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On the Galois correspondence for Hopf
Galois structures

Lindsay N. Childs

Abstract. We study the question of the surjectivity of the Galois cor-
respondence from subHopf algebras to subfields given by the Fundamen-
tal Theorem of Galois Theory for abelian Hopf Galois structures on a
Galois extension of fields with Galois group Γ, a finite abelian p-group.
Applying the connection between regular subgroups of the holomorph of
a finite abelian p-group (G,+) and associative, commutative nilpotent
algebra structures A on (G,+), we show that if A gives rise to a H-Hopf
Galois structure on L/K, then the K-subHopf algebras of H correspond
to the ideals of A. Among the applications, we show that if G and Γ are
both elementary abelian p-groups, then the only Hopf Galois structure
on L/K of type G for which the Galois correspondence is surjective is
the classical Galois structure.
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1. Introduction

The Fundamental Theorem of Galois Theory (FTGT) of Chase–Sweedler
[ChaS69] states that if L/K is a H-Hopf Galois extension of fields for H a
K-Hopf algebra, then there is an injection F from the set of K-sub-Hopf
algebras of H to the set of intermediate fields K ⊆ E ⊆ L given by sending
a K-subHopf algebra J to F(J) = LJ . The strong form of the FTGT holds
if the injection is also a surjection. For a classical Galois extension of fields
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2 LINDSAY N. CHILDS

with Galois group Γ, the FTGT holds in its strong form. It is known from
[GP87] that if L/K is a (classical) Galois extension with nonabelian Galois
group Γ, then there is a Hopf Galois structure on L/K so that F maps onto
the subfields E of L that are normal over K. So if Γ is not a Hamiltonian
group [Ha59, 12.5], then L/K has a Hopf Galois structure for which the
strong form of the FTGT does not hold. In particular, the strong form fails
extremely for the unique [By04] nonclassical Hopf Galois structure on L/K
when Γ is a nonabelian simple group.

Nearly all of the examples examining the success or failure of the strong
form of the FTGT for a nonclassical Hopf Galois structure on a classical Ga-
lois extension L/K with Galois group Γ involve nonabelian groups. Perhaps
the only wholly abelian example of failure in the literature is in [CrRV15],
2.2, where Γ ∼= C2 × C2 and L/K has a Hopf Galois structure by H, a
K-Hopf algebra which is a K-form of LC4. Then by classical Galois theory,
there are three intermediate subfields between K and L, but LC4 has only
one intermediate L-Hopf algebra, so H can have at most one intermediate
K-subHopf algebra. Hence the strong form of the FTGT cannot hold for
that Hopf Galois structure.

Here we assume that L/K is a Galois extension with Galois group an
abelian p-group Γ of order pn. Suppose L/K also has a H-Hopf Galois
structure by an abelian (commutative and cocommutative)K-Hopf algebra
H. We will characterize the K-sub-Hopf algebras of H. Since we know
by the classical FTGT that the intermediate fields between K and L are
bijective with the subgroups of Γ, it will be easy to compare the number of
subgroups of Γ with the number of K-sub-Hopf algebras of G, and thereby
better understand how far the Galois correspondence for H is from being
surjective.

The new tool in our study is the correspondence between regular sub-
groups of the holomorph of a finite abelian p-group G = (G,+) and asso-
ciative, commutative nilpotent ring structures A = (G,+, ·) on the additive
group G. This correspondence was presented for G an elementary abelian p-
group by A. Caranti, F. Dalla Volta and M. Sala in [CDVS06] and extended
to all finite abelian p-groups in [FCC12].

This paper and [FCC12], [Chi15] and [Chi16] demonstrate in different
ways the usefulness of the correspondence of [CDVS06] in the Hopf Galois
theory of Galois extensions of fields whose Galois group is a finite abelian
p-group.

2. Some translations

Let L/K be a Galois extension with Galois group Γ and let G be a group
of the same cardinality as Γ. Let H be a K-Hopf algebra and H ⊗K L→ L
be an H-module algebra action that makes L/K into an H-Hopf Galois
extension. We will need three successive translations of the data: the K-
Hopf algebra H, and the action of H on L.



ON THE GALOIS CORRESPONDENCE 3

The first translation. This is the main result of Greither and Pareigis
[GP87]. By “base change” from K to L, the K-Hopf algebra H and its
action on L becomes the L-Hopf algebra L ⊗K H and the lifted action of
L⊗K H on L⊗K L. Since L/K is a Galois extension with Galois group Γ,

L⊗K L ∼= ΓL = ⊕γ∈ΓLeγ

where {eγ : γ ∈ Γ} is a dual basis to the elements γ of Γ, and as Greither
and Pareigis point out, it follows that L ⊗K H is a group ring LN where
LN acts on ΓL as a regular group of permutations of the dual basis of
Γ, and N ⊂ Perm(Γ) is normalized by the image λ(Γ) of the left regular
representation of Γ in Perm(Γ). This base change is bijective, because given
a regular subgroup N of Perm(Γ) normalized by λ(Γ) and an action of LN
on ΓL, the regularity of N implies that the action of LN on ΓL makes the
extension ΓL/L into an LN -Hopf Galois extension. Since N is normalized
by λ(Γ), Galois descent of the Hopf Galois extension over L (that is, taking
fixed subrings under the action of Γ acting on L by the action of the Galois
group of L/K and on N by conjugation by λ(Γ)) yields H and the original
Hopf Galois structure of H on L over K.

Of relevance for us concerning this translation is a result of Crespo, Rio
and Vela ([CrRV16], Proposition 2.2), that in the setting of the last para-
graph, the K-subHopf algebras of H correspond to the subgroups of N that
are normalized by λ(Γ).

The second translation. Let N be a regular subgroup of Perm(Γ) nor-
malized by λ(Γ). Then N has the same order as λ(Γ). Let G be an ab-
stract group of the same cardinality of Γ such that there is an isomorphism
α : G → N . Then we say that the corresponding K-Hopf algebra H has
type G. Viewing N as a subgroup of Perm(Γ), the map α : G→ Perm(Γ) is
a regular embedding of G in Perm(Γ).

As shown in [By96], a regular embedding α : G→ Perm(Γ) whose image
α(G) is normalized by λ(Γ) corresponds to a regular embedding

β : Γ→ Hol(G),

where

Hol(G) = ρ(G)Aut(G) ⊂ Perm(G)

is the normalizer of λ(G) in Perm(G). Here ρ : G → Perm(G) is the right
regular representation of G in Perm(G). The relationship between α and β
is as follows:

Let β : Γ→ Hol(G) be a regular embedding. Define b : Γ→ G by

b(γ) = β(γ)(eG)

for γ in Γ, where eG is the identity element of G. Then for all g in G,

β(γ)(g) = (b(λ(γ))b−1)(g) = (C(b)λ(γ))(g)



4 LINDSAY N. CHILDS

Define α : G→ Perm(Γ) by

α(g)(γ) = (b−1(λ(g))b)(γ) = (C(b−1)λ(g))(γ).

Then α(g)(eΓ) = b−1(g) and C(b)λ(γ) = β. Then α(G) is normalized by
λ(Γ). In fact,

Proposition 2.1. Suppose β : Γ → Hol(λ(G)) is a regular embedding, and
let α = C(b−1)λ : G → Perm(Γ) be the regular embedding corresponding to
β. Then for all γ in Γ and g in G, there is some h in G so that

β(γ)λ(g)β(γ)−1 = λ(h)

and

λ(γ)α(g)λ(γ)−1 = α(h).

Proof. The first formula follows because β maps Γ into Hol(G), the normal-
izer of λ(G) in Perm(G). Since C(b−1)(β)(γ) = λ(γ) and C(b−1)λ(g) = α(g),
the second formula follows from the first by applying C(b−1) to the first for-
mula. �

The third translation. Here is the result of Caranti, et. al. from [FCC12].

Proposition 2.2. Let (G,+) be a finite abelian p-group. Then each regular
subgroup of Hol(G) is isomorphic to the group (G, ◦) induced from a structure
(G,+, ·) of a commutative, associative nilpotent ring (hereafter, “nilpotent”)
on (G,+), where the operation ◦ is defined by g ◦ h = g + h+ g · h.

The idea is the following: Let (G,+) be an abelian group of order pn , and
suppose that A = (G,+, ·) is a nilpotent ring structure on (G,+) yielding
the operation ◦. Define τ : (G, ◦) → Hol(G,+) by τ(g)(x) = g ◦ x. Then
τ(g)(0) = g, and

τ(g)τ(g′)(x) = τ(g)(g′ ◦ x) = g ◦ (g′ ◦ x) = (g ◦ g′) ◦ x = τ(g ◦ g′)(x).

Thus τ is an isomorphism from (G, ◦) into Perm(G,+). Since

τ(g)λ(g′)τ(g)−1 = λ(g′ + gg′),

the image τ(G, ◦) = T is a regular subgroup of Hol(G). This process is
reversible: given a regular subgroup T of Hol(G,+), there is a nilpotent
ring structure A = (G,+, ·) on G, which defines the ◦ operation as above
and yields a unique isomorphism τ : (G, ◦)→ T so that τ(g)(x) = g ◦ x.

3. Sub-Hopf algebras of H

Suppose L/K be a Galois extension with Galois group Γ, a finite abelian
p-group of order pn. Suppose there is a Hopf Galois structure on L/K by
H so that L⊗K H = LN .

Let α : G → N be an isomorphism and let β : Γ → T ⊂ Hol(G) be the
regular embedding of Γ in Hol(G) corresponding to α. Let A = (G,+, ·) be
the nilpotent ring structure on (G,+) corresponding to T . Let (G, ◦) be the
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set G with the operation ◦ from A, let τ : A = (G, ◦)→ T ⊂ Hol(G) so that
τ(g)(x) = g ◦ x, and let ξ : Γ→ (G, ◦) be an isomorphism so that β = τξ.

Theorem 3.1. Suppose the nilpotent algebra A = (G,+, ·) yields the regular
embedding α : (G,+) → Perm(Γ) whose image is normalized by λ(Γ). Let
L/K be a Galois extension of fields with Galois group Γ which is a H-Hopf
Galois extension where H corresponds to α(G,+). Then the lattice (under
inclusion) of λ(Γ)-invariant subgroups of α(G), and hence the lattice of K-
sub-Hopf algebras of H, is isomorphic to the lattice of ideals of A.

Proof. First, α : G→ Perm(Γ) is an injective homomorphism from (G,+)
to Perm(Γ). Since α is injective, there is a bijection between subgroups of
(G,+) and subgroups of α(G). Clearly J1 ⊆ J2 iff α(J1) ⊆ α(J2), so the
bijection is lattice-preserving.

Suppose the image α(G) of α is normalized by λ(Γ), so for all γ in Γ, g
in G, there is some h in G so that

λ(γ)α(g)λ(γ)−1 = α(h).

By Proposition 2.1, this equation holds iff

β(γ)λ(g) = λ(h)β(γ).

Recalling that A = (G,+, ·) = (G, ◦), factor β = τξ where

ξ : Γ→ A = (G, ◦)

is an isomorphism and τ : A = (G, ◦)→ Hol(G) sends k in G to τ(k) where
τ(k)(y) = k ◦ y for y in G. Let ξ(γ) = k in A. Then the last equation is

τ(k)λ(g) = λ(h)τ(k),

and applying this to x in G gives

τ(k)(g + x) = h+ τ(k)(x).

Since τ(k)(x) = k ◦ x, we have

k ◦ (g + x) = h+ k ◦ x.

Viewing this equation in A, where a ◦ b = a+ b+ a · b, we have

k + (g + x) + k · g + k · x = h+ k + x+ k · x.

This last equation reduces to

h = g + k · g.

Now suppose J is an ideal of A and g is in J . Then k · g is in J , so h is
in J , and so λ(γ) conjugates α(g) in α(J) to an element of α(J). So α(J)
is normalized by λ(Γ) in Perm(Γ).

Conversely, suppose J is an additive subgroup of (G,+, ·) = A and α(J)
is normalized by λ(Γ). Then for all γ in G, g in J ,

λ(γ)α(g)λ(γ)−1 = α(h)
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and α(h) is in α(J). So h is in J . Then by Proposition 2.1 as above, for
all k = ξ(γ) in G, and g in J , h = g + k · g is in J . Now J is an additive
subgroup of A, so k · g is in J for all k in G, g in J . Thus J is an ideal of
A. �

4. Examples

Theorem 3.1 transforms the problem of describing the image of the Galois
correspondence map F on a H-Hopf Galois structure on L/K to the study
of the ideals of the nilpotent algebra associated to H. In this section we
look at some examples.

Theorem 4.1. Let L/K be a Galois extension of fields with Galois group
Γ an elementary abelian p-group of order pn. Let L/K have a Hopf Galois
structure by an abelian Hopf algebra H of type G where G is an elementary
abelian p-group. Let A be the nilpotent ring structure yielding the regular
subgroup T ∼= (G, ◦) ⊂ Hol(G) corresponding to H, where (G, ◦) ∼= Γ. Then
the H-Hopf Galois structure on L/K satisfies the strong form of the FTGT
if and only if H is the classical Galois structure by KΓ on L/K.

Proof. If A2 = 0, then (G, ◦) = (G,+), so the regular subgroup T acts on
G by τ(g)(h) = g ◦ h = g + h, hence T = λ(G). Since G is abelian, the
corresponding Hopf Galois structure on L/K is the classical structure by
the K-Hopf algebra K[Γ]. So the Galois correspondence holds in its strong
form.

For the converse, view (G,+) as an n-dimensional Fp-vector space. Sup-
pose A2 6= 0. Then for some a, b in A, ab 6= 0. Then the subspace Fpa does
not contain ab. For if ab = ra for r 6= 0 in Fp, then a = sba for s 6= 0 in Fp.
Then

a = (sb)a = (sb)2a = . . . = (sb)n+1a = 0

since A is nilpotent of dimension n, hence (sb)n+1 = 0. Thus the subspace
Fpa is not an ideal of A.

The subgroup α(Fpa) of α(G) is then not normalized by λ(Γ). But Γ ∼= G,
so there are bijections between subgroups of α(G), subgroups of G, sub-
groups of Γ and (by classical Galois theory) subfields of L containing K. If
some subgroup of α(G) is not normalized by λ(Γ), then the number of K-
subHopf algebras of H = L[α(G)]G is strictly smaller than the number of
subfields between K and L. So the Galois correspondence for the H-Hopf
Galois structure on L/K does not hold in its strong form. �

There are many examples. If G is an elementary abelian p-group of order
pn with p odd, and T ∼= (G, ◦) is a regular subgroup of Hol(G) corresponding
to a nilpotent ring structure A = (G,+, ·) with Ap = 0, then (G, ◦) is an
abelian group of exponent p by Caranti’s Lemma ([Chi15], Proposition 2.2),
so is isomorphic to G. Hence every isomorphism type of nilpotent Fp-algebra
A of dimension n with Ap = 0 yields a Hopf Galois structure on a Galois



ON THE GALOIS CORRESPONDENCE 7

extension L/K with Galois group Γ ∼= G. As n goes to infinity, the number

of such Hopf Galois structures is asymptotic to p
2
27
n3

([Chi15], Theorem
10.3).

By choosing a particular nilpotent algebra structure on (Fnp ,+) we can
see how badly the Galois correspondence can fail to be surjective.

Let A be the primitive n-dimensional nilpotent Fp-algebra generated by z
with zn+1 = 0. Then (A,+) ∼= (Fnp ,+) and so the multiplication on A yields
a nilpotent Fp-algebra structure on (G,+) = (Fnp ,+). Let G = (Fnp , ◦) where
the operation ◦ is defined using the multiplication on A by a◦b = a+b+a ·b.

Theorem 4.2. Let G be an elementary abelian p-group of order pn. Let A
be a primitive Fp-algebra structure A on G, and let (G, ◦) be the correspond-
ing group structure on Fnp . Suppose L/K is a Galois extension of fields with
Galois group Γ ∼= (G, ◦). Then the primitive nilpotent Fp-algebra A corre-
sponds to an H-Hopf Galois structure on L/K for some K-Hopf algebra H,
and the K-subHopf algebras of H form a descending chain

H = H1 ⊃ H2 ⊃ . . . ⊃ Hn ⊃ K.
Hence the Galois correspondence F for H maps onto exactly n+ 1 fields F
with K ⊆ F ⊆ L.

Proof. Given Theorem 3.1, we just need to show that ideals of A are Ji =
〈zi〉 for i = 1, . . . , n.

Suppose J is a nonzero ideal of A and contains s(zk + zk+rb) of minimal
degree k, where s 6= 0 in Fp, b in A and r ≥ 1. Then J also contains

zk + zk+rb

and
(zk + zk+rb)(−zrb) = −zk+rb− zk+2rb2,

hence their sum,

zk − zk+2rb2 = zk + zk+r′b′

for some b′ in A, where r′ > r. Repeating this argument until r′ > n shows
that J contains zk, hence J ⊇ Jk = 〈zk〉. Since Jk = 〈zk〉 contains every
element of degree ≥ k, J = Jk. Thus A has exactly n+ 1 ideals. Since the
correspondence between ideals of A and λ(Γ) invariant subgroups of α(G)
is lattice-preserving, we have a single filtration

α(G) = α(J1) ⊃ α(J2) ⊃ . . . ⊃ α(Jn) ⊃ 0.

of λ(G)-invariant subgroups of α(G). If H is the corresponding K-Hopf
algebra making L/K into a Hopf Galois extension, then H has a unique
filtration of K-sub-Hopf algebras,

H = H1 ⊃ H2 ⊃ . . . ⊃ Hn ⊃ K. �

For A a primitive nilpotent Fp-algebra with An+1 = 0, the corresponding
group (G, ◦) is isomorphic (by a 7→ 1 + a) to the group of principal units
of the truncated polynomial ring Fp[x]/(xn+1Fp[x]). The structure of that



8 LINDSAY N. CHILDS

group is described in Corollary 3 of [Chi07]. In particular (G, ◦), hence Γ,
is an elementary abelian p-group if and only if p > n.

Thus in Theorem 4.2, when p > n, then L/K is classically Galois with
Galois group Γ ∼= (Fnp ,+). So the number of subgroups of Γ, and hence the
number of subfields E with K ⊆ E ⊆ L, is equal to the number of subspaces
of Fnp , namely

n∑
r=1

(pn − 1)(pn − p) · · · (pn − pr−1)

(pr − 1)(pr − p) · · · (pr − pr−1)
≥ pb

n2

4
c.

So the Galois correspondence map F is extremely far from being surjective
for a Hopf Galois structure corresponding to a nilpotent algebra structure
A with dim(A/A2) = 1.

By contrast:

Proposition 4.3. Let L/K be a Galois extension of fields with Galois group
Γ cyclic of order pn, p odd. Let the K-Hopf algebra H give a Hopf Galois
structure on L/K. Then H has type G where G ∼= Γ, and the Galois corre-
spondence for that Hopf Galois structure holds in its strong form.

Proof. From [Ko98] it is known that if Γ is cyclic of order pn then every
Hopf Galois structure must have type G ∼= Γ. So let G be cyclic of order pn,
which we identify with (Z/pnZ,+). Then we view Hol(G) = G o Aut(G)
as the set of pairs (a, g) where a and g are modulo pn and (g, p) = 1, or
equivalently as the set of matrices(

g a
0 1

)
in Aff1(Z/pnZ) ⊂ GL2(Z/pnZ), acting on s in G by(

g a
0 1

)(
s
1

)
=

(
gs+ a

1

)
.

View Γ as the free Z/pnZ-module with basis y. From Proposition 2 of
[Chi11], the pn−1 regular embeddings β : Γ = (Z/pnZ)y → Hol(G) are
determined by β(y) where

β(y) =

(
1 + pd −1

0 1

)
for some d modulo pn−1. So in the notation above Theorem 3.1, ξ(y) = −1
in G = Z/pnZ and

τ(−1) =

(
1 + pd −1

0 1

)
,

which acts on s in G as above. That action defines the operation ◦ on G by

(−1) ◦ s = (1 + pd)s− 1 = −1 + s+ pds.
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The multiplication on (G,+) to make (G,+, ·) = A a nilpotent algebra is
then defined by

(−1) · s = (−1) ◦ s− ((−1) + s) = (−1 + s+ pds) + 1− s = pds.

By distributivity, for every r, s in Z/pnZ,

−r · s = rspd.

Replacing d by −d, let Ad be the commutative nilpotent algebra structure
on (Z/pnZ,+) with multiplication

r · s = rspd

for all r, s in Z/pnZ. It is then easy to check that the ideals of Ad are the
principal ideals generated by pr, for r = 0, . . . , n. Since those are also the
additive subgroups of (Ad,+) = (Z/pnZ,+), it follows by Theorem 3.1 that
for every Hopf Galois structure on L/K, the Galois correspondence holds in
its strong form. �

Information on finite commutative nilpotent Fp-algebras may be found in
[Chi15] and the references listed there, notably [Po08].

My thanks to the referee for a careful reading of the manuscript.
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