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Differential Borel equivariant cohomology
via connections

Corbett Redden

Abstract. For a compact Lie group acting on a smooth manifold, we
define the differential cohomology of a certain quotient stack involving
principal bundles with connection. This produces differential equivari-
ant cohomology groups that map to the Cartan–Weil equivariant forms
and to Borel’s equivariant integral cohomology. We show the Chern–
Weil homomorphism for equivariant vector bundles with connection nat-
urally factors through differential equivariant cohomology.
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1. Introduction

Differential cohomology, also known as Cheeger–Simons differential char-
acters [CheeS] or Deligne cohomology [Bry], is a contravariant functor Ȟ∗

from the category of manifolds to graded abelian groups. It sits in the
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character diagram

0
**

0

Hn−1(M ;R/Z)

))

−B // Hn(M ;Z)

55

))
Hn−1(M ;R)

44

))

Ȟn(M)

66

&&

Hn(M ;R)

Ωn−1(M)

Ωn−1(M)Z

66

d
// Ωn(M)Z

77

((
0

55

0

where the two diagonals are short exact sequences, B is the Bockstein ho-
momorphism, and the subscript Z denotes closed forms with Z-periods. Be-
cause it captures both the torsion of integral cohomology and the local struc-
ture of differential forms, differential cohomology has proven to be useful in
a number of contexts. In particular, the Chern–Weil homomorphism factors
through Ȟ∗, making it a natural home for secondary invariants of principal
bundles with connection. Differential cohomology has now been generalized
in several directions, leading to the notion of a “differential extension” of a
generalized cohomology theory.

The purpose of this paper is to construct a differential extension of Borel’s
equivariant integral cohomology. This was also recently done by Kübel–
Thom [KT], and our functors fit into the same short exact sequences. As-
sume that G is a compact Lie group acting smoothly on a manifold M . The
equivariant cohomology of M , with coefficients in an abelian group A, is the
cohomology of the homotopy quotient

H∗G(M ;A) := H∗(EG×GM ;A).

The complex of equivariant forms (ΩG(M), dG) is given by the Weil model

(Sg∗ ⊗ Λg∗ ⊗ Ω(M))Ghor,

whose cohomology is naturally isomorphic to H∗G(M ;R). One can equiv-

alently use the Cartan model (Sg∗ ⊗ Ω(M))G in place of the Weil model,
as the two complexes are isomorphic (not merely quasi-isomorphic). We
summarize the paper’s main results in two theorems below. Theorem 1.1
contains the important user-friendly properties of Ȟ∗G. It is simply Propo-
sitions 2.3, 4.4, and 4.16 combined into a single statement. In fact, we
show in Proposition 4.18 that the functor Ȟ∗G is characterized uniquely by
properties A and C. Theorem 5.3 states that the equivariant Chern–Weil
homomorphism, with equivariant forms defined by the equivariant curva-
ture ΩG [BeV], factors through Ȟ∗G. For convenience, we restate it here as
Theorem 1.2 in the specific case of equivariant complex vector bundles.
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Theorem 1.1. For any compact Lie group G, there exists a contravariant
functor Ȟ∗G(−), from the category of smooth G-manifolds to the category of
graded abelian groups, satisfying the following.

(A) There exist natural homomorphisms forming the following character
diagram.

0
**

0

Hn−1
G (M ;R/Z)

))

−B // Hn
G(M ;Z)

55

))
Hn−1
G (M ;R)

44

((

Ȟn
G(M)

I

66

R

&&

Hn
G(M ;R)

Ωn−1
G (M)

Ωn−1
G (M)Z

77

dG

// Ωn
G(M)Z

dR
77

''
0

55

0

(B) For G1
φ−→ G2 a Lie group homomorphism, a smooth map M

F−→ N
that is φ-equivariant induces homomorphisms

Ȟ∗G2
(N)

F ∗φ−−→ Ȟ∗G1
(M)

compatible with the character diagrams.
(C) A principal G-bundle with connection (P,Θ) → M induces homo-

morphisms

Ȟ∗G(P )
Θ∗−−→ Ȟ∗(M)

compatible with the character diagrams.

Theorem 1.2. Let (V,∇)→M be a G-equivariant Hermitian vector bundle
with G-invariant connection. There exist natural classes čk(ΘG) ∈ Ȟ2k

G (M)
satisfying

(1) I (čk(ΘG)) = ck (EG×G V → EG×GM) ∈ H2k
G (M ;Z).

(2) R (čk(ΘG)) = ck (ΩG) ∈ Ω2k
G (M).

The paper is organized as follows. Appendix A, which appears at the end
of the paper, contains a review of principal bundles with connection and the
equivariant de Rham complex ΩG(M). Readers unfamiliar with the Weil
model may find it helpful to begin here. While this appendix is expository
and should probably be replaced by a citation to [GS], we use it to introduce
notation and to emphasize the relationship between W(g) and differential
forms on principal bundles with connection.

In Section 2 we define Ȟ∗G(M) using the Hopkins–Singer [HS] cochain

model for Ȟ∗(EG ×G M), but with Ω(EG ×G M) replaced by ΩG(M).
The short exact sequences and character diagram follow immediately. The
advantage of this construction is that one need not leave the world of cochain
complexes and topological spaces. When giving constructions such as the
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Chern–Weil refinement, however, one is forced to play the tedious game of
choosing classifying maps and checking that everything is well-defined.

To emphasize the geometric nature of our constructions, we begin working
with the differential Borel quotient stack E∇G ×G M in Section 3. This is
defined as a contravariant functor that associates to any test manifold X
the groupoid of principal G-bundles with connection (P,Θ) → X, together
with an equivariant map P → M . In [FreH], Freed–Hopkins show that the
natural map

Ωn
G(M)

∼=−→ Ωn(E∇G×GM)

is an isomorphism, and we proceed to give the second definition

Ȟn
G(M) := Ȟn(E∇G×GM).

The details of this definition involve simplicial sheaves and are contained in
Section 6. The virtue is that maps between various stacks induce homomor-
phisms in differential cohomology, as we demonstrate in Section 4.

For example, the homomorphism (B) from Theorem 1.1 is induced by a
natural map

E∇G1 ×G1 M
Fφ−→ E∇G2 ×G2 N,

defined using the associated bundle construction. Similarly, if (P,Θ) → M
is a principal G-bundle with connection, the pullback gives a natural map

M
Θ−→ E∇G×G P,

and this induces the homomorphism in C. For (Q,Θ)→M a G-equivariant
principal K-bundle with G-invariant connection, the refined Chern–Weil
homomorphism is induced by a natural map

E∇G×GM −→ B∇K,
as described in Section 5. Given a G-bundle with connection mapping to M ,
we pull back (Q,Θ) to form a G×K-bundle with connection, and then we
quotient by G. The equivariant extensions of the Chern forms appear when
forming the connection on the pullback of (Q,Θ). We conclude Section 5
with a discussion of Ȟn

G(M) as differential characters on E∇G×GM , and we

show Ȟ2
G(M) is naturally equivalent to isomorphism classes of G-equivariant

principal R/Z-bundles on M with invariant connection.
A definition of differential equivariant cohomology was previously given

by Gomi [Gom], but it did not fully incorporate ΩG(M), leading to groups
that are not isomorphic to the ones in this paper. See Kübel–Thom [KT] for
a more detailed discussion. In fact, many of our results can also be found in
their paper, including the short exact sequences and the refined equivariant
Chern–Weil homomorphism. However, the constructions and methods are
different. The two definitions in this paper involve the topological space
EG×GM and the stack E∇G×GM , and most homomorphisms are induced
by bundle constructions. On the other hand, Kübel–Thom use the simplicial
manifold {G• ×M} as the model for the homotopy quotient. We believe
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that having multiple viewpoints will prove to be useful, just as it has for
ordinary differential cohomology.

2. A cochain model

Our first definition of Ȟ∗G(−) is given by using the Hopkins–Singer con-

struction for Ȟ∗(EG×GM), with Ω(EG×GM) replaced by the Weil model
of equivariant forms ΩG(M). The definition, short exact sequences, and ring
structure all follow immediately from the same arguments given in Sections
2 and 3 of the Hopkins–Singer paper [HS], so we will keep the proofs brief.
(In fact, [HS] also contains our construction for the case where M = pt.)
Readers unfamiliar with the Weil model of equivariant forms ΩG(M) can find
a full exposition in Appendix A. As noted in Section A.5, the Weil model
may be replaced, via the Mathai–Quillen isomorphism, by the isomorphic
Cartan model (Sg∗ ⊗ Ω(M))G if desired.

As discussed in Section A.4, let (EG,ΘEG) → BG be a universal prin-
cipal G-bundle with connection, given as a direct limit of smooth finite-
dimensional bundles. If M is a G-manifold, the Weil homomorphism induces
an inclusion

Ω∗G(M)
w(ΘEG)⊗1
↪−−−−−−−→ Ω∗(EG×GM) ↪→ C∗(EG×GM ;R)

that is a quasi-isomorphism of cochain complexes.
For the moment, we will use general coefficients. Let Λ ⊂ V be a com-

pletely disconnected subgroup of a (possibly graded) vector space, and de-
note Ω∗(−;V ) = Ω∗(−)⊗ V .

Definition 2.1. The differential equivariant cochain complex, denoted by
(ČG(q)∗(M ; Λ), d), is defined as the homotopy pullback in the diagram

(2.2)

ČG(q)∗(M ; Λ)

R
��

I // C∗(EG×GM ; Λ)
_�

��
Ω∗≥qG (M ;V ) �

� // C∗(EG×GM ;V ).

Explicitly, this is defined so that for k ≥ q,

ČG(q)k(M ; Λ) := Ck(EG×GM ; Λ)× Ck−1(EG×GM ;V )× Ωk
G(M ;V )

d(c, h, ω) := (δc, ω − c− δh, dGω),

and for k < q we restrict to the subcomplex with ω = 0.
For x̌ = (c, h, ω), we call c the characteristic cocycle and ω the curvature,

and we say x̌ is flat if the curvature is zero. The degree n differential
equivariant cohomology is defined as the abelian group

Ȟn
G(M ; Λ) := Hn

(
ČG(n)∗(M ; Λ)

)
=

ŽnG(M ; Λ)

dČn−1
G (M ; Λ)flat

.



446 CORBETT REDDEN

As one would expect, the groups Ȟ∗G(M ; Λ) lie in short exact sequences
that are completely analogous to those for ordinary differential cohomology.
We denote the image of Hn

G(M ; Λ) → Hn
G(M ;V ) by Hn

G(M ;V )Λ, and we
denote the subgroup of closed n-forms with Λ-periods by Ωn

G(M ;V )Λ. This
is defined so that under the de Rham isomorphism,

Ωn
G(M ;V )Λ

dGΩn−1
G (M ;V )

∼=−→ Hn
G(M ;V )Λ.

We will primarily be concerned with Λ = Z, V = R, and we use the
notations

Ȟ∗G(M) = Ȟ∗G(M ;Z), Ȟ∗G = Ȟ∗G(pt;Z).

In later sections, we will simply use Z ⊂ R to simplify notation, but all
results will immediately generalize to general coefficients Λ ⊂ V .

Proposition 2.3. The groups Ȟ∗G(M ; Λ) lie in the short exact sequences

0 −→ Hn−1
G (M ;V/Λ) −→Ȟn

G(M ; Λ)
R−→ Ωn

G(M ;V )Λ −→ 0,(SES 1)

0 −→
Ωn−1
G (M ;V )

Ωn−1
G (M ;V )Λ

−→Ȟn
G(M ; Λ)

I−→ Hn
G(M ; Λ) −→ 0,(SES 2)

0 −→
Hn−1
G (M ;V )

Hn−1
G (M ;V )Λ

−→Ȟn
G(M ; Λ) −→ AnG(M ;V ) −→ 0,(SES 3)

where AnG(M) is the pullback (in sets) of the commutative square

(2.4)

Ȟn
G(M ; Λ)

I // //

R
����

Hn
G(M ; Λ)

����
Ωn
G(M)Λ

dR // // Hn
G(M ;V )Λ.

These sequences fit into the character diagram

0
**

0

Hn−1
G (M ;V/Λ)

))

−B // Hn
G(M ; Λ)

55

((
Hn−1
G (M ;V )

55

((

Ȟn
G(M ; Λ)

I

66

R

&&

Hn
G(M ;V )

Ωn−1
G (M ;V )

Ωn−1
G (M ;V )Λ

77

dG

// Ωn
G(M ;V )Λ

88

''
0

66

0

where B is the Bockstein homomorphism.

Proof. The proof is straightforward and follows from the exact same ar-
guments as those given in [HS]. Alternatively, one can use the homological
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framework of Harvey–Lawson spark complexes, specifically Proposition 1.3
from [HaL]. The key point is that Ω∗G(M)→ C∗(EG×GM ;R) is an inclu-
sion, as noted in Lemma A.17, and it induces an isomorphism in cohomol-
ogy. �

Proposition 2.5.

(1) Č∗G(M ; Λ) and Ȟ∗G(M ; Λ) define contravariant functors from G-Man
to cochain complexes and graded abelian groups, respectively.

(2) An inclusion Λ1 ↪→ Λ2 ↪→ V of totally disconnected subgroups of V
induces natural transformations

Ȟ∗G(−; Λ1) −→ Ȟ∗G(−; Λ2).

(3) The cup product and wedge product induce algebra homomorphisms

Ȟk1
G (M ; Λ1)⊗ Ȟk2

G (M ; Λ2) −→ Ȟk1+k2
G (M ; Λ1 ⊗ Λ2),

where Λ1 ⊗ Λ2 ⊂ V1 ⊗ V2.
(4) The map M

π→ pt makes Ȟ∗G(M ; Λ) into a Ȟ∗G-module.

(5) If V is a ring with sub-ring Λ, then Ȟ∗G(M ; Λ) is a graded commu-
tative ring, and I and R are ring homomorphisms.

Proof. The constructions Č∗G(M) and Ȟ∗G(M) are clearly functorial with
respect equivariant maps f : M → N , as demonstrated in Appendix A, thus
proving (1).

An inclusion Λ1 ↪→ Λ2 defines natural maps between cochain complexes
C∗(−; Λ1) ↪→ C∗(−; Λ2). This induces Č∗G(−; Λ1) ↪→ Č∗G(−; Λ2), thus prov-
ing (2).

For (3), first note that the homomorphism Ω∗G(M) → Ω∗(EG ×G M) is
a homomorphism of DGAs, as the basic subcomplex of a G?-algebra is a
sub-DGA. Hence, the product structure from [HS] immediately defines the
product

ČG(q1)k1(M ; Λ1)⊗ ČG(q2)k2(M ; Λ2)
·−→ ČG(q1 + q2)k1+k2(M ; Λ1 ⊗ Λ2)

Ȟk1
G (M ; Λ1)⊗ Ȟk2

G (M ; Λ2)
·−→ Ȟk1+k2

G (M ; Λ1 ⊗ Λ2)

by

(c1, h1, ω1)·(c2, h2, ω2) := (c1∪c2, (−1)|c1|c1∪h2+h1∪ω2+B(ω1, ω2), ω1∧ω2).

Here B(ω1, ω2) ∈ Ck1+k2−1(EG×GM ;R) is any natural cochain homotopy
between ∧ and ∪, and we denote the product in ΩG(M) by ∧ in a slight
abuse of notation.

For (4), the map M
π→ pt is G-equivariant, so it induces natural ring

homomorphisms Ȟ∗G(pt;Z)
π∗G→ Ȟ∗G(M ;Z). The composition

Ȟ∗G ⊗ Ȟ∗G(M ; Λ)
π∗G⊗1
−→ Ȟ∗G(M ;Z)⊗ Ȟ∗G(M ; Λ)

·−→ Ȟ∗G(M ; Λ)

makes Ȟ∗G(M ; Λ) into an Ȟ∗G-module.
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Item (5) follows similarly. If Λ is a ring, the product in Ȟ∗G can be
composed with the product in Λ, giving

Ȟ∗G(M ; Λ)⊗ Ȟ∗G(M ; Λ)
·−→ Ȟ∗G(M ; Λ⊗ Λ) −→ Ȟ∗G(M ; Λ).

The homomorphisms I and R preserve products at the cochain level, so the

induced maps Ȟ∗G(M ; Λ)
I→ H∗G(M ; Λ) and Ȟ∗G(M ; Λ)

R→ Ω∗G(M ;V )Λ are
also ring homomorphisms. �

Let us now use Propositions 2.3 and 2.5 to analyze Ȟ∗G(M) in a few simple
examples.

Example 2.6. If G = e is the trivial group, then ΩG(M) ∼= Ω(M), and we
can take EG = pt. This recovers the usual differential cohomology

Ȟ∗e (M ; Λ) ∼= Ȟ∗(M ; Λ).

Example 2.7. The point pt is trivially a G-manifold, and the Borel con-
struction is EG ×G pt ∼= BG. For G compact we have H2k(BG;R) ∼=
Ω2k
G (pt) = Sk(g∗)G and H2k+1(BG;R) = Ω2k+1

G (pt) = 0. The short exact
sequences (SES 2) and (SES 1) give isomorphisms

(2.8) Ȟ2k
G
∼= H2k(BG;Z), Ȟ2k+1

G
∼= H2k(BG;R/Z).

Furthermore, (SES 2) becomes

0 −→ Sk(g∗)G

Sk(g∗)GZ
−→Ȟ2k+1

G −→ H2k+1(BG;Z) −→ 0,(2.9)

where Sk(g∗)G

Sk(g∗)GZ
can also be written as H2k(BG;R)⊗ R/Z.

Example 2.10. If G = Γ is a finite group, the Lie algebra is trivial. Hence,
the equivariant forms ΩΓ(M) are simply the invariant forms Ω(M)Γ. When
M is a point, (SES 2) implies

Ȟ∗Γ
∼= H∗(BΓ;Z).

Example 2.11. For G = S1, we know that H∗(BS1;Z) ∼= H∗(BS1;R)Z ∼=
Z[t], where |t| = 2. The above identities (2.8) and (2.9) imply

Ȟ2k
S1
∼= H2k(BS1;Z) ∼= Ztk,

Ȟ2k+1
S1

∼= H2k(BS1;R)⊗ R/Z ∼= (R/Z)tk.

We now show that as a graded commutative ring, this can be written

Ȟ∗S1
∼=
(
Z⊕ (R/Z)θ

)
[t],

where |θ| = 1 and |t| = 2. The relations θt = tθ and θ2 = 0 are implied by
the adjectives graded commutative.

To verify this is a ring isomorphism, first note that the characteristic
class map gives a ring isomorphism Ȟ2∗

S1
∼= Z[t] in even degrees. We can

use the product’s definition to determine what happens when multiplying
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by odd-degree elements. Choose some cocycle α ∈ Z2(BS1;Z) representing
the generator of H2(BS1;Z). An even element ntk ∈ Ztk ∼= Ȟ2k

S1 can be

represented by a cocycle of the form (αk, b, tk), and an odd element [r]θtk ∈
(R/Z)θtk ∼= Ȟ2k+1

S1 can be represented by (0, rαk, 0). The cochain-level
product yields

(nαk1 , b, ntk1) · (0, rαk2 , 0) = (0, nrαk1+k2 , 0),

(0, r1α
k1 , 0) · (0, r2α

k2 , 0) = (0, 0, 0).

So, the product of two odd elements is 0, and (ntk1) · ([r]θtk2) = [nr]θtk1+k2 .

Example 2.12. Similarly, the odd cohomology groups of BU(n) vanish,
and

H∗(BU(n);Z) ∼= H∗(BU(n);R)Z ∼=
(
S∗/2u(n)∗

)U(n)

Z
∼= Z[c1, . . . , cn].

The same argument given in the previous example shows that

Ȟ2k
U(n)

∼= H2k(BU(n);Z),

Ȟ2k+1
U(n)

∼= H2k(BU(n);R))⊗ R/Z,

and as graded commutative rings with |ci| = 2i and |θ| = 1,

Ȟ∗U(n)
∼=
(
Z⊕ (R/Z)θ

)
[c1, . . . , cn].

3. Differential cohomology of the differential quotient stack

From the description of the Weil algebra W(g) in Appendix A, it is clear
that equivariant forms ΩG(M) most naturally arise when considering princi-
pal bundles with connection. While the topological space EG→ BG can be
viewed as a universal bundle with connection, it does not naturally represent
the category of principal bundles with connection on general manifolds. For
this reason, it will be more convenient to replace EG×GM with the stack
E∇G ×GM and study its differential cohomology. While we are not aware
of any work specifically on Ȟ∗(E∇G×GM), the general idea of defining dif-
ferential cohomology via sheaves on manifolds has been widely used. This
includes, but is not limited to, [Bun, BunNV, HQ, FSS].

3.1. Background. First, remember that a groupoid is a category in which
every morphism is invertible. Any set S can be viewed as a category, where
the only morphisms are the identity morphisms. We denote this fully faithful
embedding of the category of sets into the category of groupoids by Set ⊂
Gpd.

A stack M (on the site of smooth manifolds) is a contravariant functor
from the category of manifolds to the category of groupoids satisfying a
descent condition; we denote the category by

Stack = ShvGpd ⊂ Fun(Manop,Gpd).
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This means that associated to every manifold X is a groupoid M (X), and

a smooth map X1
f−→ X2 induces a functor

M (X2)
f∗−→M (X1).

There are associative natural transformations g∗f∗ ∼= (g ◦ f)∗ to deal with
composition of functions. To be a stack, as opposed to a prestack, M must
also satisfy a sheaf/descent condition that all of our examples will satisfy
(see [Hei] or Section 6 for more details).

Example 3.1. Any smooth manifold N defines a stack N by associating to
X the set

N(X) = C∞(X,N) ∈ Set,

and to a smooth map X1
F−→ X2 the pullback C∞(X2, N)

F ∗−−→ C∞(X1, N).

Example 3.2. Principal G-bundles with connection form a stack, which
we denote B∇G. To any manifold X, let B∇G(X) be the groupoid whose

objects are principal G-bundles P
π−→ X with connection Θ ∈ Ω1(P ; g). A

morphism (P1,Θ1)
ϕ→ (P2,Θ2) is a bundle map preserving the connection;

i.e., it is a G-equivariant map ϕ

P1
ϕ //

π1   

P2

π2~~
X

such that ϕ∗(Θ2) = Θ1. Such a ϕ must be a diffeomorphism, and hence
all morphisms in B∇G(X) are isomorphisms. Since bundles and connections
pull back, a smooth map f : X1 → X2 induces a functor

f∗ : B∇G(X2)→ B∇G(X1).

The groupoid of principal G-bundles on X, without connection, is defined
analogously and denoted BG.

The collection of morphisms between stacks ShvGpd(M1,M2) naturally

forms a groupoid. An object M1
Ψ−→ M2 in this groupoid is a collection

of functors M1(X)
Ψ(X)−−−→ M2(X) for all X, together with natural transfor-

mations Ψ(f) : Ψ(X)◦f∗ → f∗◦Ψ(Y ) for all smooth f : X → Y ; morphisms
between morphisms are given by natural transformations, which must be in-
vertible since M2(−) is always a groupoid.

The Yoneda Lemma states that there is a canonical equivalence of cate-
gories

M (X) ∼= ShvGpd(X,M ),

and this defines a faithful embedding of the category of manifolds into the
2-category of stacks. For this reason, we will usually not distinguish between
a manifold X and its associated stack X. We can also view an object in
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the category M (X) as a map X → M . Thus, maps between stacks are a
generalization of smooth maps between manifolds; when M and X are both
manifolds,

ShvGpd(X,M) ∼= M(X) = C∞(X,M).

Via Yoneda, any bundle (P,Θ)→ X is naturally equivalent to a map

X
(P,Θ)−−−→ B∇G,

and the groupoid of bundles with connection is naturally equivalent to the
category of maps X → B∇G. This makes B∇G a more convenient classifying
object for many purposes than the ordinary topological space BG.

Example 3.3. Differential forms of degree k define a stack Ωk, where

Ωk(X) ∈ Set

is a set viewed as a groupoid with only identity morphisms. A differential

form ω ∈ Ωk(X) is equivalent to a morphism X
ω−→ Ωk.

Example 3.4. If M is a (left) G-manifold, the differential quotient stack
E∇G×GM is defined as follows. An object of (E∇G×GM) (X) is a principal
G-bundle with connection (P,Θ) → X, together with a G-equivariant map
f : P → M . The map f is equivalent to a section F of the associated fiber
bundle P ×GM , with the equivalence given by F (x) = [p, f(p)] ∈ P ×GM .

X
(P,Θ,f)−−−−→ E∇G×GM ←→

(P,Θ)
f //

��

M

X

←→
(P,Θ)×GM

��
X

F

ZZ

A morphism(
X ← (P1,Θ1)

f1−→M
)

ϕ−→
(
X ← (P2,Θ2)

f2−→M
)

is a connection-preserving bundle isomorphism that covers the maps to M ;
i.e.,

(P1,Θ1)

ϕ ∼=

��

xx

f1

&&
X M

(P2,Θ2)

ff

f2

88

with ϕ∗(Θ2) = Θ1.

In the case where M = pt, there is only one map P
f−→ pt, leading to the

natural isomorphism E∇G×G pt ∼= B∇G. We also let EG×GM denote the
stack defined analogously via bundles without connection.
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Remark 3.5. Other possible notations for this quotient stack with connec-
tions could include M �∇G and (MG)∇. We choose to use E∇G ×G M to
emphasize the correspondence between maps of stacks and maps of topolog-
ical spaces.

3.2. Differential forms on the quotient stack. We want to study the
differential cohomology of E∇G×GM , but it is not immediately clear what
that means. As a first step, let’s understand differential forms. Since
Ωn(X) ∼= ShvGpd(X,Ωn), it is natural to define

(3.6) Ωn(E∇G×GM) := ShvGpd(E∇G×GM,Ωn).

An element of Ωn(E∇G×GM) is equivalent to functorially assigning, for all
manifolds X, an element of Ωn(X) to every object in (E∇G×GM)(X). Since
Ωn(X) has only identity morphisms, isomorphic objects in (E∇G×GM)(X)
must give equal elements in Ωn(X).

Based on the description of ΩG(M) in Appendix A, there is an obvious
homomorphism

(3.7) Ωn
G(M)

∼=−→ Ωn(E∇G×GM).

While it is not difficult to show this is injective, Freed–Hopkins prove it is
in fact an isomorphism of abelian groups [FreH, Theorem 7.28]. Though
ΩG(M) is usually regarded as an algebraic replacement for Ω(EG ×G M),
it is the actual de Rham complex of the stack E∇G×GM .

We now explain the homomorphism (3.7). To a map X → E∇G ×G M ,
which is an object of (E∇G×GM)(X), the composition Θ∗ ◦ f∗G = Θ∗ ⊗ f∗
defines a homomorphism Ωn

G(M) → Ωn(X), as indicated in the following
diagram.

(P,Θ)
f //

��

M

X

7→
Ωn
G(P )

Θ∗

��

Ωn
G(M)

f∗Goo

Ωn(P )basic
∼= Ωn(X)

More explicitly, for ω ⊗ η ∈W2i,j(g) and ψ ∈ Ωk(M), then

ω ⊗ η ⊗ ψ 7→ ω(Ω∧i) ∧ η(Θ∧j) ∧ f∗ψ ∈ π∗Ω2i+j+k(X).

This construction is invariant under morphisms in (E∇G×GM)(X). If

(P1,ΘP1)

φ ∼=

��

π1

ww

f1

''
X M

(P2,ΘP2)
π2

gg

f2

77

with φ∗(Θ2) = Θ1, it immediately follows that

φ∗
(
Θ∗2 ⊗ f∗2

)
= φ∗Θ∗2 ⊗ (f2 ◦ φ)∗ = Θ∗1 ⊗ f∗1 .
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Since φ covers the identity on X, the two homomorphisms Ωn
G(M)→ Ωn(X)

are equal.
The de Rham differential induces a universal map of stacks d : Ωn →

Ωn+1. This gives a differential Ωn(E∇G ×G M)
d−→ Ωn+1(E∇G ×G M), and

(Ω∗(E∇G ×G M), d) is naturally isomorphic to (Ω∗G(M), dG) as a cochain
complex.

Remark 3.8. Note that the cochain complex Ω(E∇G×GM) is given by

· · · d−→ ShvGpd(E∇G×GM,Ωn)
d−→ ShvGpd(E∇G×GM,Ωn+1)

d−→ · · · .

Each degree is computed individually, with Ωn being set valued, as opposed
to some version of maps to the complex Ω∗, where there are nontrivial
morphisms.

Example 3.9. In the case where M = pt, we have that (Sg∗)G ∼= Ω(B∇G),
which is concentrated in even degrees. A bundle with connection (P,Θ)→
X is naturally viewed as a map (P,Θ): X → B∇G; the induced map on
differential forms is the usual map from Chern–Weil theory

(Sng∗)G
∼= // Ω2n(B∇G)

(P,Θ)∗ // Ω2n(X)

ω � // ω(Ω∧n).

3.3. Differential cohomology via sheaves. We now briefly outline the
construction of Ȟn(E∇G×GM) and state the main properties. Because the
details are not important to understanding the constructions in Sections 4
and 5, we postpone them until Section 6.

Amongst its many constructions, ordinary cohomology can be represented
by homotopy classes of maps to a space. For A an abelian group, there exists
an Eilenberg–MacLane space K(A,n) ∈ Top with

Hn(X;A) ∼= [X,K(A,n)] = hoTop(X,K(A,n)).

While differential cohomology cannot be represented by a fixed topological
space, it can be represented by a sheaf of “spaces” on the site of manifolds
[FSS, Bun, HQ, BunNV]. We work with simplicial sets for convenience, as
they form a natural home for groupoids, topological spaces, and chain com-
plexes. Letting ∞Gpd denote the (∞, 1)-category of simplicial sets spanned
by Kan complexes, define Ǩ(Z, n) ∈ Shv∞Gpd to be a sheaf fitting into a
homotopy-commutative diagram of the form

(3.10)

Ǩ(Z, n)

��

// K(Z, n)

��
N(Ωn

cl)
// K(R, n).

Here, K(A,n) is an object in Shv∞Gpd representing ordinary cohomology.
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We can consider the sheaf of groupoids E∇G ×G M as a sheaf of ∞-
groupoids via the nerve construction N. The cohomology groups and differ-
ential cohomology groups are defined by considering maps between sheaves
in the homotopy category:

Hn(E∇G×GM ;A) := hoShv∞Gpd(N(E∇G×GM),K(A,n)),

Ȟn(E∇G×GM) := hoShv∞Gpd(N(E∇G×GM), Ǩ(Z, n)).

The following theorem is essentially a consequence of the Freed–Hopkins
isomorphism (3.7) and the work of Bunke–Nikolaus–Völkl on homotopy-
invariant sheaves [BunNV]. The proof is given at the end of Section 6.

Theorem 3.11. The two definitions of Ȟ∗G(M) are naturally equivalent,

Ȟn(E∇G×GM) ∼= Hn
(
ČG(n)∗(M ;Z)

)
.

This leads to the following commutative square.
(3.12)

Ȟn(E∇G×GM)

��

// Hn(E∇G×GM ;Z) ∼= Hn
G(M ;Z)

��
Ωn
G(M)cl

∼= Ωn
cl(E∇G×GM) // Hn(E∇G×GM ;R) ∼= Hn

G(M ;R).

The isomorphism in the bottom-left corner is given by the Freed–Hopkins
isomorphism (3.7). The two isomorphisms on the right are induced by the
map EG×GM → E∇G×GM , which induces an isomorphism in cohomology
(Propositon 6.7). In the following sections, we will use these two proper-
ties to check that maps of stacks induce the desired maps at the level of
differential forms and cohomology.

Example 3.13. Since Ω2k−1(B∇G) = 0, the short exact sequence (SES 2)
gives an isomorphism

Ȟ2k(B∇G)
∼=−→ H2k(BG;Z).

The Cheeger–Chern–Simons refinement of Chern–Weil theory [CheeS] can
then be repackaged in the following way. A principal G-bundle with con-
nection (P,Θ)→ X is equivalent to a map

X
(P,Θ)−−−→ B∇G,

and this induces a homomorphism

Ȟ2k(X)
(P,Θ)∗←−−−− Ȟ2k(B∇G) ∼= H2k(BG;Z).

Hence, any universal characteristic class in H2k(BG;Z) has a canonical dif-
ferential refinement.
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4. Constructions of maps between stacks

We now explain how some important constructions, frequently described
using classifying spaces or equivariant forms, are naturally given by explicit
geometric constructions involving bundles with connection.

4.1. Associated bundles. Let φ : G1 → G2 be any Lie group homomor-
phism, with φ∗ : g1 → g2 the associated Lie algebra homorphism. The as-
sociated bundle construction, which functorially makes any G1-bundle with
connection (P,Θ) into a G2-bundle with connection, induces morphisms

E∇G1

��

// E∇G2

��
B∇G1

// B∇G2.

The most common example is when φ is an inclusion, which is usually re-
ferred to as extending the structure group. For more details on the associ-
ated bundle construction, see Chapter II.6 of [KN] or Section 1 of [Fre].

If (P,Θ) ∈ B∇G1(X), the associated G2-bundle is defined

(4.1) Pφ := P ×φ G2 = (P ×G2)/G1 = (P ×G2)
/(

(pg, g′) ∼ (p, φ(g)g′)
)
.

To define the induced connection Θφ on Pφ, first note that the natural map

P
ϕ−→ Pφ, given by p 7→ [(p, 1)], is φ-equivariant. Hence, the horizontal

subspaces of TP are mapped equivariantly into TPφ, and the image extends
uniquely to an equivariant horizontal distribution in TPφ. The induced
connection Θφ can also be described as the unique connection on Pφ that is
compatible with Θ in the sense that

(4.2) ϕ∗(Θφ) = φ∗(Θ) ∈ Ω1(P ; g2).

Therefore, the associated bundle construction is compatible with the Weil
homomorphism, giving the commutative diagram

(4.3)

W(g1)
Θ∗ // Ω(P )

W(g2)

φ∗

OO

Θ∗φ // Ω(Pφ).

ϕ∗

OO

Proposition 4.4. Let F : M → N be a φ-equivariant map, where

φ : G1 → G2

is a Lie group homomorphism.

(1) The associated bundle construction gives a natural morphism

E∇G1 ×G1 M
Fφ−→ E∇G2 ×G2 N.
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(2) The homomorphism induced by Fφ on differential forms is naturally
isomorphic to φ∗ ⊗ F ∗ in the Weil model.

ΩG2(N)
∼= // Ω(E∇G2 ×G2 N)

F ∗φ // Ω(E∇G1 ×G1 M) ΩG1(M)
∼=oo

∩ ∩
W(g2)⊗ Ω(N)

φ∗⊗F ∗ //W(g1)⊗ Ω(M)

(3) The homomorphism induced by Fφ on ordinary cohomology is natu-
rally isomorphic to the homomorphism induced by the maps of clas-
sifying spaces

EG1 ×G1 M −→ (EG1 ×φ G2)×G2 N −→ EG2 ×G2 N.

(4) The induced homomorphism

Ȟ∗G2
(N)

F ∗φ−−→ Ȟ∗G1
(M)

recovers the expected homomorphisms in equivariant cohomology and
equivariant forms.

Before giving the proof of Proposition 4.4, we wish to first introduce
notation for three special cases. In two of the cases, the general construction
simplifies, so we also show what happens when the stack is evaluated on a
general manifold X.

Example 4.5. Suppose that M and N are G-manifolds, and M
F−→ N is

G-equivariant. The morphism of stacks

E∇G×GM
FG−−→ E∇G×G N

(P,Θ)
f //

��

M

X

7−→
(P,Θ)

��

f // M
F // N

X

induces the homomorphism of abelian groups

Ȟ∗G(N)
F ∗G−−→ Ȟ∗G(M).

Example 4.6. Let M be a G2-manifold. A homomorphism G1
φ−→ G2

naturally defines a G1-action on M via g1 ·M := φ(g1) ·M , and the identity

map M
1−→ M is φ-equivariant. The associated bundle construction then

induces

E∇G1 ×G1 M
1φ−→ E∇G2 ×G2 M,

Ȟ∗G1
(M)

1
∗
φ←− Ȟ∗G2

(M).
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Example 4.7. Suppose that K C G is a normal subgroup, and suppose the

quotient map M
q−→ M/K is a smooth map between manifolds. Then, q is

equivariant with respect to the quotient group homomorphism G
/K−−→ G/K.

Quotienting M and G by K induces the stack morphism

E∇G×GM
q/K−−→ E∇(G/K)×G/K M/K

(P,Θ)

��

f // M

X

7−−→

(P,Θ)

��

f // M

q
��

(P/K ,Θ/K)
f/K //

��

M/K

X

(with dotted arrows indicating maps no longer being used) and a homomor-
phism

Ȟ∗G/K(M/K)
q∗
/K−−→ Ȟ∗G(M).

If K acts freely, this induces the usual isomorphism

H∗G/K(M/K;−)
∼=−−→
q∗
/K

H∗G(M ;−)(4.8)

in equivariant cohomology.

Proof of Proposition 4.4. Part (1) is given by constructing, for every X
and natural with respect to maps X → Y , the following functor.

(E∇G1 ×G1 M) (X)
Fφ(X)
−−−−→ (E∇G2 ×G2 N) (X)

(P,Θ)×G1 M

��
X

s

ZZ
7−−−→

(Pφ,Θφ)×G2 N

��
X

(ϕ×F)◦s
YY

To explain in a bit more detail, the associated bundle construction associates

to (P,Θ) the bundle (Pφ,Θφ), along with a φ-equivariant map P
ϕ−→ Pφ.

Since M
F−→ N is also φ-equivariant, the map

P ×M ϕ×F−−−→ Pφ ×N

descends to the quotient

P ×G1 M
ϕ×F−−−→ Pφ ×G2 N,

and we precompose with original section s. The associated bundle construc-
tion is functorial, so any morphism Φ in (E∇G1 ×G1 M) (X) will induce a
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morphism Fφ(Φ) in (E∇G1 ×G1 M) (X), as evidenced by the following com-
mutative diagram.

(P,Θ)×G1 M

vv ∼= Φ

��

ϕ×F
// (Pφ,Θφ)×G2 N

∼= Φφ

��

X

s
44

s′ ((
(P ′,Θ′)×G1 M

hh

ϕ′×F // (P ′φ,Θ
′
φ)×G2 N

Hence, the associated bundle construction induces a morphism of stacks.
For part (2), we simply trace through the construction of Fφ and the Weil

homomorphism. Let ω ∈ Ω(E∇G2 ×G2 N), which may be written as a sum
of homogeneous elements α ⊗ ψ ∈ (W(g2)⊗ Ω(N))basic. Then, calculate
F ∗φω ∈ Ω(E∇G1 ×G1 M) by evaluating on a test manifold X. By definition,

(E∇G1 ×G1 M) (X)
Fφ−→ (E∇G2 ×G2 N) (X)

ω−→ Ω(X)

(P,Θ)×G1 M

��
X

s

ZZ
7−→

(Pφ,Θφ)×G2 N

��
X

(ϕ×F )◦s
YY

7→ s∗
(

(ϕ× F )∗ (α(Θφ)⊗ ψ)
)

As noted in (4.3), the associated bundle construction is compatible with the
Weil homomorphism, and therefore

(ϕ×F )∗
(
α(Θφ)⊗ψ

)
= α(ϕ∗Θφ)⊗F ∗ψ = α(φ∗Θ)⊗F ∗ψ = (φ∗α)(Θ)⊗F ∗ψ.

Consequently, F ∗φω gets mapped to s∗
(
(φ∗α)(Θ) ⊗ F ∗ψ

)
∈ Ω(X), and this

is the same element that φ∗α⊗ F ∗ψ ∈ ΩG1(M) maps to.
To see part (3), choose a classifying map for the G2-bundle EG1 ×φ G2,

which gives the following diagram. We do not need to assume the classifying
map is connection preserving.

EG1 ×G1 M
//

��

Ψ

++
EG1 ×φ G2

//

��

EG2

��
BG1

= // BG1
// BG2

For any X
f−→ BG1, there is an isomorphism of associated bundles

f∗(Ψ∗EG2) ∼= (f∗EG1)φ.

This implies the diagram

EG1 ×G1 M
//

��

EG2 ×G2 M

��
EG1 ×G1 M

// EG2 ×G2 N
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is commutative up to isomorphism, or homotopy-commutative. As shown
in Proposition 6.7, the vertical maps induce isomorphisms in ordinary coho-
mology. Therefore, the induced map on the cohomology of the differential
quotient stacks

H∗(E∇G2 ×G2 N ;A)
F ∗φ−−→ H∗(E∇G1 ×G1 M ;A)

is given by the usual map between the homotopy quotient spaces.
Part (4) follows immediately from parts (2) and (3), and (3.12). �

4.2. Pulling back equivariant bundles. As discussed in the previous
section, if G acts freely on a manifold P , there is a natural homomorphism

Ȟ∗(P/G)
q∗
/G−−→ Ȟ∗G(P )

inducing the standard isomorphism in cohomology. We now describe the
one-sided inverse to this map. First we outline the result, then we give the
construction, and then we check the details.

To obtain a map in the opposite direction, one must choose a connection Θ
on P . Using this and denoting M = P/G, one naturally obtains a morphism
of stacks

M
Θ−→ E∇G×G P

by pulling back the bundle (P,Θ), as indicated below when the stack is
evaluated on a manifold X.

X
f // M 7−→

f∗(P,Θ)

��

f̃ // (P,Θ)

��
X

f // M

Proposition 4.16 will imply that the induced map

Ȟ∗G(P ) = Ȟ∗(E∇G×G P )
Θ∗−−→ Ȟ∗(M)

recovers the isomorphism inverse to q∗/G at the level of cohomology, and it

recovers the Weil homomorphism

ΩG(P ) =
(
W(g)⊗ Ω(P )

)
basic

Θ∗−−→ Ω(P )basic
∼= Ω(M)

α⊗ ψ 7−→ α(Θ)⊗ ψ

at the level of differential forms.
The above is actually a special case of what happens when we have an

equivariant principal bundle with connection. Suppose that (Q,Θ)→M is a
G-equivariant principal K-bundle with G-invariant connection. This implies
that Q is a (G×K)-manifold, M is a G-manifold, and the map Q→ M is
equivariant. (Note that in the following discussion, G will always act on the
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base manifold M , and K will be the structure group for a principal bundle.)
The above construction generalizes to give a stack morphism

E∇G×GM
ΘG−−→ E∇(G×K)×G×K Q,

and this gives the expected classical maps in cohomology and equivariant
forms. In particular, we get the following maps between short exact se-
quences.

0 // Ω∗−1
G×K(Q)

Ω∗−1
G×K(Q)Z

//

Θ∗G
��

Ȟ∗G×K(Q)

Θ∗G

��

// H∗G×K(Q;Z) //
OO

∼=

��

0

0 // Ω∗−1
G (M)

Ω∗−1
G (M)Z

//

q∗
/K

UU

Ȟ∗G(M) //

q∗
/K

XX

H∗G(M ;Z) // 0

0 // H∗−1
G×K(Q;R/Z)

OO
∼=
��

// Ȟ∗G×K(Q)

Θ∗G
��

// Ω∗G×K(Q)Z

Θ∗G
��

// 0

0 // H∗−1
G (M ;R/Z) // Ȟ∗G(M)

q∗
/K

XX

// Ω∗G(M)Z

q∗
/K

XX

// 0

Let us now give the precise construction in slightly greater generality.

Assume that K is a normal subgroup of G̃ with quotient G̃/K ∼= G, and
furthermore assume that we have fixed a splitting of the Lie algebra, i.e.,

1→ K ↪→G̃→ G→ 1(4.9)

g̃ ∼=g⊕ k.

Such a decomposition of Lie algebras must exist since our groups are com-

pact. Of primary interest is when G̃ = G × K, but we wish to also allow
examples such as SU(n) ↪→ U(n)→ U(1) or U(1) ↪→ Spinc(n)→ SO(n).

Definition 4.10. For M ∈ G-Man, let G̃-BunK,∇(M) be the groupoid of G̃-
equivariant principal K-bundles on M with invariant connection. An object

(Q,Θ) ∈ G̃-BunK,∇(M) is a principal K-bundle with connection on M such
that:

• Q ∈ G̃-Man and Q
π→M is equivariant.

• Θ ∈
(
Ω1(Q)⊗ k

)G̃
.

For (Qi,Θi) ∈ G̃-BunK,∇(M), a morphism (Q1,Θ1)
φ→ (Q2,Θ2) is a G̃-

equivariant map Q1
φ→ Q2 which is an isomorphism of K-bundles with

connection.

Remark 4.11. For G̃ = G×K, the condition Θ ∈
(
Ω1(Q)⊗ k

)G×K
can be

rewritten as k∗Θ = Adk−1 Θ and g∗Θ = Θ. Also, in this case we may refer

to G̃-equivariant K-bundles as G-equivariant K-bundles. This is a standard
convention, and we hope it does not cause any confusion.
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Given an element (Q,Θ) ∈ G̃-BunK,∇(M), we want to define a natural
map ΘG

E∇G̃×G̃ Q q/K
// E∇G×GM

ΘGrr

such that the composition qK ◦ ΘG is naturally isomorphic to the identity.
We first describe the construction, hopefully emphasizing the geometric na-
ture and naturalness. The details, which are relatively straightforward, are
then checked in Proposition 4.16. While the induced maps in cohomology
and equivariant forms that we recover are well-known, and the construction
of ΘG appears implicitly in [BoT], we do not know any references where
this construction is done in general at the level of principal bundles with
connection.

We now give a functor between the two groupoids produced when the
stacks are evaluated on a test manifold X. Denoting Θ = ΘQ for added
clarity, the map is given by the following construction.

(E∇G×GM)(X)
ΘG(X)−−−−→ (E∇G̃×G̃ Q)(X)

(Q,ΘQ)

πM

��
(P,ΘP )

f //

πX
��

M

X

7−−−→

(
f∗Q, π∗PΘP ⊕ (f̃∗ΘQ − ιπ∗PΘP f̃

∗ΘQ)
)

f̃ //

πP
��

π′X

$$

(Q,ΘQ)

πM

��
(P,ΘP )

f //

��

M

X

Our new G̃-bundle is given by pulling back Q. The connection on f∗Q is
given by the pulling back the connections on P and Q and subtracting a
correction term. This extra term is defined to be the image

Ω1(f̃∗Q)⊗ g⊗ Ω1(f̃∗Q)⊗ k −→ Ω1(f̃∗Q)⊗ k

π∗PΘP ⊗ f̃∗ΘQ 7−→ ιπ∗PΘP f̃
∗ΘQ

under the natural contraction g⊗Ω1(f̃∗Q)
ι−→ Ω0(f̃∗Q). While this term may

initially seem obscure, it is necessary to ensure that we produce a connection
on f∗Q, and it has a simple description in the Weil model.

Define the equivariant extension of the connection and curvature forms
by

ΘG := Θ− ιθgΘ ∈
(
W(g)⊗ Ω(Q)

)1 ⊗ k,(4.12)

ΩG := dGΘG + 1
2 [ΘG ∧ΘG] ∈

(
W(g)⊗ Ω(Q)

)2 ⊗ k.(4.13)

To clarify, ιθgΘ ∈ Λ1g∗ ⊗ Ω0(Q) ⊗ k and it is evaluated on elements ξ ∈ g
by contracting the connection along the vector field in Q generated by the
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G-action; i.e.,
〈ιθgΘ, ξ〉 := ιξΘ ∈ Ω0(Q; k).

The k portion of the connection on f̃∗Q is simply the image of the equivariant
connection ΘG under the Weil homomorphism

W(g)⊗ Ω(Q)⊗ k
(π∗PΘP )∗⊗f̃∗⊗1
−−−−−−−−−−→ Ω(f̃∗Q)⊗ k

ΘG = Θ− ιθgΘ 7−−−−−→ f̃∗ΘQ − ιπ∗PΘP f̃
∗ΘQ.

Note that the additional term ιπ∗PΘP f̃
∗ΘQ uses the connection on the G-

bundle P to detect the G-action on Q. This is key to understanding the
equivariant Chern–Weil homomorphism in Section 5.

Remark 4.14. In the Cartan model for equivariant forms (see Section A.5),
the equivariant connection and curvature simplify to

ΘG ←→ Θ ∈ S0g∗ ⊗ Ω1(Q)⊗ k,

ΩG ←→ Ω− ιΩgΘ ∈
(
S0g∗ ⊗ Ω1(Q) + S2g∗ ⊗ Ω0(Q)

)
⊗ k,

with ΩG becoming the familiar equivariant curvature defined in [BeV, §2].

We proceed to check that ΘG and ΩG are equivariant forms and the above
construction satisfies the desired properties.

Lemma 4.15. For (Q,Θ) ∈ G̃-BunK,∇(M), the forms ΘG and ΩG are

G̃-invariant and g-horizontal. In other words, they live in the subcomplex

(W(g)⊗ Ω(Q)⊗ k)G̃g-hor. When G̃ = G×K, this can be written

ΘG ∈ Ω1
G(Q; k), ΩG ∈ Ω2

G(Q; k).

Proof. To see that ΘG is g-horizontal, let ξ ∈ g. Then

ιξΘG = ιξΘ− ιθg(ξ)Θ = ιξΘ− ιξΘ = 0.

We show both terms in ΘG are G̃-invariant. First note Θ ∈
(
Ω1(Q)⊗ k

)G̃
.

To check the term ιθgΘ, observe that θg ∈
(
Λ1g∗ ⊗ g

)G
=
(
Λ1g∗ ⊗ g

)G̃
, and

the contraction map

g⊗ Ω1(Q)
ι−→ Ω0(Q)

ξ ⊗ ω 7−→ ιξω

is G̃-equivariant. Hence,

ιθgΘ ∈
(
Λ1g∗ ⊗ Ω0(Q)⊗ k

)G̃
,

so ΘG is g-horizontal and G̃-invariant.
From the Leibniz rule for ιξ and the definition of tensor product of rep-

resentations, it immediately follows that [ΘG ∧ΘG] is also g-horizontal and

G̃-invariant. The standard identities (A.3) and (A.4) imply that dGΘG is
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also G̃-invariant and g-horizontal. Consequently, ΩG is invariant and hori-
zontal. �

Proposition 4.16. Assume G̃/K ∼= G satisfying (4.9). Let (Q,Θ) ∈
G̃-BunK,∇(M).

(1) The above construction defines a natural morphism ΘG

E∇G̃×G̃ Q q/K
// E∇G×GM

ΘGrr

such that the composition q/K ◦ ΘG is naturally isomorphic to the
identity.

(2) The induced map

Ω
(
E∇G̃×G̃ Q

) Θ∗G−−→ Ω
(
E∇G×GM

)
is equivalent to the homomorphism Θ∗G : Ω

G̃
(Q) → ΩG(M) induced

from

W(g)⊗W(k)⊗ Ω(Q)
Θ∗G−→W(g)⊗ Ω(Q)

α · β · γ 7−→ α · β(ΘG) · γ.

(3) The induced map in cohomology is the standard isomorphism

H∗
G̃

(Q;−)
∼=−→ H∗G(M ;−).

Proof. For part (1), we must check that our construction defines a principal

G̃-bundle with connection. Since P
f−→ M

πM←−− Q are equivariant maps

between G̃-manifolds, the pullback f∗Q is naturally a G̃-manifold. The

freeness of the G̃-action follows easily by the following argument. Suppose

g̃ ∈ G̃ satisfies g̃(p, q) = (p, q) for some point in f∗Q ⊂ P × Q; then gp =
p ∈ P implies g = 1 and hence g̃ ∈ K. Since K acts freely on Q, then g̃ = 1.

Hence, f∗Q→ X is a principal G̃-bundle. To show that

(4.17) Θf∗Q = π∗PΘP ⊕
(
f̃∗ΘQ − ιπ∗PΘP f̃

∗ΘQ

)
∈ Ω1(f∗Q)⊗ (g⊕ k)

is a connection, we must check it is G̃-equivariant and restricts fiberwise

to the Maurer–Cartan 1-form on G̃. By Lemma 4.15, we see that f̃∗ΘQ −
ιπ∗PΘP f̃

∗ΘQ must be G̃-invariant and g-horizontal, since it is the image of
ΘG under the map(

W(g)⊗ Ω(Q)⊗ k
)G̃
g-hor

−→
(
Ω(f∗Q)⊗ k

)G̃
g-hor

.
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This, combined with the fact that ΘP ∈
(
Ω1(P ) ⊗ g

)G
, implies that (4.17)

is an element of
(
Ω1(f∗Q)⊗ (g⊕ k)

)G̃
. Similarly, if ξ1 ⊕ ξ2 ∈ g⊕ k, then

ιξ1⊕ξ2
(
π∗PΘP ⊕ (f̃∗ΘQ − ιπ∗PΘP f̃

∗ΘQ)
)

=
(
ιξ1ΘP

)
⊕
(
ιξ2ΘQ

)
+ 0⊕ ιξ1

(
f̃∗ΘQ − ιπ∗PΘP f̃

∗ΘQ

)
= ξ1 ⊕ ξ2.

Therefore, the morphism of stacks ΘG is well-defined. The map πP gives
a natural isomorphism (f∗Q)/K ∼= P compatible with the connections.
Hence, q/K ◦ΘG is naturally isomorphic to the identity on E∇G×GM .

The proof of part (2) is given by tracing through the Freed–Hopkins
isomorphism, discussed in Section 3.2, and the definition of our map. Es-
sentially, we must show that the diagram

ΩG×K(Q)

Θ∗G
��

∼= // Ω (E∇(G×K)×G×K Q)

Θ∗G
��

ΩG(M)
∼= // Ω(E∇G×GM)

commutes by evaluating on a test manifold X. Consider a homogeneous
element αβγ ∈ ΩG×K(Q) ⊂ W(g) ⊗ W(k) ⊗ Ω(Q). We first check the
clockwise direction. Given X → E∇G×GM , we have

(P,ΘP )

��

f // M

X

7→

(f∗Q,Θf∗Q)
f̃ //

πP
��

(Q,Θ)

��
(P,ΘP )

f //

��

M

X

where

Θf∗Q = π∗PΘP ⊕
(
f̃∗Θ− ιπ∗PΘP f̃

∗Θ
)
.

Therefore, αβγ ∈ ΩG×K(Q) gets mapped to

α(π∗PΘP ) ∧ β(f̃∗Θ− ιπ∗PΘP f̃
∗Θ) ∧ f̃∗γ ∈ Ω(f∗Q)G×K- basic

∼= Ω(X).

Going counter-clockwise, we first have that αβγ 7→ αβ(ΘG)γ, which lives in

(W(g)⊗ Ω(Q))G×K- basic
∼= (W(g)⊗ Ω(M))G- basic .

When we evaluate on X ← (P,Θ)
f−→M ,

αβ(ΘG)γ 7−→ α(ΘP )β(f∗Θ− ιΘP f
∗Θ)f∗γ ∈ Ω(P )G- basic

∼= Ω(X).

Pulling this back up to f∗Q via π∗P gives us the form from the other direction.
Hence, they restrict to the same form in Ω(X).
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Finally, part (1) implies that Θ∗G ◦ q∗K = Id, and we know from (4.8) that
q∗/K is an isomorphism in ordinary cohomology. Therefore, part (3) follows

immediately. �

4.3. Uniqueness of Ȟ∗
G. A natural question is whether one can give an

axiomatic characterization of the functor Ȟ∗G. We now show that the char-

acter diagram, combined with the maps Ȟ∗G(P )
Θ∗−−→ Ȟ∗(M) for principal

G-bundles with connection, uniquely characterize our differential extension
of Borel equivariant cohomology. The idea is to use Θ∗ to regard Ȟ∗G(M)

a subgroup of Ȟ∗(EG ×G M) and invoke the Simons–Sullivan axiomatic
characterization of differential cohomology. It is unknown to the author if
the uniqueness result holds without assuming the additional structure maps
Θ∗.

Proposition 4.18. If H∗G is a functor from G-manifolds to graded abelian
groups satisfying parts A and C of Theorem 1.1, then there is a natural
equivalence H∗G → Ȟ∗G that commutes with the identity map on all other
functors in the character diagram.

Proof. Assume that HG satisfies Theorem 1.1 parts A and C. As described
in Section A.4, let (EG,ΘEG)→ BG be the universal bundle with connec-
tion obtained as a direct limit of smooth manifolds. The projection map
EG ×M → M is G-equivariant and can be combined with the universal
connection to produce

H∗G(M)→ H∗G(EG×M)
Θ∗EG−−−→ H∗(EG×GM).

On ordinary cohomology, this map is an isomorphism. Since the Weil ho-
momorphism ΩG(M)→ Ω(EG×GM) is injective (Lemma A.17), it follows
from the short exact sequence (SES 2) that H∗G(M) is naturally an abelian

subgroup of H∗(EG×GM). The same argument shows Ȟ∗G(M) is a subgroup

of Ȟ∗(EG×GM).
In [SS], Simons–Sullivan show the character diagram uniquely charac-

terizes ordinary differential cohomology, and there exists a unique natural

transformation H∗
∼=−→ Ȟ∗. This isomorphism combines with (SES 2) to give

the following.

0 // Ω∗−1
G (M)

Ω∗−1
G (M)Z

//
� _

��

H∗G(M) //
� _

��

H∗G(M ;Z) //

∼=

��

0

0 // Ω∗−1(EG×GM)
Ω∗−1(EG×GM)Z

// Ȟ∗(EG×GM) // H∗(EG×GM ;Z) // 0

0 // Ω∗−1
G (M)

Ω∗−1
G (M)Z

//

� ?

OO

Ȟ∗G(M) //
� ?

OO

H∗G(M ;Z) //

∼=

OO

0.
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It immediately follows that H∗G(M) and Ȟ∗G(M) can be naturally considered

as the same abelian subgroup of Ȟ∗(EG×GM), and this gives us our desired
natural isomorphism. �

5. Equivariant Chern–Weil theory

The constructions in Propositions 4.4 and 4.16 combine to give a geo-
metric interpretation of equivariant Chern–Weil theory. For simplicity, let

G̃ = G×K in the following preliminary discussion.
Suppose that M is a G-manifold and (Q,Θ)→M is a G-equivariant prin-

cipal K-bundle with G-invariant connection; i.e., (Q,Θ) ∈ G-BunK,∇(M).
We briefly explain two classical ways to construct equivariant characteristic
classes. The first construction is purely topological and does not use the
connection. Consider the principal K-bundle EG×G Q→ EG×GM . The
choice of classifying map

(5.1) EG×GM −→ BK.

induces a homomorphism

H∗(BK;A) −→ H∗G(M ;A)

for any abelian group A. The second method, due originally to Berline–
Vergne [BeV], uses the connection to construct an equivariant differential
form. Given ω ∈ (Snk∗)K ∼= H2n(BK;R), define the equivariant Chern–
Weil form

ω(ΘG) := ω(Ω∧nG ) ∈ Ω2n
G (M).

As noted in Remark 4.14, this becomes

ω
(
(Ω− ιΩgΘ)∧n

)
∈ (Sg∗ ⊗ Ω(M))G

in the more commonly used Cartan model. While the form ω(ΘG) depends
on the connection Θ, its class in H2n

G (M ;R) does not. These give equivariant
Chern classes and forms when K = U(n), and equivariant Pontryagin classes
and forms whenK = SO(n). In [BoT], Bott–Tu use the universal connection
on EG to show these two constructions give the same classes in H∗G(M ;R).
The following construction is similar to theirs, but we replace EG with E∇G
and view everything in the world of stacks.

Suppose that (Q,Θ) ∈ G-BunK,∇(M). The following maps compose to
give a refinement of (5.1) to stacks.

(5.2) E∇G×GM
ΘG−−→ E∇(G×K)×G×K Q −→ B∇(G×K)

q/G−−→ B∇K.

The first map is given by the bundle pullback construction of Section 4.2,
the second is induced by the equivariant map Q→ pt, and the third map is

induced by the quotient G×K /G−−→ K. When applied to a test manifold X,
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the composition performs the following construction.

(Q,ΘQ)

πM

��
(P,ΘP )

f //

πX
��

M

X

7−→

(
f∗Q, π∗PΘP ⊕ (f̃∗ΘQ − ιΘP f̃∗ΘQ)

)/
G

��
X

It pulls back Q, modifies the connection to create a G × K-bundle with
connection, and then quotients by G.

Theorem 5.3. Associated to (Q,Θ) ∈ G-BunK,∇(M) is a natural morphism

E∇G×GM
(QG,ΘG)−−−−−→ B∇K,

such that the induced map

Ȟ∗K
(QG,ΘG)∗−−−−−−→ Ȟ∗G(M)

refines the traditional equivariant characteristic classes and forms as de-
scribed above.

Proof. We know the morphism E∇G×GM → B∇K is well-defined, since it
is defined in (5.2) as the composition of three morphisms.

We now must show that at the level of cohomology, (QG,ΘG)∗ is the

homomorphism ψ∗, where EG×GM
ψ−→ BK is a classifying map for EG×G

Q→ EG×GM . By Proposition 6.7, the maps

EG×GM → E∇G×GM → EG×GM and BK → B∇K → BK

induce isomorphisms in cohomology. Therefore, we must check that the
diagram

(5.4)

EG×GM

ψ

��

// EG×GM

QG
��

BK // BK,

where the two horizontal morphisms given by viewing EG→ BG and EK →
BK as principal bundles, is commutative up to isomorphism.
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We evaluate on a test manifoldX and trace through whereX
s−→ EG×GM

is sent, using the following diagram to identify maps.

s̃∗(Π∗MQ) //

��

Π∗MQ
//

��

Q

��
s∗(EG×M)

��

s̃ // EG×M

��

ΠM // M

X
s // EG×GM

Going clockwise in (5.4), we have

X
s−→ EG×GM 7→

s∗(EG×M)
ΠM◦s̃ //

��

M

X

7→

(
(ΠM ◦ s̃)∗Q

)
/G

��
X

,

and the evident isomorphism Π∗MQ
∼= EG×Q gives(

(ΠM ◦ s̃)∗Q
)
/G ∼=

(
s̃∗(EG×Q)

)
/G ∼= s∗(EG×G Q).

Going counter-clockwise in (5.4), we have

X
s−→ EG×GM 7→ X

ψ◦s−−→ BK 7→
(ψ ◦ s)∗EK

��
X

.

Since

(ψ ◦ s)∗EK ∼= s∗(ψ∗EK) ∼= s∗(EG×G Q),

the diagram (5.4) commutes up to isomorphism.
For differential forms, we trace through the composition (5.2), which is

given by the restriction of the following to the basic sub-complexes

W(k)→W(g)⊗W(k)→W(g)⊗W(k)⊗ Ω(Q)
Θ∗G−−→W(g)⊗ Ω(M).

The first two maps are given by the mapping W(k) into its factor in the
tensor product, so the composition is simply

(Sk∗)K = W(k)basic −→ (W(g)⊗ Ω(M))basic = ΩG(M)

ω 7−→ ω(ΘG),

which is precisely the equivariant Chern–Weil form in the Weil model. �

One can also construct equivariant extensions of the Chern–Simons forms.
As explained in (A.13), to ω ∈ (Skk∗)K is naturally associated a Chern–
Simons form CSω ∈W2k−1(k)K satisfying dW CSω = ω. Given

(Q,Θ) ∈ G-BunK,∇(M),
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we define the equivariant Chern–Simons form to be the image of CSω under
the equivariant equivariant Weil homomorphism

W2k−1 Θ∗G−−→ Ω2k−1
G (Q)(5.5)

CSω 7−→ CSω(ΘG).

As in the case of differential characters, the Chern–Simons forms are closely
related to the differential refinements of characteristic classes.

Proposition 5.6. Let ω̌ ∈ Ȟ2k(B∇K) ∼= H2k(BK;Z) be a differential re-
finement of ω ∈ (Skk∗)K . Suppose that (Q,Θ) ∈ G-BunK,∇(M) admits a
G-equivariant section s : M → Q. Then

[s∗G CSω(ΘG)] = ω̌(ΘG) ∈ Ȟ2k
G (M).

Proof. First note that because EG is contractible, the character diagram
for E∇G gives isomorphisms

Ȟ2k(E∇G)
∼=
((

W2k−1(k)

dWW2k−2(k)

∼=
55

dW

//W2k(k)0.

This gives the universal property π∗ω̌ = [CSω] ∈ Ȟ2k(E∇K).
The construction (5.2) readily generalizes to the following diagram,

E∇G×G Q //

��

E∇K

π

��
E∇G×GM

(QG,ΘG) //

sG

ZZ

B∇K

giving us two ways of writing the morphism E∇G×GM → B∇K. The bottom
morphism induces ω̌(ΘG); the other one gives

Ȟ(B∇K) // Ȟ(E∇G) // Ȟ(E∇G×G Q) // Ȟ(E∇G×GM)

ω̌ � // [CSω] � // [CSω(ΘG)] � // [s∗G CSω(ΘG)].

�

Remark 5.7. In the statement of Theorem 5.3, we assumed that the total
space of the bundle Q had an action of G×K. Suppose instead that (Q,Θ) ∈
G-BunK,∇(M), where G̃/K ∼= G with a fixed Lie algebra splitting (4.9). It
no longer makes sense to quotient by G at the end, but we still have the
composition

E∇G×GM
ΘG−−→ E∇G̃×G̃ Q −→ B∇G̃.

This induces differential equivariant characteristic classes via the homomor-
phism

Ȟ∗
G̃
−→ Ȟ∗G(M).
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Note that Proposition 5.6 would not be applicable unless there exists an

isomorphism G̃ ∼= G×K.

5.1. Equivariant differential characters. One convenient description of
differential cohomology is via differential characters [CheeS]. An element
x̌ ∈ Ȟn(M), with curvature R(x̌) = ω, associates to every smooth singular

(n−1)-cycle Xn−1
z−→M an element 〈x̌, z〉 ∈ R/Z; if z = ∂z̃ for some smooth

n-chain Yn
z̃−→M , then

〈x̌, z〉 =

∫
Yn

z̃
∗
ω mod Z.

In degree 2, an R/Z-bundle with connection on M naturally defines an
element of Ȟ2(M) via its holonomy. More generally, evaluating a differential
character on a (n − 1)-cycle can be thought of as the holonomy for some
higher gerbe or abelian gauge field.

This idea generalizes to the equivariant setting, with classes in Ȟn
G(M)

giving “differential characters” on the stack E∇G×GM . This type of struc-
ture naturally appears in the physics literature as WZW terms for gauged
sigma models [FOS]. We state the main idea here, but we do not give enough
details on singular cycles to consider this a definition of Ȟ∗G(M).

Assume that Xn−1 is a closed smooth manifold. To any map

Xn−1
z−→ E∇G×GM,

a class x̌ ∈ Ȟn
G(M) associates an “equivariant holonomy” in R/Z, as seen in

the following diagram.

(P,Θ)
f //

��

M

Xn−1

7−→
Ȟn
G(P )

Θ∗

��

Ȟn
G(M)

f∗Goo

Ȟn(Xn−1) ∼= R/Z

If the cycle is a boundary, with [(P,Θ) → Xn−1] = ∂ [(P ′,Θ′)→ Yn] and

f extending to a map P ′
f̃−→ M , then the holonomy can be computed by

integrating the equivariant curvature ω = R(x̌) ∈ Ωn
G(M)

〈x̌, Xn−1 ← (P,Θ)
f−→M〉 =

∫
Yn

(
Θ∗ ⊗ f̃∗

)
ω mod Z.

Furthermore, these equivariant holonomies are gauge-invariant; if two ob-
jects in the groupoid Map(Xn−1,E∇G×GM) are isomorphic, they associate
to x̌ ∈ Ȟn

G(M) equal elements in R/Z.

Remark 5.8. The entire above discussion concerning equivariant characters
immediately generalizes from Z ⊂ R to Λ ⊂ V , where elements of Ȟ∗G(M ; Λ)
give characters valued in V/Λ.
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5.2. Geometric models in low degrees.

Proposition 5.9. There are natural isomorphisms

Ȟ0
G(M) ∼= H0(M/G;Z),

Ȟ1
G(M) ∼= Ȟ1(M)G ∼= C∞(M,R/Z)G.

Proof. The short exact sequence (SES 1) implies that Ȟ0
G(M) ∼= Ω0

G(M)Z.
Unraveling this, we obtain the following chain of equalities and isomor-
phisms,

Ȟ0
G(M) ∼= Ω0

G(M)Z = C∞(M,Z)G ∼= C0(M/G,Z) ∼= H0(M/G;Z).

In degree one, consider the homomorphism Ȟ1
G(M) → C∞(M,R/Z)G

defined as follows using the equivariant differential character construction
of Section 5.1. Given x̌ ∈ Ȟ1

G(M) and a point m ∈ M , define the element
Fx̌(M) ∈ R/Z by evaluating on the G-orbit of m,

Fx̌(m) :=
〈
x̌, pt← G

G·m−−→M
〉
.

The gauge invariance of the equivariant character implies that the func-
tion Fx̌ is G-invariant. Furthermore, Ω1

G(M)Z ∼= Ω1(M)GZ , and integra-
tion shows that Fx̌ is a smooth function with derivative R(x̌). Hence,
Fx̌ ∈ C∞(M,R/Z)G.

Note that the kernel of C∞(M,R/Z)G
d−→ Ω1(M)GZ is given by the locally

constant functions

Ker(d) = C∞(M,R/Z)Gcl
∼= H0(M/G;R/Z) ∼= H0

G(M ;R/Z).

Therefore, the homomorphism of short exact sequences

0 // H0
G(M ;R/Z) //

∼=
��

Ȟ1
G(M) //

��

Ω1
G(M)Z

∼=
��

// 0

0 // Ker(d) // C∞(M,R/Z)G // Ω1(M)GZ
// 0

gives our desired isomorphism via the Five Lemma. �

Proposition 5.10. In degree two, there is a natural isomorphism

Ȟ2
G(M) ∼= π0

(
G-BunR/Z,∇(M)

)
;

i.e., G-equivariant R/Z-bundles with connection on M , modulo equivariant
isomorphisms that preserve connection, are in bijection with elements of
Ȟ2
G(M).

Proof. Let č ∈ Ȟ2
R/Z
∼= H2(BR/Z;Z) ∼= Z be the standard generator. The

equivariant Chern–Weil construction of Theorem 5.3 gives us a map

G-BunR/Z,∇(M) −→ Ȟ2
G(M)(5.11)

(Q,Θ) 7−→ č(QG,ΘG).
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Multiplication in the abelian group R/Z makes G-BunR/Z,∇(M) into a Pi-
card groupoid (this symmetric monoidal structure corresponds to the tensor
product of line bundles), and (5.11) is symmetric monoidal. Furthermore,
the map only depends on the isomorphism class of (Q,Θ) inG-BunR/Z,∇(M).

Hence, the map (5.11) descends to a homomorphism of abelian groups
π0

(
G-BunR/Z,∇(M)

)
→ Ȟ2

G(M). And, the characteristic class c(QG) ∈
H2
G(M ;Z) does not depend on the connection Θ. This gives the following

homomorphism of short exact sequences.

0 // Ker Π //

��

//

��

π0

[
G-BunR/Z,∇(M)

] Π //

��

π0

[
G-BunR/Z(M)

]
//

��

0

0 // Ω1
G(M)

Ω1
G(M)Z

// // Ȟ2
G(M) // H2

G(M ;Z) // 0

We now show that each of the above vertical maps is an isomorphism.
It is a classical result [LMS] that, up to isomorphism, equivariant bun-

dles with abelian structure group are classified by Borel cohomology; i.e.,
π0

(
G-BunA(M)

) ∼= [EG ×G M,BA] when A is abelian. This implies the
right vertical map is an isomorphism.

The G-invariant connections on the trivial bundle M × R/Z are in bi-
jection with Ω1(M)G. Such a connection form is gauge equivalent to the
trivial connection if and only if it is the derivative of a gauge transformation
C∞(M,R/Z)G ∼= Ȟ1

G(M); i.e., if it lives in Ω1(M)GZ . Hence,

Ker Π ∼=
Ω1(M)G

Ω1(M)GZ

∼=−→
Ω1
G(M)

Ω1
G(M)Z

,

giving that the left vertical arrow is an isomorphism. The proposition now
follows by the Five Lemma. �

6. Details of the simplicial sheaf construction

This section contains a more detailed account of Section 3.3. The results
essentially follow by combining the work of [FreH] and [BunNV]; the reader
may refer to these works, along with [Lur, Chapter 5] for further details.
Let us briefly explain our notation.

We will use simplicial sets in order to deal with groupoids, nonnegatively
graded chain complexes, and topological spaces simultaneously. Let ∞Gpd
be the (∞, 1)-category of “∞-groupoids,” taken here to be the full simpli-
cially enriched subcategory of simplicial sets spanned by Kan complexes.
The category ∞Gpd is naturally equivalent, as an (∞, 1)-category, to the
topologically enriched category Top of topological spaces with the homo-
topy type of a CW complex. Though it is not strictly necessary, we use this
equivalence ∞Gpd ' Top to make certain statements easier to read. Any
groupoid is naturally a Kan complex via the nerve construction N, and the
Dold–Kan correspondence Γ makes a nonnegatively graded chain complex
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into a simplicial abelian group. These structures, together with the singular
functor S and geometric realization | |, fit into the following picture.

Top

S'
��

Gpd �
N //∞Gpd

| |

OO

Ch≥0
?Γoo

Let PShv∞Gpd = Fun(Manop,∞Gpd) be the (∞, 1)-category of ∞Gpd-
valued presheaves on manifolds. A functor F ∈ PShv∞Gpd is a sheaf if it
satisfies the following descent condition: for any covering U → X, the canon-

ical map F (X)
'−→ holim∆ F (U•) is an equivalence. The full subcategory of

simplicial sheaves is denoted Shv∞Gpd, and there is a sheafification functor
L forming the adjunction

L : PShv∞Gpd � Shv∞Gpd : inclusion.

We continue to suppress the embedding of Set ↪→ Gpd, but we use the
nerve symbol to denote N: ShvGpd → Shv∞Gpd. As in previous sections, we
will use M to denote both a manifold M and the stack it represents, but we
will begin using the notationM within proofs for added clarity. For Y ∈ Top,
we define Sing∗Y ∈ Shv∞Gpd by Sing∗Y (X) = S(Y X), the singular complex
of the space of continuous maps from X → Y . Let K(A,n) ∈ Shv∞Gpd

denote any simplicial sheaf equivalent equivalent to Sing∗K(A,n).
We now recount the results we need from the theory of homotopy-invariant

sheaves developed by Bunke–Nikolaus–Völkl in [BunNV]. Their results hold
for general C-valued sheaves on manifolds, where C is an (∞, 1)-category, but
we have specialized them to the case of C = ∞Gpd ' Top. A sheaf F is
homotopy-invariant if, for all manifoldsX, the projectionX×I → X induces
an equivalence

F (X)
'−→ F (X × I).

Let Shvh∞Gpd denote the full subcategory of homotopy-invariant sheaves.
The following results are found in Proposition 2.6, Equation (68), and Lem-
ma 7.13 of [BunNV].

• The functor Sing∗ gives an equivalence Top
'−→ Shvh∞Gpd; the inverse

is given by evaluating at a point and taking the geometric realiza-
tion. There is also a homotopification functor H, and these form the
following adjunctions.

Shv∞Gpd

H //
Shvh∞Gpd

|ev(pt)|
∼
//

?oo Top
Sing∗

oo

• These adjunctions combine to give the following adjunction:

(6.1) h : Shv∞Gpd � Top : Sing∗.

Because h is a left adjoint, it automatically commutes with homotopy
colimits. The functor h also preserves finite products.
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• Let M be a manifold and M ∈ ShvGpd the stack it represents. Then,

(6.2) h(N(M)) 'M ∈ Top.

• If A ∈ ShvAb ↪→ ShvGpd is a sheaf of abelian groups that are C∞-
modules, then

(6.3) h(N(A)) ' pt ∈ Top.

We now make the following definition/abbreviation.

Definition 6.4. Let A be a fixed abelian group. For a stack M ∈ ShvGpd,

Hn(M ;A) := hoShv∞Gpd(N(M ),K(A,n)).

Example 6.5. For M ∈ Man, consider N(M) ∈ Shv∞Gpd, which is defined
by considering the set C∞(X,M) as a discrete simplicial set. The Yoneda
lemma shows that Definition 6.4 agrees with our ordinary definition of co-
homology,

Hn(M,A) = hoShv∞Gpd(N(M), Sing∗K(A,n))

∼= hoTop(M,K(A,n)) ∼= Hn(M ;A).

The following proposition and proof are taken almost directly from Lem-
ma 5.2 in [BunNV].

Proposition 6.6. The natural map EG×GM → E∇G×GM induces equiv-
alences

EG×GM
'−→ h(N(E∇G×GM))

'−→ h(N(EG×GM)).

Proof. We first show h(N(E∇G×GM))
'−→ h(N(EG×GM)). Consider the

following commutative diagram of prestacks

E∇G×GM // EG×GM

(
Ω1 ⊗ g×M

)
�G

OO

// M �G,

OO

where we use the notation • �G to denote the action groupoid [•⇔ G× •]
associated to a G-action. The group G acts on Ω1⊗g via the usual change of
connection formula, ω · g = Adg−1 ω + g∗θg. The right vertical map is given
by associating to X → (M � G) the trivial bundle X ← X × G, together
with the map X ×G→ M determined by the map X → M . Likewise, the
left vertical map is given by the same construction, but with the connection
on X ×G determined by the map X → Ω1 ⊗ g.

Since any bundle is locally trivializable, the two vertical maps induce
equivalences of groupoids when evaluated on stalks (they are the stackifi-
cation maps). Hence, upon taking the nerve and sheafifying, the vertical
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maps induce equivalences in Shv∞Gpd (see [BunNV, Lemma 5.2] and [FreH,
(7.23)]).

N(E∇G×GM) // N(EG×GM)

L(N
((

Ω1 ⊗ g×M
)

�G
)
)

'

OO

// L(N (M �G))

'

OO

We now use the general fact that for a simplicial set B, the induced

simplicial object in simplicial sets, given by the composition ∆op B−→ Set
N−→

sSet, gives a natural equivalence

hocolim
∆op

N(B) ' B.

Rewriting the bottom entries as colimits, and applying the properties of h
described above, gives the following sequence of equivalences.

h
(
L(N((Ω1 ⊗ g×M)�G))

)
' h

(
L(Ω1 ⊗ g×M ⇔ G× Ω1 ⊗ g×M ←←← · · ·)

)
' h
(
L
(

hocolim
∆op

(
N(Ω1 ⊗ g×M)⇔ N(G× Ω1 ⊗ g×M)←←← · · ·

)))
' hocolim

∆op

(
h(N(Ω1⊗g)×h(N(M))⇔ h(N(G))×h(N(Ω1⊗g))×h(N(M))···)

)
'−→ hocolim

∆op

(
M ⇔ G×M ←←← G×G×M · · ·

)
' h
(
L
(

N(M �G)
))
.

The equivalence h(N(E∇G×GM))
'−→ h(N(EG×GM)) follows immediately.

In the above argument, the third equivalence was given by fact that h and L
commute with colimits, N(G×k×Ω1⊗g×M) is a sheaf, and h preserves finite
products. The fourth equivalence was given by the fact that h(N(X)) ' X,
and h(N(Ω1⊗g)) ' pt since Ω1⊗g is a sheaf of C∞-modules. Note that the
middle entries were given as the homotopy colimit of a simplicial space (sim-
plicial object in Top). For proper simplicial spaces, the homotopy colimit
is equivalent to the geometric realization; this is a common construction of
BG when M = pt.

Now consider also the following commutative diagram of prestacks

EG×GM // EG×GM

(EG×M) �G

OO

M �G,

OO

oo

where the bottom left map is given by the homotopy equivalenceM
'−→ EG×

M . The left vertical map is given by quotienting, and since G acts freely,
it leads to an equivalence of groupoids when evaluated on any manifold X.
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Hence, both vertical maps give equivalences in Shv∞Gpd.

N(EG×GM) // N(EG×GM)

L(N[EG×M ⇔ G× (EG×M)])

'

OO

L(N[M ⇔ G×M ])

'

OO

oo

By the same calculation as above

h(L(N(M �G))) ' hocolim
∆op

(
M ⇔ G×M ←←← G×G×M · · ·

)
,

h(L(N((EG×M) �G))) ' hocolim
∆op

(
EG×M ⇔ G× EG×M ←←← · · ·

)
,

and the homotopy equivalence pt
'−→ EG induces a homotopy equivalence of

the relevant simplicial spaces. This implies h(L(N(M�G)))
'−→ h(L(N((EG×

M) �G))), which in turn gives the equivalence

EG×GM ' h(L(N(EG×GM)))
'−→ h(N(EG×GM)). �

Proposition 6.7. The map EG ×GM → E∇G ×GM , defined by the con-
nection on EG, induces an isomorphism in cohomology

H∗(E∇G×GM ;A)
∼=−→ H∗(EG×GM ;A).

Proof. This follows almost immediately from Definition 6.4, the adjunction
(6.1), and the calculation of h(N(E∇G×GM)) in Proposition 6.6. Together,
these give the following sequence of isomorphisms:

Hn(E∇G×GM ;A) = hoShv∞Gpd(N(E∇G×GM),K(A,n))

∼= hoTop(h(N(E∇G×GM)),K(A,n))
∼=−→ hoTop(EG×GM,K(A,n))

∼= Hn(EG×GM ;A). �

Finally, we repeat an explicit construction of a simplicial sheaf represent-
ing differential cohomology. This construction, and minor variations, have
already appeared in several places, including [HS] implicitly and [BunNV,
Bun, FSS, HQ, Sch] explicitly. In order to obtain simplicial sets from cochain
complexes, we use the standard trick of reversing the grading and shifting,
and then using the Dold–Kan construction. The inclusions of

Z ↪→ R ↪→ Ω0

induce the following maps of presheaves of chain complexes, where degree 0
is written on the left.

(Ωn
cl ← 0← · · · ) ↪→ (Ωn

cl
d←− Ωn−1 d←− · · · d←− Ω0)←↩ (0← · · · ← Z← · · · )
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Applying Dold–Kan (and sheafifying where necessary), we then take the
homotopy pullback in Shv∞Gpd, obtaining

(6.8)

Ǩ(Z, n)

��

// L(Γ(0← · · · ← Z← · · · ))

��

Γ(Ωn
cl ← 0← · · · ) // Γ(Ωn

cl
d←− Ωn−1 d←− · · · d←− Ω0)

The top right corner is equivalent to K(Z, n), and the bottom right corner
is equivalent to K(R, n), so the construction of Ǩ(Z, n) fits the description
from (3.10).

We now have two potential definitions of Ȟ∗G(M). The first was given in

Section 2 using the cochain complex ČG(n)∗(M ;Z), and the second is given
in this section as

hoShv∞Gpd

(
N(E∇G×GM), Ǩ(Z, n)

)
.

We now prove these two possible definitions of Ȟ∗G(M) agree.

Proof of Theorem 3.11. We use Dold–Kan to consider ČG(n)∗(M) as a
homotopy pullback of simplicial abelian groups via the following.
(6.9)

Γ(ŽG(n)n(M)
d←− ČG(n)n−1(M)

d←−) //

��

Γ(Zn(EG×GM ;Z)
δ←− · · · )

��

Γ(Ωn
G(M)cl ←− 0) // Γ(Zn(EG×GM ;R)

δ←− · · · )

The Freed–Hopkins isomorphism [FreH, Propositions 6.22 and Theorem
7.28] gives us

hoShv∞Gpd(N(E∇G×GM),N(Ωn
cl))
∼= ShvGpd(E∇G×GM,Ωn

cl)
∼= Ωn

G(M)cl.

Likewise Proposition 6.6 shows us that

Shv∞Gpd(N(E∇G×GM), L(Γ(0← · · · ← Z))

' Shv∞Gpd(N(E∇G×GM),K(Z, n))

' Shvh∞Gpd (h(N(E∇G×GM)),K(Z, n)) ' S
(
K(Z, n)EG×GM

)
,

Shv∞Gpd(N(E∇G×GM),Γ(Ωn
cl

d←− Ωn−1 d←− · · · ))
' Shv∞Gpd(N(E∇G×GM),K(R, n))

' Shvh∞Gpd (h(N(E∇G×GM)),K(R, n)) ' S
(
K(R, n)EG×GM

)
.

There is a natural homotopy equivalence

S(K(A,n)X)
'−→ Γ(Zn(X;A)

δ←− Cn−1(X;A)
δ←− · · · )

induced by pulling back a fundamental cocycle in Zn(K(A,n);A) and inte-
grating over the simplex [HS, Proposition A.12 and Corollary D.13]. Thus,
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we have equivalences from three corners of (6.8) evaluated on N(E∇G×GM),
and the corresponding three corners of (6.9). Therefore, the induced map
between homotopy pullbacks

Shv∞Gpd(N(E∇G×GM), Ǩ(Z, n))
∼−→ Γ(ŽG(n)n

d←− ČG(n)n−1 d←− · · · )

is also an equivalence in ∞Gpd, which gives us the desired isomorphism in
the homotopy category. �

Appendix A. Equivariant de Rham theory

We briefly recall some standard facts about equivariant cohomology, prin-
cipal bundles with connection, and equivariant differential forms. Our goal is
to describe the Weil algebra W(g) from the perspective of differential forms
on principal bundles. We hope this makes clear why having connections is so
essential to using ΩG(M). Among the many wonderful references, our treat-
ment is most heavily influenced by: the introduction to principal bundles in
Section 1 of [Fre], the summary of equivariant cohomology [Mei], and the
standard textbook for G?-algebras and equivariant de Rham cohomology
[GS].

A.1. Equivariant cohomology. Let G be a reasonably nice topological
group. Then there exists a contractible space EG on which G acts freely
from the right, giving us a universal G-bundle EG → BG. If M has a
continuous left G-action, the homotopy quotient (or Borel construction) of
M is defined

EG×GM := (EG×M)
/(

(eg, x) ∼ (e, gx)
)
.

Borel’s construction of the equivariant cohomology of M , with coefficients
in an abelian group A, is simply the ordinary cohomology of the homotopy
quotient

H∗G(M ;A) := H∗(EG×GM ;A).

A G-equivariant map M
f→ N induces a map on the Borel constructions,

giving the desired homomorphisms

H∗G(N ;A)
f∗G−→ H∗G(M ;A).

There are important, though subtle, relationships between equivariant
and ordinary cohomology. In particular, H∗G(pt;A) = H∗(BG;A), and the
natural map M → pt makes H∗G(M ;R) into a H∗(BG;R)-module when
R is a ring. When G acts freely on M , there is a natural isomorphism
H∗G(M ;A) ∼= H∗(M/G;A). This follows from the fact that the projection
EG×GM →M/G is a locally trivial fiber bundle with fiber EG, and hence
it is a homotopy equivalence.
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A.2. Principal G-bundles with connection. Let G be a Lie group, and
let g be the Lie algebra of left-invariant vector fields on G.

A principal G-bundle on a manifold X is a manifold P equipped with a
free right G-action and map to X such that

P
π−→ X ∼= P/G.

Note that on differential forms, π∗ : Ω(X) → Ω(P ) is an injective map,
and the subspace π∗Ω(X) is naturally identified as the basic (i.e., invariant
horizontal) forms

(A.1) Ω(X) ∼= π∗Ω(X) = Ω(X)Ghor ⊂ Ω(P ).

Here, the horizontal forms are defined by: ω ∈ Ω(P )hor if ιXω = 0 for all
X ∈ g.

A connection on P is an Ad-equivariant g-valued 1-form Θ ∈ Ω1(P ; g)
that restricts fiberwise to the Maurer–Cartan form θg. More explicitly:

• ιXΘ = X ∈ Ω0(P ; g) for any vector field X ∈ g.
• g∗(Θ) = Adg−1 Θ, where g : P → P is right multiplication by g.

The Ad-equivariance can be rewritten as Θ ∈
(
Ω1(P ) ⊗ g

)G
, where the

second factor g is the adjoint representation of G. The curvature is defined

Ω := dΘ + 1
2 [Θ ∧Θ] ∈ Ω2(P ; g).

There is also an equivalent, but more geometric, interpretation of a con-
nection. The G-action defines the distribution T VP of vertical tangent vec-
tors in P by

g
∼=−→ Kerπ∗ =: T VP ⊂ TP.

A connection on P is the choice of an equivariant horizontal distribution
THP ; i.e., a connection is equivalent to an equivariant splitting of the tangent
bundle

TP = THP ⊕ T VP ∼= π∗TM ⊕ g.

The connection 1-form Θ gives a projection from TP onto T VP ∼= g, thus
defining the horizontal distribution by

THP := Ker Θ ⊂ TP.
The splitting of TP into horizontal and vertical subspaces induces a bi-

grading on the differential forms

Ωi,j(P ) := C∞(P,ΛiTHP ∗ ⊗ ΛjT VP ∗) ∼= C∞(P, π∗ΛiTX∗ ⊗ Λjg∗).

In this bi-grading, the exterior derivative decomposes as

d = d0,1 + d1,0 + d2,−1 ∼= (−1)idg + d∇ + (−1)iιΩ.

Here, dg : Λjg∗⊗C∞(P )→ Λj+1g∗⊗C∞(P ) is the Lie algebra (or Chevalley–
Eilenberg) differential for the G-module C∞(P ) [ChevE]. If we restrict to
Ω(P )G, then (Λg∗, dg) is naturally the de Rham complex of left-invariant
forms on G. The connection Θ induces the covariant derivative d∇, and ιΘ
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is the derivation induced by contracting along the vector-valued 2-form Ω.
See Section 3 of [Red] for more details.

A.3. G?-algebras. Let (A, d) be a commutative differential graded alge-
bra (DGA), where d is a derivation of degree +1 and commutative means

ab = (−1)|a||b|ba for homogeneous elements. A DGA-automorphism of de-
gree 0 is an algebra automorphism φ : A → A that preserves grading and
commutes with d.

Definition A.2 (Section 2.3 of [GS]). A G?-algebra is a commutative DGA
(A, d) equipped with representations

G
ρ−→ AutDGA(A) and g

ι−→ Der(A)

of degree 0 and -1, respectively, such that ι is G-equivariant with respect to
ρ and satisfies the Cartan equation; i.e., for all X ∈ g

ρgιXρg−1 = ιAdg X ,(A.3)

ιXd+ dιX = LX .(A.4)

Here, L : g→ Der(A) is the Lie algebra representation induced by ρ.
A map φ : A1 → A2 is a morphism of G?-algebras if φ commutes with

multiplication, ρ, d, and ι.

Example A.5. Suppose that a manifold M has a left G-action. Then the
de Rham complex

(
Ω(M), d

)
is naturally a G?-algebra. The G-action on

Ω(M) is defined by

ρgω := (g−1)∗ω,

and ι is defined by composing the usual interior derivative with the action
of g on vector fields

g→ X(M)
ι→ Der(Ω(M)).

If f : M1 → M2 is G-equivariant, then f∗ : Ω(M2) → Ω(M1) is a morphism
of G?-algebras.

Remark A.6. We use the convention that manifoldsM have a leftG-action,
while principal bundles P have a right G-action. However, we sometimes
implicitly use the natural switch between left and right actions. Given a left
G-action on a set Y , define the right G-action via the formula y ·g := g−1 ·y;
similarly, a right G-action induces a left G-action.

Definition A.7. Let A a G?-algebra. An element a is invariant if ρga = a
for all g ∈ G, and it is horizontal if ιXa = 0 for all X ∈ g. The basic
sub-algebra is the intersection of the invariant and horizontal elements:

Abasic := AG ∩ Ahor = AGhor.

The definition of a G?-algebra implies that (Abasic, d) is a sub-DGA of
(A, d). Furthermore, if φ : A → B is a morphism of G?-algebras, then φ
restricts to a DGA-morphism on the basic subcomplexes φ : Abas → Bbas.
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Definition A.8. A connection on a G?-algebra A is an element

Θ ∈
(
A1 ⊗ g

)G
such that ιXΘ = X for all X ∈ g. The curvature of Θ is defined

Ω := dΘ + 1
2 [Θ,Θ] ∈

(
A2 ⊗ g

)G
.

Example A.9. Suppose P
π→ X is a principal G-bundle. Example A.5

and Remark A.6 show that Ω(P ) is naturally a G?-algebra, though we write
ρgω = g∗ω due to the fact that G acts on the right. As noted in (A.1), the
basic subcomplex Ω(P )basic is naturally isomorphic to Ω(X). Furthermore,
connections for the principal bundle P are equivalent to connections for the
G?-algebra Ω(P ).

Example A.10. The Weil algebra W(g) is a G?-algebra with connection,
and it is constructed so that it canonically maps to any other G?-algebra
with connection. Explicitly,

W(g) := Sg∗ ⊗ Λg∗,

degS1g∗ = 2, deg Λ1g∗ = 1,

dW := dg + dK.

Here S and Λ are the total symmetric and exterior powers, so the coadjoint
representation g∗ naturally makes W(g) into a G-representation. The differ-
ential dg is the Chevalley–Eilenberg differential for Lie algebra cohomology
with values in the g-module Sg∗

Sig∗ ⊗ Λjg∗
dg−→ Sig∗ ⊗ Λj+1g∗;

it has degree (0, 1) under the bi-grading W2i,j(g) = Sig∗⊗Λjg∗. The Koszul
differential dK has degree (2,−1) and is defined by extending the natural
isomorphism

Λ1g∗
dK−→∼= S1(g∗)

to a derivation

Si(g∗)⊗ Λj(g∗)
dK−→ Si+1(g∗)⊗ Λj−1(g∗).

The derivation ι has degree (0,−1) and is induced by the usual contraction

g
ι−→ End(Λg∗).

The Weil algebra W(g) has the same cohomology as EG ' pt; i.e.,
H0(W(g), dW) = R and H i(W(g), dW) = 0 for i > 0. It has a natural
connection

θg ∈ Λ1g∗ ⊗ g = W0,1(g)⊗ g

given by the identity map g→ g; i.e., θg(X) = X for X ∈ g. When there is
no risk of confusion, we will drop the subscript and write θ for θg. Using the
fact that dgθ = −1

2 [θ ∧ θ], we see that the curvature Ω = Ωg equals dKθg.
In light of this, we rewrite the Koszul derivative dK as ιΩg .
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Proposition A.11 (Weil homomorphism). Let A be a G?-algebra with con-
nection Θ. Then, there is natural morphism of G?-algebras with connection

W(g)
Θ∗−→ A induced by θ 7→ Θ, Ω 7→ Ω.

Therefore, we see that W(g) serves as a natural algebraic model for dif-
ferential forms on EG. It is acyclic, and to any G-bundle with connection
(P,Θ)→ X, the Weil homomorphism is a natural map

W2i,j(g)
Θ∗−→ Ω2i,j(P )(A.12)

ω ⊗ η 7−→ ω(Ω∧i) ∧ η(Θ∧j)

that is compatible with the bi-grading, multiplication, G-action, derivative
d, and contraction ι. Below is a diagram showing this. For generic α ∈W(g),
we use the notation α(Θ) for Θ∗(α).

...
...

...

Λ2g

dg

OO

ιΩ ##

0 S1g∗ ⊗ Λ2g∗

dg

OO

ιΩ
&&

0 S2g∗ ⊗ Λ2g∗

dg

OO

g∗

dg

OO

ιΩ

∼=

##

0 S1g∗ ⊗ Λ1g∗

dg

OO

ιΩ
&&

0 S2g∗ ⊗ Λ1g∗

dg

OO

R

0

OO

0 S1g∗

dg

OO

0 S2g∗

dg

OO

⇒

...
...

...

Ω0,2(P )

dg

OO

∇ //

ιΩ

**

Ω1,2(P )

−dg

OO

d∇ //

−ιΩ

))

Ω2,2(P )

dg

OO

d∇ // · · ·

Ω0,1(P )

dg

OO

∇ //

ιΩ

**

Ω1,1(P )

−dg

OO

d∇ //

−ιΩ

))

Ω2,1(P )

dg

OO

d∇ // · · ·

Ω0,0(P )

dg

OO

d∇ // Ω1,0(P )

−dg

OO

d∇ // Ω2,0(P )

dg

OO

d∇ // · · ·

The universal Chern–Weil and Chern–Simons forms are naturally de-
scribed via the Weil model. The usual Chern–Weil forms are given by simply
restricting (A.12) to the basic subcomplex

(Skg∗)G = W2k(g)basic
Θ∗−−→ Ω2k(P )basic

∼= Ω2k(M)

ω 7−→ ω(Θ∧n).

That W(g) is acyclic implies any such ω ∈ (Sg∗)G is exact in W(g), and
there is a standard way to pick out such a coboundary. Using the trivial
G?-algebra Ω([0, 1]) with natural coordinate t, define

θt := tθ ∈
(
Ω([0, 1])⊗W(g)

)1 ⊗ g,

Ωt := d(θt) + 1
2 [θt ∧ θt] ∈

(
Ω([0, 1])⊗W(g)

)2 ⊗ g,

where one can rewrite the curvature to give Ωt = dt θ+ tΩ+ 1
2(t2− t)[θ∧ θ].

For ω ∈ (Skg∗)K , then ω(Ω∧kt ) ∈
(
Ω([0, 1])⊗W(g)

)
basic

, and the Chern–
Simons form is defined using integration over the interval [0, 1] by

(A.13) CSω :=

∫
[0,1]

ω
(
Ω∧kt

)
∈W2k−1(g)G.
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Stokes Theorem implies that dCSω = ω ∈ W(g), and the Weil homomor-
phism sends this to the standard Chern–Simons forms on the total space of
principal bundles

W(g)G
Θ∗−−→ Ω(P )G

CSω 7−→ CSω(Θ).

A.4. Equivariant Forms. We now describe an explicit de Rham model
ΩG(M), often referred to as the Weil model, for H∗G(M ;R). While the
definition of ΩG(M) does not require G to be compact, the cohomology of
ΩG(M) is not necessarily isomorphic to H∗G(M ;R) for noncompact G.

Suppose M is a manifold equipped with a smooth left G-action. The
tensor product W(g)⊗ Ω(M) is a G?-algebra with derivative

dG = dW ⊗ 1 + 1⊗ d.

Definition A.14. The complex of equivariant differential forms is the basic
sub-complex

(Ω∗G(M), dG) :=
(

(W(g)⊗ Ω(M))Ghor , dW ⊗ 1 + 1⊗ d
)
.

Note that if f : M → N is G-equivariant map, then

W(g)⊗ Ω(N)
1⊗f∗−−−→W(g)⊗ Ω(M)

restricts to the basic complex, giving a naturally induced DGA-morphism
we denote

ΩG(N)
f∗G−→ ΩG(M).

To relate ΩG(M) to the cohomology of EG ×G M , we use the following
geometric fact. There exist finite-dimensional smooth n-classifying bun-
dles with connection (E(n)G,ΘE(n)G) → B(n)G ([NR]). This means that if
dim(X) ≤ n, any bundle with connection (P,Θ) → X is isomorphic to the

pullback f∗(E(n)G,ΘE(n)G) for some smooth map X
f→ B(n)G. Further-

more, any two maps classifying (P,Θ) are homotopic. The universal bundle
EG → BG can then be constructed as a direct limit of finite-dimensional
manifolds.

(EG,ΘEG)

π

��
BG

:= lim−→


(E(n)G,ΘE(n)G)

π
��

B(n)G


When discussing differential forms and cochains, we use the notations

Ω∗(EG) = lim←−Ω∗(E(n)G), C∗(EG;A) = lim←−C
∗(E(n)G;A),

Ω∗(BG) = lim←−Ω∗(B(n)G), C∗(BG;A) = lim←−C
∗(B(n)G;A).
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The connection ΘEG and the Weil homomorphism give a G?-algebra ho-
momorphism

W(g)
Θ∗EG−−−→ Ω(EG),

which in turn gives
(A.15)

ΩG(M) =
(
W(g)⊗ Ω(M)

)
basic

Θ∗EG⊗1
−−−−−→ Ω(EG×M)basic

∼= Ω(EG×GM).

Theorem A.16 (Equivariant de Rham Theorem). For G compact, (A.15)
induces an isomorphism in cohomology

H∗
(
ΩG(M), dG

) ∼=−→ H∗
(
Ω(EG×GM), d

) ∼= H∗G(M ;R).

A proof of the above theorem can be found in Theorems 2.5.1 (and The-
orems 4.3.1 and 6.7.1) of [GS]. The following lemma is used in the first con-
struction of Ȟ∗G(M) in Section 2, along with the proof of Proposition 4.18.
Though it is certainly well-known, we are unaware of a specific reference,
and we prove it directly so that the first construction of Ȟ∗G(M) does not
rely on results from [FreH].

Lemma A.17. The homomorphism W(g)
Θ∗EG−−−→ Ω(EG) is injective, as are

the induced homomorphisms ΩG(M)→ Ω(EG×GM).

Proof. The second homomorphism is given by restricting

W(g)⊗ Ω(M) −→ Ω(EG)⊗ Ω(M) ∼= Ω(EG×M)

to the basic subcomplex. Showing this map is injective is equivalent to
showing W(g)→ Ω(EG) is injective.

Any bundle with connection is isomorphic to the pullback of (EG,ΘEG),
so it suffices to show that for any element α ∈ W(g), there exists some

(P,Θ)
π−→ X such that α(Θ) 6= 0 ∈ Ω(P ). At any point p, ΛT ∗pP is an

algebra freely generated by the horizontal and vertical cotangent spaces.
On the vertical part, W0,∗(g) → ΛT Vp P

∗ ∼= Λg∗ is an isomorphism, so it

suffices to show the Weil homomorphism is injective on W∗,0(g).
Let ω ∈ Sng∗ be any nonzero element. Then ω(ξi1 · · · ξin) 6= 0 for some

(i1, . . . , in), where {ξi} be a basis of g. Let R2n × G → R2n be the trivial
bundle. In a neighborhood of 0, use the canonical frame p to define a
connection Θ by

p∗Θ = x1dx2ξi1 + · · ·+ x2n−1dx2nξin ∈ Ω1(R2n; g).

The local curvature is given by

p∗Ω = dx1dx2ξi1 + · · ·+ dx2n−1dx2nξin + 1
2 [p∗Θ ∧ p∗Θ],

and the terms involving p∗Θ vanish when all xi = 0. Evaluating p∗ω(Θ∧n)
at the origin gives

p∗ω(Θ∧n)(0)

(
∂1, . . . , ∂2n

)
= n!ω(ξi1 · · · ξin) 6= 0. �
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A.5. Cartan model and Matthai–Quillen. There is anotherG?-algebra
structure on W(g) ⊗ Ω(M) that leads to the Cartan model for H∗G(M ;R).
It is obtained by modifying the G?-structure so that the interior derivative
ι only acts on the factor W(g).

The G-equivariant homomorphism

Ω1(M)
ιθ−→ Λ1g∗,

defined by (ιθψ)(X) = ιθ(X)ψ = ιXψ, induces a derivation on associative
algebra W(g) ⊗ Ω(M). It exponentiates to a G-equivariant automorphism
of associative algebras

W(g)⊗ Ω(M)
exp(ιθ)−−−−→W(g)⊗ Ω(M)

known as the Mathai–Quillen isomorphism [MaQ]. Conjugating by eιθ gives
the new operators

dC := (exp ιθ) dG (exp−ιθ), ιC := (exp ιθ) ι (exp−ιθ)

where ιCX(α⊗ψ) = (ιXα)⊗ψ. The isomorphism betweenG?-algebras induces
an isomorphism of the basic subcomplexes, one of which is the previously
discussed Weil model. The other, known as the Cartan model, is(

W(g)⊗ Ω(M)
)G

Ker ιC
=
(
Sg∗ ⊗ Ω(M)

)G
,

and the derivative takes the form dC = d − ιΩg , where ιΩg is the degree 1
derivation induced by

Ωk(M)
Ωg⊗1−−−→ S1g∗ ⊗ g⊗ Ωk(M)

1⊗ι−−→ S1g∗ ⊗ Ωk−1(M).

The Mathai–Quillen isomorphism may be used to interpret ΩG(M) as the
Cartan model throughout the entire paper.
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