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A smooth variant of Hopkins–Singer
differential K-theory

Byungdo Park

Abstract. We introduce a smooth variant of the Hopkins–Singer model
of differential K-theory. We prove that our model is naturally iso-
morphic to the Hopkins–Singer model and also to the Tradler–Wilson–
Zeinalian model of differential K-theory.
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1. Introduction

A differential cohomology theory is a construction on smooth manifolds
combining topological data and differential form data in a homotopy the-
oretic way. The first construction of a differential cohomology theory was
due to Cheeger and Simons [CS] for singular cohomology theory which has
applications to geometry. For K-theory, Karoubi [Ka] developed K-theory
with R/Z coefficients and Lott [Lo] developed R/Z-index theory leading to
a construction of differential K-theory and index theorems in differential K-
theory. (See [Kl, FL].) Furthermore, there have been a considerable interest
from type IIA/B string theory to represent Ramond–Ramond fields and to
formulate T -duality. (See [F, KV].)

In [HS] Hopkins and Singer explicitly constructed a differential cohomol-
ogy theory for any generalized cohomology theory and hence for K-theory.
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Their construction provides a correct model of differential K-theory in the
sense of the aforementioned homotopy theoretic idea. Following this work,
several authors have developed models of differential K-theory by using
more geometric cocycle data. (See [BS1, SS, Kl, FL, BSSW, TWZ1, HMSV,
TWZ2, GL].) Furthermore, the Hopkins–Singer model has been revisited
by [BG, BNV] with the idea that differential cohomology theories are ∞-
sheaves of spectra. More recently Grady and Sati [GS] developed spectral
sequences in differential generalized cohomology theories and have opened
venues in computational aspects.

One natural question arising at this point is whether all the known models
of differential K-theory are isomorphic. Bunke and Schick [BS2] gave an an-
swer to this question: Any two differential extensions with integration of the
same generalized cohomology theory that satisfies certain conditions (such
as being rationally even) are uniquely determined up to a unique natural
isomorphism. However, it is still interesting to see a direct map between
any two different models and proving such a map being an isomorphism has
technically intricate aspects.

This paper is a technical report introducing a smooth variant of the
Hopkins–Singer differential K-theory. This model has an advantage that
its cocycles consist of smooth data; continuous maps and singular cochains
in the Hopkins–Singer model are replaced by smooth maps and differential
forms, respectively. Furthermore, it constitutes an abelian group naturally
isomorphic to the original Hopkins–Singer model. Such an aspect facilitates
comparisons with other models; we establish a natural isomorphism from
the Tradler–Wilson–Zeinalian differential K-theory [TWZ1, TWZ2] to the
Hopkins–Singer differential K-theory, and hence adding one more item to
the following list of known direct comparisons between differential K-theory
models.

• Freed–Lott–Klonoff model to Hopkins–Singer model: Klonoff [Kl,
Theorem 4.34] (Even); Freed and Lott [FL, Proposition 9.21] (Odd).
• Simons–Sullivan model to Freed–Lott–Klonoff model: Simons and

Sullivan [SS], Ho [Ho1, Theorem 1] (Even).
• Bunke–Schick model to Freed–Lott–Klonoff model: Ho [Ho2, Propo-

sition 3.2] (Even).
• Tradler–Wilson–Zeinalian model to Simons–Sullivan model: Tradler,

Wilson, and Zeinalian [TWZ2, Remark 3.27] (Even).
• Tradler–Wilson–Zeinalian model to Hekmati-Murray-Schlegel-Vozzo

model: Hekmati, Murray, Schlegel, and Vozzo [HMSV, Theorem 4.2]
(Odd).
• Gorokhovsky–Lott model to Freed–Lott–Klonoff model: Gorokhov-

sky and Lott [GL, Theorem 1] (Even and odd).

This paper is organized as follows. Section 2 outlines definitions and the-
orems in this paper. Section 3 proves Theorem 1 establishing a natural
isomorphism from the smooth variant of the Hopkins–Singer model to the
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Hopkins–Singer model. Section 4 proves Theorem 2 which constructs a nat-
ural isomorphism from the Tradler–Wilson–Zeinalian model to the smooth
variant of the Hopkins–Singer model. Appendix A gives a proof of relative
de Rham theorem which is used in Section 3.2.

Acknowledgements. We thank Mahmoud Zeinalian for many helpful dis-
cussions and sharing ideas. We also thank Scott Wilson for help in com-
pleting this work and useful conversations. We thank Scott Wilson, Arthur
Parzygnat, and Corbett Redden for reading the preliminary version of this
paper and providing helpful suggestions and comments. Finally, we thank
the anonymous referee for helpful comments.

2. Main results

Notation 2.1. Throughout this paper, R is the real vector space

K•(point)⊗ R = R[u, u−1],

where u and u−1 are Bott elements with degree 2 and −2, respectively.
Also, X is a smooth manifold, Ωk(X) the differential graded algebra of R-
valued differential k-forms on X, Ωk

cl(X) (resp. Ωk
exact(X)) the subalgebra

of closed (resp. exact) R-valued differential k-forms on X, Ck(X;R) the
degree k smooth singular cochain group of X with coefficients in R, and
Zk(X;R) the subgroup of Ck(X;R) consisting of degree k cocycles. Note
that our differential forms and cochains are graded by their total degree; for
example, ω · u ∈ Ωk+2(X) if ω is a degree k real-valued differential form.
Unless otherwise mentioned, the integration symbol

∫
means the integration

of differential forms over smooth singular chains. We denote by I the closed
unit interval [0, 1], p the projection p : X×I → X onto the first factor, and pi
the projection onto the ith factor of the domain. We will also use a notation
ψt to denote the t-slice maps ψt : X ↪→ X × I defined by ψt(x) = (x, t).

Notation 2.2. In this paper • is always 0 or 1. We will use the notation F•
to denote classifying spaces of complex K-theory F0 = BU×Z and F1 = U .
(We refer readers to Tradler, Wilson, and Zeinalian [TWZ2], Section 3 for
the models of BU × Z and U that we will be using.) We also denote by
c• the universal Chern character form c• ∈ Ω•cl(F•) representing universal
Chern characters in H•(F ;R), defined by

c0 := ch(∇univ) := e
i
2π
∇2

univ·u
−1
,

where ∇univ is the universal connection on the universal bundle E→ F0 and

c1 := tr
∑

n∈Z∪{0}

(−1)n

(2πi)n+1

n!

(2n+ 1)!
θ2n+1 · u−2n,

where θ is the canonical 1-form on the stabilized unitary group U valued in
Lie algebra of U . (Compare [TWZ2, Definition 3.2].)
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The space F• is endowed with a homotopy commutative H-space struc-
ture m• : F•×F• → F•. The map m0 is defined in [TWZ2, Definition 3.21]
and m1 in [TWZ2, Definition 3.7] Both of these maps are smooth by con-
struction. (See also [TWZ2, p.535] for discussions on smoothness and dif-
ferential forms on U and BU × Z.) We will write I• ∈ F• to denote
I0 : C∞−∞ → C∞−∞ the orthogonal projection onto C0

−∞, where C∞−∞ and
C0
−∞ are C-vector spaces spanned by {ei}i∈Z and {ei : i ∈ Z−}, respectively,

and I1 := 1 in U .

Definition 2.3. Let c := c• be a universal Chern character form. The
Hopkins–Singer differential K-theory of X, denoted by K̂•(X), is an abelian
group whose elements are equivalence classes of triples (f, h, ω) consisting
of the following data.

• A continuous map f : X → F•,
• ω ∈ Ω•(X),
• h ∈ C•−1(X;R), satisfying

(1) δh = f∗
∫
c−

∫
ω.

Two triples (f0, h0, ω0) and (f1, h1, ω1) are equivalent if and only if the fol-
lowing holds.

• ω0 = ω1.
• There exists an interpolating triple (F,H, p∗ω0) consisting of a con-

tinuous map F : X × I → F• and a cochain H ∈ C•−1(X × I;R),
satisfying

δH = F ∗
∫
c−

∫
p∗ω0,

and whose restrictions to X ×{0} and X ×{1} give (f0, h0, ω0) and
(f1, h1, ω1), respectively.

The group structure is defined as follows.

(2) (f1, h1, ω1) + (f2, h2, ω2) := (m•(f1, f2), h1 + h2, ω1 + ω2).

Lemma 2.4. The addition + defined in (2) is well-defined and gives K̂•(X)
the structure of an abelian group.

Proof. Since m•(f1, f2)
∗ ∫ c = f∗1

∫
c+f∗2

∫
c, it is readily seen that the RHS

of (2) satisfies the triple relation. Suppose (F,H, p∗ω1) is an interpolating
triple between (f1, h1, ω1) and (f ′1, h

′
1, ω1). The triple

(m•(F, p
∗f2), H + p∗h2, p

∗ω1 + p∗ω2)

interpolates between

(m•(f1, f2), h1 + h2, ω1 + ω2) and (m•(f
′
1, f2), h

′
1 + h2, ω1 + ω2).

The operation + being an abelian group operation follows from Lem-
mas 3.9, 3.23, and 3.24 (2) of [TWZ2] and verifying it needs several lemmas
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we shall prove in the following section. We shall give a proof in Section 3.4.
�

Instead of smooth singular cochains and continuous maps in Definition 2.3,
the following definition uses differential forms and smooth maps.

Definition 2.5. Let c := c• be a universal Chern character form. The
smooth Hopkins–Singer differential K-theory of X, denoted by Ǩ•(X), is
an abelian group whose elements are equivalence classes of triples (f, h, ω)
consisting of the following data.

• A smooth map f : X → F•,
• ω ∈ Ω•(X),
• h ∈ Ω•−1(X), satisfying

(3) dh = f∗c− ω.
Two triples (f0, h0, ω0) and (f1, h1, ω1) are equivalent if and only if the fol-
lowing holds.

• ω0 = ω1.
• There exists an interpolating triple

(F,H, p∗ω0),

consisting of a smooth map F : X × I → F•, and a differential form
H ∈ Ω•−1(X × I), satisfying

dH = F ∗c− p∗ω0,

and whose restrictions to X ×{0} and X ×{1} give (f0, h0, ω0) and
(f1, h1, ω1), respectively.

The group structure is defined as follows:

(4) (f1, h1, ω1) + (f2, h2, ω2) := (m•(f1, f2), h1 + h2, ω1 + ω2).

Lemma 2.6. The addition + defined in (4) is well-defined and gives Ǩ•(X)
the structure of an abelian group.

Proof. The RHS of (4) satisfying the triple axiom follows from

m(f1, f2)
∗c = f∗1 c+ f∗2 c,

and the well-definedness is verified by the same argument as in the proof
of Lemma 2.4. We give a proof that the operation + is an abelian group
operation in Section 3.4. �

Theorem 1. Let c := c• be a universal Chern character form. The assign-
ment

Ǩ•(X)→ K̂•(X)(5)

[(f, h, ω)] 7→
[
(f,

∫
h, ω)

]
is an isomorphism of abelian groups that is natural in X.
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Proof. See Section 3. �

Definition 2.7. Let c := c• be a universal Chern character form and

f0, f1 : X → F•
homotopic smooth maps via a smooth homotopy F : X × I → F•. The
Chern–Simons form of F is

(6) cs(F ) := (−1)•−1
∫
I

ch(F ),

where ch(F ) := F ∗c. Here
∫
I denotes the integration along I.

Definition 2.8. Two smooth maps f0, f1 : X → F are cs-equivalent and
denoted by f0 ∼cs f1 if there exists a smooth homotopy F : X × I → F
between f0 and f1 such that cs(F ) ∈ Ω∗exact(X).

Proposition 2.9. ∼cs is an equivalence relation.

Proof. f ∼cs f follows from cs(f ◦p) = 0. Suppose f0 ∼cs f1 with homotopy
F between f0 and f1 such that cs(F ) is exact. Define G(x, t) := F (x, 1− t).
Then cs(G) = (−1)•−1

∫
I ch(G) = −(−1)•−1

∫
I ch(F ) = −cs(F ), which is

exact. Hence f1 ∼cs f0. Finally, suppose f0 ∼cs f1 through homotopy F ,
and f1 ∼cs f2 through homotopy G. Define

H(x, t) :=

{
F (x, 2t) if t ∈ [0, 12 ]

G(x, 2t− 1) if t ∈ [12 , 1].

Then H is a homotopy interpolating f0 and f2, and

cs(H) = (−1)•−1
∫
I

ch(H) = (−1)•−1
∫
I

ch(F ) + (−1)•−1
∫
I

ch(G)

is an element of Ω∗exact(X). Hence f0 ∼cs f2. �

Notation 2.10. We denote by [f ]cs the cs-equivalence class of a map

f : X → F•.

Definition 2.11. The Tradler–Wilson–Zeinalian differential K-theory of X
is the set

K̂•TWZ(X) := {[f ]cs : f : X → F is a smooth map}

endowed with a structure of abelian group induced by m•.

Theorem 2. The assignment

Φ : K̂•TWZ(X)→ Ǩ•(X)

[f ]cs 7→ [(f, 0, ch(f))]

is an isomorphism of abelian groups that is natural in X.

Proof. See Section 4. �
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3. Proof of Theorem 1

3.1. Well-definedness. Suppose the triples (f0, h0, ω0) and (f1, h1, ω1) are
equivalent; i.e., ω0 = ω1 and there exists an interpolating triple (F,H, p∗ω)
satisfying dH = F ∗c− p∗ω. Integrating both sides we obtain:

δ

∫
H = F ∗

∫
c−

∫
p∗ω,

and hence (F,
∫
H, p∗ω) is a triple that interpolates between (f0,

∫
h0, ω0)

and (f1,
∫
h1, ω1).

3.2. Injectivity. For any two triples (f0, h0, ω0) and (f1, h1, ω1), we as-
sume that (f0,

∫
h0, ω0) and (f1,

∫
h1, ω1) are equivalent, i.e., ω0 = ω1, and

there exists an interpolating triple (F,H, p∗ω) with the triple relation

(7) δH = F ∗
∫
c−

∫
p∗ω.

We pause our proof and prove a lemma that is necessary in proving in-
jectivity. Recall that, given f0, f1, and F be as in the above paragraph,
there exists a homotopy G : X × I × I → F• between F and a smooth
approximation F of F , which fixes the ends: F (x, 0) = F (x, 0) = f0(x)
and F (x, 1) = F (x, 1) = f1(x). By a smooth approximation F we mean a
smooth map F that is homotopic to a continuous map F by a continuous
homotopy G.

Lemma 3.1. F ∗
∫
c− F ∗

∫
c = δK for some K, where K is defined in the

proof.

Proof. Let G be as in the above paragraph. For G∗
∫
c ∈ C∗(X × I2), we

take the slant product with I and then take the exterior derivative. By the
derivation formula for the slant product, we have:

δ

(
G∗
∫
c
/
I

)
=

(
δG∗

∫
c

)/
I + (−1)|G∗

∫
c|+|I|G∗

∫
c
/
∂I

= (−1)•
(
F ∗
∫
c− F ∗

∫
c

)
.

We denote (−1)•G∗
∫
c
/
I by K. Note that K|M×{0,1} = 0. �

Now we resume our proof. By Lemma 3.1, equation (7) can be written as

δ(H −K) = F
∗
∫
c−

∫
p∗ω0.

Now consider a differential form

(8) F
∗
c− p∗ω0 − d(H)
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where H := (1 − t)h0 + th1. This is a closed form on X × I, that vanishes

on X × {0, 1}. Hence F
∗
c − p∗ω0 − d(H) ∈ Ω∗cl(X × I,X × {0, 1}). If we

integrate (8), we obtain∫
F
∗
c−

∫
p∗ω0 −

∫
d(H) = δ(H −K)− δ

∫
H.

By the relative de Rham theorem (see Appendix A), it follows that

F
∗
c− p∗ω0 − d(H) = d′ξ,

for some ξ ∈ Ω∗−1(X × I) where ξ ≡ 0 on X × {0, 1}. (Here d′ is the
differential of the relative complex — see Appendix A.) We thus have an

equality F
∗
c − p∗ω0 = d(ξ + H) in X × I, which is the triple relation for

(F , ξ+H, p∗ω0). This triple interpolates between (f0, h0, ω0) and (f1, h1, ω1).

3.3. Surjectivity. We consider the special case that the classifying map
f : X → F• is given by a smooth map and then the general case.

Case I. We choose an element [(f, h, ω)] ∈ K̂•(X), with the property that
there exists a representative (f, h, ω) with f smooth. Consider the triple
relation for the representative (f, h, ω)

δh = f∗
∫
c−

∫
ω.

By de Rham theorem, f∗c− ω = dξ for some differential form ξ on X, and
hence δh = δ

∫
ξ. Since h −

∫
ξ represents a cohomology class, there exists

η ∈ Ω∗cl(X) such that [h−
∫
ξ] = [

∫
η] or equivalently, h−

∫
ξ =

∫
η+ δµ for

some cochain µ. We write ζ := ξ + η.
Now we consider the triple (f, ζ, ω). The map (5) takes this triple to

(f,
∫
ζ, ω). We claim that (f,

∫
ζ, ω) and (f,

∫
ζ+ δµ, ω) are equivalent. The

following lemma is standard but we give a proof for sake of completeness.

Lemma 3.2. If α, β ∈ Zn(X;R) such that α − β = δk for some k ∈
Cn−1(X;R), then there exists L ∈ Zn(X × I;R) such that ψ∗0L = α and
ψ∗1L = β. (Recall Notation 2.1.)

Proof. Consider an interval I as a CW complex with two 0-cells a, b, and
a 1-cell e. We define cochains e∗ ∈ C1(I;R) by e 7→ 1, a∗ ∈ C0(I;R) by
a 7→ 1 and b 7→ 0, and b∗ ∈ C0(I;R) by a 7→ 0 and b 7→ 1. Then, for any
0-cell v in X,

(ψ∗0p
∗
2)a
∗(v) = a∗(p2∗ψ0∗v) = a∗(a) = 1,

and similarly,

(ψ∗0p
∗
2)b
∗(v) = b∗(a) = 0

(ψ∗1p
∗
2)a
∗(v) = a∗(b) = 0

(ψ∗1p
∗
2)b
∗(v) = b∗(b) = 1.
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Also, for any 1-cell σ in X,

(ψ∗0p
∗
2)e
∗(σ) = e∗(p2∗ψ0∗(σ)) = e∗(0) = 0,

and similarly, (ψ∗1p
∗
2)e
∗(σ) = 0. We also have:

δa∗(e) = a∗∂(e) = a∗(b− a) = −1 ⇔ δa∗ = −e∗,
δb∗(e) = b∗∂(e) = b∗(b− a) = 1 ⇔ δb∗ = e∗.

Since there is no 2-cell in I, we also have δe∗ = 0.
Now we take L := p∗1α∪p∗2a∗+p∗1β∪p∗2b∗+(−1)np∗1k∪p∗2e∗. We see that:

δL = (−1)np∗1α ∪ δp∗2a∗ + (−1)np∗1β ∪ δp∗2b∗ + (−1)nδp∗1k ∪ p∗2e∗ + 0

= (−1)n (−p∗1α ∪ p∗2e∗ + p∗1β ∪ p∗2e∗ + δp∗1k ∪ p∗2e∗) = 0,

since δk = α− β. Also,

ψ∗0L

= (ψ∗0p
∗
1)α ∪ (ψ∗0p

∗
2)a
∗ + (ψ∗0p

∗
1)β ∪ (ψ∗0p

∗
2)b
∗ + (−1)n(ψ∗0p

∗
1)k ∪ (ψ∗0p

∗
2)e
∗

= α ∪ 1 + β ∪ 0 + 0 = α,

ψ∗1L

= (ψ∗1p
∗
1)α ∪ (ψ∗1p

∗
2)a
∗ + (ψ∗1p

∗
1)β ∪ (ψ∗1p

∗
2)b
∗ + (−1)n(ψ∗1p

∗
1)k ∪ (ψ∗1p

∗
2)e
∗

= α ∪ 0 + β ∪ 1 + 0 = β. �

We continue proof of surjectivity. By Lemma 3.2, there exists a cocycle L
on X× I such that ψ∗0L = 0 and ψ∗1L = δµ. Using this L, we form the triple
(f ◦ p, p∗

∫
ζ +L, p∗ω). This triple restricts to (f,

∫
ζ, ω) and (f,

∫
ζ + δµ, ω)

at each end. Furthermore,

δ

(
p∗
∫
ζ + L

)
= p∗δ

∫
ξ = p∗

(
f∗
∫
c−

∫
ω

)
= (f ◦ p)∗

∫
c−

∫
p∗ω,

where in the first equality, we used the fact that η is a closed form. Hence

the claim. Therefore, for any [(f, h, ω)] ∈ K̂•(X) with smooth f , there is an
element [(f, ζ, ω)] ∈ Ǩ•(X) in the preimage.

Case II. We consider a triple whose classifying map is not necessarily

smooth. Given any [(f, h, ω)] ∈ K̂•(X), it suffices to show that there exists
a triple (f, h′, ω), with a smooth classifying map f , equivalent to (f, h, ω).
We consider a smooth approximation f of f satisfying that f and f are
homotopic through a homotopy g with f = g(−, 1).

Lemma 3.3. Let (f0, h, ω) be a triple representing an element of K̂•(X).
Suppose f0 is homotopic to f1 via a homotopy F . Then the triple (f0, h, ω)

is equivalent to
(
f1, h+ (−1)|c|+1F ∗

∫
c
/
I, ω

)
.
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Proof. We take an interpolating triple
(
F, p∗h+ (−1)|c|+1G∗

∫
c
/
I, p∗ω

)
,

where G is a homotopy between F and f0 ◦ p defined by

G : X × I × I → F•(9)

G(x, t, s) :=

{
F (x, t) if t ≤ s
F (x, s) if t ≥ s.

In particular, G(x, t, 0) = F (x, 0) = f0 ◦ p and G(x, t, 1) = F (x, t) = F .

Let ψ̃s : X × I → X × I × I be a s-slice map defined by (x, t) 7→ (x, t, s).
Since

ψ̃∗0

(
G∗
∫
c
/
I

)
= (G ◦ ψ̃0)

∗
∫
c
/
I = (f0 ◦ p)∗

∫
c
/
I = 0

ψ̃∗1

(
G∗
∫
c
/
I

)
= (G ◦ ψ̃1)

∗
∫
c
/
I = F ∗

∫
c
/
I,

the triple
(
F, p∗h+ (−1)|c|+1G∗

∫
c
/
I, p∗ω

)
interpolates the between given

two triples. We verify the triple relation

δ

(
p∗h+ (−1)|c|+1G∗

∫
c
/
I

)
= p∗δh+ δ

(
(−1)|c|+1G∗

∫
c
/
I

)
= p∗(f∗0

∫
c−

∫
ω) + (−1)|c|+1δG∗

∫
c
/
I +G∗

∫
c
/
∂I

= p∗f∗0

∫
c−

∫
p∗ω +

(
ψ̃1
∗
G∗
∫
c− ψ̃0

∗
G∗
∫
c

)
= p∗f∗0

∫
c−

∫
p∗ω +

(
F ∗
∫
c− (f0 ◦ p)∗

∫
c

)
= F ∗

∫
c−

∫
p∗ω. �

Therefore, by Lemma 3.3, the triple(
f, h+ (−1)|c|+1F ∗

∫
c
/
I, ω

)
is equivalent to (f, h, ω). Now a preimage of [(f, h′, ω)] can be found, by
Case I.

3.4. Group homomorphism and naturality. We first prove that (2)
and (4) is an abelian group operation as claimed in Lemmas 2.4 and 2.6,
respectively. Note that (I•, 0, 0) is the identity. The existence of inverses
will follow from similar arguments. We prove associativity presently.

Suppose given three triples (f1, h1, ω1), (f2, h2, ω2), and (f3, h3, ω3) in

K̂•(X). By the argument in Case II in Section 3.3, we may assume that f1,
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f2, and f3 are smooth. Consider the following triples

(m•(f1,m•(f2, f3)), h1 + h2 + h3, ω1 + ω2 + ω3),(10)

(m•(m•(f1, f2), f3)), h1 + h2 + h3, ω1 + ω2 + ω3).

By [TWZ2, Lemmas 3.24 (2) and 3.9] for m0 and m1, respectively, two
maps m•(f1,m•(f2, f3)) and m•(m•(f1, f2), f3) are cs-equivalent such that
cs(Γ•) = 0 for some homotopy Γ• between these maps. Smoothness of the
homotopy Γ• also follows from [TWZ2, Lemmas 3.24 (2) and 3.9]. From
Lemmas 3.3 (using the homotopy Γ•) and 3.2, it follows that the triples in
(10) are equivalent.

Now suppose any three triples (f1, h1, ω1), (f2, h2, ω2), and (f3, h3, ω3) are
in Ǩ•(X). Again m•(f1,m•(f2, f3)) ∼cs m•(m•(f1, f2), f3) by the same rea-
son, and triples again of the form (10) are equivalent by a similar argument
in Section 4.1 below and the fact that cs(Γ•) = 0.

It is readily seen that the map (5) is a group homomorphism. It is natural
in X by the change of variables formula.

4. Proof of Theorem 2

4.1. Well-definedness. Suppose f0 ∼cs f1 through a homotopy F . We
have to show that two triples (f0, 0, ch(f0)) and (f1, 0, ch(f1)) in Ǩ•(X) are
equivalent. Since cs(F ) is exact, it follows that ch(f0) = ch(f1). We define an
interpolating triple by (F, cs(G), p∗ch(f0)), where G is a homotopy between
f0 ◦ p and F defined in (9). We have the triple relation

dcs(G) = ch(F )− ch(f0 ◦ p),

and the triple (F, cs(G), p∗ch(f0)) becomes (f0, cs(f0 ◦ p ◦ ψ̃0), ch(f0)) (resp.
(f1, cs(F ), ch(f0))) when it is restricted to X × {0} (resp. X × {1}). We
claim that triples (f1, cs(F ), ch(f0)) and (f1, 0, ch(f0)) are equivalent. This
can be easily verified by applying the following Lemma.

Lemma 4.1. If α, β ∈ Ωn
cl(X) are such that α − β = dγ for some γ ∈

Ωn−1(X), then there exists ξ ∈ Ωn
cl(X × I) such that ψ∗0ξ = α and ψ∗1ξ = β.

Proof. Set ξ := (1− t)p∗α+ tp∗β − dt ∧ p∗γ ∈ Ωn(X × I). Then

dξ = −dt ∧ p∗α+ dt ∧ p∗β + dt ∧ p∗dγ = 0,

ψ∗0ξ = α,

ψ∗1ξ = β. �

Since cs(F ) is exact, we may write cs(F ) := dµ. We apply Lemma 4.1
with α = dµ and β = 0. More explicitly, the interpolating triple between
(f1, cs(F ), ch(f0)) and (f1, 0, ch(f0)) is (f1 ◦ p, ξ, p∗ch(f1)) where

ξ := (1− t)p∗dµ− dt ∧ p∗µ.
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We see that dξ = −dt ∧ p∗dµ+ dt ∧ p∗dµ = 0, ψ∗0ξ = dµ, and ψ∗1ξ = 0. The
triple relation is easily verified: dξ = 0 = ch(f1 ◦ p) − p∗ch(f1). Thus the
map is well-defined.

4.2. Injectivity. Suppose two triples (f0, 0, ch(f0)) and (f1, 0, ch(f1)) in
Ǩ•(X) are equivalent. i.e. ch(f0) = ch(f1) and there exists a homotopy F
between f0 and f1, such that

dH = ch(F )− p∗ch(f0)

for some differential form H ∈ Ω•−1(X × I). Integrating both sides along I,
we get ∫

I
ch(F )− 0 =

∫
I

ch(F )−
∫
I
p∗ch(f0) =

∫
I
dH + 0

=

∫
I
dH + (−1)|H|−1

∫
∂I
H = d

∫
I
H.

This shows that cs(F ) is exact, and hence f0 ∼cs f1.

4.3. Surjectivity. We need two lemmas. The following lemma follows
from [TWZ2].

Lemma 4.2 (Strong Venice Lemma). Given h ∈ Ω•−1(X) and a smooth
map f1 : X → F•, there exists a smooth map f0 : X → F• and a smooth
homotopy F : X × I → F• between f0 and f1 such that cs(F ) = h.

Proof. Given such a differential form h, Theorem 3.17 (2) of [TWZ2] shows
that there exists a homotopy G : X × I → F• such that G(x, 1) = I• and
cs(G) = h. (See Notation 2.2 for the definition of I•.)

Accordingly, define a homotopy F : X × I → F• by

F (x, t) := m•(G(x, t), p(f1(x))).

Note that F (x, 1) = m•(G(x, 1), p(f1(x))) = f1(x) and

cs(F ) = (−1)•−1
∫
I

ch(G) + (−1)•−1
∫
I
p ◦ f1 = cs(G) + 0 = h.

At t = 0, F (x, 0) = m•(G(x, 0), p(f1(x))) which we denote by f0(x). �

Lemma 4.3. Let (f0, h, ω) be a triple representing an element of Ǩ•(X).
Suppose f0 is homotopic to f1 via a homotopy F . Then the triple (f1, h +
cs(F ), ω) is equivalent to (f0, h, ω).

Proof. We choose (F, p∗h + cs(G), p∗ω), where G is a homotopy between
F and f0 ◦ p defined in (9). We verify that this triple interpolates between
(f0, h, ω) and (f1, h+ cs(F ), ω). First, we have

ψ̃∗0(F, p∗h+ cs(G), p∗ω) = (f0, h+ cs(G ◦ ψ̃0), ψ̃
∗
0p
∗ω) = (f0, h, ω),

ψ̃∗1(F, p∗h+ cs(G), p∗ω) = (f1, h+ cs(G ◦ ψ̃1), ψ̃
∗
1p
∗ω) = (f1, h+ cs(F ), ω),

where ψ̃s is as defined in the proof of Lemma 3.3.
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The triple condition then follows from

d (p∗h+ cs(G)) = p∗f∗0 c− p∗ω + F ∗c− p∗f∗0 c = F ∗c− p∗ω. �

We now prove surjectivity. Take any representative (f1, h, ω) of any ele-
ment in Ǩ•(X). Applying Lemma 4.2 with h and f1, we may write h = cs(F )
where F is a homotopy between f0 and f1 for some f0. Note that ch(f0) = ω,
because

ch(f1)− ch(f0) = dh = ch(f1)− ω.
By Lemma 4.3, the triple (f0, 0, ω) is equivalent to the triple (f1, cs(F ), ω).

Since (f0, 0, ω) is a representative of the image of [f0] ∈ K̂•TWZ(X), [f0] is a

preimage of (f1, h, ω) ∈ Ǩ•(X).

4.4. Group homomorphism and naturality. The given map is a group
homomorphism since ch(m(f0, f1)) = ch(f0) + ch(f1). It is natural in X by
the naturality of ch.

Appendix A. Relative de Rham theorem

We state and prove a variant of de Rham theorem for relative cohomology
groups. This result is certainly well-known and classical, but we did not find
a reference. Throughout this appendix, let X be a smooth manifold, Y a
closed submanifold, and ı : Y ↪→ X a smooth embedding.

Definition A.1. The relative de Rham complex (Ω•(X,Y ), d′•) is defined
by Ωk(X,Y ) := ker ı∗k and d′k := d|ker ı∗k for each k ≥ 0, where

ı∗k : Ωk(X)→ Ωk(Y )

is the restriction map.

Since ı∗ commutes with d, the image of d′k is contained in Ωk+1(X,Y ),
hence the pair (Ω•(X,Y ), d′•) is a complex. Also note that the kernel of d′k
is Ωk

cl(X) ∩ ker i∗k.

Definition A.2. The degree k relative de Rham cohomology groups of the
pair (X,Y ) is defined by

Hk
dR(X,Y ) := ker d′k

/
Im d′k−1, k ∈ Z.

Lemma A.3.

(1) In the following diagram, the rows are exact, and the squares are
commutative.

0 // Ωk(X,Y )

d′k
��

↪→ // Ωk(X)

dk
��

ı∗k // Ωk(Y )

dk
��

// 0

0 // Ωk+1(X,Y )
↪→ // Ωk+1(X)

ı∗k+1 // Ωk+1(Y ) // 0
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(2) The following sequence of cohomology groups is exact.

0→ H0
dR(X,Y )→ H0

dR(X)→ H0
dR(Y )

δdR−→ H1
dR(X,Y )→ H1

dR(X)→ · · · .

Proof. (1) The surjectivity of the map ı∗k : Ωk(Y ) → Ωk(X) for k ∈ Z
follows from Whitney’s embedding theorem. The diagram is commutative
because pull-back commutes with d. (2) follows from the snake lemma. �

Proposition A.4 (Relative de Rham Theorem). The assignment∫
: Hk

dR(X,Y )→ Hk(X,Y ;R)

[ω] 7→
[∫

ω

]
,

is a natural isomorphism of groups for each k ∈ Z.

Proof. We use the 5-lemma. Consider the following diagram.

Hk−1
dR (X)

∼=
∫
��

ı∗k−1 // Hk−1
dR (Y )

∼=
∫
��

δdR // Hk
dR(X,Y )

��

// Hk
dR(X)

∼=
∫
��

ı∗k // Hk
dR(Y )

∼=
∫
��

Hk(X)
ı∗k−1 // Hk(Y )

δ // Hk(X,Y ) // Hk(X)
ı∗k // Hk(Y )

The first and the last squares are commutative by naturality of de Rham
theorem. The third square commutes by Stokes’ formula. We verify the
commutativity of the second square. Take any [θ] ∈ Hk−1

dR (Y ). There exists

η ∈ Ωk−1(X) whose restriction to Y is θ. The restriction of the differential
form dη ∈ Ωk(X) to Y is identically zero. Hence dη is a representative of
the cohomology class δdR([θ]) ∈ Hk

dR(X,Y ). Applying the vertical map, we
obtain [

∫
dη]. Now we apply the vertical map to [θ] and then the connecting

map. This gives δ[
∫
θ] ∈ Hk(X,Y ;R). Since

∫
η is a cochain in X that

restricts to
∫
θ in Y , the k-cochain

∫
dη represents the smooth singular

relative cohomology class δ[
∫
θ], since ı∗k(

∫
dη) is vanishing. �
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