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Bounding the area of a centered dual
two-cell below, given lower bounds on its

side lengths

Jason DeBlois

Abstract. For a locally finite set S in the hyperbolic plane, suppose
C is a compact, n-edged two-cell of the centered dual complex of S, a
coarsening of the Delaunay tessellation introduced in the author’s prior
work. We describe an effectively computable lower bound for the area
of C, given an n-tuple of positive real numbers bounding its side lengths
below, and for n ≤ 9 implement an algorithm to compute this bound.
For geometrically reasonable side-length bounds, we expect the area
bound to be sharp or near-sharp.
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This paper upgrades the centered dual machine, which the author used in
[4] to give sharp upper bounds on the maximal injectivity radius of complete,
orientable, finite-area hyperbolic surfaces. Two-cells of the centered dual
complex are obtained by grouping Delaunay cells that are not “centered”,
with the goal of producing area bounds from side length bounds. (The
construction is more thoroughly reviewed in Section 1 below.) Theorem 3.31
of [4], one of the main results of that paper, realizes this goal. It gives a
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lower bound in terms of d > 0, on the area of an arbitrary centered dual
two-cell with all edge lengths at least d.

The main result of this paper generalizes and strengthens that one. Below
for a tree T we refer by the frontier of T to the collection of edges of some
ambient graph that intersect T but do not lie in it; we assume that each
frontier edge has exactly one vertex in T .

Theorem 2.11. Let C be a compact two-cell of the centered dual complex
of a locally finite set S ⊂ H2 such that for some b = (b1, . . . , bn) ∈ (R+)n

and enumeration of the edges of C, the ith edge has length at least bi for
each i. Then area(C) ≥ min{BT (σ(b)) |T ∈ Tn, σ ∈ Sn}, where BT is
the area bounding function defined in Proposition 2.8, Sn is the symmetric
group on n letters, σ ∈ Sn acts on b by permutation of entries, and Tn is
the collection of compact, rooted trees T with frontier F of order n and each
vertex trivalent in V = T ∪

⋃
f∈F f .

For a self-contained but necessarily more elaborate statement of this result
see Corollary 3.4. Theorem 2.11 generalizes [4, Thrm. 3.31] by allowing
different bounds for the lengths of different edges of C. Even when all edge
length bounds are the same, the area bound offered by Theorem 2.11 is
stronger than that of its predecessor for n > 4 (it is identical for n = 3 or
4). See Proposition 3.8. In fact, we expect it to be sharp for “geometrically
reasonable” edge length bounds, see Remark 3.11.

I intend to use this in the future to study arc length spectra of hyperbolic
surfaces. I used Theorem 3.31 of [4] there to prove that paper’s sharp upper
bound on maximal injectivity radius; or, equivalently, on the length of the
shortest nonconstant geodesic arc based at a point p (by which I mean one
with both endpoints at p, but possibly a corner there). Theorem 2.11 can
be used analogously to bound, say, the length of the second-shortest such
arc as a function of the length of the shortest. Problems of this sort arise
naturally when studying hyperbolic three-manifolds with totally geodesic
boundary; see, e.g., [7].

The additional strength and generality of Theorem 2.11 comes at con-
siderable computational expense. Whereas the bound of [4, Thrm. 3.31] is
given by a formula requiring essentially a single computation, evaluating the
bound here for a two-cell with n edges requires performing three computa-
tional tasks: enumerating Sn, enumerating Tn, and evaluating BT (σ(b)) for
each one. The first problem alone has complexity which is at least factorial
in n.

Section 3 describes a Python module, minimizer.py containing a script
minimize() that computes the bounds of Theorem 2.11. To do so it calls an
existing Python script, itertools.permutations(), for enumerating permuta-
tions; a script treecrawler(,) (also in minimizer.py) that computes BT (b),
given T and b; and a hand-compiled library, forest.txt, of trees in Tn for
n ≤ 9. So it can actually only compute bounds for cells with up to nine
edges.
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Remark 0.1. The ancillary materials are archived at

http://nyjm.albany.edu/j/2017/minimizer.zip.

They include minimizer.py and forest.txt. After downloading them only
one modification is required to run minimizer.minimize() in a Python 2.7.n
interpreter (and possibly others). See the beginning of Section 3.

It is certainly possible to write an algorithm to enumerate Tn for arbitrary
n, and hence to remove the limitation to n ≤ 9. However enumerating it
without redundancy seems more involved, so in any case it is useful to have
a classification in low complexity (see Figure 3.2). And this is enough for our
purpose here, which is just to get a sense for how the bounds of Theorem 2.11
behave. We carry this out by exploring a few examples in Section 3.3.

Section 1 introduces the centered dual decomposition and establishes no-
tation. We prove Theorem 2.11 in Section 2 by deepening some aspects of
the argument in [4]. Of particular note, Corollary 2.7 significantly improves
Proposition 3.23 of [4], a key result limiting which points in the “admissible
space” Ad(dF ) can minimize the area function DT .

1. The geometric and centered dual decompositions

Here we will give a brief, conceptual introduction to the subject of this
paper, culminating in a description of compact two-cells of the centered dual
decomposition determined by a finite subset of a hyperbolic surface. The
picture we describe here is fully fleshed out in [4], and we refer the reader
there for details, proofs, and the general case. In Subsection 1.1 we establish
notation that we will use in the remainder of the paper.

Suppose S is a locally finite subset of H2. The Voronoi tessellation of
S is a locally finite convex polygonal decomposition of H2 with two-cells
in bijective correspondence with S. For each s ∈ S, the Voronoi two-cell
containing s is

Vs = {x ∈ H2 | d(x, s) ≤ d(x, s′) for all s′ ∈ S}.

Each Voronoi vertex v is of the form
⋂n
i=1 Vsi for a finite collection {si} ⊂ S

such that d(si, v) ≡ J is minimal among all s ∈ S. The geometric dual
two-cell dual to v is the convex hull of the si. It is cyclic; i.e., inscribed in
a circle, its circumcircle, which has radius J and center v. See [3, §5], and
Theorem 5.9 there in particular, and cf. [4, §1].

We say a geometric dual two-cell is centered if the center of its circumcircle
(i.e., its dual Voronoi vertex) is contained in its interior. A Voronoi edge
e is centered if it intersects its geometric dual edge (which joins s to s′ if
e = Vs ∩ Vs′) in its interior; if e is not centered we orient it pointing away
from its geometric dual edge. The two notions of centeredness are related:
if C is a noncentered geometric dual two-cell then its dual Voronoi vertex
is the initial point of a noncentered Voronoi edge, and the geometric dual

http://nyjm.albany.edu/j/2017/minimizer.zip
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Figure 1.1. The possible five-edged centered dual two-cells,
outlined in red, and for each its dual tree T (black, bold) and
the frontier of T (black, dashed).

to the initial vertex of every noncentered Voronoi edge is noncentered [4,
Lemma 2.5].

We use components of the union of noncentered Voronoi edges to organize
centered dual two-cells. A compact such component is a finite, rooted tree
T with all edges pointing toward its root vertex vT . Circumcircle radius
increases in the orientation direction of noncentered edges [4, L. 2.3], so vT
is also characterized as the vertex whose geometric dual two-cell has maximal
circumcircle radius. See Lemma 2.7, Definition 2.8, and Proposition 2.9 of
[4].

A compact centered dual two-cell C is either the geometric dual to a single
Voronoi vertex contained in only centered edges (the centered case), or it
is the union of geometric duals to vertices of a compact component of the
union of noncentered Voronoi edges. In this case we say C is dual to T (see
[4, Definition 2.11]); in the centered case we say C is dual to T = {v}, its
dual Voronoi vertex.

The frontier of a component T of the union of noncentered Voronoi edges
is the set of (e, v) such that e is a Voronoi edge not contained in T and
v ∈ e ∩ T is a vertex of e. (So if both vertices of e 6⊂ T are in T then e
contributes twice to the frontier of T .) For such a tree T , the edge set of
the centered dual two-cell C dual to T is the collection of geometric duals to
Voronoi edges contributing to the frontier of T , counted with multiplicity.
Figure 1.1 illustrates all combinatorial possibilities for compact centered
dual two-cells with five edges.

A convex cyclic polygon is determined up to isometry by its set of edge
lengths [5, Prop. 1.8], but this is not true of a centered dual two-cell C
that is dual to a component T of the union of noncentered Voronoi edges.
However, the geometry of C is constrained by its set of edge lengths. The
strategy of [4] is to abstract these constraints, defining an admissible space
parametrizing all possibilities for a two-cell C with fixed combinatorics and
edge length collection. The areas of such possibilities are measured by a
continuous function on the admissible space, and we produce area bounds
by analyzing minima of this function.

1.1. Notation. The notation we use for abstracting the study of geometric
dual two-cells was introduced in Section 3.2 of [4]. We let T denote a rooted
tree and call its root vertex vT . We always implicitly regard T as embedded
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in some ambient graph in which each vertex v of T has valence nv ≥ 3, and
we take the frontier F = {f1, . . . , fn} of T to be the collection of edges of
this ambient graph that intersect T but do not lie in it.

We also implicitly assume that each frontier edge fi has exactly one vertex
in T . In the geometric context this could fail; that is, there may exist a
component T of the union of noncentered Voronoi edges and a Voronoi edge
e with distinct vertices v and w, such that e ∩ T = {v, w}. If so then when
passing to the abstract context we would denote the edge-vertex pairs (e, v)
and (e, w) as fi and fj , respectively, for some i 6= j.

We denote the edge set of T by E and study tuples d = (dE ,dF ), where
dE ∈ (R+)E and dF ∈ (R+)F are collections of positive real numbers indexed
by E and F , respectively. For a vertex v of T contained in edges e1, . . . , env ∈
E ∪ F and any such d, we let Pv(d) denote the nv-tuple (de1 , . . . , denv

) of
entries of d.

The idea here is that for a centered dual two-cell C dual to T , dF records
the set of its edge lengths, since boundary edges of C are dual to frontier
edges of T by [4, Dfn. 2.11]. (Here if both fi and fj correspond to a single
Voronoi edge as above we take dfi = dfj to be the length of the geometric
dual to e.) And dE records the set of lengths of geometric dual edges in-
ternal to C; i.e., edges of intersection between pairs of geometric dual cells
contained in C. For such a geometric dual cell with dual Voronoi vertex v,
Pv(d) records its edge length collection, where d = (dE ,dF ).

Definition 3.10 of [4] describes the admissible space AdT (dF ) of a given
T and dF . For a centered dual two-cell C dual to T with edge length
collection dF , with dE is produced as above, Lemma 3.14 there shows that
d = (dE ,dF ) lies in AdT (dF ). It is more convenient in practice to deal
with a compact space AdT (dF ) containing Ad(dF ), which is defined in [4,

Dfn. 3.15]. We reproduce this below. There for v ∈ T (0) − {vT }, let ev be
the initial edge of the edge arc joining v to vT .

Definition 1.1 ([4], Definition 3.15). For dF = (de | e ∈ F) ∈ (R+)F let
Ad(dF ) consist of those d = (dE ,dF ), for dE ∈ (R+)E , such that:

(1) For v ∈ T (0) − {vT }, Pv(d) ∈ ACnv − Cnv has largest entry dev .
(2) PvT (d) ∈ CnT ∪BCnT , where we refer by nT to the valence nvT of vT

in V .
(3) J(Pv(d)) ≥ J(Pw(d)) for each v ∈ T (0) and w ∈ v − 1, where v − 1

is the set of vertices w ∈ T (0) − {vT , v} such that v ∈ ew.

Here ACn ⊂ (R+)n is the open set parametrizing cyclic n-gons by their
side lengths, see [5, Corollary 1.10]. Its subsets Cn and BCn respectively
parametrize centered and semicyclic n-gons, those with circumcircle centers
in their interiors or, respectively, in a side. See Propositions 1.11 and 2.2 of
[5]. Condition (3) above refers to the function J : ACn → R+ that records
circumcircle radius of cyclic n-gons [5, Prop. 1.14].
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Remark 1.2. Below at times we will take T = {vT } (the centered case) as
the base case of an inductive argument. In this case since E is empty we omit
dE . Conditions (1) and (3) of Definition 1.1 hold vacuously, so appealing
to condition (2) we take Ad(dF ) = {dF} if PvT (dF ) ∈ CnT ∪ BCnT and

Ad(dF ) = ∅ otherwise.

Definition 3.13 of [4] introduces the area function

DT (d) =
∑
v∈T (0)

D0(Pv(d)),

where D0 from [5, Cor. 1.17] is the function ACn → R that measures the
area of cyclic n-gons [5, L. 2.1]. DT measures area of centered dual two-cells
[4, L. 3.14]. It is continuous on AdT (dF ) [4, L. 3.22], and our primary aim
here is to understand its minimizers and minima on this set.

2. Theory

In this section we will prove Theorem 2.11, the generalization of Theo-
rem 3.31 of [4] described in the introduction. We follow the broad strokes
of the approach in [4]. First, in Section 2.1 we prove Corollary 2.7, an up-
grade of [4, Prop. 3.23] that characterizes minimizers of DT on AdT (dF )
for a given dF . We apply this in Section 2.2 to prove Proposition 2.8, an
improvement on [4, Prop. 3.30] that bounds DT (d) below by a function
BT (bF ) for all d ∈ AdT (dF ) where each entry of dF is bounded below by
the corresponding entry of bF .

The results above apply to a fixed rooted tree T . We prove Theorem 2.11
by simply minimizing over all trees and using one new ingredient: Lem-
ma 2.10, which allows us to reduce to the trivalent case. This lemma reverses
the action of Lemma 3.28 of [4], showing for some trees T that

AdT (dF ) ⊂ AdT0(dF0)

for a related tree T0 with more edges than T .

2.1. Minimizers on AdT (dF). Proposition 3.23 of [4] supplies a key tool
for giving lower bounds on areas of centered dual two-cells, asserting that
each minimum (in fact each local minimum) point of DT on Ad(dF ) satisfies
one of three criteria listed there. Here we will more closely analyze the
situations described there.

Lemma 2.1. For a compact rooted tree T ⊂ V with root vertex vT , edge set
E, and frontier F = {f0, . . . , fk−1}, given dF = (df0 , . . . , dfk−1

) ∈ (R+)F

and dE ∈ (R+)E let d = (dE ,dF ). Suppose such a tuple d has the following
properties:

(1) For each v ∈ T (0) − {vT }, Pv(d) ∈ ACnv − (Cnv ∪ BCnv) has largest
entry dev , where nv is the valence of v in V and ev is the initial edge
of the arc in T joining v to vT .
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(2) PvT (d) ∈ ACnT , where nT = nvT , and if PvT /∈ CnT then e ∈ F if de
is maximal among entries of PvT (d).

(3) J(Pv(d)) = J(PvT (d)) for each v ∈ T (0), where J(Pv(d)) is the
circumcircle radius of the cyclic polygon with edge length collection
Pv(d).

Then dF is in ACk, and in Ck or BCk if and only if PvT (d) is in CnT or
BCnT , respectively. If dF /∈ Ck then there is a unique fi ∈ F such that dfi
is maximal, with vT ∈ fi and dfi > de for all e ∈ (E ∪ F) − {fi}. Also,

J(dF ) = J(Pv(d)) for each v ∈ T (0), and

D0(dF ) =
∑
v∈T (0)

D0(Pv(d)).(2.1.1)

Moreover, a cyclic k-gon with side length collection dF is tiled by cyclic nv-
gons Pv with side length collections Pv(d), where v runs over all vertices of
T .

Proof. Note that if T = {vT } then hypotheses (1) and (3) hold vacuously,
and the result is a tautology. Below we will first address the case that
T has one edge, then prove the general case by induction. The one-edge
case is an altered version of Lemma 3.25 of [4], with a stronger conclusion
and a subtly stronger hypothesis. That result takes as input an m-tuple
c0 = (c0, . . . , cm−1) and an n-tuple d0 = (d0, . . . , dn−1). We will apply it
here in the one-edged case with d0 = PvT (d) and c0 = Pv(d), where v is
the other vertex of T . Our hypothesis (3) above implies the first bulleted
hypothesis there, that J(c0) = J(d0); (1) implies the second bullet there
with dev here in the role of d0 = c0 there, where ev is the sole edge of T ; and
(2) here implies the third. In the notation of [4, L. 3.25], (2) in fact asserts:

• d0 ∈ ACn, and if d0 /∈ Cn then d0 is not maximal among the di.

This excludes the possibility that d0 ∈ BCn has maximal entry d0, which
was allowed in the third bulleted hypothesis of [4, L. 3.25]. In any case, since
its hypotheses are satisfied the proof and conclusions of that result hold.

It asserts that d
.
= (c1, . . . , cm−1, d1, . . . , dn−1) is in ACm+n−2. Note that

since E = {ev} has only one element, each of d0 = PvT (d) and c0 = Pv(d)
has all of its entries but dev = d0 = c0 from dF , so dF = d and k = m+n−2.
The conclusion of Lemma 3.25 of [4] thus asserts in our terms that dF is
in ACk, and in Ck ∪ BCk if and only if PvT (d) ∈ CnT ∪ BCnT ; and that
D0(dF ) = D0(Pv(d)) +D0(PvT (d)).

For the one-edged case of our result we must strengthen this conclusion
with four additional assertions (assuming the bulleted hypothesis above).
We claim first that dF = d is the side length collection of a cyclic poly-
gon P tiled by polygons Pv and PvT with respective side length collections
Pv(d) = c0 and PvT (d) = d0. This is in fact recorded in the proof of [4,
Lemma 3.25], where Pv is called P0 and PvT is Q0. It implies our second
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additional assertion, that J(dF ) = J(Pv(d)) = J(PvT (d)), since P shares a
circumcircle with Pv and PvT .

We also need that if dF /∈ Ck then its unique largest entry comes from
among the dfi with vT ∈ fi, i.e., from among the di 6= d0, in the language
of [4, L. 3.25]. The proof there shows that P0 ∩ Q0 = γ0 is a side of each
with length c0 = d0 = dev , and that P0 and the circumcircle center v lie in
opposite half-spaces bounded by the geodesic containing γ0. Proposition 2.2
of [5] then implies that γ0 is unique with this property among sides of P0.
If dF /∈ Ck, i.e., d /∈ Cm+n−2, then the unique longest side γi0 of P is
characterized by the fact that v and P lie in opposite half-spaces bounded
by the geodesic containing γi0 , again by [5, Prop. 2.2]. This implies γi0 is a
side of Q0 other than γ0, since these comprise the remaining sides of P , and
this assertion follows.

We finally require that dF is in Ck or BCk if and only if PvT (d) = d0 is
in Cn or BCn respectively. It is asserted in [4, L. 3.25] that

d ∈ Cm+n−2 ∪ BCm+n−2 if and only if d0 ∈ Cn ∪ BCn.
We have the additional fact, again by [5, Prop. 2.2], that d ∈ BCm+n−2 if
and only if v lies in a side of P . If this is so then by the above v lies in a
side of Q0, so d0 ∈ BCn. On the other hand, our strengthened hypothesis
does not allow v ∈ γ0, so if d0 ∈ BCn then v lies in a side of Q0 that is a
side of P . Hence d ∈ BCm+n−2, and the second assertion is proved. This
gives the one-edge case of the current result.

We now proceed to the inductive step. Let T be a compact rooted tree
with at least two edges, and let v0 be a vertex farthest from vT in T . Then
v0 is contained in a single edge ev0 of T , and we take T0 = T − ev0 . Listing
the edges containing v0 as ev0 , fi1 , . . . , finv0−1 , where all fij ∈ F , the frontier

of T0 in V is F0 = (F − {fij}) ∪ {ev0} and the edge set is E − {ev0}. Given
d = (dE ,dF ) we obtain d0 = (dE0 ,dF0) by omitting the entries dfj of dF

and shuffling dev0 from dE to dF0 . Then Pv(d0) = Pv(d) for all v ∈ T (0)
0 .

In particular, if T and d satisfy (1)–(3) then so do T0 and d0. We suppose
this is so, and assume by induction that the desired conclusion holds for T0
and d0. We now note that the hypotheses of our strengthened [4, Lemma
3.25] (from the one-edged case) are satisfied with c0 the nv0-tuple of dual
lengths to the edges containing v0 and d0 = dF0 , ordered so that c0 = d0 =
dev0 . Applying that result and noting that d as described there is dF , we
thus conclude that dF ∈ ACn; it is in Cn or BCn if and only if PvT (d) is in

CnT or BCnT , respectively; that J(dF = J(Pv(d)) for all v ∈ T (0); and that
D0(dF ) =

∑
v∈T (0) D0(Pv(d)).

Moreover by induction the cyclic n0-gon Q0 of [4, L. 3.25], with side length

collection dF0 , is itself tiled by copies of the Pv for all v ∈ T (0)
0 . And since

P0 from [4, L. 3.25] shares the side length collection of Pv0 it is isometric to
it; hence a cyclic n-gon with side length collection dF is tiled by copies of
the Pv as desired. �
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Lemma 2.2. With the hypotheses of Lemma 2.1, for any continuous map
t 7→ dF (t) ∈ (R+)F with dF (0) = dF there is a continuous map

t 7→ dE(t) ∈ (R+)E

on [0, ε) for some ε > 0, with dE(0) = dE , such that d(t) = (dF (t),dE(t))
has properties (1)–(3) of Lemma 2.1.

Proof. We use the assertion in Lemma 2.1 that for d = (dF ,dE) satisfying
its hypotheses, a cyclic n-gon P with side length collection dF is tiled by
copies of Pv for v ∈ T (0). Thus for each e ∈ E and each vertex v of e, the
corresponding edge of Pv(d) is a diagonal of P . So its length de is given
by `ij(dF ) for some fixed i and j between 0 and n − 1, where `ij is the
diagonal-length function of [5, Corollary 1.15].

Now any continuous deformation dF (t) of dF remains in ACn for small
t, since ACn is open in (R+)n. We define dE(t) by taking de(t) = `ij(dF (t))
for each e ∈ E , where `ij is the diagonal-length function described above.
Then by the definition of the `i,j , Pv(d(t)) ∈ ACnv and

J(Pv(d(t))) = J(PvT (d(t))) = J(dF (t))

for all t such that dF (t) ∈ ACn. Criteria (1) and (2) of the Lemma 2.1
involve only open conditions and so hold for t small enough. �

Proposition 2.3. For a compact rooted tree T ⊂ V with root vertex vT , edge
set E and frontier F = {f0, . . . , fn−1}, and dF = (df0 , . . . , dfn−1) ∈ (R+)F ,

suppose a local minimum of dE 7→ DT (dE ,dF ) on Ad(dF ) occurs at dE
with the following property: for d = (dE ,dF ) there exists v0 ∈ T (0) such
that J(Pv(d)) = J(Pv0(d)) for the terminal vertex v of ev0. Then for the
maximal subtree T0 of T containing v0 such that J(Pv(d)) = J(Pv0(d)) for

all v ∈ T (0)
0 :

• vT ∈ T0.
• PvT (d) ∈ BCnT , where vT has valence nT in V .
• for eT ∈ E∪F containing vT such that deT is maximal among all such

edges, either eT ∈ F or eT is an edge of T0 and its other endpoint
v′T is on the boundary of T0; i.e., it is of valence one in T0.

Moreover, if eT ∈ E then for each v ∈ v′T − 1, Pv(d) ∈ BCnv .

Recall that Definition 1.1(1) asserts for each v ∈ T (0) − {vT } that Pv(d)
is in ACnv − Cnv . We begin by noting a stronger fact for vertices of T0.

Lemma 2.4. With hypotheses and notation as in Proposition 2.3, let v1 be
the nearest vertex of T0 to vT in T (so vT ∈ T0 ⇔ vT = v1). If v1 6= vT

then for each v ∈ T (0)
0 − {v1}, Pv(d) ∈ ACnv − (Cnv ∪ BCnv). If v1 = vT

then this still holds for all but at most one v ∈ T (0)
0 − {v1}. If in this case

there does exist v ∈ T (0)
0 − {v1} with Pv(d) ∈ BCnv , then ev joins v to vT ,

PvT (d) ∈ BCnT , and both PvT (d) and Pv(d) have maximal entry dev .
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Proof. For v as above we just need to show that Pv(d) /∈ BCnv . Note that
for such v, Pv(d) has dev as its largest entry, by Definition 1.1(1), and by
Proposition 2.2 of [5], dev is unique with this property. Since v 6= v1, the
other endpoint v′ of ev lies in T0, so J(Pv(d)) = J(Pv′(d)). If Pv(d) lies in
BCnv then by [5, Prop. 1.11], J(Pv(d)) = dev/2. Hence also J(Pv′(d)) =
dev/2, so by the same result Pv′(d) ∈ BCnv′ has largest entry dev .

This is a contradiction if v′ 6= vT , since then it has unique largest entry
dev′ > dev by Definition 1.1(1). If v′ = vT then since v′ ∈ T0 we must have
v1 = vT , and the lemma follows from the previous paragraph. �

For the sake of readability we will prove the first two assertions of the
proposition separately.

Lemma 2.5. With the hypotheses and notation of Proposition 2.3, vT ∈ T0
and PvT ∈ BCnT .

Proof. Suppose that either vT is not in T0 (i.e., v1 6= vT ), or vT ∈ T0 (v1 =

vT ) and PvT (d) ∈ CnT . So in particular, Pv(d) /∈ BCnv for all v ∈ T (0)
0 −{v1}

by Lemma 2.4. Without loss of generality assume v0 is a farthest vertex of
T0 from vT , and refer by e0 to ev0 . Let T1 = T0 − (int(e0) ∪ v0), and take
v1 as its root vertex. Let F1 be the frontier of T1 in V and name its edge
set E1, and let d1 = (dE1 ,dF1) take its entries from d. Define a deformation
dF1(t) of dF1 by taking de(t) ≡ de for all e ∈ F1−{e0} and de0(t) = de0 − t.
We will show that this determines a deformation d(t) ∈ Ad(dF ) such that
DT (d(t)) is decreasing.

We first note that d1 satisfies criteria (1)–(3) of Lemma 2.1: property (1)
is Lemma 2.4, and (3) is inherited from T0. If v1 6= vT then criterion (2)
follows from the facts that Pv1(d1) = Pv1(d) ∈ ACnv1

− Cnv1
has maximal

entry dev1 , and ev1 ∈ F1 since by construction v1 is nearest vT in T1. If
v1 = vT then by hypothesis PvT (d) ∈ CnT , and criterion (2) is immediate.

Lemma 2.1 now implies that if v1 6= vT and hence Pv1(d1) ∈ ACnv1
−Cnv1

,
then dF1 ∈ ACn1 − Cn1 , where n1 = |F1|, and it has maximal entry dev1 .
Otherwise dF1 ∈ Cn1 . We claim:

2.5.1. If dF1 ∈ ACn1 − Cn1 then dF1(t) remains in ACn1 − Cn1 for small
t > 0; otherwise dF1(t) ∈ Cn1 for small t > 0.

Proof of 2.5.1. This holds if dF1 ∈ ACn1 − (Cn1 ∪ BCn1), or if dF1 ∈ Cn1 ,
simply because these sets are open. If dF1 lies in BCn1 then Proposition 1.12
of [5] implies that dev1 = b0(de0 , . . . , den1−1) for the function b0 defined there,

where we have enumerated F1 as {e0, . . . , en1−1, ev1}. Since b0 strictly in-
creases in each variable (also by that result), and de0(t) < de0 for each t > 0,
it follows that b0(de0(t), . . . , den1−1(t)) < b0(de1 , . . . , den1−1) for each such t.

Then dev1 (t) ≡ dev1 exceeds b0(de0(t), . . . , den1−1(t)) for each t > 0, so the

claim follows in this case from [5, Cor. 4.10]. �
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By Lemma 2.2, dF1(t) determines a deformation dE1(t) of dE1 for small
t ≥ 0 such that properties (1)–(3) of Lemma 2.1 continue to hold for

d1(t) = (dE1(t),dF1(t)).

We extend d1(t) to d(t) = (dE(t),dF (t)) by taking de(t) ≡ de for each
e ∈ E ∪F − (E1∪F1). In particular dF (t) ≡ dF since e0 ∈ E . We claim that
d(t) ∈ Ad(dF ) for small enough t > 0.

The only edges of T that change length under d(t) are edges of T0, so
if Pv(d) changes under d(t) then v ∈ T0. Property (1) of Definition 1.1 is

thus immediate for v ∈ T (0) − T
(0)
0 . It follows for v ∈ T

(0)
0 − {v1} from

Lemma 2.4 and the fact that ACnv − (Cnv ∪ BCnv) is open in (R+)nv , and,
in the case v1 6= vT , for v1 by combining 2.5.1 above with the first assertion
of Lemma 2.1. Property (2) of Definition 1.1, that PvT (d(t)) ∈ CnT ∪BCnT ,
is immediate if v1 6= vT and otherwise follows from 2.5.1 and Lemma 2.2.

For property (3) of Definition 1.1 we must separately consider several

possibilities for v ∈ T (0) and w ∈ v− 1. If neither v nor w lies in T0 then we
have

J(Pv(d(t))) ≡ J(Pv(d)) ≥ J(Pw(d)) ≡ J(Pw(d(t)))

for all t. If v is not in T0 but w is then w = v1 6= vT , and by definition of
T0 the initial inequality is strict: J(Pv(d)) > J(Pv1(d)). So it is preserved

for small t > 0. The same idea holds if v ∈ T
(0)
0 but w /∈ T0: the strict

initial inequality J(Pv(d)) > J(Pw(d)) is preserved for small t > 0. If v and
w lie in T1 — i.e., v, w ∈ T0 and w 6= v0 — then by Lemmas 2.2 and 2.1
J(Pv(d(t))) ≡ J(dF1(t)) ≡ J(Pw(d(t))). So the claim is finally proved by
establishing property (3) in the case w = v0, so v ∈ T1. This follows from:

2.5.2. For t > 0, J(dF1(t)) > J(Pv0(d(t))).

Proof of 2.5.2. At t = 0,

d

dt
J(dF1(t)) = − ∂

∂de0
J(dF1) and

d

dt
J(Pv0(d(t))) = − ∂

∂de0
J(Pv0(d)).

Since de0 is the largest entry of Pv0(d) ∈ ACnv0
− (Cnv0

∪ BCnv0
), Proposi-

tion 1.14 of [5] implies that the latter derivative is less than −1/2. In the
case that v1 6= vT , that result implies that d

dtJ(dF1(t)) > 0. If v1 = vT then
since dF1 ∈ Cn1 by hypothesis it gives that this derivative is greater than
−1/2, so in both cases we have the desired inequality. �

We now show that DT (d(t)) is decreasing for small t > 0. To do so we
use Lemma 2.1 (which applies by construction of d(t)) to rewrite∑

v∈T (0)
1

D0(Pv(d(t)))
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as D0(dF1(t)), yielding:

DT (d(t)) = D0(dF1(t)) +D0(Pv0(d(t))) +
∑

v∈T (0)−T (0)
0

D0(Pv(d(t))).(2.5.1)

For any v ∈ T (0), if the edges of E ∪ F containing v are ei1 , . . . , eik (for
k = nv) then Pv(d(t)) = (dei1 (t), . . . , deik (t)) and so by the chain rule we
have:

d

dt
D0(Pv(d(t))) =

k∑
j=1

∂

∂deij
D0(Pv(d(t)))

d

dt
deij (t).(2.5.2)

If v ∈ T (0) − T (0)
0 this implies in particular that D0(Pv(d(t))) is constant,

since de(t) is constant for each edge e containing such a vertex v. So the
rightmost sum of (2.5.1) is constant in t. We now compute

d

dt
(D0(dF1(t)) +D0(Pv0(d(t))))

by applying the chain rule as in (2.5.2) and Proposition 2.3 of [5]. This
gives:√

1

cosh2(de0/2)
− 1

cosh2 J(Pv0(d(t)))
−
√

1

cosh2(de0/2)
− 1

cosh2 J(dF1(t))
.

By (2.5.2), this quantity is negative for t > 0, so indeed DT (d(t)) is decreas-
ing. The lemma follows, since by hypothesis d is a local minimizer for DT

on Ad(dF ), and we produced d(t) assuming that either vT /∈ T0 or vT ∈ T0
but Pvt ∈ CnT . �

Proof of Proposition 2.3. For T0 as described in the proposition we have
vT ∈ T0 and PvT (d) ∈ BCnT , by Lemma 2.5. Let eT ∈ E ∪ F be the edge
containing vT that has deT maximal among all such edges. We now suppose
by way of contradiction that eT ∈ E , and that its other endpoint v′T is not on
the boundary of T0. We will show that then d is still not a local minimum
of DT on Ad(dF ).

We begin by observing that Proposition 1.11 of [5] shows that v′T ∈ T0
and Pv′T (d) ∈ BCn′T , since J(PvT (bd)) = deT /2. This is because on the

one hand, J(Pv′T (d)) ≤ J(PvT (d)) = deT /2 by Definition 1.1(3), but on the

other J(Pv′T (d)) ≥ deT /2 since the circumcircle radius of a cyclic polygon is

at least half of each of its side lengths (cf. [5, Prop. 1.5]).
Let T ′ be the maximal subtree of T0 containing v′T but not vT , let v′0 be

a farthest vertex of T ′ from v′T , and refer by e′0 to the initial edge ev′0 of the

arc joining v′0 to v′T . Let T ′1 = T ′ − (int(e′0) ∪ v′0), and let F ′1 be its frontier
in V . We enumerate F ′1 as {e′0, . . . , en′1−2, eT }, so in particular n′1 = |F ′1|,
and define a deformation dF ′1(t) of the tuple dF ′1 that takes its entries from
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d as follows: take de′0(t) = de′0 − t, let de′i(t) ≡ de′i for all i > 0, and define

deT (t) = b0(de′0(t), de′1 , . . . , den′1−2
), for b0 from Proposition 1.12 of [5].

Note that for the tuple d′1 = (dE ′1 ,dF ′1) that takes its entries from d,

where E ′1 is the edge set of T ′1, we have Pv′T (d′1) = Pv′T (d) ∈ BCn′T . If we

take v′T as the root vertex of T ′1 it satisfies the hypotheses of Lemma 2.1,
so by that result dF ′1 ∈ BCn′1 . In particular, deT = b0(de′0 , . . . , den′1−1

) by

[5, Prop. 1.12], so dF ′1(0) = dF ′1 . We now apply Lemma 2.2 to produce

a deformation dE ′1(t) of dE ′1 such that d′1(t) = (dE ′1(t),dF ′1(t)) satisfies the
hypotheses of Lemma 2.1.

On the other side we define T1 = T0 − (T ′ ∪ int(eT )), call F1 its frontier
in V and let dF1 be the tuple that takes its entries from d. We define a
deformation dF1(t) of dF1 by taking deT (t) as prescribed above and df (t) ≡
df for each other edge f ∈ F1. Let E1 be the edge set of T1 and vT its root
vertex. The tuple d1 = (dE1 ,dF1) taking entries from d then satisfies the
hypotheses of Lemma 2.1, inheriting properties (1) and (2) there from T
(recalling for (2) that eT ∈ F1) and (3) from T0. We thus apply Lemma 2.2
to produce dE1(t) such that d1(t) = (dE1(t),dF1(t)) satisfies the hypotheses
of Lemma 2.1.

Note that (E1 ∪ F1) ∩ (E ′1 ∪ F ′1) = {eT }, and we have defined d1(t) and
d′1(t) so that their entries corresponding to eT agree. We now define

d(t) = (dE(t),dF (t))

by taking each de(t) from d1(t) if e ∈ E1 ∪ F1, from d′1(t) if e ∈ E ′1 ∪ F ′1,
and otherwise letting de(t) ≡ de. Note that the only entries of dF1(t) and
dF ′1(t) that change with t correspond to eT and e′0, each of which lies in E ,

so dF (t) ≡ dF . The proof of the proposition will be completed by showing
first that d(t) ∈ Ad(dF ), then that DT (d(t)) is decreasing, for all small
enough t.

To show that d(t) ∈ Ad(dF ) we check the criteria of Definition 1.1, begin-
ning with (1). For all vertices v outside T0, Pv(d(t)) ≡ Pv(d) ∈ ACnv − Cnv

has maximum entry dev by hypothesis. For v ∈ T (0)
0 − {vT , v′T }, Lemma 2.4

asserts that Pv(d) ∈ ACnv−(Cnv ∪BCnv), so Pv(d(t)) remains here for small
t > 0 since ACnv − (Cnv ∪ BCnv) is open. And we chose dF ′1(t) ∈ BCn′ for

all t, and dE ′1(t) so that d′1 = (dE ′1(t),dF ′1(t)) satisfies the hypotheses of

Lemma 2.1, so that result implies that Pv′T (d(t)) ∈ BCn′T for all t. For each

v ∈ T (0) − {vT }, dev is the unique maximal entry of Pv(d) since it is not in
Cnv (this follows from [5, Prop. 2.2]), so dev(t) remains the maximal entry
for small t > 0.

For criterion (2) of Definition 1.1 we note first that dF1 ∈ BCn1 by Lem-
ma 2.1, where n1 = |F1|, since PvT (d) = PvT (d1) ∈ BCnT by hypothesis. If
we enumerate F1 as {eT , e1, . . . , en1−1} then deT > dei for all i, again by Lem-
ma 2.1, since deT is by hypothesis maximal among the de for e containing vT .
It therefore follows from Proposition 1.12 of [5] that deT = b0(de1 , . . . , den1−1)
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for b0 as defined there. For t ≥ 0, our definition of deT (t) and the chain rule

give d
dtdeT (t) = − ∂b0

∂de′0
. That this is negative follows from:

Lemma 2.6. The function b0 : (R+)n−1 → R+ defined in Proposition 1.12
of [5] satisfies 0 < ∂

∂di
b0(d1, . . . , dn−1) < 1 for each i.

We will prove Lemma 2.6 after finishing the current proof. It implies that
for all t > 0:

deT (t) < b0(de1(t), . . . , den1−1(t)) ≡ b0(de1 , . . . , den1−1).

It follows that dF1(t) ∈ Cn1 (see [5, Cor. 4.10]), and hence that

PvT (d(t)) = PvT (d1(t)) ∈ CnT ,

since we constructed d1(t) to satisfy the hypotheses of Lemma 2.1.
For criterion (3) of Definition 1.1 we note that by construction and Lem-

ma 2.2, J(Pv(d(t))) = J(dF1(t)) for all vertices v of T1 and

J(Pv(d(t))) = J(dF ′1(t))

for v in T ′1. For any vertex v of T that lies outside T0, Pv(d(t)) ≡ Pv(d)

for all t, and the strict inequality J(Pv(d)) < J(Pw(d)) for any w ∈ T (0)
0 is

preserved for small t. The only vertex of T0 that does not lie in T1 or T ′1 is
v′0, so to check (3) we must only establish that

J(dF1(t)) ≥ J(dF ′1(t)) ≥ J(Pv′0(d(t)))

for all small t > 0.
We first address J(dF1(t)). Applying the chain rule gives:

d

dt
J(dF1(t)) =

∂J

∂deT

d

dt
deT (t) +

n′1−2∑
i=0

∂J

∂dei

d

dt
dei(t).(2.5.3)

By construction, d
dtdei(t) ≡ 0 for all i ≥ 1, so the quantity inside the summa-

tion above vanishes. Proposition 1.14 of [5] implies that if d = (d0, . . . , dn−1)
lies in Cn then 0 < ∂J

∂di
(d) < 1

2 for all i, and if d ∈ BCn then ∂J
∂di

(d) = 1
2 if

di is the largest entry. Applying this result and the observation above that
dF1(0) ∈ BCn1 with largest entry deT , and dF1(t) ∈ Cn1 for small t > 0,

gives that d
dtJ(dF1(0)) = 1

2
d
dtdeT (0) and 1

2
d
dtdeT (t) < d

dtJ(dF1(t)) < 0 for

t > 0. (Here recall from above Lemma 2.6 that d
dtdeT (t) < 0 for all t.)

Applying the chain rule to d
dtJ(dF ′1(t)) in the same way as in (2.5.3) gives

d

dt
J(dF1(t)) =

∂J

∂deT

d

dt
deT (t) +

∂J

∂de′0

d

dt
de′0(t).

We chose deT (t) so that dF ′1(t) ∈ BCn′1 for all t, so [5, Prop. 1.14] implies

that ∂J
∂de′0

≡ 0 and ∂J
∂deT

≡ 1
2 . (These equalities follow from the inequalities

recorded in that result by continuity of the partial derivatives of J , recalling
from [5] that BCn is the frontier of Cn in ACn for any n, and from above
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that deT (t) is the largest entry of dF1(t) for small t ≥ 0.) It follows that
d
dtJ(dF ′1(t)) = 1

2
d
dtdeT (t) for all t, hence that J(dF1(t)) ≥ J(dF ′1(t)) for all

t ≥ 0.
We finally compute d

dtJ(Pv′0(d(t))) as in (2.5.3), yielding

∂J

∂de′0
· d
dt
de′0(t) = − ∂J

∂de′0
.

We established above that Pv′0(d(t)) remains in ACnv′0
−(Cnv′0

∪BCnv′0
) for all

small t ≥ 0, so [5, Prop. 1.14] implies that ∂J
∂de′0

> 1
2 for all such t. Therefore

d

dt
J(Pv′0(d(t)) < −1

2
for all t.

But Lemma 2.6 implies that d
dtdeT (t) = − ∂b0

∂de′0
> −1, so d

dtJ(dF ′1(t)) > −1
2

for all t ≥ 0. It follows that J(dF ′1(t)) ≥ J(Pv′0(d(t))) for all t ≥ 0 as

claimed, and hence that d(t) ∈ Ad(dF ) for such t.
To show that DT (d(t)) is decreasing we use the following consequence of

our construction and Lemma 2.1:

DT (d(t)) = D0(Pv′0(d(t)))+D0(d
′
1(t))+D0(d1(t))+

∑
v∈T (0)−T (0)

0

D0(Pv(d(t))).

We now apply the chain rule and [5, Prop. 2.3] to compute d
dtDT (d(t)),

yielding:

−

[√
1

cosh2(de′0(t)/2)
− 1

cosh2 J(dF ′1(t))
(2.5.4)

−
√

1

cosh2(de′0(t)/2)
− 1

cosh2 J(Pv′0(d(t)))

]

+
d

dt
deT (t)

√
1

cosh2(deT (t)/2)
− 1

cosh2 J(dF1(t))
.

Here we are using the fact that only de′0(t) and deT (t) are nonconstant among

all entries of d(t); that de′0(t) is an entry of Pv′0(d(t)) and dF ′1(t), and that
d
dtde′0(t) = −1. This yields the top line above. For the bottom line we use

that deT (t) is an entry of dF ′1(t) and dF1(t), and that J(dF ′1(t)) ≡ deT /2,

which implies that ∂
∂deT

D0(dF ′1(t)) ≡ 0.

The derivative recorded above is 0 at t = 0, since there all circumcircle
radii are equal to deT /2. But it is negative for small t > 0, since we showed

above that J(dF ′1(t)) > J(Pv′0(d(t))) and d
dtdeT (t) < 0 for such t. It follows

that DT (d(t)) decreases with t, and we have proved that if d ∈ Ad(dF ) is
a local minimizer for d 7→ DT (d) such that J(Pv(d)) = J(Pw(d)) for some
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v ∈ T (0) and w ∈ v − 1 then vT ∈ T0, PvT (d) ∈ BCnT , and either eT ∈ F or
its other endpoint v′T lies on the boundary of T0.

We have proved the third bulleted assertion of Proposition 2.3. It remains
to show for d as above that if eT ∈ E then Pv(d) ∈ BCnv for each v ∈ v′T −1.
Suppose not; i.e., that there exists v′0 ∈ v′T − 1 such that

Pv′0(d) ∈ ACnv′0
− (Cnv′0

∪ BCnv′0
).

Let e′0 denote ev′0 , and take T ′1 = {v′T } and T1 = T0 − (T ′1 ∪ int(eT )). The

frontier dF ′1 of T ′1 in V is the set of edges containing v′T , and we take

dF ′1 = Pv′T (d).

Letting E1 and F1 denote the edge set and frontier in V of T1, respectively,
we define dF ′1(t), dF1(t), dE1(t) and d(t) exactly as in the previous case

(note that here E ′1 = ∅). That is, we let de′0(t) = de′0 − t; choose deT (t) as

before so that dF ′1(t) ∈ BCn′1(t) for all t, where n′1 = |F ′1|; let Lemma 2.2

determine dE1(t); and let de(t) ≡ de for all e ∈ (E ∪ F)− (F ′1 ∪ E1 ∪ F1).

The same argument as in the previous case now shows that d(t) ∈ Ad(dF )
for small enough t > 0, and DT (d(t)) decreases in t, with only a couple slight
modifications. We first note that it is still true that J(Pv′0(d)) > J(Pv(d))

for all v ∈ v′0− 1, since we have already showed that if not then vT is in the
maximal subtree containing v′0 with all vertices v satisfying

J(Pv(d)) = J(Pv′0(d)).

This fact is necessary for showing that d(t) ∈ Ad(dF ) for small enough
t > 0. And the computation of d

dtDT (d(t)) is identical, but in this case the
derivative is negative at t = 0 since the fact that v′0 is not in T0 implies
that J(Pv′0(d)) < J(dF ′1) (in the previous case equality held). But this only
helps us, and the result follows. �

Lemma 2.6. The function b0 : (R+)n−1 → R+ defined in Proposition 1.12
of [5] satisfies 0 < ∂

∂di
b0(d1, . . . , dn−1) < 1 for each i.

Proof of Lemma 2.6. The proof of [5, Prop. 1.12] establishes the inequal-

ity ∂b0
∂di

> 0. There the first of the following equations is showed:

∂

∂di
b0(d1, . . . , dn−1) = −

∂θ
∂d(di, b0/2)∑n−1
j=1

∂θ
∂J (di, b0/2)

=
cosh(di/2) sinh(b0/2)

cosh(b0/2)
∑

j sinh(dj/2)
.

Here θ(d, J) is the function described in Lemma 1.4 of [5], that measures the
angle of an isosceles triangle with two sides of length J and one of length d
at its vertex opposite the side of length d. The latter equation above follows
by simply computing partial derivatives.

We recall that b0 > di for each i, by [5, Prop 1.12]. The result now fol-
lows by observing that

∑
j sinh(dj/2) > sinh(b0/2), since by [5, Prop. 1.11],

BCn ⊂ ACn. �
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Corollary 2.7. Let T ⊂ V be a compact rooted tree with root vertex {vT },
frontier F = {f0, . . . , fn−1}, and edge set E. For dF = (df0 , . . . , dfn−1) ∈
(R+)F such that Ad(dF ) 6= ∅, at a point d = (dE ,dF ) ∈ Ad(dF ) which is a
local minimum of the map d 7→ DT (dE ,dF ), either Pv(d) ∈ BCnv for each

v ∈ T (0) − {vT } or the following hold.
PvT (d) ∈ BCnT , where vT has valence nT in V , and for the edge eT ∈ E∪F

containing vT such that deT is maximal among all such edges, either eT ∈ F
or eT is an edge of the maximal subtree T0 containing vT with the property

that J(Pv(d)) = J(PvT (d)) for all v ∈ T (0)
0 , with its other endpoint v′T on the

boundary of T0. Moreover, for every vertex v of T such that Pv(d) /∈ BCnv ,
ev has its other endpoint in T0. In the case that eT ∈ E, there is no such
v ∈ v′T − 1.

Proof. Proposition 3.23 of [4] asserts that any local minimizer d for d 7→
DT (d) on Ad(dF ) satisfies one of three criteria that it lists. (The result is
only stated there for absolute minimizers, but inspecting its proof shows that
it holds for local minimizers.) Criterion (1) is the condition that Pv(d) ∈
BCnv for all v ∈ T (0)−{vT }. We thus suppose now that d is a local minimum
that does not satisfy (1).

Criterion (2) of [4, Prop. 3.23] is that PvT ∈ BCnT , and criterion (3) is that

J(Pv(d)) = J(Pw(d)) for some v ∈ T (0) and w ∈ v− 1. But Proposition 2.3
implies that if d satisfies criterion (3) then it also satisfies (2). In fact,
defining T0 as we have here, Proposition 2.3 implies that T0 contains every
v ∈ T (0) such that Jv(d) = Jw(d) for some w ∈ T (0) that is joined to v by
an edge of T ; hence that Jv(d) = JvT (d) for all such v.

For every vertex v of T outside T0, it follows that the inequality of Def-
inition 1.1(3) is strict; i.e., that J(Pv(d)) > J(Pw(d)) for all w ∈ v − 1,
and moreover, that J(Pv(d)) < J(Pv′(d)) for such v, where v′ is the other
endpoint of ev. If Pv(d) /∈ BCnv and v′ /∈ T0, then we claim that dev can
be decreased slightly, keeping all other entries of d constant, to produce
d′ ∈ Ad(dF ), with DT (d′) < DT (d).

The deformation has the effect that

J(Pv(d
′)) < J(Pv(d)) and J(Pv′(d

′)) > J(Pv′(d)),

whereas J(Pw(d′)) = J(Pw(d)) for all other w ∈ T (0). But since we assumed
that v′ /∈ T0, if w is the other endpoint of ev′ then J(Pw(d)) > J(Pv′(d)), so
this inequality is preserved by choosing d′ev near enough to dev . Similarly,
if w ∈ v − 1 the strict inequality J(Pw(d)) < J(Pv(d)) is preserved upon
choosing d′ev near enough to dev . Arguing as in the next-to-last paragraph
of the proof of [4, Prop. 3.23] shows that Pv′(d

′) remains in ACnv′ − Cnv′ ,
and since Pv(d) lies in the open set ACnv − (Cnv ∪ BCnv) by hypothesis, it
remains there for d′ev near enough to dev . The fact that DT (d′) < DT (d)
follows as in the second paragraph of the proof of [4, Prop. 3.23], and the
claim is proved.
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The claim implies for all v ∈ T (0) such that Pv(d) /∈ BCnv that ev has its
other endpoint in T0. The remaining properties of T0 follow from Proposi-
tion 2.3. We note that as defined here we could have T0 = {vT }, if d satisfies
criterion (2) of [4, Prop. 3.23] but not (3), but in this case eT must lie in F .
This is because the fact that PvT (d) ∈ BCnT implies that J(PvT (d)) = deT /2
[5, Prop. 1.11], so if eT ∈ E then the fact that its other endpoint v′T must sat-
isfy J(Pv′T (d)) ≤ J(PvT (d)) (by Definition 1.1(1)) but J(Pv′T (d)) ≥ deT /2

[5, Prop. 1.5] implies that J(Pv′T (d) = deT /2 = J(PvT (d)). �

2.2. Allowing dF and T to vary. The first main result of this subsection,
Proposition 2.8, generalizes and strengthens Proposition 3.30 of [4]. The
idea here is to bound DT (d) below for a fixed compact, rooted tree T with
frontier F , but with dF allowed to vary with its entries bounded below by
those of some fixed bF ∈ (R+)F . After this we prove Lemma 2.10, which
compares minima of DT (d) for different trees T , then prove Theorem 2.11.

Proposition 2.8. Suppose T ⊂ V is a compact, rooted tree with root vertex
vT , edge set E, and frontier F . Given bF ∈ (R+)F , define bE ∈ (R+)E by
be = be(bF ) for each e ∈ E, where be : (R+)F → R+ is as in [4, Lemma
3.19]. Enumerating the edges of E ∪ F containing vT as e0, . . . , enT−1 so
that be0 is maximal, define me0 = min{be0 , b0(be1 , . . . , benT−1)}, and take:

BT (bF ) = D0(me0 , be1 , . . . , benT−1) +
∑

v∈T (0)−{vT }

D0(Pv(bE ,bF ))

Then for each dF ∈ (R+)F such that df ≥ bf for each f ∈ F − {e0} and

de0 ≥ me0, and each d ∈ Ad(dF ), DT (d) ≥ BT (bF ).

If e0 /∈ F then the requirement above on dF simply becomes that df ≥ bf
for all f ∈ F . In the case that e0 ∈ F we note that the given bound is a
priori stronger than one which holds for all dF with df ≥ bf for all f ∈ F ,
since me0 ≤ be0 .

The proof proceeds by separately considering the possibilities described
in Corollary 2.7 for minimizers of the function d 7→ DT (d). One is handled
by the lemma below.

Lemma 2.9. Suppose T ⊂ V is a rooted tree with root vertex vT , edge set
E, and frontier F , and fix bF ∈ (R+)F . Suppose for dF ∈ (R+)F and
d = (dE ,dF ) ∈ Ad(dF ), that:

(1) Pv(d) ∈ BCnv for each v ∈ T (0) − {vT }.
(2) df ≥ bf for each f ∈ F − {e0}, and de0 ≥ me0, for e0 and me0 as in

Proposition 2.8.

Then DT (d) ≥ BT (bF ), for BT as defined in Proposition 2.8.

Proof. For a given d, hypothesis (1) above and the defining property of the
functions be from [4, Lemma 3.19] imply for each e ∈ E that de = be(dF ).
The monotonicity property of be laid out in assertion (3) of [4, L. 3.19] and
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the hypothesis that df ≥ bf for each f ∈ F thus together imply that de ≥ be
for each e ∈ E . Corollary 2.4 of [5] now directly gives for each v ∈ T (0)−{vT }
that D0(Pv(bE ,bF )) ≤ D0(Pv(d)).

For e0, . . . , enT−1 as in Proposition 2.8, with me0 as defined there we note
that by construction (me0 , de1 , . . . , denT−1) lies in CnT∪BCnT . Therefore since

me0 ≤ be0 and PvT (d) ∈ CnT ∪ BCnT by Definition 1.1(2), [5, Cor. 2.4] also
implies that D0(me0 , be1 , . . . , benT−1) ≤ D0(PvT (d)). The lemma therefore

follows from the definitions of BT (bF ) and DT (dF ). �

Proof of Proposition 2.8. For bF ∈ (R+)F and T as in the proposition,
compute bE and me0 as prescribed there. Now enumerate F as {f1, . . . , fn},
where fn = e0 if e0 ∈ F . For the set SAdT = {dF ∈ (R+)F |Ad(dF ) 6= ∅}
defined in Lemma 3.29 of [4], that result implies that the set below is closed
in Rn.

SAdT (bF )
.
= SAdT ∩ {(d1, . . . , dn) ∈ Rn | di ≥ bfi for i < n, and dn ≥ me0 or bfn}

Here the inequality dn ≥ me0 applies if e0 ∈ F , hence fn = e0; otherwise we
require dn ≥ bfn .

Since SAdT (bF ) is closed its intersection with [0, D]n is compact for any
fixed D > 0. Let D be large enough that SAdT (bF ) ∩ [0, D]n is nonempty.
(It is not hard to show that such a D exists.) Then [4, L. 3.29] further implies
that the function dF 7→ min{DT (d) |d ∈ AdT (dF )} attains a minimum on
it, since it asserts that this function is lower-semicontinuous on SAdT .

Let dF be a minimizer for min{DT (d) |d ∈ Ad(dF )} on

SAdT (bF ) ∩ [0, D]n,

and d a minimizer for DT (d) on Ad(dF ). We apply Corollary 2.7 to d,
separately treating the different cases it describes. If Pv(d) ∈ BCnv for all

v ∈ T (0) − {vT } then Lemma 2.9 directly implies the desired bound. So we

will assume now that Pv(d) /∈ BCnv for some v ∈ T (0)−{vT }, and therefore
by Corollary 2.7 that PvT (d) ∈ BCnT , where vT has valence nT as in the
corollary.

Let eT be the edge containing vT such that deT is maximal among all such
edges. We first suppose that eT ∈ F . In this case we will deform dF within
SAdT (bF ) ∩ [0, D]n to reduce DT (d), thereby contradicting our minimality
hypothesis. The idea is to reduce deT without changing any other entry
of dF , so we first show there is room to do this in SAdT (bF ). With the
edges containing vT numbered e0, . . . , enT−1 so that be0 is maximal, we have
eT = ei0 for some i0. We claim that if i0 6= 0 then deT > beT = bei0 , and if
i0 = 0 then deT > me0 .

(The strict inequalities are the point here, since the hypothesis that dfi ≥
bfi for each fi ∈ F − {eT } implies that de ≥ be for each e ∈ E , by assertions
(2) and (3) of [4, L. 3.19]. This is not clear directly from that lemma’s
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statement, since we do not necessarily have deT ≥ beT here, but note that

the first sentence of its proof asserts for each v ∈ T (0) − {vT } that bev(dF )
is determined by dF and the collection of bew(dF ) for w < v. In fact the
proof itself shows more precisely that bev(dF ) is determined by the set of
dfi such that fi ∈ F contains v or some w < v. Here eT contains only vT ,

and of course there is no v ∈ T (0) such that vT < v.)
First suppose that i0 6= 0. By the above dei ≥ bei for each i 6= i0, and

in particular de0 ≥ be0 . The claim now follows from the fact that since
PvT (d) ∈ BCnT ,

deT = b0(de0 , . . . , d̂ei0 , . . . , denT−1),

so recalling [5, Prop. 1.12] we have that it is larger than de0 ≥ be0 .
Now suppose that i0 = 0. In this case we use our assumption that Pv(d) /∈

BCnv for some v ∈ T (0) − {vT }, which implies for the initial edge ev of the
arc of T joining v to vT that

dev > b0(de′1 , . . . , de′nv−1
) ≥ bev = b0(be′1 , . . . , be′nv−1

),

where e′1, . . . , e
′
nv−1 are the other edges of E ∪F containing v. It now follows

from Lemma 2.6 that strict inequality de > be holds for each edge e on the
arc joining v to vT , using ev as the base case of an inductive argument. This
holds in particular for one of the edges ei containing vT , for i > 0, so since
PvT (d) ∈ BCnT we again obtain from Lemma 2.6 that

deT = b0(de1 , . . . , denT−1) > b0(be1 , . . . , benT−1).

It thus follows that deT > me0 , and the claim is proved in this case as well.
We now define dF (t) by taking deT (t) = deT − t and dfi(t) ≡ dfi for all

fi ∈ F − {eT }. We will next produce a deformation d(t) ∈ Ad(dF (t)) of
d for small t > 0, from which (together with the claim) it will follow that
dF (t) is a deformation of dF within SAdT (bF ) ∩ [0, D]n. We will further
observe that DT (d(t)) decreases with t, thus obtaining a contradiction to
the hypothesis that dF is a minimizer for min{DT (d) |d ∈ Ad(dF )} on
SAdT (bF ) ∩ [0, D]n.

Let T0 be the maximal subtree of T such that J(Pv(d)) = J(PvT (d)) for

all v ∈ T (0)
0 . Define d(t) by letting de(t) ≡ de for each edge e of T that does

not lie in T0, and for e ⊂ T0 let de(t) be determined by Lemma 2.2. The
verification that d(t) ∈ Ad(dF (t)) parallels the corresponding check for the
deformation d(t) described in the proof of the third bulleted assertion of
Proposition 2.3, but it is simpler. In particular, T0 here plays the role of T1
there, but there is no T ′1 or v′0, and here we have d

dtdeT (t) ≡ −1 rather than
d
dtdeT (t) = − ∂b0

∂de′0
< 0 as there (see above the statement of Lemma 2.6). As

was the case with dF1(t), we have dF0(t) ∈ Cn0 for small t > 0, where F0 is
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the frontier of T0 and n0 = |F0|. We thus obtain

d

dt
DT (d(t)) = −

√
1

cosh2(deT (t)/2)
− 1

cosh2 J(dF0(t))
< 0

for small t > 0. This is the analog of (2.5.4) in the proof of Proposition 2.3,
but again it is simpler since there is no T ′1 or v′0, and here eT ∈ F instead.
It implies that DT (d(t)) is decreasing as asserted, finishing the case that
PvT (d) ∈ BCnT and eT ∈ F .

We finally address the case that PvT (d) ∈ BCnT and eT ∈ E . Here we
will argue by induction on the number of edges of T , i.e., |E|. The base case
T = {vT }, with E = ∅, follows directly from Lemma 2.9, since criterion (1)
there holds vacuously (here recall Remark 1.2.) So assume now that T has
k ≥ 1 edges, that the proposition holds for all trees with fewer than k edges,
and that PvT (d) ∈ BCnT with eT ∈ E .

Let T ′ be the maximal subtree containing the other endpoint v′T of eT
but not vT , and take T ′′ = T − (T ′∪ int(eT )). We take v′T as the root vertex
of T ′ and vT as the root vertex of T ′′. Naming the frontiers of T ′ and T ′′ as
F ′ and F ′′, respectively, we have F ′ ∩ F ′′ = {eT } and F ′ ∪ F ′′ = F ∪ {eT }.
Similarly taking their edge sets to be E ′ and E ′′, we have E ′ ∩ E ′′ = ∅ and
E ′ ∪ E ′′ ∪ {eT } = E . Thus by the induction hypothesis the proposition holds
for T ′ and T ′′.

Let d′ = (d′E ′ ,d
′
F ′) and d′′ = (d′′E ′′ ,d

′′
F ′′) take their entries from d, so in

particular d′eT = d′′eT = deT . Then for any vertex v of T ′, Pv(d
′) = Pv(d),

and similarly if v ∈ T ′′. Therefore d′ lies in Ad(d′F ′), and d′′ ∈ Ad(d′′F ′′):
criteria (1)–(3) of Definition 1.1 are directly inherited by T ′′ from T , and
for T ′ we merely note in addition that Pv′T (d′) ∈ BCn′T by hypothesis, and

J(Pv′T (d′)) = J(PvT (d)) = deT /2. Note that DT (d) = DT ′(d
′) + DT ′′(d

′′),

since each vertex of T lies in exactly one of T ′ or T ′′.
Define b′F ′ by taking b′eT = beT = beT (bF ) and pulling the remaining

entries from bF , and define b′′F ′′ by taking all entries but b′′eT from bF .
To obtain b′′eT we enumerate the edges containing vT as e0, . . . , enT−1 as
described in the proposition, for each i let bei be the appropriate entry of
bF or bE , and for i0 such that eT = ei0 we take

b′′eT = b0(be0 , . . . , b̂ei0 , . . . , benT
−1).

We will establish this case of the proposition with two claims: first, that
BT ′(d

′
F ′) + BT ′′(d

′′
F ′′) ≥ BT (dF ), and second, that d′e ≥ b′e for all e ∈

F ′ and d′′e ≥ b′′e for all e ∈ F ′′. Applying induction and the observation
that DT (d) = DT ′(d

′) +DT ′′(d
′′), we therefore conclude the desired bound

DT (d) ≥ BT (bF ).
Toward the first claim, computing straight from the definitions gives:

BT ′(d
′
F ′) +BT ′′(d

′′
F ′′)−BT (dF ) = D0(be0 , . . . , b

′′
eT
, . . . , benT−1)

−D0(me0 , be1 , . . . , benT−1).
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The entries from the two inputs to D0 on the right-hand side above differ
only in the e0 and ei0 positions. If i0 = 0 then it follows directly from their
definitions that me0 ≤ b′′eT . Otherwise, by its definition in the proposition
we have me0 ≤ be0 . And since be0 is maximal among the bei by definition,
b′′eT > be0 ≥ bei0 by its definition and Proposition 1.12 of [5]. In either case

the difference above is positive by [5, Cor. 2.4], yielding the first claim.
For the second claim we note first that by hypothesis de ≥ be for each

e ∈ F , so by definition d′e = de ≥ be for all e ∈ F ′ − {eT }, and similarly for
e ∈ F ′′ − {eT }. Applying Lemma 3.19 of [4] gives

de ≥ be(dF ) ≥ be(bF ) = be

for each e ∈ E . (The first and second inequalities above are respectively
implied by assertions (2) and (3) there.) It now follows immediately that
d′eT = deT ≥ b′eT = beT , so the claim is proved for dF ′ . Since PvT (d) ∈ CnT ,
Proposition 1.12 of [5] implies that

deT = b0(de0 , . . . , d̂ei , . . . , denT−1) ≥ b0(be0 , . . . , b̂ei , . . . , benT−1).

But the latter quantity is b′′eT , and since d′′eT = deT the second claim is also
proved for F ′′. �

Lemma 2.10. Suppose T ⊂ V is a compact, rooted tree with root vertex
vT , edge set E and frontier F , where each vertex of T has valence at least
three in V . There is a compact, rooted tree T0 ⊂ V0 with root vertex vT0,
edge set E0 and frontier F0, where each vertex of T0 is trivalent in V0, with
the following property.

There is a bijection q : F → F0 such that for any dF ∈ (R+)F , the tuple
dF0 ∈ (R+)F0 given by relabeling entries of dF using q has the property that:

min{DT (d) |d ∈ Ad(dF )} ≥ min{DT0(d) |d ∈ Ad(dF0)}

Proof. Suppose T has k vertices. Each vertex of T has valence at least
three in V , so 3k ≤ 2|E| + |F|, with equality holding if and only if each
vertex of T is trivalent in V . Since T is a tree its Euler characteristic is 1,
so we also have |E| = k − 1. Substituting this into the first inequality gives
k ≤ |F| − 2, with equality if and only if each vertex of T is trivalent in V .
We will prove the lemma by fixing n = |F| ≥ 3 and inducting on n−k. The
base case n− k = 2 holds trivially with T0 = T and q the identity map.

Let us now take k < n− 2 and suppose the lemma holds for all trees with
frontier of order n and more than k vertices. If T ⊂ V is a compact, rooted
tree with root vertex vT , edge set E of order k, and frontier F of order n
such that each vertex of T has valence at least three in V then by the first
paragraph there is a vertex v of T with valence at least four in V . List the
edges in E ∪ F containing v as e0, . . . , env−1, where nv is the valence of v in
V , and if v 6= vT then e0 = ev is the initial edge of the arc in T joining v to
vT .
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Let T1 be the maximal subtree of T containing e0 and e1 but not ei for
i > 1, and let T2 be the maximal subtree containing the remaining ei but
not e0 or e1. Then T = T1 ∪ T2 and T1 ∩ T2 = {v}. We produce a tree T ′

with k+ 1 vertices by joining a copy of T1 to a copy of T2 by an edge e′ that
has its endpoints at the respective copies of v in T1 and T2. We produce V ′

containing T ′ similarly, by doubling v and joining the resulting copies by e′.
There is a quotient map pe′ : V

′ → V that identifies e to a point and
takes T ′ to T . It induces a bijection from E ′ − {e′} to E , where E ′ is the
edge set of T ′, and from the frontier F ′ of T ′ in V ′ to F . We will refer
by q′ to refer to the inverse bijections both F → F ′ and E → E ′ − {e′}.
Given dF = (df | f ∈ F) ∈ (R+)F one produces d′F ′ ∈ (R+)F by relabeling:

d′F ′ = (dq(f) | f ∈ F). Similarly, given dE ∈ (R+)E , relabeling gives all

entries of an element d′E ′ ∈ (R+)E
′

but one, de′ . If d = (dE ,dF ) ∈ Ad(dF ),
we will choose de′ and a root vertex vT ′ for T ′ so that the resulting element
d′ = (d′E ′ ,d

′
F ′) lies in Ad(d′F ′).

With the edges of T containing v enumerated as above let di = dei for each
i < nv, and define de′ = `nv−1,1(d0, . . . , dnv−1), where `i,j is the diagonal-
length function described in Corollary 1.15 of [5]. By that result, de′ is
the length of the diagonal γ of a cyclic nv-gon Cv with side length collection
(d0, . . . , dnv−1) that cuts off the sides with lengths d0 and d1 from the others.
We now take d′E ′ as suggested in the previous paragraph, with dq(e) = de for
each in E and de′ as given here.

Now we assign T ′ a root vertex vT ′ . Let v1 be the copy of v that lies
in T1 ⊂ T ′, and let v2 be the other copy of v in T ′. If v 6= vT we let
vT ′ = p−1e′ (vT ), a vertex of T ′ since pe′ is injective away from e′. Now suppose
v = vT . If the circumcircle center of Cv lies on the side of γ containing the
edges of length d0 and d1 then we let v1 = vT ′ ; otherwise we let v2 = vT ′ .

For d′ = (d′E ′ ,d
′
F ′) as prescribed above, we claim that d′ ∈ Ad(d′F ′). In

the case that v 6= vT , condition (2) of Definition 1.1 follows immediately by
construction. If v = vT then since Pv(d) ∈ CnT ∪BCnT , Proposition 2.2 of [5]
implies that the cyclic nv-gon Cv described above contains its circumcircle
center c. The diagonal γ above divides Cv into cyclic n-gons Cv1 and Cv2
with respective side length collections Pv1(d′) and Pv2(d′), where Pv1(d′) =
(d0, d1, de′) and Pv2(d′) = (de′ , d2, . . . , dnv−1). We chose to label v1 or v2 as
vT ′ according to which of Cv1 or Cv2 contains c, so again by [5, Prop. 2.2]
we have PvT ′ (d

′) ∈ CnT ′ ∪ BCnT ′ .
By construction J(Pv1(d′)) = J(Pv2(d′)) = J(Pv(d)), and condition (3)

of Definition 1.1 follows. Condition (1) of Definition 1.1 follows for any
vertex v′ of T ′ outside e′ from the fact that Pv′(d

′) = Ppe′ (v′)(d). We now
check it for v1 and v2.

If v 6= vT then Pv(d) = (d0, . . . , dnv−1) ∈ ACnv − Cnv has largest entry
d0, since we enumerated the edges containing v as e0, . . . , env−1 so that
e0 = ev. Then by [5, Prop. 2.2] the side of Cv with length d0 separates Cv
from its circumcircle center c. It therefore also separates Cv1 from c, and γ
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separates Cv2 from c, which is their shared circumcircle center. Thus again
by [5, Prop. 2.2], Pv1(d′) ∈ AC3 − C3 has largest entry d0 and Pv2(d′) ∈
ACnv−2 − Cnv−2 has largest entry de′ . Since ev is the initial edge of the arc
joining v to vT in T , this arc lies in T1 and joins v1 to vT ′ = vT in T1 ⊂ T ′.
Its initial edge is still ev, and hence e′ is the initial edge of the arc in T ′

joining v2 to vT ′ .
If v = vT and v2 = vT ′ then γ separates Cv1 from c, so again Proposi-

tion 2.2 of [5] implies that de′ is the largest entry of Pv1(d′) ∈ AC3 − C3.
Since e′ is the arc joining v1 to v2 = vT ′ , Definition 1.1(1) follows in this
case. The case that v1 = vT ′ is completely analogous, and we have proven
the claim that d′ ∈ Ad(d′F ′).

Our construction of T ′ and d′ has reverse-engineered the hypotheses of
Lemma 3.28 of [4], since J(Pv1(d′)) = J(Pv2(d′)) and T is obtained from T ′

by crushing e′ to a point. In the notation of that result and Definition 3.26
there, T = T ′e′ and d = d′e′ . Therefore that lemma gives DT (d) = DT ′(d

′).

Choosing d as a minimizer for DT over Ad(dF ) gives:

min{DT (d) |d ∈ Ad(dF )} ≥ min{DT ′(d
′) |d′ ∈ Ad(d′F ′)}

Now applying the induction hypothesis to T ′, which has one more vertex
than T , we conclude that the lemma holds for T . Thus by induction the
lemma holds for all trees with frontier of order n ≥ 3. But n is arbitrary, so
the lemma holds. �

Theorem 2.11. Let C be a compact two-cell of the centered dual complex
of a locally finite set S ⊂ H2 such that for some b = (b1, . . . , bn) ∈ (R+)n

and enumeration of the edges of C, the ith edge has length at least bi for
each i. Then area(C) ≥ min{BT (σ(b)) |T ∈ Tn, σ ∈ Sn}, where BT is
the area bounding function defined in Proposition 2.8, Sn is the symmetric
group on n letters, σ ∈ Sn acts on b by permutation of entries, and Tn is
the collection of compact, rooted trees T with frontier F of order n and each
vertex trivalent in V = T ∪

⋃
f∈F f .

Proof. Let T ⊂ V be the dual tree to C (recall Definition 2.11 of [4]), where
V is the Voronoi tessellation’s one-skeleton, and enumerate the frontier F of
T as {f1, . . . , fn} so that the edge of C dual to fi has length at least bi for
each i. Let di be the length of this edge, and let dF = (d1, . . . , dn) ∈ (R+)n.
Taking dE to be the tuple of lengths of Delaunay edges dual to edges of T ,
Lemma 3.14 of [4] implies that d = (dE ,dF ) lies in Ad(dF ) ⊂ Ad(dF ), and
the area of C is DT (d).

By Lemma 2.10 there is a tree T0 ⊂ V0 with frontier F0 bijective to F , such
that each vertex of T0 is trivalent in V0, with the property that relabeling
the entries of dF using the bijection F → F0 yields dF0 satisfying:

DT (d) ≥ min{DT0(d0) |d0 ∈ Ad(dF0)}
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By Proposition 2.8, this quantity in turn is bounded below by BT0(bF0),
where bF0 is obtained from bF by relabeling in the same way. The theorem
follows. �

Remark 2.12. The area functionD0 is symmetric in its inputs [5, Prop. 2.3],
and the semicyclic radius function b0 is too [5, Prop. 1.12]. Using these facts
it is not hard to show that for any b and tree T , if edges f1 and f2 of F
terminate at the same vertex of T then for the transposition τ that swaps
the corresponding entries bf1 and bf2 of b, be(b) = be(τ(b)) for each e ∈ E
and BT (b) = BT (τ(b)). So in computing min{BT (b)} above, for each tree
T it is only necessary to test one representative of each left coset of the
subgroup ST (isomorphic to a direct sum of Z2’s) of Sn generated by such
swaps.

Furthermore, an automorphism f of (T, vT ) has an induced action on b
which is well-defined up to the action of ST , where the edges of F that
terminate at v are taken to those that terminate at f(v) for each v ∈ T (0)

and the corresponding entries of b go along for the ride. One can show again
that be(b) = be(f(b)) for each e ∈ E , and BT (b) = BT (f(b)). Thus for each
tree T it is in fact only necessary to test BT (σ(b)) for representatives σ of
each orbit of the action of the automorphism group of (T, vT ) on Sn/ST .

3. Practice

The main goal of this section is to describe the Python module mini-
mizer.py and data file forest.txt, which together give us the ability to obtain
the bounds of Theorem 2.11 for arbitrary n-tuples, n ≤ 9, using a computer.
First, in Subsection 3.1 we record some existing explicit formulas for geo-
metric measurements of cyclic polygons. We use these to give a completely
explicit statement of Theorem 2.11, in Corollary 3.4. Then in Subsection 3.2
we describe forest.txt and the components of minimizer.py.

Here is a brief explanation of how to use minimizer to compute the
bounds of Theorem 2.11. After downloading minimizer and forest you must
first replace “yourpath” on line 66 of minimizer.py, with your path to for-
est.txt. Then in a Python interpreter, import minimizer.py and run mini-
mizer.minimize() on the desired tuples. Here is a sample series of commands
at the Python command prompt, to get it up and running:

>>> import sys

>>> sys.path.append(‘[Your path to minimizer.py ]’)
>>> import minimizer

>>> minimizer.minimize([1,2,3,4,5])

This computes Theorem 2.11’s lower bound on the area of a five-edged cen-
tered dual two-cell with edge lengths bounded below by (b1, b2, b3, b4, b5),
where sinh(bi/2) = i for each i (see Important Note 3.5).
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Finally, in Subsection 3.3 we prove Proposition 3.8, on the relationship be-
tween Theorem 2.11 and Theorem 3.31 of [4], and consider some illustrative
examples.

3.1. Formulas. The reduction to the trivalent case allowed by Lemma 2.10
gives a huge savings in computational expense, since there are explicit for-
mulas for two critical quantities: the triangle area, and the circumcircle
radius of a semicyclic triangle. For an arbitrary cyclic n-gon C we do not
know an explicit formula in terms of side length for the area of C, and the
same is true for semicyclic circumcircle radius. Below we cite the references
we know for the results we use. Any omissions are due to the author’s
ignorance, and additional references are welcome.

The “hyperbolic Heron formula” below was first recorded (to my knowl-
edge) by S. Bilinski [2]. An equivalent formulation was rediscovered by
W.W. Stothers [9].

Lemma 3.1. The area of a compact hyperbolic triangle with sides of length
a, b and c is:

D0(a, b, c) = 2 cos−1
(

sinh2(a/2) + sinh2(b/2) + sinh2(c/2) + 2

2 cosh(a/2) cosh(b/2) cosh(c/2)

)
.

Here D0 refers to the area function from [5, Prop. 2.3].

Recall that we say a cyclic triangle is semicyclic if its longest side is also
a diameter of its circumcircle or, equivalently, if its side length collection
(a, b, c) lies in the space BC3 of [5, Prop. 1.11]. The “Pythagorean theo-
rem for semicyclic hyperbolic triangles” below is recorded as Lemma 4.3 of
Näätänen–Penner [8]. It can easily be derived from the hyperbolic law of
sines (see, e.g., [1, §7.12]).

Lemma 3.2. The circumcircle radius J of a compact, semicyclic hyperbolic
triangle with shorter side lengths a and b satisfies:

sinh2 J = sinh2(a/2) + sinh2(b/2).

Equivalently b0(a, b) = 2 sinh−1
(√

sinh2(a/2) + sinh2(b/2)

)
, for b0 as in

[5, Prop. 1.12].

Corollary 3.3. The area of a compact, semicyclic hyperbolic triangle with
shorter side lengths a and b is

D0(a, b, b0(a, b)) = 2 sin−1
(

sinh(a/2) sinh(b/2)

cosh(a/2) cosh(b/2)

)
= 2 sin−1 (tanh(a/2) tanh(b/2)) .

Proof. This follows by simply substituting the formula for b0 from Lem-
ma 3.2 for c in the formula for D0 from Lemma 3.1. Letting “D0” refer to
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D0(a, b, b0(a, b)) and “A” and “B” to sinh(a/2) and sinh(b/2), respectively,
we have:

cos(D0/2) =
2(A2 +B2 + 1)

2
√
A2 +B2 + 1 cosh(a/2) cosh(b/2)

(3.3.1)

=

√
A2 +B2 + 1

cosh(a/2) cosh(b/2)
.

Applying the identity sin2 θ = 1−cos2 θ and simplifying gives the result. �

We now use the formulas above to give a self-contained, explicit statement
of Theorem 2.11.

Corollary 3.4. Let C be a compact two-cell of the centered dual complex of
a locally finite set S ⊂ H2 such that for some b = (b1, . . . , bn) ∈ (R+)n and
enumeration of the edges of C, the ith edge has length at least bi for each i.
Then area(C) ≥ min{BT (b) |T ∈ Tn, σ ∈ Sn}, where Sn is the symmetric
group on n letters, σ ∈ Sn acts on b by permutation of entries, and Tn is
the collection of all compact, rooted trees T with root vertex vT , frontier F
of order n, and each vertex trivalent in T ∪

⋃
f∈F f ; and:

BT (b) = 2 cos−1

(
2 +

∑2
i=0 sinh2(meiT

/2)

2
∏2
i=0 cosh(meiT

/2)

)
+

∑
v∈T (0)−{vT }

2 sin−1
(
tanh(be1v/2) tanh(be2v/2)

)
.

Here for v ∈ T (0) − {vT }, e1v and e2v are the two edges containing v with the
property that v is closer to vT than the other endpoint. For each edge e of
T , taking v to be the further endpoint of e from vT , we recursively define
be = be(b) following [4, Lemma 3.19]:

be(b) = 2 sinh−1
√

sinh2(be1v/2) + sinh2(be2v/2).

The three edges containing vT are enumerated as e0T , e1T , and e2T , and for
each i, taking i± 1 modulo three, we define:

meiT
= min

{
beiT

, 2 sinh−1
√

sinh2(bei+1
T
/2) + sinh2(bei−1

T
/2)
}
.

In particular, meiT
= beiT

if beiT
is not maximal.

Proof. This is obtained from Theorem 2.11 by writing out the formula for
BT (b) from Proposition 2.8 and noting that since each vertex of T has
valence three in T ∪

⋃
f∈F f , Lemma 3.1 computes D0(me0 , be1 , . . . , benT

−1),

Lemma 3.2 computes be(b) for each e ∈ E , and Corollary 3.3 computes

D0(Pv(bE ,b)) for all v ∈ T (0) − {vT }. �
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3.2. Programs. This section describes minimizer.py, a Python module
containing a script minimize() for computing the lower bounds given by
Corollary 3.4 on areas of centered dual two-cells with at most nine edges.
The architecture of minimize() is simple, and we write it here in pseudocode:

define minimize(bounds)

n = length(bounds), minlb = -1

for tree in forest(n)

for b in permute(bounds)

lb = treecrawler(tree,b)

if minlb == -1 then minlb = lb

else minlb = min(lb, minlb)

return minlb

Given an input n-tuple “bounds”, the idea is to loop over each tree in Tn,
and for each tree T over each permutation b of bounds, computing BT (b)
and comparing it to the minimum obtained from prior computations. Here
forest() is a routine that produces all elements of Tn for a given n; permute()
produces all permutations of a given tuple; and treecrawler(,) computes
BT (b), given T ∈ Tn and an n-tuple b.

Important Note 3.5. For a given n-tuple b = (b1, . . . , bn), to obtain
min{BT (σ(b))} one inputs a list [B1, . . . , Bn] to minimize(), where Bi =
sinh(bi/2) for each i. The motivation for this choice is the nature of the
explicit functions in Section 3.1.

Below we give some details on the implementations of permute, treecraw-
ler, and forest.

3.2.1. Permute. The itertools Python module contains a script permuta-
tions that generates all permutations of a given list. Our implementation
of minimizer.py calls this function to produce permutations of b. For cus-
tom applications or use in programming languages that lack such a pre-built
tool, we note that many existing permutation generation algorithms can be
found, e.g., in [6] or on Wikipedia. We point out one concrete example:
the “Steinhaus–Johnson–Trotter algorithm”, which was later improved by
S. Even, see [10].

Another thing to note is that generating all permutations of any tuple of
bounds produces considerable redundancy in the output of treecrawler(,), on
account of Remark 2.12. Guided by the KISS principle (and our limitations
as a coder), we have elected not to attempt to remove this redundancy in
our implementation.

3.2.2. Treecrawler. This function from minimizer.py takes two lists as
input: one, “tree”, of length n − 3 which encodes a rooted tree T with
frontier F of order n, and another, “bound”, of length n which contains an
entry Bi = sinh(bi/2) for each entry bi of a tuple b of edge length bounds.
A couple of observations motivate choosing this form for the inputs. First,
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Figure 3.1. The rooted trees with 2 ≤ k ≤ 4 vertices, with
root vertices enlarged and vertices labeled, and the associated
(k − 1)-tuples.

3.6. Every tree in Tn has n− 3 edges.

Let E be the edge set of T . Since each edge in E contains two vertices of
T and each edge of F contains exactly one, by our trivalence hypothesis the
number k of vertices of T satisfies 3k = 2|E|+ n. Since T is a tree its Euler
characteristic is k− |E| = 1, so substituting gives k = n− 2 and |E| = n− 3.

The second motivating observation is:

3.7. The vertices of a compact, rooted tree T with k edges and root vertex
vT can be enumerated as v0, . . . , vk so that for each i and j, if the arc [vi, vT ]
from vi to vT contains vj then i ≤ j. Given such a numbering, enumerate
the edges of T as e0, . . . , ek−1 so that ei is the initial edge of [vi, vT ] for each
i < k. Then T is determined by the k-tuple (n0, . . . , nk−1), where for each
i, vni is the nearer vertex of ei to vT .

One may produce the desired enumeration of the vertices of T by first
listing all those at maximal distance d from vT in T , then listing those at
distance d− 1, and so forth. Note that any such enumeration has vT = vk.
And since T is a tree there is a unique arc joining vi to vT for all i < k, so
ei is uniquely determined for each such i by the requirement above. This
yields k unique edges; all of them, since T is a tree with k + 1 vertices.

Figure 3.1 depicts the rooted trees with one to three edges, with vertices
enumerated and the resulting encoding tuples following 3.7.

Treecrawler distributes the bounds of “bound” to frontier edges of T in
the opposite order from that of the vertices. That is, having enumerated the
vertices of T as v0, . . . , vn−3 following 3.7, we enumerate F as {f1, . . . , fn} so
that if i < j then ni ≥ nj , where vni and vnj are the vertices of T contained
fi and fj , respectively. Then we bound dfi below by bi for each i. (This
choice is made because it is computationally least expensive.)

The idea of the program is to recursively compute bei and D0(Pvi(b))
using the formulas of Lemmas 3.1 and 3.2. Having done so for a given
i, we append bei to a list “edgelengths” containing the lengths ej , and
we add D0(Pvi(b)) to the number “totalarea” that records the sum of the
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Figure 3.2. The collections Tn for n ≤ 9.

D0(Pvj (b)), for j < i. The main observation here is that for each i < n− 3,
vi is contained in exactly two edges of E ∪F not equal to ei, and if either of
these is of the form ej ∈ E then j < i.

3.2.3. Forest. This is a library of all elements of Tn for 3 ≤ n ≤ 9. Recall
that an element T of Tn is a compact, rooted tree with frontier F of order
n, such that each vertex of T has valence three in T ∪

⋃
f∈F f , and therefore

valence at most three in T . In forest.txt and Figure 3.2, which depicts its
members, we track only the internal structure of T — the idea being that
each vertex of T gets as many frontier edges as necessary to bring its valence
up to three in T ∪

⋃
f∈F f .

By 3.6 above, each T ∈ Tn has k = n−3 edges, so forest.txt encodes T by
a string of length k following the scheme in 3.7. The first line of forest.txt
is a key: a (0-based) list L whose kth entry L[k] records the number of
lines down that the codes for trees with k edges begin. In fact the codes
begin one line below that: the line L[k] below the first contains a single
integer, which is the total number of codes for k-edged trees. Each tree code
occupies a single line. It is the code described in 3.7 but written in reverse
order (minimizer.py un-reverses the order when reading the code).

Figure 3.2 depicts the T ∈ Tn for 3 ≤ n ≤ 9. For each n, trees are
numbered in the figure according to their position in the corresponding list
in forest.txt : if a vertex v of a tree T with n−3 edges there is numbered i then
the element of Tn represented by T with root vertex v is also represented
by the ith code from the top of the list in forest.txt containing codes for Tn.
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For instance, for the vertex labeled 14 on the five-edged tree T in the figure,
enumerating the vertices of T following 3.7 yields the five-tuple (2, 2, 5, 5, 5).
The reverse of this is the fourteenth and final 5-edged tree code in forest.txt.

Each non-numbered vertex in Figure 3.2 is taken to a numbered vertex
by an automorphism of the tree that contains it. Note that the vertex
numbering prescribed in 3.7 is not necessarily unique, so each code is one
of possibly several representing the same tree. In the case above the other
possibilities are (3, 3, 5, 5, 5) and (4, 4, 5, 5, 5).

We record a couple of observations to support the classification of trees
in Figure 3.2. A tree T with k edges has diameter d ≤ k. Let γ be an edge
arc of length equal to d (such an arc is the horizontal part of each tree in
the figure). The k − d edges not contained in γ lie in a disjoint union of
maximal subtrees of T that do not contain edges of γ. If T0 is such a subtree
then its intersection point v0 with γ can be at most d− d0 away from each
boundary vertex of γ, where d0 is the maximal distance in T0 from v0 to
another vertex. Otherwise the diameter hypothesis would be violated.

It is now just a matter of enumerating the possible d ≤ k, and for each
d, the possibilities for T0. We note also that d cannot be too small. For
instance, in the six-edge case if d were equal to 3 then three edges of T
would lie outside γ. There are only two possible attachment points for the
trees T0, the interior vertices of γ. So one such T0 must contain at least two
edges, hence it must have d0 ≥ 2. But this contradicts our assumption on
d, since each interior vertex of γ is at distance 2 from one of its boundary
vertices.

3.3. Examples. Here we analyze a couple of examples that illustrate im-
portant basic features of the bounds of Theorem 2.11. Before the first, we
pause to observe:

Proposition 3.8. For any n > 4 and d > 0 the bound min{BT (σ(b))}
given by Theorem 2.11 for b = (d, . . . , d) ∈ Rn is larger than the bound
(n− 2)Am(d) from [4, Theorem 3.31]. For n = 3 and n = 4 the two results
offer equal bounds.

Proof. We first touch on the case n = 3. In this special case the lower
bound of [4, Thrm. 3.31] is the area of an equilateral triangle with all side
lengths d; i.e., D0(d, d, d) in the language of [5, L. 2.1]. The only tree in
T3 is T = {vT }, and chasing the definition of BT in Proposition 2.8 gives
BT (d, d, d) = D0(d, d, d). We therefore assume below that n ≥ 4.

For the given b we note that σ(b) = b for all σ ∈ Sn, so in the bound of
Theorem 2.11 the minimum need only be taken over T ∈ Tn. By 3.6 above,
each T ∈ Tn has n − 2 vertices. Thus applying the definition of BT , the
result will follow by observing for any such T that D0(Pv(bE ,b)) ≥ Am(d)

for each v ∈ T (0) − {vT }; that D0(me0 , be1 , be2) ≥ Am(d), where e0, e1 and
e2 in E ∪ F contain vT with be0 maximal among the bei ; and that strict
inequality holds for some vertex if n > 4.
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The tuple bE ∈ (R+)E referenced above is defined in Proposition 2.8 by
be = be(b) for each e ∈ E , where be : (R+)F → R+ is from [4, Lemma 3.19].

For each v ∈ T (0) − {vT }, taking ev as the initial edge of the arc joining v
to vT , bev = b0(be1 , be2) by the definition of be in [4, L. 3.19], where b0 is
the function from [5, Prop. 1.12] and e1, e2 ∈ E ∪F are the other two edges
containing v. Thus D0(Pv(bE ,b)) = D0(be1 , be2 , b0(be1 , be2)).

For v and e1, e2 as above, if ei ∈ F then bei = d by our hypothesis here. It
follows from Property (1) of [4, L. 3.19] that bei > d if ei ∈ E . Corollary 2.4
and Proposition 1.12 of [5] together imply that if x ≤ x′ and y ≤ y′ then
D0(x, y, b0(x, y)) ≤ D0(x

′, y′, b0(x
′, y′)), and that strict inequality holds here

if x < x′ or y < y′. Therefore D0(Pv(bE ,b)) ≥ D0(d, d, b0(d, d)) for all

v ∈ T (0) − {vT }, and the inequality is strict unless v has valence one in T .
Property (1) of [4, L. 3.19] can be used here to show the stronger fact

that be ≥ b0(d, d) for each e ∈ E . By its definition in Proposition 2.8 and
the monotonicity of b0 ([5, Prop. 1.12]) we also have me0 ≥ b0(d, d) for e0,
e1 and e2 containing vT as above. Therefore again

D0(me0 , be1 , be2) ≥ D0(d, d, b0(d, d))

by [5, Cor. 2.3], with strict inequality if vT does not have valence one in T .
As pointed out in the statement of [4, Thrm. 3.31], Am(d) is the area of

a semicyclic triangle with two sides of length d. But b0 : (R+)2 → R+ is
characterized by the property that (x, y, b0(x, y)) ∈ BC3 has unique largest
entry b0(x, y) for all x and y, where BC3 is the space parametrizing semicyclic
triangles, so Am(d) = D0(d, d, b0(d, d)). It therefore follows from above that
min{BT (σ(b))} ≥ (n−2)Am(d), and that strict inequality holds unless each
vertex of T has valence one in T . This in turn only holds if T has two vertices
and one edge; i.e., if n = 4.

It is now straightforward to verify in the case n = 4 for the lone rooted
tree T with one edge, and b = (d, d, d, d), that

BT (b) = 2D0(d, d, b0(d, d)) = 2Am(d). �

Example 3.9. We consider the n-tuple bn with all entries b = 2 sinh−1(1)
(i.e., with sinh(b/2) = 1) and allow n to vary between 4 and 9. The outputs
of Theorem 3.31 of [4] and Theorem 2.11 here are recorded in the table below,
in each case truncated after three decimal places. Recall from Important
Note 3.5 that the input for minimizer.minimize() corresponding to b is
[1, . . . , 1].

The “tree number” line below refers to the number in Figure 3.2 (or
forest.txt) of the tree realizing min{BT (b)}.

It is not hard to show using Corollary 3.3 that for our chosen b, Am(b) =
π/3. So the exact value of (n− 2)Am(b) is 2π/3 for n = 4, π for n = 5, and
so on. Note that the difference between bounds grows monotonically with
n.

A takeaway from the proof of Proposition 3.8 is that for a particular T ,
with b = (1, . . . , 1), vertices with valence one in T contribute the least to
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n 4 5 6 7 8 9
(n− 2)Am(b) 2.094 3.141 4.188 5.235 6.283 7.330
min{BT (bn)} 2.094 3.295 4.526 5.818 7.107 8.441

tree number 1 2 4 6 14 20

Table 1. The outputs of [4, Thrm. 3.31] and Theorem 2.11
on bn as above.

Identity case

1

X

1

1

√
X2 + 1

Case σ

1

1

1

X

√
2

Figure 3.3. The two cases of Example 3.10.

BT (b). It is therefore not surprising that for each n the rooted tree realizing
min{BT (bn)} has the maximum possible number of vertices of valence one
among all trees in Tn. Note moreover that the root vertex of each such
example has maximal valence.

Example 3.10. Now we explicitly analyze the simplest case with unequal
entries, taking c = (b, b, b, x) with sinh(b/2) = 1 as in the previous example.
There is only one tree T ∈ T4, and following the scheme of treecrawler we
label its frontier as {f0, f1, f2, f3} so that f0 and f1 terminate at the root
vertex vT and f2 and f3 at the other one. Since c has many identical entries,
by Remark 2.12 there are only two permutations of c to check: the identity,
which assigns x to f3 and b to all others, and a permutation σ that assigns
x to f0. These are pictured in Figure 3.3.

Frontier edges are dashed in the figure, and each such edge fi is labeled
with sinh(cfi/2), where cf is the corresponding entry of c (or σ(c) in the
other case). In particular, X = sinh(x/2). The edge e of T points toward vT
(which hence is the right vertex in each case). It is labeled with be = be(c)
as prescribed in Corollary 3.4.

In order to compute BT (c) and BT (σ(c)) we must first determine the mei

as in Corollary 3.4, where e0, e1 and e2 are the edges containing vT . We
will take e0 = f0, e1 = f1, and e2 = e in each case. Then in the identity
case, sinh(me2/2) =

√
X2 + 1 if X ≤ 1 and otherwise sinh(me2/2) =

√
2,

and mei = b for i = 0, 1 and any x. This gives:

BT (c) =


2 sin−1

(
X√

2(X2+1)

)
+ 2 cos−1

(
5+X2

4
√
X2+2

)
, X ≤ 1,

2 sin−1
(

X√
2(X2+1)

)
+ 2 sin−1

(
1
2

)
, X > 1.
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In each case above the contribution from vT is the second summand. For
X > 1 we simplify by using the observation from the proof of Lemma 3.3,
that for inputs in BC3, Heron’s formula reduces to the one from that result.

In case σ we have me0 = x, me1 = b and sinh(me2/2) =
√
X2 + 1 if

X ≤ 1; me0 = x, me1 = b and sinh(me2/2) =
√

2 for 1 < X ≤
√

3; and

sinh(me0/2) =
√

3, me1 = b and sinh(me2/2) =
√

2 if X >
√

3. Applying
this gives:

BT (σ(c)) =


2 sin−1

(
1
2

)
+ 2 sin−1

(
X√

2(X2+1)

)
, X ≤ 1,

2 sin−1
(
1
2

)
+ 2 cos−1

(
5+X2

2
√

6(X2+1)

)
, 1 < X ≤

√
3,

2 sin−1
(
1
2

)
+ 2 sin−1

(
1√
3

)
, X >

√
3.

Again the contribution from vT is the second summand. To understand
which of BT (c) or BT (σ(c)) is larger for various values of x, it helps to look
at them in a different way. Below to save space we replace a by sinh(a/2)
for any entry a of an input to the area function D0.

BT (σ(c))−BT (c) = D0(1, 1,
√

2)−D0(1, X,
√

2) > 0, X ≤ 1,

BT (c)−BT (σ(c)) = D0(1, X,
√
X2 + 1)−D0(1, X,

√
2) > 0, 1 < X ≤

√
3,

BT (d)−BT (σ(c)) = D0(1, X,
√
X2 + 1)−D0(1,

√
3,
√

2) > 0, X >
√

3.

The inequalities in each case follow from Proposition 2.3 of [5]. Therefore
as long as X ≤ 1, min{BT (c), BT (σ(c))} = BT (c), and otherwise it is
BT (σ(c)).

Note that the given bound is constant for x ≥ 2 sinh−1(
√

3). Its value,
truncated after three decimal places, is 2.278 for such x. This may be
compared with the bound of 2.094 given for b4 = (b, b, b, b) in Table 1.

Remark 3.11. The cases of Example 3.10 where X ≤
√

3 are distinguished
by the fact that taking bF = c or bF = σ(c) as appropriate to minimize
BT , the tuple bE produced by Proposition 2.8 has (bE ,bF ) ∈ AdT (b).
Another way of saying this, again using the notation of Proposition 2.8, is
that me0 = be0 .

We say an arbitrary n-tuple b with the analogous property is “geometri-
cally reasonable”. That is, for T ∈ Tn and σ ∈ Sn such that BT (σ(b)) real-
izes the bounds of Theorem 2.11, we should have (bE , σ(b)) ∈ AdT (σ(b)).
The reason is that in this case there is a metric triangle complex T with com-
binatorics prescribed by T and geometry by (bE , σ(b)), and a map T→ H2

whose image we expect in many cases to be a centered dual cell with edge
length collection σ(b) and area equalling the bound.

The idea here is that T has a triangular face for each v ∈ T (0) which is
a hyperbolic triangle with edge length collection Pv(bE , σ(b)), and for each
edge e of T the faces of T corresponding to its endpoints are glued along
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their sides with length be. A map T → H2 is determined by choosing an
isometric embedding of PvT (bE , σ(b)) and analytically continuing outward
from vT in T , forcing the restriction to each Pv(bE , σ(b)) to be an isometry.
This map is therefore a local isometry on the interior of T.

Such a map may fail to be an isometry if there is branching at the vertices,
or if different arms of T determine regions of T with overlapping images.
Even in the absence of these, a vertex of some Pv may end up inside the
circumcircle of some other Pw. But for many geometrically reasonable b
these pathologies will not occur, and for these the image of T will be a
centered dual cell of the set of images S of its vertices.
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