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Noncommutative bundles over the
multi-pullback quantum complex

projective plane

Piotr M. Hajac and Jan Rudnik

Abstract. We equip the multi-pullback C*-algebra C(S5
H) of a non-

commutative deformation of the 5-sphere with a free U(1)-action, and
show that its fixed-point subalgebra is isomorphic with the C*-algebra of
the multi-pullback quantum complex projective plane. Our main result
is the stable nontriviality of the dual tautological line bundle associ-
ated to the action. We prove it by combining Chern–Galois theory with
the Milnor connecting homomorphism in K-theory. Using the Mayer–
Vietoris six-term exact sequences and the functoriality of the Künneth
formula, we also compute the K-groups of C(S5

H).
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Introduction.

This paper is a part of a bigger project devoted to the K-theory of multi-
pullback noncommutative deformations of free actions on spheres defin-
ing complex and real projective spaces. The lowest-dimensional complex
case is worked out in [BaHMS05, HMS06b] with the help of index the-
ory. Herein we focus on the triple-pullback quantum complex projective
plane CP 2

T [HKaZ12] and its quantum 5-sphere S5
H . Upgrading from pull-

back C*-algebras of [BaHMS05, HMS06b] to triple-pullback C*-algebras re-
quires a significant change of methods. In particular, we have to take care
of the cocycle condition, as explained in Section 1.2.3, to compute the K-
groups of C(S5

H) and C(CP 2
T ) in Section 3 and [Ru12] respectively.

The main theorem of the paper is:

Theorem 2.4 The section module C(S5
H)u of the dual tautological line bun-

dle over CP 2
T is not stably free as a left C(CP 2

T )-module.

The result is derived by comparing two idempotents: one coming from
Chern–Galois theory applied to the U(1)-action on C(S5

H), and the other one
obtained by applying a formula (11) for the Milnor connecting homomor-
phism in a K-theory exact sequence. It is the same strategy that was used
to determine nontrivial generators of the K0-group of Heegaard quantum
lens spaces [HRZ13].

To explain a wider background and make the paper self-contained, we
begin with a review of basic building blocks that are subsequently assembled
into new results. Concerning notation, we use the unadorned tensor product
⊗ to denote the minimal (spatial) tensor product of C*-algebras and ⊗alg

to denote the algebraic tensor product.

1. Preliminaries

1.1. From the Toeplitz algebra to quantum projective spaces.

1.1.1. Toeplitz algebra. There are different ways to introduce the Toe-
plitz algebra T . Herein we define it as the universal C*-algebra generated by
one isometry s, i.e., an element satisfying the relation s∗s = 1. (Throughout
the paper s will always mean the generating isometry of T .) Likewise, u
will always mean the unitary element generating the C*-algebra C(S1) of
all continuous complex-valued functions on the unit circle

S1 := {x ∈ C | |x| = 1}.
By mapping s to u, we obtain the well-known short exact sequence of
C*-algebras [CoL I, CoL II]:

(1) 0 −→ K −→ T σ−→ C(S1) −→ 0.

We consider the Toeplitz algebra as the C*-algebra of continuous functions
on a quantum disc. To justify this point of view, we take the family of
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universal C*-algebras generated by x satisfying x∗x−qxx∗ = 1−q, ‖x‖ = 1,
q ∈ [0, 1] [KL93]. For q 6= 1, the norm condition is implied by the relation,
and can be omitted. For q = 1, it yields precisely the C*-algebra C(D) of all
continuous complex-valued functions on the unit discD := {x ∈ C | |x| ≤ 1}.
Finally, for q = 0, we get the Toeplitz algebra. Thus we obtain T as a q-
deformation of C(D).

Both the Toeplitz algebra T and C(S1) are examples of graph C∗-alge-
bras [FLR00]. Graph C*-algebras are generated by partial isometries, which
come naturally equipped with a U(1)-action given by rephasing these partial
isometries by unitary complex numbers (the gauge action). A key feature of
the symbol map σ is that it is equivariant with respect to the gauge actions.

1.1.2. Complex projective spaces as multi-pushouts. Recall that an
element of CPn is an equivalence class with respect the relation

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ ∃λ ∈ C \ {0} : (x0, . . . , xn) = λ(y0, . . . , yn).

We denote the equivalence class of (x0, . . . , xn) by [x0 : . . . : xn]. Such a
presentation of CPn comes with the canonical affine open covering:

(2) ∀ i ∈ {0, . . . , n} : Ui := {[x0 : . . . : xn] ∈ CPn | xi 6= 0} ψ̃i−→ Cn.

The above homeomorphisms are given by

(3) ψ̃i([x0 : . . . : xn]) :=

(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

To express the covering subsets in C*-algebraic terms, we choose closed
rather than open coverings. To this end, we define the following closed
refinement of the affine covering:

∀ i ∈ {0, . . . , n} : Vi :=
{

[x0 : . . . : xn] ∈ CPn | |xi| = max{|x0|, . . . , |xn|}
}
.

Note that each Vi is homeomorphic with Dn. Here the homeomorphisms are

given by appropriate restrictions of ψ̃i’s denoted by ψi. We use the covering
{Vi}i to present CPn as a multi-pushout. More precisely, we pick indices
0 ≤ i < j ≤ n, denote by ψij the restriction of ψi to Vi ∩ Vj , and take the
following commutative diagram:
(4)

CPn

Dn

44

Vi
ψioo

- 

;;

Vj
ψj //

1 Q

cc

Dn

jj

Dj−1 × S1 ×Dn−j
?�

OO

Vi ∩ Vj
1 Q

bb

- 

<<

ψijoo
ψji // Di × S1 ×Dn−i−1.

� ?

OO
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1.1.3. Multi-pullback quantum complex projective spaces. Now we
combine the foregoing presentation of projective spaces with the idea that
the Toeplitz algebra is the C*-algebra of functions on a quantum unit disc
to construct a new type of quantum projective spaces [HKaZ12]. To define
them, first we excise from diagram (4) its middle square, and dualise it to
the multi-pullback diagram of unital commutative C*-algebras of functions
on appropriate compact Hausdorff spaces:
(5)

C(CPn)

tt ))
C(D)⊗n

πi
j����

C(D)⊗n

����

πj
i

rrrr
C(D)⊗j−1⊗C(S1)⊗C(D)⊗n−j C(D)⊗i⊗C(S1)⊗C(D)⊗n−i−1.

(ψji◦ψ−1
ij )∗

oo

This yields a multi-pullback presentation of C(CPn). Then we leave C(S1)
unchanged and replace C(D) by T . It turns out that the formulae for all

(6) (ψji ◦ ψ−1
ij )∗, πij and πji

continue to make sense after these replacements, so that quantum complex
projective spaces can be defined as Pedersen’s multi-pullback C*-algebras
(see [Pe99, CaM00])

(7) Bπ :=

{
(bi)i ∈

∏
i∈J

Bi

∣∣∣∣∣ πij(bi) = πji (bj), ∀ i, j ∈ J, i 6= j

}
.

Here each Bi is T ⊗n, Bij := T ⊗j−1⊗C(S1)⊗T ⊗n−j =: Bji, i 6= j, and
{πij : Bi → Bij}i,j∈J, i 6=j is the family of C∗-homomorphisms defined through

commutative diagram (5) with C(D) replaced by T .

1.2. The Mayer–Vietoris six-term exact sequence. If at least one of
*-homomorphisms defining a pullback of C*-algebras

(8) A

}} !!
B0

π0 !! !!

B1

π1}}
B01

is surjective (here we choose π0), then there exists the Mayer–Vietoris six-
term exact sequence (e.g., see [Bl98, Theorem 21.2.2], [BaHMS05, Sec-
tion 1.3], [S84]):
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(9) K0(A) // K0(B0 ⊕B1) // K0(B01)

∂01
��

K1(B01)

∂10

OO

K1(B0 ⊕B1)oo K1(A).oo

In our applications of this exact sequence, we will need explicit formulae for
connecting homomorphisms ∂10 and ∂01.

1.2.1. Odd-to-even connecting homomorphism. Following Milnor’s
celebrated construction of an odd-to-even connecting homomorphism in al-
gebraicK-theory [M71], one can derive an explicit formula for this homomor-
phism [R94, DHHMW12], and adapt it to unital C*-algebras (see [HRZ13,
Section 0.4] for an argument of Nigel Higson).

Theorem 1.1. Let U ∈ GLn(B01), (id⊗π0)(c) = U−1 and (id⊗π0)(d) = U .
Denote by In the identity matrix of size n, and put

(10) pU :=

(
(c(2− dc)d, 1) (c(2− dc)(1− dc), 0)
((1− dc)d, 0) ((1− dc)2, 0)

)
∈M2n(A).

Then pU is an idempotent and the formula

(11) ∂10([U ]) := [pU ]− [In]

defines an odd-to-even connecting homomorphism ∂10 : K1(B01) → K0(A)
in the Mayer–Vietoris six-term exact sequence (9).

1.2.2. Even-to-odd connecting homomorphism. Theorem 1.18 of
[BaM] combined with Section 9.3.2 of [Bl98] yields:

Theorem 1.2. Let p ∈Mn(B01) be a projection, (id⊗π0)(Qp)=p, Q∗p = Qp,
and In be the identity matrix of size n. Then the formula

(12) ∂10([p]) := [(e2πiQp , In)]

defines an even-to-odd connecting homomorphism in the Mayer–Vietoris six-
term exact sequence (9).

1.2.3. Cocycle condition for multi-pullback C*-algebras. We con-
struct algebras of functions on quantum spaces as multi-pullbacks of C∗-alge-
bras. To make sure that this construction dually corresponds to the presen-
tation of a quantum space as a “union of closed subspaces” (no self gluings
of closed subspaces or their partial multi-pushouts; see [HZ12] for an in-
depth discussion of these issues), we assume the cocycle condition. It allows
us to apply the Mayer–Vietoris six-term exact sequence to multi-pullback
C*-algebras by guaranteeing surjectivity of appropriate *-homomorphisms.

First we need some auxilliary definitions. Let {πij : Ai → Aij}i,j∈J,i6=j
be a finite family of surjective C*-algebra homomorphisms. For all dis-
tinct i, j, k ∈ J , we define Aijk := Ai/(kerπij + kerπik) and denote by

[·]ijk : Ai → Aijk the canonical surjections. (Observe that we use the fact
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that the sum of closed ideals in a C*-algebra is a closed ideal [Di64, Corol-
lary 1.8.4].) Next, we introduce the family of maps

(13) πijk : Aijk −→ Aij/π
i
j(kerπik), [bi]

i
jk 7−→ πij(bi) + πij(kerπik),

for all distinct i, j, k ∈ J . Note that they are isomorphisms when all πij ’s are

surjective C*-algebra homomorphisms, as assumed herein.
We say [CaM00, in Proposition 9] that a finite family

{πij : Ai → Aij}i,j∈J,i6=j

of C*-algebra surjections satisfies the cocycle condition if and only if, for all
distinct i, j, k ∈ J :

(1) πij(kerπik) = πji (kerπjk).

(2) The isomorphisms

ϕijk := (πijk )−1 ◦ πjik : Ajik → Aijk

satisfy ϕikj = ϕijk ◦ ϕ
jk
i .

One proves ([HZ12, Theorem 1]) that a finite family

{πij : Ai → Aij}i,j∈J,i6=j

of C*-algebra surjections satisfies the cocycle condition if and only if, for

all K ( J , k ∈ J \ K, and (bi)i∈K ∈
⊕

i∈K Ai such that πij(bi) = πji (bj)

for all distinct i, j ∈ K, there exists bk ∈ Ak such that πik(bi) = πki (bk) also
holds for all i ∈ K. One can easily see that dually this corresponds to the
statement “a quantum space is a pushout of parts, and all partial pushouts
are embedded in this quantum space”. This is what we usually have in mind
when constructing a space from parts.

1.3. Actions of compact Hausdorff groups on unital C*-algebras.
To use the language of strong connections [H96] and facilitate some compu-
tations, we need to transform actions of compact Hausdorff groups on unital
C*-algebras to coactions of their C*-algebras on unital C*-algebras. More
precisely, let A be a unital C*-algebra and G a compact Hausdorff group
with a group homomorphism α : G 3 g 7→ αg ∈ Aut(A). Then the induced
coaction is

(14) δα : A −→ C(G,A) ∼= A⊗ C(G), δα(a)(g) := αg(a).

We will use the thus related action and coaction interchangeably.
Furthermore, for any compact Hausdorff group G, we can define the Hopf-

algebraic structure on C(G) due to its commutativity:

• the comultiplication ∆: C(G)→ C(G)⊗ C(G),
• the counit ε : C(G)→ C,
• and the antipode S : C(G)→ C(G),
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are respectively the pullbacks of the group mulitplication, the embedding of
the neutral element into G, and the inverting map G 3 g 7→ g−1 ∈ G. We
can also use the Heynemann–Sweedler notation (with the summation sign
suppressed) for coactions and comultiplications:

δα(a) =: a(0) ⊗ a(1),

δα(a)(g) = (a(0) ⊗ a(1))(g) = a(0)a(1)(g),

∆(h) =: h(1) ⊗ h(2),

∆(h)(g1, g2) = (h(1) ⊗ h(2))(g1, g2) = h(1)(g1)h(2)(g2) = h(g1g2).

In particular, for G = U(1), the antipode is determined by S(u) = u−1,
the counit by ε(u) = 1, and finally the comultiplication by ∆(u) = u⊗u. The
coaction of C(U(1)) on T coming from the aforementioned (Section 1.1.1)
gauge action of U(1) on T becomes

(15) δ : T −→ T ⊗ C(U(1)), δ(s) := s⊗ u.

1.3.1. Freeness. Following [E00], we say that an action of a compact Haus-
dorff group G on a unital C*-algebra A is free if and only if the induced
coaction satisfies the following norm-density condition:

(16) {(x⊗ 1)δα(y) | x, y ∈ A}cls = A⊗ C(G).

Here “cls” stands for “closed linear span”.
Next, let us denote by O(G) the dense Hopf ∗-subalgebra spanned by

the matrix coefficients of finite-dimensional representations. We define the
Peter–Weyl subalgebra of A as

(17) PG(A) :=

{
a ∈ A

∣∣∣ δα(a) ∈ A ⊗
alg
O(G)

}
.

One shows that it is anO(G)-comodule algebra which is a dense ∗-subalgebra
of A (see [So11, Po95]). Moreover, the C*-algebraic freeness condition on
a G-C*-algebra A is equivalent to the algebraic principality condition on
the O(G)-comodule algebra PG(A) [BaDH]. This allows us to use crucial
algebraic tools without leaving the ground of C*-algebras.

1.3.2. Strong connections and principal comodule algebras. One
can prove (see [BrH09] and references therein) that a comodule algebra is
principal if and only if it admits a strong connection. Therefore, we will treat
the existence of a strong connection as a condition defining the principality of
a comodule algebra and avoid the original definition of a principal comodule
algebra. The latter is important when going beyond coactions that are
algebra homomorphisms — then the existence of a strong connection is
implied by principality but we do not have the reverse implication [BrH04].

Let G be a compact Hausdorff group acting on a unital C*-algebra A.
A strong connection ` is a unital linear map

` : O(G) −→ PG(A)⊗alg PG(A)
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satisfying:

(1) (id⊗ δ) ◦ ` = (`⊗ id) ◦∆,
(
((S⊗ id) ◦ flip ◦ δ)⊗ id

)
◦ ` = (id⊗ `) ◦∆;

(2) m◦` = ε, where m : PG(A)⊗algPG(A)→ PG(A) is the multiplication
map.

Here we abuse notation by using the same symbol for a restriction-corestric-
tion of a map as for the map itself.

1.3.3. Associated projective modules. Let % : G → GL(V ) be a rep-
resentation of a compact Hausdorff group G on a complex vector space V ,
and let α : G → Aut(A) be an action on a unital C*-algebra A. Then the
associated module PG(A)�%V is, by definition,

(18)

{
x ∈ PG(A) ⊗

alg
V
∣∣ ∀ g ∈ G : (αg ⊗ id)(x) =

(
id⊗%(g−1)

)
(x)

}
.

It is a left module over the fixed-point subalgebra

(19) Aα := {a ∈ A | ∀ g ∈ G : αg(a) = a} =: AG.

If V is finite dimensional and α is free, then PG(A)�%V is finitely gen-
erated projective [HM99]. We think of it as the section module of an as-
sociated noncommutative vector bundle. Furthermore, if dimV = 1 and
γ : G→ GL(C) is a representation, then we obtain:

(20) PG(A)
γ

�C = {a ∈ A | δ(a) = a⊗ S(γ)} =: Aγ−1 .

Modules Aγ are called spectral subspaces. We think of them as the section
modules of associated noncommutative line bundles.

Now it is quite easy to apply Chern–Galois theory [BrH04, Theorem 3.1]
and compute an idempotent Eγ representing the associated module Aγ using
a strong connection `:

(21) Aγ ∼= (Aα)nEγ , Eγij := γRi γ
L
j , `(γ) =:

n∑
k=1

γLk ⊗ γRk ∈ Aγ−1 ⊗
alg
Aγ ,

where {γLk }k is a linearly independent set.

1.3.4. Gauging coactions. Consider A⊗ C(G) as a C*-algebra with the
diagonal coaction

(22) p⊗ h 7−→ p(0) ⊗ h(1) ⊗ p(1)h(2) ,

and denote by (A⊗C(G))R the same C*-algebra, equipped instead with the
coaction on the rightmost factor

(23) p⊗ h 7−→ p⊗ h(1) ⊗ h(2) .

Then the following map is a G-equivariant (i.e., intertwining the coactions)
gauge isomorphism of C*-algebras:

(24) κ̂ : (A⊗ C(G)) −→ (A⊗ C(G))R, a⊗ h 7−→ a(0) ⊗ a(1)h.
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Its inverse is explicitly given by

(25) κ̂−1 : (A⊗H)R −→ (A⊗H), a⊗ h 7−→ a(0) ⊗ S(a(1))h.

2. Dual tautological line bundle

2.1. Quantum complex projective plane. We consider the case n = 2
of the multi-pullback deformations [HKrMZ11, Section 2] of the complex
projective spaces. The C*-algebra of our quantum projective plane is given
as the triple-pullback of the following diagram:
(26)

T ⊗ T
σ1

&&

σ2
00

T ⊗ T
Ψ01◦σ1

ww

σ2

''

T ⊗ T
Ψ12◦σ2

xx

Ψ02◦σ1nn

C(S1)⊗ T T ⊗ C(S1)

T ⊗ C(S1)

.

Here σ1 := σ ⊗ id, σ2 := id⊗σ, and

C(S1)⊗ T 3 v ⊗ t Ψ01−→ S(t(1)v)⊗ t(0) ∈ C(S1)⊗ T ,(27)

C(S1)⊗ T 3 v ⊗ t Ψ02−→ t(0) ⊗ S(t(1)v) ∈ T ⊗ C(S1),

T ⊗ C(S1) 3 t⊗ v Ψ12−→ t(0) ⊗ S(t(1)v) ∈ T ⊗ C(S1),

where T 3 t 7→ t(0) ⊗ t(1) ∈ T ⊗ C(S1) is the coaction of (15).

2.2. Quantum complex projective plane CP 2
T as quotient space

S5
H/U(1). Consider the following triple-pullback diagram in which every

homomorphism is given by the symbol map on the appropriate factor and
identity otherwise:
(28)

C(S1)⊗T ⊗T

$$

..

T ⊗C(S1)⊗T

xx &&

T ⊗T ⊗C(S1).

zz

pp

C(S1)⊗ C(S1)⊗ T T ⊗ C(S1)⊗ C(S1)

C(S1)⊗ T ⊗ C(S1)

Definition 2.1. The multi-pullback C*-algebra of the family of C∗-epimor-
phisms in (28) is called the C*-algebra of the Heegaard odd quantum sphere
S5
H and denoted C(S5

H).
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Using the coaction (15) on T and the comultiplication on C(S1) =
C(U(1)), we define the diagonal coaction on each C*-algebra of the above
diagram as in Section 1.3.4. The diagram is evidently equivariant with re-
spect to this coaction because the symbol map is equivariant. Therefore
C(S5

H) is a U(1)-C*-algebra. We call this U(1)-action on C(S5
H) diagonal.

In order to compute the fixed-point subalgebra for the above diagonal
U(1)-action, we need to gauge it to an action on tensor products that acts
on the rightmost C(S1)-factor alone. Our goal is to show that the fixed-
point subalgebra is isomorphic with C(CP 2

T ). To this end, we double the
three targets of all homomorphisms in (28) to three pairs of sibling targets,
so that

(29) C(S1)⊗ T ⊗ T

))

T ⊗ C(S1)⊗ T

uu
C(S1)⊗ C(S1)⊗ T

becomes

(30) C(S1)⊗ T ⊗ T

��

T ⊗ C(S1)⊗ T

��
C(S1)⊗ C(S1)⊗ T C(S1)⊗ C(S1)⊗ T ,idoo

and other subdiagrams are transformed in the same fashion. Then we per-
mute the factors in the tensor products in the top row to make C(S1) always
the rightmost factor, and permute the target tensor products accordingly:

(31) T ⊗ T ⊗ C(S1)

σ⊗id⊗ id
��

T ⊗ T ⊗ C(S1)

σ⊗id⊗ id
��

C(S1)⊗ T ⊗ C(S1) C(S1)⊗ T ⊗ C(S1).
T13oo

Here the horizontal arrow is just the flip of the outer factors. Again, we
apply analogous procedures to the other two subdiagrams. Due to the com-
mutativity of C(S1), the thus obtained triple-pullback diagram is equivari-
ant for the diagonal coaction, and the C*-algebra it defines is equivariantly
isomorphic with the multi-pullback C*-algebra defined by diagram (28).

Now we shall gauge the diagonal action as explained in Section 1.3.4.
Conjugating T13 ◦ (σ ⊗ id⊗ id) by the gauge isomorphisms (24)–(25), using
the commutativity and cocommutativity of C(S1) = C(U(1)), along the
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lines of [HKrMZ11, Section 5.2], we get:(
g̃ ◦ T13 ◦ (σ ⊗ id⊗ id) ◦ g−1

)
(r ⊗ t⊗ w)(32)

=
(
g̃ ◦ T13 ◦ (σ ⊗ id⊗ id)

)
(r(0) ⊗ t(0) ⊗ S(r(1)t(1))w)

= (g̃ ◦ T13)(σ(r)(1) ⊗ t(0) ⊗ S(σ(r)(2)t(1))w)

= g̃(S(σ(r)(2)t(1))w ⊗ t(0) ⊗ σ(r)(1))

= S(σ(r)(3)t(3))w(1) ⊗ t(0) ⊗ S(σ(r)(2)t(2))w(2)t(1)σ(r)(1)

= S(σ(r)t(1))w(1) ⊗ t(0) ⊗ w(2).

Here g and g̃ are the gauge isomorphisms on (T ⊗ T ) ⊗ C(U(1)) and
(C(S1)⊗ T )⊗ C(U(1)) respectively.

Much in the same way, we treat the remaining two subdiagrams of dia-
gram (28). Summarizing, for 0 ≤ i < j ≤ 2, the permuted and then gauged
subdiagrams become:
(33)

T ⊗2 ⊗ C(S1)

σj
��

T ⊗2 ⊗ C(S1)

σi+1

��
T ⊗j−1 ⊗ C(S1)⊗ T ⊗2−j ⊗ C(S1) T ⊗i ⊗ C(S1)⊗ T ⊗1−i ⊗ C(S1),

ΨS
ijoo

where

ΨS
01(v ⊗ t⊗ w) := S(vt(1))w(1) ⊗ t(0) ⊗ w(2),(34)

ΨS
02(v ⊗ t⊗ w) := t(0) ⊗ S(vt(1))w(1) ⊗ w(2),

ΨS
12(t⊗ v ⊗ w) := t(0) ⊗ S(t(1)v)w(1) ⊗ w(2).

The triple-pullback C*-algebra of the family (33) is denoted by C(S5
H)R.

It is a U(1)-C*-algebra that is equivariantly isomorphic with C(S5
H):

C(S5
H) 3

(
v0 ⊗ t0 ⊗ r0 , t1 ⊗ v1 ⊗ r1 , t2 ⊗ r2 ⊗ v2

)
7−→(35)(

t0(0) ⊗ r0
(0) ⊗ t0(1)r

0
(1)v

0 , . . . , t2(0) ⊗ r2
(0) ⊗ t2(1)r

2
(1)v

2
)
∈ C(S5

H)R.

This isomorphism yields an isomorhism of fixed-point subalgebras

(36) C(S5
H)U(1) ∼= C(S5

H)
U(1)
R .

Since the U(1)-action in the triple-pullback diagram defining C(S5
H)R acts

only on the rightmost factor, we conclude that C(S5
H)

U(1)
R is the triple-

pullback C*-algebra obtained by removing all rightmost factors in (33) and
taking w = 1 in (34). Finally, since the isomorphisms in (34) thus become
the isomorphisms in (27), so that (33) becomes the defining triple-pullback
diagram (26) of C(CP 2

T ), we infer that

(37) C(S5
H)U(1) ∼= C(CP 2

T ).
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2.3. Strong connection for the diagonal U(1)-action on C(S5
H).

Theorem 2.2. The diagonal U(1)-action on C(S5
H) is free.

Proof. We prove the claim by constructing a strong connection on the
Peter–Weyl comodule algebra PU(1)(C(S5

H)) for the diagonal coaction

(38) δ : C(S5
H) −→ C(S5

H)⊗ C(U(1)).

Let u be the generating unitary of C(S1) and let s be the generating isometry
of T . Consider the following isometries in C(S5

H):

a := (u⊗ 1⊗ 1, s⊗ 1⊗ 1, s⊗ 1⊗ 1),(39)

b := (1⊗ s⊗ 1, 1⊗ u⊗ 1, 1⊗ s⊗ 1),

c := (1⊗ 1⊗ s, 1⊗ 1⊗ s, 1⊗ 1⊗ u).

They all commute and satisfy the equation:

(40) (1− aa∗)(1− bb∗)(1− cc∗) = 0.

Now one can easily check that a strong connection

(41) ` : O(U(1)) −→ PU(1)(C(S5
H)) ⊗

alg
PU(1)(C(S5

H)) ⊆ C(S5
H)⊗ C(S5

H)

can be defined by the formulae:

`(1) = 1⊗ 1, `(u) = b∗ ⊗ b,(42)

`(u∗) = a⊗ a∗ + b⊗ b∗ + c⊗ c∗

− a⊗ a∗bb∗ − a⊗ a∗cc∗ − b⊗ b∗cc∗ + a⊗ a∗bb∗cc∗.

Indeed, exactly as in [HMS06a, (4.6)], we can show inductively that the
formula

(43) `(xn) := `(x)〈1〉`(xn−1)`(x)〈2〉, `(x) =: `(x)〈1〉 ⊗ `(x)〈2〉

(summation suppressed), has the desired properties when x is the grouplike
element u or u∗. �

2.4. Stable non-freeness.

Definition 2.3. Let u be the generating unitary of C(U(1)) and let

δ : C(S5
H) −→ C(S5

H)⊗ C(U(1))

be the diagonal coaction. We call the associated module

C(S5
H)u := {x ∈ C(S5

H) | δ(x) = x⊗ u}
the section module of the dual tautological line bundle over CP 2

T .

It follows from the existence of a strong connection on the Peter–Weyl
comodule algebra PU(1)(C(S5

H)) that C(S5
H)u is a finitely generated pro-

jective module over C(S5
H)U(1) ∼= C(CP 2

T ) [HM99]. Moreover, combining

(21) with (42) proves that C(S5
H)u is isomorphic as a left C(S5

H)U(1)-module
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with C(S5
H)U(1)bb∗. This allows us to prove our main result, which identifies

C(S5
H)u with a nontrivial element of K0(CP 2

T ) = Z3 [Ru12]:

Theorem 2.4. The section module C(S5
H)u of the dual tautological line

bundle over CP 2
T is not stably free as a left C(CP 2

T )-module.

Proof. The gauge isomorphism (35) turns the projection bb∗ representing
the finitely generated projective module C(S5

H)u to (ss∗⊗1 , 1⊗1 , 1⊗ss∗) ∈
C(CP 2

T ). Plugging it into the iterated pullback diagram

C(CP 2
T )

π

tt ++
P1

%%
,,

yy

T ⊗2

vv
T ⊗2

σ1 %%

T ⊗2

Ψ01◦σ1yy

P12

vv ((
C(S1)⊗ T T ⊗ C(S1)

((

T ⊗ C(S1)

vv
C(S1)⊗ C(S1)

and projecting via π to P1, we obtain (ss∗ ⊗ 1 , 1⊗ 1).
Furthermore, consider the Mayer–Vietoris six-term exact sequence of the

pullback diagram defining P1, and take the unitary u⊗ 1, whose class gen-
erates K1(C(S1) ⊗ T ). We know from the proof of [Ru12, Theorem 2.1]
that K0(P1) = Z⊕Z with one Z generated by [1] and the other Z generated
by ∂10([u ⊗ 1]). To compute the Milnor idempotent pu⊗1 (see (10)), take a
lifting of u−1 ⊗ 1 to be c := s∗ ⊗ 1, and a lifting of u ⊗ 1 to be d := s ⊗ 1.
Suppressing ⊗1, we obtain

∂10([u⊗ 1]) =

[(
(s∗(2− ss∗)s, 1) (s∗(2− ss∗)(1− ss∗), 0)
((1− ss∗)s, 0) ((1− ss∗)2, 0)

)]
− [(1, 1)]

= [(1− ss∗, 0)].

Hence [1]− ∂10([u⊗ 1]) = [(ss∗ ⊗ 1, 1⊗ 1)] = π∗[C(S5
H)u].

Finally, if C(S5
H)u were stably free, then π∗[C(S5

H)u] = n[1] for some
n ∈ N. This would contradict the just derived equality, so that C(S5

H)u is
not stably free. �

3. K-groups of the quantum sphere S5
H

We end this paper by showing that the K-groups of S5
H agree with their

classical counterparts. Its C*-algebra is the triple-pullback C*-algebra (see
2.1), so that we can apply [Ru12, Corollary 1.5] to determine its K-theory.
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3.1. Cocycle condition. The first step in applying [Ru12, Corollary 1.5]
is verifying the cocycle condition (see Section 1.2.3).

Lemma 3.1. The family (28) defining the triple-pullback C*-algebra C(S5
H)

satisfies the cocycle condition.

Proof. It is straightforward to check the first part of the cocycle condition.
We do it only in one case as all other cases are completely analogous. For
i = 2, j = 1 and k = 0, we obtain:

π2
1(kerπ2

0) = π1
2(kerπ1

0)⇔(44)

σ2(kerσ1) = σ3(kerσ1)⇔
σ2(K ⊗ T ⊗ C(S1)) = σ3(K ⊗ C(S1)⊗ T ))⇔
K⊗ C(S1)⊗ C(S1) = K ⊗ C(S1)⊗ C(S1).

For the second part we use the following notation

(45) [·]ijk : Bi → Bi/(kerπij + kerπik), [·]ijk : Bij → Bij/π
i
j(kerπik).

Again all cases are done in a similar way, so that we only check the case
i = 0, j = 1, k = 2, i.e., we show that ϕ02

1 = ϕ01
2 ◦ ϕ12

0 . For any r ⊗ t⊗ v ∈
T ⊗ T ⊗ C(S1), the left hand side is:

ϕ02
1

(
[r ⊗ t⊗ v]201

)
=
(
(π02

1 )−1 ◦ π20
1

)(
[r ⊗ t⊗ v]201

)
(46)

=
[(

(π0
2)−1 ◦ π2

0

)
(r ⊗ t⊗ v)

]0

21

=
[
(σ−1

3 ◦ σ1)(r ⊗ t⊗ v)
]0
21

=
[
σ(r)⊗ t⊗ ω(v)

]0
21
,

where ω is a linear splitting of σ. On the other hand, we obtain:

(ϕ01
2 ◦ ϕ12

0 )
(
[r ⊗ t⊗ v]201

)
= ϕ01

2

([(
(π1

2)−1 ◦ π2
1

)
(r ⊗ t⊗ v)

]1

20

)
(47)

= ϕ01
2

([
r ⊗ σ(t)⊗ ω(v)

]1
02

)
=
(
(π01

2 )−1 ◦ π10
2

)([
r ⊗ σ(t)⊗ ω(v)

]1
02

)
=
[(

(π0
1)−1 ◦ π1

0

)(
r ⊗ σ(t)⊗ ω(v)

)]0

12

=
[
σ(r)⊗ ω(σ(t))⊗ ω(v)

]0
12

= [σ(r)⊗ t⊗ ω(v)]012.

Hence the left and the right hand side agree because []ijk = []ikj for any set
of distinct indices. �

3.2. K-groups. We are now ready for:

Theorem 3.2. The K-groups of the Heegaard quantum 5-sphere are:

K0(C(S5
H)) = Z = K1(C(S5

H)).
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Proof. Lemma 3.1 allows us to apply [Ru12, Corollary 1.5] to the family of
surjections in diagram (28). The first six-term exact sequence is
(48)

K0(P1) // K0(T ⊗2 ⊗ C(S1))⊕K0(T ⊗ C(S1)⊗ T ) // K0(T ⊗ C(S1)⊗2)

∂01
��

K1(T ⊗ C(S1)⊗2)

OO

K1(T ⊗2 ⊗ C(S1))⊕K1(T ⊗ C(S1)⊗ T )oo K1(P1).oo

Here the dotted arrows are (id⊗σ ⊗ id)∗ − (id⊗ id⊗σ)∗. With the help of
the Künneth formula, the exact sequence becomes:

(49) K0(P1) // Z⊕ Z
(m,n)7→(m−n,0) // Z⊕ Z

��
Z⊕ Z

OO

Z⊕ Z
(m,n)7→(m,−n)oo K1(P1).oo

Hence K0(P1) = Z = K1(P1).
The second diagram of [Ru12, Corollary 1.5] is

(50)

K0(P2) // K0(C(S1)⊗ T ⊗ C(S1))⊕K0(C(S1)⊗2 ⊗ T ) // K0(C(S1)⊗3)

∂01
��

K1(C(S1)⊗3)

∂10

OO

K1(C(S1)⊗ T ⊗ C(S1))⊕K1(C(S1)⊗2 ⊗ T )oo K1(P2).oo

In order to unravel this diagram, we need to take a closer look into the
Künneth formula. We consider [u] ⊗ [u] ∈ K1(C(S1)) ⊗ K1(C(S1)) and
denote its image under the Künneth isomorphismK1(C(S1))⊗K1(C(S1))→
K0(C(S1) ⊗ C(S1)) by β. Using the natural leg numbering convention, we
extend this notation to triple tensor products with [1] ∈ K0(T ) or with
[1] ∈ K0(C(S1)) as an appropriate factor. Next, we denote by ui the K1-
class of a triple tensor with u as the i-th factor and 1 ∈ T or 1 ∈ C(S1)
as any remaining factor. Hence K1(C(S1)⊗3) is Z4 generated by u1, u2, u3

and the fourth generator denoted by u123. Furthermore, the above exact
sequence becomes

K0(P2) // Z[1]⊕ Zβ13 ⊕ Z[1]⊕ Zβ12
// Z[1]⊕ Zβ12 ⊕ Zβ13 ⊕ Zβ23

��
Zu1 ⊕ Zu2 ⊕ Zu3 ⊕ Zu123

OO

Zu1 ⊕ Zu3 ⊕ Zu1 ⊕ Zu2
oo K1(P2).oo

Now, by the functoriality of the Künneth isomorphism [Bl98, p. 232] and
with the help of the diagram (56), it is easy to verify that the upper and the
lower dotted maps are respectively given by

(51) (a, b, c, d) 7−→ (a− c,−d, b, 0) and (a, b, c, d) 7−→ (a− c,−d, b, 0).

Hence, by a straightforward homological computation, we infer that

(52) K0(P2) = Z[1]⊕Z ∂10(u123) and K1(P2) = Z[(u1,u1)]⊕Z ∂01(β23),
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where u1 := u⊗ 1⊗ 1.
Finally, the last diagram of [Ru12, Corollary 1.5] is

(53) K0(C(S5
H)) // K0(P1)⊕K0(C(S1)⊗ T ⊗2) // K0(P2)

��
K1(P2)

OO

K1(P1)⊕K1(C(S1)⊗ T ⊗2)oo K1(C(S5
H)).oo

Plugging in generators into this diagram, we obtain

K0(C(S5
H)) // Z[1]⊕ Z[1] // Z[1]⊕ Z ∂10(u123)

��
Z[(u1,u1)]⊕ Z ∂01(β23)

OO

Z ∂01(β23)⊕ Zu1
oo K1(C(S5

H)).oo

Here the upper dotted arrow is evidently given by the formula

(54) (a, b) 7−→ (a− b, 0).

It is a bit more complicated to determine the lower dotted arrow. To this end,
we denote by b ∈M2

(
C(S1)⊗C(S1)

)
the pullback of the Bott projection on

S2, so that [b] = β. Next, by b̄ ∈ M2

(
T ⊗ C(S1)

)
we denote a self-adjoint

lifting of b along idM2(C)⊗(σ ⊗ id). Then we substitute b̄ to the formula
(12) to compute both ∂01(β23) ∈ K1(P1) and ∂01(β23) ∈ K1(P2) at the same
time. The resulting formulas will only differ in the leftmost tensor factor:
for P1 it will be 1 ∈ T and for P2 it will be 1 ∈ C(S1). Therefore

(55) (σ1, σ1)∗ : K1(P1) 3 ∂01(β23) 7−→ ∂01(β23) ∈ K1(P2).

Combining this observation with the diagram

(56) P̃

uu ++
P̃1

""
γ̃

++
||

Bπ/I2
δ̃

ww
Bπ/I0

""

Bπ/I1

||

P̃2

ww ((
Bπ/(I0 + I1) Bπ/(I0 + I2)

((

Bπ/(I1 + I2),

vv
Bπ/(I0 + I1 + I2)

one easily checks that the desired lower dotted map is given by the formula

(57) (a, b) 7−→ (−b, a).

Consequently, K0(C(S5
H)) = Z = K0(C(S5

H)) as claimed. �
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[BrH04] Brzeziński, Tomasz; Hajac, Piotr M. The Chern–Galois character. C.
R. Math. Acad. Sci. Paris 338 (2004), no. 2, 113–116. MR2038278, Zbl
1061.16037, arXiv:math/0306436, doi: 10.1016/j.crma.2003.11.009.
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