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The Mittag-Leffler Theorem for regular
functions of a quaternionic variable

Graziano Gentili and Giulia Sarfatti

Abstract. We prove a version of the classical Mittag-Leffler Theorem
for regular functions over quaternions. Our result relies upon an appro-
priate notion of principal part, that is inspired by the recent definition
of spherical analyticity.
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1. Introduction

The class of (slice) regular functions of a quaternionic variable was in-
troduced in [8], [9], and proved to be a good counterpart of the class of
holomorphic functions, in the quaternionic setting. Regular functions have
nice new features, when compared with the classical quaternionic Fueter
regular functions: for instance natural polynomials and power series are
regular, and regular functions can be expanded in power series on special
classes of domain in the space of quaternions H.

This theory is having a fast development in several directions, and is by
now already well established; it has interesting applications to the construc-
tion of a noncommutative functional calculus, [3], and to the classification
of Orthogonal Complex Structures in subdomains of the space H, [5]. An
exhaustive presentation of this theory can be found in [7].
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Many results that concern regular functions reflect the structure of their
complex analogues, other are surprisingly different: for example the zero sets
of regular functions (and the sets of poles of semiregular functions) consist
of isolated points and isolated 2-dimensional spheres.

One of the fundamental results in the theory of holomorphic functions is
the celebrated Mittag-Leffler Theorem, that has been used in many different
contexts, and in particular in that of sheaves of meromorphic functions.

Theorem 1.1. Let Ω be an open subset of the complex plane C, and let
A ⊂ Ω. Let us suppose that A has no accumulation point in Ω and, for any
a ∈ A, choose an integer m(a) ∈ N and a rational function

Pa(z) =

m(a)∑
j=1

(z − a)−jcj,a.

Then there exists a meromorphic function f : Ω → C, whose principal part
at every a ∈ A is Pa, having no other pole in Ω.

The search for an analogous result for regular functions, connected with
the under-construction theory of sheaves of regular and semiregular func-
tions, [4], inspired this work. Since in the new environment of regular func-
tions there are several, inequivalent notions of analyticity, [6], [13], an impor-
tant step is the choice of the “right” notion of principal part. We adopt here
the approach suggested by spherical series, [13], which, together with the
quaternionic version of the Runge Theorem, [2], leads to the aimed result.

2. On quaternionic analyticity

With the usual notations, let H = R + Ri + Rj + Rk denote the four
dimensional noncommutative real algebra of quaternions. For any q = x0 +
x1i+ x2j + x3k ∈ H let Re(q) = x0 and Im(q) = x1i+ x2j + x3k denote its

real and imaginary parts and let |q| =
√
x2

0 + x2
1 + x2

2 + x2
3 be its modulus.

The definition of regular function is given in terms of the elements of the
2-sphere S = {q ∈ H : q2 = −1} of quaternion imaginary units.

Definition 2.1. Let Ω be a domain in H and let f : Ω→ H be a function.
For all I ∈ S, let us set LI = R + IR, ΩI = Ω ∩ LI and fI = f|ΩI

. The

function f is called (slice) regular if, for all I ∈ S, the restriction fI is
holomorphic, i.e., the function ∂̄If : ΩI → H defined by

∂̄If(x+ Iy) =
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ Iy)

vanishes identically.

One of the reasons of the immediate interest for regular functions stays
in the fact that an analog of Abel’s Theorem holds: any power series

f(q) =
∑
n∈N

qnan
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with quaternionic coefficients {an} defines a regular function on its ball of
convergence B(0, R) = {q ∈ H : |q| < R}. The set of such series inherits the
classical multiplication ∗ defined for quaternionic polynomials (or, more in
general, for polynomials with coefficients in a noncommutative ring):

(1)

(∑
n∈N

qnan

)
∗

(∑
n∈N

qnbn

)
=
∑
n∈N

qn
n∑
k=0

akbn−k.

Let now (q− q0)∗n = (q− q0) ∗ · · · ∗ (q− q0) denote the ∗-product of n copies
of q 7→ q − q0. In [6] series of the form

(2) f(q) =
∑
n∈N

(q − q0)∗nan

are studied, whose sets of convergence are balls with respect to the distance
σ : H×H→ R defined in the following fashion.

Definition 2.2. For all p, q ∈ H, we set

(3) σ(q, p) =

{
|q − p| if p, q lie on the same complex plane R + IR
ω(q, p) otherwise

where

(4) ω(q, p) =

√
[Re(q)−Re(p)]2 + [|Im(q)|+ |Im(p)|]2.

A new notion of analyticity can be given in tems of the distance σ:

Definition 2.3. If Ω is a domain in H, a function f : Ω → H is called
σ-analytic if it admits at every q0 ∈ Ω an expansion of type (2) that is valid
in a σ-ball Σ(q0, R) = {q ∈ H : σ(q, q0) < R} of positive radius R.

Regularity and σ-analyticity turn out to be the same notion, as it appears
in the following result proved in [6].

Theorem 2.4. If Ω is a domain in H, a function f : Ω → H is regular if
and only if it is σ-analytic.

The meaning of Theorem 2.4 is not as strong as in the complex case,
since σ-analyticity has not the features one may imagine at a first glance.
In fact the topology induced by the distance σ is finer than the Euclidean: if
q0 = x0 +Iy0 does not lie on the real axis then for R < y0 the σ-ball Σ(q0, R)
reduces to a (2-dimensional) disc {z ∈ LI : |z − q0| < R} in the complex
plane LI through q0 (see [6] for a presentation of the shape of σ-balls). Hence
the behavior of f in a Euclidean neighborhood of q0 cannot be envisaged by
the series expansion (2), which, in general, will only represent f along the
complex plane LI containing q0. To understand this phenomenon we will
present what we believe to be a meaningful example (see, e.g., [7]).
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Example 2.5. Let ∆ be the open unit disc centered at the origin of Li =
R+iR = C and let f : ∆→ C, f(z) =

∑
n∈N z

nan be a holomorphic function
whose maximal domain of definition is ∆. Then the power series

f(q) =
∑
n∈N

(
q − 3

4
i

)n
an

does not converge on a Euclidean neighborhood of 3
4 i but only in a 2-dimen-

sional disc of C containing 3
4 i.

As explained in [1], the situation is much better if the domain Ω is carefully
chosen. Consider the following class of domains:

Definition 2.6. Let Ω be a domain in H. If

Ω =
⋃

x+Iy∈Ω

x+ yS

then Ω is called an (axially) symmetric domain. If the domain Ω intersects
the real axis and is such that for all I ∈ S, ΩI = Ω ∩ LI is a domain in
LI ' C then Ω is called a slice domain.

Regular functions f on symmetric slice domains are affine when restricted
to a single 2-sphere x+ yS (see, e.g., [1, Theorem 3.2], [13, Theorem 1.10]).
As a consequence, if f is a regular function on a symmetric slice domain
then its values can all be recovered from those of one of its restrictions fI .
This last fact leads to the definition of a stronger form of analyticity than
the one presented in Theorem 2.4, which is related to a different type of
series expansion valid in Euclidean open sets. If we denote as Rq0f : Ω→ H
the function such that

f(q) = f(q0) + (q − q0) ∗Rq0f(q),

then the following result holds (see [13, Theorem 4.1]).

Theorem 2.7. Let f be a regular function on a symmetric slice domain Ω,
and let x0, y0 ∈ R and R > 0 be such that

U(x0 + y0S, R) = {q ∈ H : |(q − x0)2 + y2
0| < R2} ⊆ Ω.

For all q0 ∈ x0 + y0S, setting
A2n = (Rq̄0Rq0)nf(q0)

and
A2n+1 = Rq0(Rq̄0Rq0)nf(q̄0),

we have that

(5) f(q) =
∑
n∈N

[(q − x0)2 + y2
0]n[A2n + (q − q0)A2n+1]

for all q ∈ U(x0 + y0S, R).

Here is the announced notion of analyticity, [13].
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Definition 2.8. Let f be a regular function on a symmetric slice domain
Ω. We say that f is symmetrically analytic if it admits at any q0 ∈ Ω an
expansion of type (5) valid in a Euclidean neighborhood of q0.

Thanks to the previous theorem, we obtain:

Corollary 2.9. Let Ω be a symmetric slice domain. A function f : Ω→ H
is regular if, and only if, it is symmetrically analytic.

3. Principal part of a semiregular function

Definition 3.1. Let f be a regular function on a symmetric slice domain Ω.
We say that a point p = x+ yIp ∈ H is a singularity for f if fIp : ΩIp → H
has a singularity at p. In other words if there exists R > 0 such that f has
the Laurent expansion f(z) =

∑
n∈Z(z − p)nan converging for any z ∈ LIp

with 0 < |z| < R.

As proven in [12], if p = x+ yIp is a singularity for a regular function f ,
then f admits a regular Laurent expansion

(6) f(q) =
∑
n∈Z

(q − p)∗nan,

converging in Σ(p,R) \ {x + yS}, whose restriction to LIp coincides with
the Laurent expansion of fIp at p. It is clear that, as it happens for regular
power series of type (2), the domains of convergence of regular Laurent series
are not always open sets. Inessential singularities are defined as follows.

Definition 3.2. Let p be a singularity for f . We say that p is a remov-
able singularity if f extends to a neighborhood of p as a regular function.
Otherwise consider the expansion

(7) f(q) =
∑
n∈Z

(q − p)∗nan.

We say that p is a pole for f if there exists an m ≥ 0 such that a−k = 0 for
all k > m.

We can now recall the notion of semiregular function, analogue to that of
meromorphic function in the complex setting.

Definition 3.3. A function f is semiregular in a symmetric slice domain Ω
if it is regular in a symmetric slice domain Ω′ ⊆ Ω such that every point of
S = Ω \ Ω′ is a pole (or a removable singularity) for f .

If f is semiregular in Ω then the set S of its nonremovable poles consists
of isolated real points or isolated 2-spheres of type x+ yS.

The following result shows how we can “extract” a pole from a semiregular
function, see [12].
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Theorem 1. Let f : Ω→ H be a semiregular function on a symmetric slice
domain with a pole at x0 + y0S ⊂ Ω. Then there exist k ∈ N and a unique
semiregular function g on Ω, regular on a symmetric slice neighborhood of
x0 + y0S, such that

f(q) = ((q − x0)2 + y2
0)−kg(q).

In this case, the spherical order of the pole is 2k at every point of x0 +y0S
with the possible exception of one single point, where the spherical pole has
lesser order.

Using the spherical series expansion (5) for regular functions we can give
the following Definition (see also [10]):

Definition 3.4. Let Ω ⊂ H be a symmetric slice domain, let f : Ω → H
be a semiregular function with a pole of spherical order 2k at the sphere
x0 + y0S, and let q0 be any point of x0 + y0S. Then the spherical Laurent
series of f at the sphere x0 + y0S is:

f(q) =
∑
j≥0

((q − x0)2 + y2
0)j−k[A2j + (q − q0)A2j+1]

=
∑
n≥−k

((q − x0)2 + y2
0)n[A2(n+k) + (q − q0)A2(n+k)+1]

converging in a symmetric slice open set U(x0 + y0S, R) \ {x0 + y0S}. More-
over, the principal part of f at the spherical pole x0 + y0S is defined as

Px0+y0S(q) =

k∑
n=1

((q − x0)2 + y2
0)−n[A2(k−n) + (q − q0)A2(k−n)+1].

The use of the spherical Laurent series approach to the Mittag-Leffler
Theorem is motivated by the fact that a principal part defined using the
apparently simpler regular Laurent series could vary for points of a same
spherical pole x+ yS.

4. The Mittag-Leffler Theorem

We can now prove the announced result, that states that we can find a
semiregular function having prescribed poles and prescribed principal parts.
Denote by Ĥ the Alexandrov compactification of H.

Theorem 2. Let Ω ⊆ H be a symmetric slice domain and let

S = {xα + yαS}α∈A
be a closed and discrete set of two dimensional spheres (or real points) con-
tained in Ω. For every α ∈ A let qα = xα + yαI, with I any imaginary unit,
m(α) ∈ N and

Pα(q) =

m(α)∑
n=1

((q − xα)2 + y2
α)−n[A2n + (q − qα)A2n+1]
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with Aj ∈ H for any j = 2, . . . , 2m(α) + 1. Then there exists f semiregular
on Ω such that for every α ∈ A the principal part of f at xα + yαS is Pα(q)
and such that f does not have other poles in Ω.

Proof. Let I ∈ S. Thanks to known results in the complex case (see, e.g.,
Theorem 13.3 in [11]) we can find a covering {KI

n}n∈N of ΩI such that: KI
n is

a compact set, KI
n is contained in the interior of KI

n+1, every compact subset

of ΩI is contained in KI
n for some n ∈ N and every connected component

of L̂I \ KI
n contains a connected component of L̂I \ ΩI . The fact that Ω

is a symmetric domain yields that setting, for any n ∈ N, Kn to be the
symmetrization of KI

n, we obtain a covering of Ω such that Kn is a compact
set, Kn is contained in the interior of Kn+1, every compact subset of Ω is
contained in Kn for n sufficiently large, and every connected component of
Ĥ \ Kn contains a connected component of Ĥ \ Ω. Moreover, since Ω is a
slice domain, we can suppose that Kn is also slice for any n ∈ N. Let us set

S1 := S ∩K1 and Sn := S ∩ (Kn \Kn−1).

The compactness of Kn guarantees that Sn is a finite set of spheres (or real
points). For any n ∈ N define

Qn(q) =
∑
α∈Sn

Pα(q).

Notice that, for every n ∈ N, Qn is a rational function, regular on an open
neighborhood of Kn−1. Thanks to the Runge Theorem for regular functions
(see Theorem 4.10 in [2]), for any n ∈ N we can find a rational function Rn
having (prescribed) poles outside Ω and such that

(8) |Rn(q)−Qn(q)| < 2−n for any q ∈ Kn−1.

Consider now the semiregular function f : Ω→ H defined by

f(q) := Q1(q) +
∑
n≥2

(Qn(q)−Rn(q)).

We aim to show that f is the desired function. Fix N ∈ N and split f as

f(q) = Q1(q) +

N∑
n=2

(Qn(q)−Rn(q)) +
∑

n≥N+1

(Qn(q)−Rn(q)).

The last term is an infinite sum of functions which are regular in the interior
of KN . Thanks to equation (8), we get that it converges uniformly to a
regular function on the interior of KN (see, e.g., [10, Remark 3.3]). Hence
the function

f(q)−Q1(q)−
N∑
n=2

(Qn(q)−Rn(q))

is regular in the interior of KN as well, which means that the principal
parts of f at the poles contained in KN are exactly the prescribed Pα(q)
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for α ∈
⋃N
n=1 Sn. Since N was arbitrary, we conclude that f is the desired

function. �

As we already noticed, unlike the case of holomorphic functions, the poles
of a regular function over quaternions can be either isolated real points or
isolated 2-spheres of the form x + yS. To conclude, we present two sim-
ple, meaningful examples of the Mittag-Leffler phenomenon in the case of
semiregular functions.

Example 4.1. We calculate a semiregular function defined in the entire
space of quaternions, such that:

(1) Its only poles are all the 2-spheres n + S, centered at n ∈ Z with
radius 1.

(2) At each such sphere, the principal part is

Pn+S(q) = ((q − n)2 + 1)−1

with minimum possible spherical order equal to 2.

Since, for any N ∈ N, both ∑
n≥N+1

1

(q − n)2 + 1

and ∑
n≥N+1

1

(q + n)2 + 1

converge uniformly to a regular function inside the open ball centered at the
origin and having radius N , we get that the function

f(q) =
∑
n∈Z

1

(q − n)2 + 1

is the desired semiregular function.

Example 4.2. A phenomenon peculiar to the quaternionic setting, is that of
a semiregular function having infinitely many spheres of poles with spherical
order 2 at each point, except for one point (on every sphere) which has lesser
order. To give an example of this phenomenon we compute a semiregular
function, defined on the entire space of quaternions, such that:

(1) Its only poles are all the 2-spheres n + S, centered at n ∈ Z with
radius 1.

(2) At each such sphere, the principal part is

Pn+S(q) = ((q − n)2 + 1)−1(q − n− i).

In this case it is immediate to see that the series∑
n∈Z

Pn+S(q) =
∑
n∈Z

q − n− i
((q − n)2 + 1)
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does not converge and hence does not define a semiregular function on H.
However if we sum up the two terms

q − n− i
((q − n)2 + 1)

+
q + n− i

((q + n)2 + 1)
=

2(q3 − q2i+ q(1− n2)− (n2 + 1)i)

((q + n)2 + 1)((q − n)2 + 1)

we get, arguing as in the first example, that

q − i
q2 + 1

+
∑
n≥1

2(q3 − q2i+ q(1− n2)− (n2 + 1)i)

((q + n)2 + 1)((q − n)2 + 1)

defines the semiregular function we were looking for.
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