere S3.
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It can be easily shown that this module is free on the empty link, meaning
S(S3) = R. The second one is the relative Kauffman bracket skein module of
D3 = I×I×I with 2nmarked points on its boundary ∂D3. The first n points
are placed on the top edge D3 and the other n points on the bottom edge.
Recall that the relative skein module does not depend on the exact position
of the points {xi}2ni=1. However, we need to specify the position here in order
to define an algebra structure on S(D3,R, A, {xi}2ni=1). Let S1 and S2 be two
elements in LM such that ∂Sj , where j = 1, 2, consists of the points {xi}2ni=1

that we specified above. Define S1×S2 to be the surface in D3 obtained by
attaching S1 on the top of S2 and then compress the result to D3. This mul-
tiplication extends to a well-defined multiplication on S(D3,R, A, {xi}2ni=1).
With this multiplication the module S(D3,R, A, {xi}2ni=1) becomes an as-
sociative algebra over R known as the nth Temperley–Lieb algebra TLn.
For more details see [26]. Historically, The Temperley–Lieb algebra first
arose in the form of some graph-theoretic problems studied in the context
of Potts models in statistical mechanics [30]. The Temperley–Lieb algebra
was independently rediscovered by Jones [14] in his work on von Neumann
algebras.

For the rest of the paper we will fix R to be Q(A) the field generated by
the indeterminate A over the rational numbers.

2.1. The Jones–Wenzl idempotents. The Jones–Wenzl idempotent

f (n) ∈ TLn

has proven to be central to understand the Temperley–Lieb algebra and its
applications. This idempotent plays a central role in the Witten–Resheti-
khin–Turaev Invariants for SU(2) [19, 21, 29], the colored Jones polynomial
and its applications [3, 8, 10, 29, 31], and quantum spin networks [23]. The
Jones–Wenzl idempotent was defined in [12] and it enjoys a recursive formula
due to Wenzl [34]:

n

=

n− 1 1

−
(∆n−2

∆n−1

)
1n− 1

n− 2

1
n− 1

,

1

=(2.5)

where

∆n = (−1)n
A2(n+1) −A−2(n+1)

A2 −A−2
.

The graphical notation of f (n) is due to Lickorish [21]. The idempotent
satisfies the following properties:
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n

=

n

,

n− i− 2

1

i

n

= 0,(2.6)

∆n =

n

,

n m

m + n

=

m + n

,(2.7)

and

i j

i+ j

= A−ij

i+ j

,

n

= (−1)nA−n2−2n

n

.(2.8)

The definiton of the Jones–Wenzl projector is the main tool for our construc-
tion of the new singular knot invariants that we will introduce in Section 4.

2.2. The colored Temperley–Lieb algebra. Let m,n be two positive
integers. Consider the skein module of I × I × I with 2mn specified points
on the boundary. More specifically, we put mn marked points on the top
and mn points on the bottom. Partition the set of the 2mn points on the
boundary of the disk into 2m sets each one of them has n points. At each
cluster of n points we place a Jones–Wenzl idempotent f (n). The skein
module of I × I × I with 2mn specified points on the boundary can be
made into a unital associative algebra in a similar way as in the case of the
Temperley–Lieb algebra. In other words, if A and B are two diagrams in
this algebra then A×B is defined as illustrated in Figure 1.
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A × B =

A

B
=

A

B

Figure 1. Multiplication in the colored Temperley–Lieb algebra.

We will denote this algebra by TLm
n . The algebra TLm

n can be seen as
the subalgebra of TLmn generated by all elements of the form

(f (m))⊗n ⊗D ⊗ (f (m))⊗n

whereD is a diagram that generates TLmn. Using the properties of the Jones
Wenzl idempotent, the skein module TLn

n is one dimensional generated by
f (n). On the other hand, TL1

n is just the standard Temperley–Lieb algebra
TLn.

2.2.1. Braid group representations into the colored Temperley–
Lieb algebra. For every integer m,n ≥ 1, the following map gives a rep-
resentation of Bn inside TLm

n :

σi =

ρm,n

m m

(2.9)

The fact that Reidemeister moves II and III hold in the Kauffman bracket skein
module implies that the map ρm,n is indeed a representation. More precisely, the
moves shown in Figure 2 are basically a finite sequence of the usual Reidemeister
moves II and III applied on each single strand and summand of the idempotents.

Figure 2. Reidemeister moves hold on strands colored with
the Jones–Wenzl projector.

In Section 5 we will extend the representation ρm,n to a representation ρ̂m,n of
singular braid monoid into the colored Temperley–Lieb algebra.
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3. The Kauffman–Vogel polynomial for rigid 4-valent graphs

A rigid 4-valent graph on n components is the image of a smooth immersion
of n circles in S3 that has finitely many double points, called vertices. Rigid 4-
valent graphs are also called sometimes singular knots. Similarly, the vertices are
sometimes called singularities. Two rigid 4-valent graphs are ambient isotopic if
there is an orientation preserving self-homeomorphism of S3 that takes one graph
to the other and preserves a small rigid disk around each vertex. We will deal
with graph diagrams, which are projections of the graph in the plane such that
the information at each crossing is preserved by leaving a little break in the lower
strand. Two rigid 4-valent graphs G1 and G2 are ambient isotopic if and only if one
can obtain a diagram of G2 from a diagram of G1 by a finite sequence of classical
and singular Reidemeister moves as in Figure 3. See [17] for more details.

Figure 3. Classical Reidemeister moves RI, RII and RIII
on the top and singular Reidemeister RIV and RV on the
bottom.

If one does not allow the move on the top left of Figure 3 in the sequence, then
we obtain what is called regular isotopy of rigid 4-valent graphs.

As we mentioned in the introduction, a one variable version of the Kauffman–
Vogel polynomial invariant can be obtained using the Jones–Wenzl projector [19].
We recall this version here. For a 4-valent rigid vertex embedded graph G, we will
refer to this polynomial by [G]2.

Definition 3.1. The polynomial [G]2 is defined recursively via the following five
axioms:

(1)

[ ]
2

= A4

[ ]
2

+A−4

[ ]
2

+(A2+A−2)

 
2

.

(2)

[ ]
2

= A8

[ ]
2

and

[ ]
2

= A−8

[ ]
2

.

(3)

[ ]
2

= 2 +A−4 +A4.



1446 KHALED BATAINEH, MOHAMED ELHAMDADI AND MUSTAFA HAJIJ

(4)

 
2

=

1

1

11

22

22

.

(5)
[ ]

2
= .

In the next section we rewrite the first axiom in a slightly different way which
helps us in our generalization of this invariant.

4. Colored Kauffman–Vogel polynomial for rigid 4-valent
graphs

In this section we give a generalization for the one-variable specialization of the
Kauffman–Vogel polynomial given in the previous section. This invariant can also
be seen as an extension for the colored Jones polynomial to 4-valent graph. The
one variable specialization of the Kauffman–Vogel polynomial that we gave in the
previous section can be defined via the following rules:

(1)

[ ]
2

=

22

.

(2)

 
2

=

1

1

11

22

22

.

(3)
[ ]

2
= .

Replacing the five axioms in the Definition 3.1 by the three axioms given above
follows from the following facts

(4.1)

22

= A4 +A−4 + (A2 +A−2)

1

1

11

22

22

and

2

= 1 +A−4 +A4.

Before we give our generalization for [G]2, we prove the following two lemmas.

Lemma 4.1. For n ≥ 1 the following identities hold:



THE COLORED JONES POLYNOMIAL OF SINGULAR KNOTS 1447

(1)

2n 2n

= (−1)nA3n2+2n

2n 2n

n n

n

,(4.2)

(2)

2n 2n

= (−1)nA−3n
2−2n

2n 2n

n n

n

.(4.3)

Proof. By isotopy we have

2n 2n

=

n nn

.(4.4)

Using property (2) in (2.8) we obtain:

2n 2n

n n

= (−1)nAn2+2n

2n 2n

n n

.

The fact that one can do Reidemeister moves II and III for strands colored by the
Jones–Wenzl projector implies

2n 2n

n n
=

2n 2n

n n .
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Finally, using property (1) in (2.8), one has:

n n
= A2n2

2n 2n

n n

n

.

The result follows. �

Lemma 4.2. Let n ≥ 1. The following identity holds in the Temperley–Lieb algebra
TL4n:

2n 2n

2n 2n

=

n

n

nn

2n2n

2n2n

.

Proof. The previous lemma implies:

2n 2n

2n 2n

= (−1)−nA−3n
2−2n

2n 2n

n n

= (−1)nA3n2+2n(−1)−nA−3n
2−2n

2n 2n

2n 2n

=

n

n

nn

2n2n

2n2n

.

The last equation follows by doing a Reidemeister II move on the strands. The
result follows. �

Theorem 4.3. Let G be a 4-valent graph. For an integer n ≥ 1, the rational
function [G]2n defined by the rules:
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(1)

[ ]
2n

=

2n2n

,

(2)

 
2n

=

n

n

nn

2n2n

2n2n

,

(3)
[ ]

2n
= 2n ,

is a regular isotopy invariant for rigid 4-valent graphs.

Proof. The moves shown in Figure 2 are a finite sequence of the usual Reidemeister
moves II and III applied on each single strand and summand of the idempotents.
Hence [.]2n is invariant under Reidemeister moves II and III. The same argument
holds for the two diagrams in Figure 4 and hence [.]2n is invariant under Reide-
meister IV . Finally, the invariance under move V follows from Lemma 4.2. �

Figure 4. The invariance under Reidemeister move IV .

Remark 4.4. The invariant [.]2n can be seen to be an extension for the unreduced

colored Jones polynomial J̃(., 2n) for links in S3. Namely, for a zero-framed knot

K in S3 we have J̃(K, 2n) = [K]2n.

4.1. Examples. In this sub-section we give some computational examples of our
invariants. Before we compute some examples we give some identities that we will
use in our computations. Recall that the q-Pochhammer is defined as

(a; q)n =

n−1∏
j=0

(1− aqj).

We will need the following fact from [9] :

n n

=

n∑
i=0

Cn,i

n n

i i

n− i

n− i

(4.5)
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where

(4.6) Cn,i = An2+2i2−4in (A4, A4)n
(A4, A4)i(A4, A4)n−i

.

We will also need the following identity from [22]:

n n

=

n∑
i=0

Dn,i

n n
i

i

(4.7)

where

Dn,i = A2i2−4in+2n2 (A4, A4)n
(A4, A4)i(A4, A4)n−i

n∏
j=n−i+1

(1−A−4j).

Example 4.5. We compute the invariant [G]2n for the graph given in the following
Figure 5.

Figure 5. An example of singular knot

Lemma 4.1 implies that:

2n2n
n

n

nn ×

2n2n

= (−1)−nA−3n
2−2n

2n 2n

.

Hence we obtain,

2n2n
n

n

nn ×

2n2n

= (−1)−nA−3n
2−2n

n∑
i=0

Cn,i

2n2n
2n− i

2n− i

ii .
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We then conclude that

2n

= (−1)−nA−3n
2−2n

n∑
i=0

Cn,i

2n

2n− i

= (−1)−nA−3n
2−2n

n∑
i=0

Cn,i
(∆2n)2

∆2n−i
.

Example 4.6. We compute our invariant for the graph given in Figure 6.

Figure 6. An example of singular knot.

Using Lemma 4.1 we obtain:

2n2n
n

n

nn ×

2n2n

= (−1)−nA−3n
2−2n

2n 2n

×

2n2n

.

Hence,

2n2n
n

n

nn ×

2n2n

= A−6n
2−4n

n∑
i=0

Dn,i

2n2n
n + i

n + i

n− in− i .

Thus, 

2n

= A−6n
2−4n

n∑
i=0

Dn,i
(∆2n)2

∆n+i
.
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Example 4.7 (Connected sums). Let K and K ′ be oriented knots. We claim that
[K]2n[K ′]2n∆2n = [K#K ′]2n, where K#K ′ is the connected sum of K and K ′.
Using the basic properties of the Jones Wenzl idempotent, we can write

[K]2n = R1(A)∆2n and [K ′]2n = R2(A)∆2n,

where R1(A) and R2(A) are rational functions. Similarly, the skein element on the
bottom of Figure 7 is equal to [K]2n[K ′]2n∆2n.

K ′K

K ′K

2n2n

2n

2n

Figure 7. Connected sum of two colored knots.

5. Singular braid monoid representations

The singular braid monoid was introduced in [1, 2] as a singularization of the
braid group and in relation to perturbative Chern–Simons theory. In this section
we use the invariant that we defined in the previous sections to give representations
of the singular braid monoid. We start with the algebraic definition of the singular
braid monoid [1, 2].

Definition 5.1. The singular braid monoid SBn on n strands is the monoid gen-
erated by

(5.1) σ1, ..., σn−1, σ
−1
1 , ..., σ−1n−1, τ1, ..., τn−1

subject to the relations:

(1) For all 1 ≤ i < n: σiσ
−1
i = e = σ−1i σi.

(2) For |i− j| > 1:
(a) σiσj = σjσi.
(b) σiτj = τjσi.
(c) τiτj = τjτi.

(3) For all 1 ≤ i < n: τiσi = σiτi.
(4) For all i < n− 1:

(a) σiσi+1σi = σi+1σiσi+1.
(b) τiσi+1σi = σi+1σiτi+1.
(c) τi+1σiσi+1 = σiσi+1τi.

Now we will consider a sequence of representations of the monoid SBn into the
colored Temperley–Lieb algebra TL2m

n .
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Theorem 5.2. For all integers m,n ≥ 1, the map ρ̂m,n given on the generators σi
and τi in the diagrammatic below gives a representation of SBn into TL2m

n .

ρ̂m,n

ρ̂m,n

σi =

τi =

2m 2m 2m 2m 2m 2m

2m 2m 2m 2m 2m 2m

(5.2)

Proof. Using Theorem 4.3, it is straightforward to see that the images by ρ̂m,n of
the relations of the singular braid hold in TLm

n giving a representation of SBn into
TLm

n . �

Note that the restriction of the map ρ̂m,n to Bn is the map ρm,n given in Sec-
tion 2.

6. Integrality of the invariant and open questions

The invariant [.]2n takes values in Q(A). However, our computations show that
it can be made into an element in Z[A,A−1] by multiplying by a certain Laurent
polynomial. More precisely, let L be a singular link with k singular crossings, then
we conjecture that multiplying Ck

2n,n with [L]2n makes Ck
2n,n[L]2n an element of

Z[A,A−1] where C2n,n is defined in (4.6). Now we give an illustration that this
conjecture cannot be proven using a local argument. To show this, suppose that
L is a singular link with only one singular crossing. We use identity (4) from
Definition 3.1 and the definition of the Jones–Wenzl idempotent to expand the
singular crossing in L as shown in Figure 8.

where d = −A2 − A−2. One can see that
C2,1

d2 /∈ Z[A,A−1] . Hence the poles that
occur in [L]2 cannot be removed using this simple local argument. This conjecture
is in fact true for n = 1 as can be seen from Equation (4.1):

C2,1

1

1

11

22

22

= (A2 +A−2)

1

1

11

22

22

=

22

−A4 −A−4 .

Each one of the three skein elements appearing on the right hand side of the previous
equation is a link colored with the Jones–Wenzl projector and hence its evaluation
is in Z[A,A−1]. This implies that the evaluation of the term on the left hand side
is also in Z[A,A−1].
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22
1

1

11 = − 1

d

(
+

+ +

)

+
1

d2

(
+ + +

)

− 1

d3

(
+ + +

)

+
1

d3

,

Figure 8. Expanding the singular crossing in L.

In fact, more can be said here in regard of the integrality. Let L be a link. Use
(4.5) to write the colored Jones polynomial of L as

J̃(L, n) =

n∑
i=0

Cn,iSn,i(6.1)

where Sn,i is the skein element shown on the right hand side of Equation (4.5).
One can see that the skein elements Sn,0 and Sn,n are links cabled with the nth

Jones–Wenzl projector and hence their evaluations in the Kauffman bracket skein
module give an element in Z[A,A−1]. In general this is not true for Sn,i when
0 < i < n. However, we conjecture that Cn,iSn,i ∈ Z[A,A−1] for 0 ≤ i ≤ n.
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