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Noncommutative T-duality. The
dynamical duality theory and

2-dimensional examples

Siegfried Echterhoff and Ansgar Schneider

Abstract. A duality theory for bundles of C∗-algebras whose fibres are
twisted transformation group algebras is established. Classical T-duality
is obtained as a special case, where all fibres are commutative tori, i.e.,
untwisted group algebras for Zn. Our theory also includes the bundles
considered by Mathai and Rosenberg in their work on noncommutative
T-duals, in which they allow twisted group algebras on one side of the
duality.
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1. Introduction

In classical (or topological) T-duality one starts with a circle bundle
p : E → B over a locally compact base space B together with a class
δ ∈ H3(E,Z) (often called H-flux). Then T-duality provides an involution
(E, δ) 7→ (E#, δ#) of circle bundles over B with H-flux, satisfying a number
of interesting properties. We refer to Rosenberg’s CBMS memoir [Ro09]
for a detailed axiomatic definition of this classical notion of T-duality (see
[Ro09, Axiomatics 6.1.2]) and an explanation of how this relates to string
theory. There is a completely topological construction of T-duality due to
Bunke and Schick [BuS05]. Another approach due to Raeburn and Rosen-
berg in [RaR88] (see also [Ro09, Chapter 7]) is completely C*-algebraic in
nature: given the data (E, δ) as above, there is a unique stable continuous-
trace algebra CT (E, δ) (i.e., an algebra of continuous C0-sections of a locally
trivial field of compact operators over E) with Dixmier–Douady invariant
δ ∈ H3(E,Z), and the results in [RaR88] show that there is an essentially
unique R-action on CT (E, δ) which covers the action of R on E given by
inflating the given circle action. Moreover, they show that there is a unique
circle bundle E# over B together with a class δ# ∈ H3(E#,Z) such that

CT (E, δ) o R ∼= CT (E#, δ#).

Note that this C*-algebraic description of T-duality has the advantage that it
gives a direct connection of the (twisted) K-theories of (E, δ) and (E#, δ#):
by the Connes–Thom-isomorphism there is a natural isomorphism

K∗(E, δ) = K∗(CT (E, δ)) ∼= K∗+1(CT (E, δ) o R) = K∗+1(E#, δ#).

Note that Takai-duality provides an isomorphism

CT (E#, δ#) o R̂ ∼= CT (E, δ) o R o R̂ ∼= CT (E, δ)⊗K(L2(R)) ∼= CT (E, δ).

which shows that this construction really provides an involution on the cat-
egory of circle bundles over B with H-flux.

Unfortunately, for higher dimensional torus bundles the theory becomes
much more involved since in general there does not exist a (classical) dual
pair (E#, δ#) for a given pair (E, δ) for a principal Tn-bundle p : E → B if
n ≥ 2. However, in [MaR05] Mathai and Rosenberg show that in case n = 2
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there always exist (nonunique) noncommutative T-duals which are section
algebras of bundles of stable noncommutative tori. Moreover, the possible
duality pairs can be classified with the help of a certain Mackey-obstruction
map. The construction extends the ideas explained above: recall that the
noncommutative 2-tori are just the twisted group algebras C∗(Z2, ω) for
[ω] ∈ H2(Z2,U(1)) (and similarly for higher dimensional tori). Now given a
pair (E, δ) as above in which p : E → B is a principal T2-bundle, there exists
(in general a nonunique) action of R2 on CT (E, δ) which covers the given
T2-action on E and then the T-dual is constructed as the crossed product
CT (E, δ) o R2. Indeed, writing E locally as Ui × T2, the action of R2 on
the invariant ideal CT (Ui × T2, δ) ⊆ CT (E, δ) is induced from an action of
the lattice Z2 ⊆ R2 on CT (Ui, δ|Ui). Hence the ideal CT (Ui × T2, δ) o R2

is stably isomorphic to CT (Ui, δ|Ui) o Z2, which is a section algebra of a
continuous C*-bundle with fibres K oαx Z2 ∼= K ⊗ C∗(Z2, ωx) at x ∈ Ui,
where [ωx] ∈ H2(Z2,U(1)) is the Mackey obstruction for implementing the
action αx on the fibre K at x as the adjoint action of a homomorphism U :
Z2 → U(H) (if K = K(H)). Later, in [MaR06] the authors extended these
results to higher dimensional tori, where the obstruction for the existence of
a possibly noncommutative T-dual is given by the requirement that the class
δ ∈ H3(E,Z) vanishes on the fibres of p : E → B (which is automatic if n ≤
2). Again, the Connes–Thom-isomorphism always provides an isomorphism
(up to dimension shift by n) of the relevant K-theories.

It is obvious that the resulting duality theory lacks symmetry: while on
one side we have a classical pair (E, δ), there is often a noncommutative torus
bundle on the dual side. In this paper we start to investigate a symmetric
version of noncommutative T-duality in which we allow noncommutative
torus bundles on both sides of the duality.

The framework we develop in this article is general enough to work for
general locally compact abelian groups G with discrete and co-compact sub-
groups N ⊂ G and is not necessarily coupled to the motivating example
G = Rn, N = Zn. Let us summarise some of its main content: we introduce
some notation and review some basic knowledge about C∗-dynamical sys-
tems in Section 2. Then Section 3 starts with a recapitulation of Mathai’s
and Rosenberg’s T-duality over the one-point space. It serves as a moti-
vation for our framework for general noncommutative T-duality over the
one point space as it is given in 3.2. This means to identify a subcategory

NCT (N ; Ĝ)t of the category of all C∗-dynamical systems whose objects are
stable, twisted transformation group algebras ofN , equipped with transverse

Ĝ-actions (Definition 3.9). This subcategory is dual to NCT (N⊥;G)t by
the duality functor oG (Theorem 3.12). In particular, for G = Rn, N = Zn,
we obtain a self-duality of the category of stable, noncommutative tori
NCT (Zn; Rn)t with transverse Rn-actions. In Section 3.3 we construct a
cohomological invariant

[NCT (N ; Ĝ)t]→ H2(N,U(1))
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on the set of isomorphism classes of these objects. This allows us to re-
obtain the classical (i.e., commutative) subtheory inside our theory: it is
the kernel of this map (Theorem 3.20). Section 3.4 describes the complete
picture of noncommutative T-duality in two and three dimensions, i.e., for
G = Rn, N = Zn, n = 2, 3, over the one-point space.

In Section 4 we turn to the global situation of noncommutative T-duality.
The objects which we consider therein are bundles of C∗-algebras whose fi-
bres are stable, twisted group algebras which satisfy a certain local triviality
property which we call ω-triviality (Definition 4.2). For G = Rn, N = Zn

the theory over the one-point space directly generalises to the bundle case.
In particular, we establish a duality for these bundles, and we re-obtain the
classical T-duality as a subcategory characterised point-wise by a trivial co-
homological invariant. For more general groups some technical assumptions
have to be made.

Section 5 presents in detail some examples of noncommutative T-duality
over the circle. In particular, we give an example of a locally ω-trivial bundle
which does not arise as a dual of a commutative bundle, thereby showing
that in our framework the class of objects is bigger than in the approaches
made so far.

2. Notation and preliminaries

2.1. Abelian groups. Throughout this paper G will always denote an
abelian, Hausdorff, second-countable, locally compact group. Its dual group,

the goup of characters Ĝ := Hom(G,U(1)), is equipped with the compact-
open topology. It is again an abelian, Hausdorff, second-countable and lo-

cally compact group [Ru90]. The bidual
̂̂
G is canonically isomorphic to G,

and we use both of the notations 〈g, χ〉 and 〈χ, g〉 to denote χ(g) ∈ U(1),

for g ∈ G,χ ∈ Ĝ. We assume that we have given a discrete and co-compact

subgroup N ⊂ G. Then its annihilator N⊥ := {χ ∈ Ĝ : χ|N = 1} is discrete

and co-compact in Ĝ, and there are cannonical identifications N̂ = Ĝ/N⊥

and N̂⊥ = G/N.
The most prominent and guiding example of groups that fit into this

situation is for n ∈ N the self-dual example

Zn ↪→ Rn � Tn,

where Tn is the n-fold torus Rn/Zn. Another self dual example for n ∈ N is

Qn ↪→ An � Sn,

where the (discrete) rational numbers Q sit inside the adeles A, and the
quotient is the solenoid S, the dual group of the rationals (see [HeR]).

2.2. C*-dynamical systems. By the term C*-algebra we will typically
mean a separable C*-algebra. The C*-automorphism group Aut(A) of a
C*-algebra A is equipped with the topology of point-wise convergence. An



NONCOMMUTATIVE T-DUALITY 931

action α : G → Aut(A) is just a continuous group homomorphism (usu-
ally called strongly continuous), and such a triple (A,G, α) is called a C*-
dynamical system.

If (A,G, α) is a C*-dynamical system (with G abelian), then its dual is the

system (Aoα G, Ĝ, α̂), where the crossed product Aoα G is the enveloping
C*-algebra of the Banach *-algebra L1(G,α,? ) which is L1(G,A) equipped
with the product

(f ∗ f ′)(g) :=

∫
G
f(h)αh(f ′(g − h)) dh

and with involution f?(g) := αg(f(−g))∗, for f, f ′ ∈ L1(G,A). The dual
action α̂ is given on the dense subspace L1(G,A) just by point-wise multi-

plication: α̂χ(f) := 〈χ, 〉f( ), for χ ∈ Ĝ, f ∈ L1(G,A).
Recall the famous Takai duality theorem (e.g., see [W07, Theorem 7.1]):

Theorem 2.1. There is a G-equivariant isomorphism((
Aoα G

)
oα̂ Ĝ,G, ˆ̂α

)
∼=
(
A⊗K(L2(G)), G, α⊗ (Ad ◦ ρ)

)
,

where K(L2(G)) is the algebra of compact operators on L2(G), ρ is the right
regular representation of G on L2(G), and Ad denotes the conjugation action
of the unitary operators on the compacts.

2.3. Morita equivalent actions. Assume that (A,G, α) and (B,G, β) are
two C*-dynamical systems. Recall that a Morita equivalence (E, γ) between
(A,G, α) and (B,G, β) consists of an A-B-equivalence bimodule E together
with an action γ : G→ Aut(E) which is compatible with the given actions
α and β in the sense that

αg(A〈ξ, η〉)γg(ζ) = γg(A〈ξ, η〉ζ) = γg(ξ〈η, ζ〉B) = γg(ξ)βg(〈η, ζ〉B)

holds for all ξ, η, ζ ∈ E and g ∈ G. If (E, γ) is such a Morita equivalence,
then Cc(G,E) becomes a Cc(G,A)-Cc(G,B)-bimodule by defining the left
and right actions and the inner products by the convolution formulas

f · ξ(g) =

∫
G
f(h)γg(ξ(g − h) dh

ξ · f ′(g) =

∫
G
ξ(h)βh(f ′(g − h)) dh

Cc(G,A)〈ξ, η〉(g) =

∫
G
A〈ξ(h), γg(η(g − h)〉 dh

〈ξ, η〉Cc(G,B)(g) =

∫
G
β−g(〈ξ(h), η(g + h)〉B dh

for all ξ, η ∈ Cc(G,E), f ∈ Cc(G,A) and f ′ ∈ Cc(G,B). With these oper-
ations, Cc(G,E) completes to a (A oα G)-(B oβ G)-equivalence bimodule
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E oγ G which equipped with the dual action γ̂ : G → Aut(E oγ G) given
by point-wise multiplication,

(γ̂χξ)(g) = 〈g, χ〉ξ(g), for all χ ∈ Ĝ, ξ ∈ Cc(G,E),

gives an equivariant Morita equivalence (E oγ G, γ̂) for the dual systems

(Aoα G, Ĝ, α̂) and (B oβ G, Ĝ, β̂) (see [Co84, E94] for further details).

Example 2.2. If there is an α-β-equivariant isomorphism Φ : A → B, we
consider A as an A-B-bimodule with inner products given by

A〈a, b〉 = ab∗ and 〈a, b〉B = Φ(a∗b),

then (A,α) gives a Morita equivalence between (A,G, α) and (B,G, β).
Moreover, for any system (A,G, α), the system(

A⊗K(L2(G)), G, α⊗ (Ad ◦ ρ)
)

is Morita equivalent to (A,G, α) with bimodule A⊗ L2(G) and action

α⊗ ρ : G→ Aut(A⊗ L2(G)).

Thus it follows from Takai’s duality theorem that (A,G, α) is Morita equiv-

alent to the double dual system
((
Aoα G

)
oα̂ Ĝ,G, ˆ̂α

)
.

The Morita equivalence between α and ˆ̂α is a primal case of an important
Morita equivalence which will play a fundamental rôle in this paper. Let us
review some other special cases of Morita equivalences which will appear in
this work. (For reference, see [Pe79, Section 8.11].)

Example 2.3.

(1) (Exterior Equivalence). If α and β are actions on the same C*-
algebra A, then they are called exterior equivalent if there exists a
strictly continuous map to the unitary group of the multiplier algebra
of A, v : G→ UM(A); g 7→ vg such that

αg(a) = vgβg(a)v∗g , vg+h = vgβg(vh), for all g, h ∈ G, a ∈ A.

Let E = A be the canonical A-A-equivalence and define

γ : G→ Aut(E)

by γg(a) = vgβg(a) for g ∈ G and a ∈ E. Then it is easily checked
that this implements a Morita equivalence between (A,G, α) and
(A,G, β). We say that v implements the exterior equivalence between
α and β. In this case there is a canonical isomorphism

Φv : Aoβ G→ Aoα G, Φv(f)(g) = f(g)v∗g , f ∈ Cc(G,A),

which is α̂-β̂-equivariant, hence induces an isomorphism for the dual
actions.
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(2) (Outer Conjugacy). Two systems (A,G, α) and (B,G, β) are outer
conjugate, if there exists an isomorphism Φ : A → B such that β is
exterior equivalent to the action α′ = Φ ◦ α ◦ Φ−1.

(3) (Stable Outer Conjugacy). This is rather the most general form of
Morita equivalence, in fact, it is an equivalent notion for C*-algebras
which have a countable approximate identity (or, equivalently, which
contain strictly positive elements) [Co84]. Two systems (A,G, α)
and (B,G, β) are stably outer conjugate if the two systems

(A⊗K, G, α⊗ id) and (B ⊗K, G, β ⊗ id)

are outer conjugate, where K is the algebra of compact operators on
some separable Hilbert space.

If α : G→ Aut(A) is an action, we can restrict it to the subgroup N ⊂ G,
and then Cc(G,A) completes to give an (Aoα N)-Hilbert module, EGN (A),
if the right action of A oα N and the A oα N -valued inner products are
defined on the level of Cc(N,A) as

〈ξ, η〉AoN (n) =

∫
G
αh(ξ(h))∗η(m− h) dh,

ξ · f(g) =

∫
N
ξ(g + n)αg+n(f(−n)) dn

for ξ, η ∈ Cc(G,A), f ∈ Cc(N,A).
There is a canonical left action of the dual system (A oα G,N

⊥, α̂)
on EGN (A) which is given by the covariant representation (Φ, U) in which
Φ(f)ξ = f ∗ ξ for f, ξ ∈ Cc(G,A) and Uχξ = χ · ξ (point-wise multiplica-

tion). The integrated form Φ × U : A oα G oα̂ N
⊥ → L(EGN (A)) defines

a left action of A oα G oα̂ N
⊥ on EGN (A), which by [E94, Proposition 2.1]

implements an isomorphism onto K(EGN (A)) (L(·) and K(·) denote the ad-
jointable and compact operators of a module, respectively). Of course, this
is just a reformulation of Green’s famous imprimitivity theorem [G78, The-
orem 17]. In [E94, Proposition 3.4 and Lemma 3.6] it is shown that the
resulting Morita equivalence between A oα G oα̂ N

⊥ and A oα N is equi-

variant with respect to certain actions by G and Ĝ. For notation, given an
action α : G → Aut(A) for the abelian group G and N ⊆ G is a closed
subgroup of G we let αdec : G→ Aut(Aoα N) denote the action given by

αdec
g (f)(n) = αg(f(n)) g ∈ G,n ∈ N, f ∈ Cc(N,A)

and if β : G/N → Aut(B) is an action of the quotient group, we denote by
inf β : G→ Aut(B) the inflation of β to G. Combining the results of [E94,
Proposition 3.4 and Lemma 3.6] we then get:

Proposition 2.4. In the above situation EGN (A) becomes an (AoαGoα̂N
⊥)-

(Aoα N)-imprimitivity bimdule. Moreover, if we define actions γ and γ̂ of
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G and Ĝ on EGN (A) by

(γgξ)(h) := ξ(g + h) and (γ̂χξ)(g) := 〈g, χ〉ξ(g)

for ξ ∈ Cc(G,A), then (EGN (A), γ) is a Morita equivalence between

(Aoα Goα̂ N
⊥, G, inf ̂̂α|N⊥) and (Aoα N,G, α

dec)

and (EGN (A), γ̂) is a Morita equivalence between

(Aoα Goα̂ N
⊥, Ĝ, α̂dec) and (Aoα N, Ĝ, inf α̂|N ).

2.4. Actions on K, twisted group algebras, and 2-cocycles. Con-
sider the short exact sequence

1→ U(1)→ U(H)
Ad→ PU(H)→ 1,

where U(H) is the unitary group of some separable Hilbert space H, and
PU(H) is the projective unitary group, the quotient of the unitaries by its
center. It induces a (not very long) exact sequence in Borel cohomology

(1) · · · → H1(G,U(H))→ H1(G,PU(H))
Ma→ H2(G,U(1))

which terminates at H2(G,U(1)) due to the noncommutativity of the in-
volved coefficient groups. The (negative of the usual) connecting homomor-
phism1 Ma is called Mackey obstruction. Now, because U(H) = UM(K), the
unitary group of the multiplier algebra of the compacts K = K(H), and be-
cause all automorphisms of K are inner, conjugation defines a canonical iso-
morphism PU(H) = Aut(K). So if α : G→ Aut(K) is an action on the com-
pacts, i.e., α ∈ H1(G,PU(H)), it defines a class Ma(α) ∈ H2(G,U(1)), the
Mackey obstruction of α. The action α is said to be unitary if its Mackey ob-
struction vanishes. Note that any class [ω] ∈ H2(G,U(1)) arises as a Mackey
obstruction of some action α : G→ Aut(K): Just put αω(g) := Ad(Lω(g)),
where Lω : G→ U(L2(G)) is the left regular ω-representation of G, i.e.,

(2) (Lω(g)ξ)(h) = ω(g, h− g)ξ(h− g), ξ ∈ L2(G), g, h ∈ G.

Then Ma(αω) = [ω−1] = −[ω].
The following shows that actions on K are classified up to Morita (or

exterior) equivalence by the Borel cohomology group H2(G,U(1)). We refer
to [CrKRW93, Section 6.3] for a more general result.

Proposition 2.5. Suppose α, β : G→ Aut(K) are two actions of G on K.
Then the following are equivalent:

(1) α and β are exterior equivalent.
(2) α and β are Morita equivalent.
(3) Ma(α) = Ma(β) ∈ H2(G,U(1)).

1 We choose the convention Ma(α) := −[∂V ], for a Borel lift V : G → U(H) of
α : G→ PU(H).
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If Ma(α) = [ω], then the crossed product Koα G is isomorphic to2

K⊗ (C oω G),

where C oω G denotes the twisted group C*-algebra of G with respect to
the cocycle ω. This is the enveloping C*-algebra of the Banach *-algebra
L1(G,ω,? ) given by the Banach space L1(G) with convolution and involution
given by

(f ∗ f ′)(g) :=

∫
G
f(h)f ′(g − h)ω(h, g − h) dh and(3)

f?(g) := ω(g,−g)f(−g).

The isomorphism Ψ : K ⊗ (C oω G) → K oα G is given on the level of
L1-functions by

(4) Ψ(k ⊗ f)(g) = f(g)kV (g), k ∈ K, f ∈ L1(G),

where V : G → U(H) is a Borel lift of α (i.e., 1-cochain) such that its
boundary is ω−1 (see [E96, Theorem 1.4.15]). Note that this isomorphism is

equivariant with respect to the canonical (dual) actions of Ĝ on KoαG and
on K⊗ (CoωG) given by point-wise multiplication with characters. It is an
immediate consequence of Proposition 2.5 and of Takai duality that, up to
equivariant Morita equivalence, the twisted group algebra equipped with the

dual Ĝ-action is also classified by the cohomology class [ω] ∈ H2(G,U(1)).
One should regard the twisted group algebra C oω G as a deformation of

C0(Ĝ) ∼= C o1 G, where 1 denotes the trivial cocycle on G. In particular,
the twisted group algebras C oω Zn are deformations of C(Tn), and they
are called noncommutative n-tori. In this picture, the dual action of Tn on
C oω Zn is the analogue of the translation action of Tn on C(Tn) in the
commutative case. We have a natural isomorphism between the additive
group Mu(n,R) of strictly upper triangular real matrices and H2(Rn,U(1))
which is given by sending a matrix A to the class of the cocycle ωA given by

ωA(x, y) := exp(2πi(Ax)ty).

Under this identification, the restriction map

H2(Rn,U(1))→ H2(Zn,U(1)); [ω] 7→ [ω|Zn×Zn ],

which is surjective, has kernel given by the collection of all classes cor-
responding to the set Mu(n,Z) of strictly upper triangular matrices with
integer coefficients. So the noncommutative n-tori are classified (up to Tn-
equivariant Morita equivalence) by

H2(Zn,U(1)) ∼= Mu(n,R)/Mu(n,Z) ∼= Tn(n−1)/2.

2Here we see that our sign convention of Ma is the right one, for otherwise we would
obtain

K⊗ (C oω−1 G) ∼= Koα G.
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We refer to [BaK73] for further details. Moreover, for every action α of Zn

on K we can find an action β of Rn on K such that the restriction β|Zn
is Morita equivalent to α (choose an action β corresponding to any class
[η] ∈ H2(Rn,U(1)) which restricts to Ma(α)).

If ω ∈ H2(G,U(1)) for the abelian group G, then ω determines a contin-

uous homomorphism hω : G→ Ĝ given by

(5) 〈hω(g), h〉 := ω(g, h)ω(h, g)−1, for all g, h ∈ G.
hω only depends on the class [ω] ∈ H2(G,U(1)) and hω = 0 if and only if
[ω] = 0. The kernel S ⊂ G of hω is called the symmetry group of ω. A cocycle
ω is said to be totally skew if S = {0}, and ω is said to be type I if the image

hω(G) is closed in Ĝ. Recall that for any C*-algebra A, Prim(A) denotes
the space of primitive ideals of A equipped with the Jacobson topology.
With these notations, the following results have been shown by Baggett and
Kleppner in [BaK73, Section 3].

Theorem 2.6. For ω ∈ Z2(G,U(1)) the following are true:

(1) There is a canonical bijection between Ŝ and Prim(CoωG) given by
induction of representations. In particular, C oω G is simple if and
only if ω is totally skew.

(2) The image hω(G) is always a dense subgroup of S⊥ ⊂ Ĝ, thus ω is
type I if and only if hω(G) = S⊥.

(3) The C*-algebra C oω G is type I if and only if ω is type I.

Moreover, the map

(6) h : H2(G,U(1)) ↪→ Hom(G, Ĝ); [ω] 7→ hω

is injective.

Combining (1) and (3) of the above theorem we see that CoωG is simple

and type I if and only if ω is type I and totally skew, i.e., hω : G
∼=→Ĝ is an

isomorphism. Since every separable, simple, type I C*-algebra is (isomorphic
to) an algebra of compact operators on some separable Hilbert space, we see
that C oω G ∼= K(H) for some separable Hilbert space H if (and only if) ω
is totally skew and type I. Then the dual action

Ĝ→ Aut(C oω G) = Aut(K(H))

is again classified by a class [ω̂] ∈ H2(Ĝ,U(1)). This class has been computed
by one of the authors in [E96, Lemma 3.3.5]:

Proposition 2.7. Suppose that ω ∈ Z2(G,U(1)) is a type I and totally skew
2-cocycle. Then the Mackey-obstruction for the dual action

Ĝ→ Aut(C oω G)

is given by the class of the cocycle (hω)∗ω
−1 ∈ Z2(Ĝ,U(1)), where the push-

forward is pullback along the inverse h−1
ω , i.e.,

(hω)∗ω
−1(χ, ψ) = ω(h−1

ω (χ), h−1
ω (ψ))

−1
, χ, ψ ∈ Ĝ.
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We call (hω)∗ω
−1 the dual cocycle of ω, and we leave the following lemma

as an exercise for the reader.

Lemma 2.8. Suppose that ω ∈ Z2(G,U(1)) is type I and totally skew. Then
h(hω)∗ω−1 = h−1

ω which implies that the dual cocycle (hω)∗ω
−1 is also totally

skew and type I. This also implies that the double dual cocycle agrees with
the original one: (

h(hω)∗ω−1

)
∗
(
(hω)∗ω

−1
)−1

= ω.

Example 2.9. Let G = Rn and let us identify R̂n with Rn via the canonical
isomorphism x 7→ χx with 〈χx, y〉 = exp(2πi xty). Let

ωA(x, y) := exp(2πi(Ax)ty)

for some strictly upper diagonal matrix A ∈M(n,R). Then

〈hωA(x), y〉 = exp(2πi((Ax)ty − (Ay)tx)) = exp(2πi(ΣAx)ty) = 〈χΣAx, y〉
with ΣA := A−At the skew symmetric matrix corresponding to A. Thus we

see that up to the identification R̂n ∼= Rn the homomorphism hωA is given
by the linear map x 7→ ΣAx. It follows that ωA is always type I and ωA is
totally skew if and only if ΣA is invertible. The dual cocycle is then given
by ωB with B = Σ−1

A AΣ−1
A .

3. Stable NC tori — NC T-duality over the one-point space

3.1. Introduction. We start our discussion of T-duality with bundles over
a point. The trivial principal Tn-bundle over the point is the n-torus Tn

equipped with the translation action of Tn on itself. Suppose δ ∈ H3(Tn,Z)
allows an action α of Rn on the corresponding stable continuous-trace C*-
algebra CT (Tn, δ) which covers the inflated action of Rn on

Tn = Prim(CT (Tn, δ)).

Since Tn = Rn/Zn, it follows from [E90, Theorem] that CT (Tn, δ) is equiv-
ariantly isomorphic to the induced algebra IndRn

Zn(K, α̃), where α̃ denotes
the action of the stabiliser Zn on the fibre K = CT (Tn, δ)|z of CT (Tn, δ)
over some chosen point z ∈ Tn. Recall that for any action β : N → Aut(B)
on a C*-algebra B, the induced system (IndGN (B, β), G, Ind(β)) is given by

IndGN (B, β)

:= {F ∈ Cb(G,B) : F (g + n) = β−n(F (g)), for all g ∈ G, n ∈ N ,

and
(
gN 7→ ‖f(g)‖

)
∈ C0(G/N)},

equipped with the point-wise operations, and with G-action Ind(β) which
is just given by left (sign!) translation. By the discussion in the previous
section, we may assume, up to equivariant Morita equivalence, that α̃ = µ|Zn
for some action µ : Rn → Aut(K). But then we obtain an isomorphism

Φ : IndRn
Zn(K, α̃)→ C(Tn,K) ∼= K⊗ C(Tn), Φ(f)(ġ) = µg(f(g)),
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which transforms the induced action Ind(α̃) to the diagonal action3 µ ⊗
inf. Thus we learn the following facts (which have been observed before by
Mathai and Rosenberg in [MaR05, MaR06]): Firstly, the class δ is trivial,
i.e., CT (Tn, δ) ∼= K⊗C(Tn). Secondly, up to equivariant Morita equivalence
the action α is given by a diagonal action µ⊗ inf.

Recall from [MaR05, MaR06] that in the above setting the (possibly non-
commutative) dual torus is given (again up to equivariant Morita equiva-
lence) by the crossed product K⊗C(Tn)oµ⊗inf Rn, equipped with the dual

action of R̂n ∼= Rn. By the equivariant version of Green’s imprimitivity
theorem (this is a special case of [EKQR06, Theorem 4.11]), this system is
Morita equivalent to KoµZn equipped with the action of Rn which is inflated
from the dual action of Tn on K oα̃ Zn. By the discussion in the previous
section we know that Koµ Zn is equivariantly isomorphic to K⊗ (Coω Zn)
equipped with the inflated action id⊗ inf if Ma(µ) = [ω].

To summarise the point-wise duality picture of Mathai and Rosenberg,
there are stabilised commutative tori K ⊗ C(Tn) with a diagonal action
µ ⊗ inf of Rn on one side, and there are stabilised noncommutative tori
K ⊗ (C oω Zn) with action id ⊗ inf on the other side. This motivates the
content of this section which is the investigation of C*-dynamical systems

(7)
(
K⊗ (C oω N), Ĝ, µ̂⊗ inf

)
,

where we will typically assume that the 2-cocycle ω on N has an extension

to G, and µ̂ : Ĝ → Aut(K) is an action which is not necessarily trivial. By
Takai duality the study of (7) is equivalent to the study of its dual system

(8)
((

K⊗ (C oω N)
)
oµ̂⊗inf Ĝ,G, ˆ̂µ⊗ inf

)
,

and we need to understand under which circumstances there is a Morita
equivalence

(8) ∼
(
K⊗ (C oω̂ N

⊥), G, µ⊗ inf
)
.

3.2. Iterated crossed products and transversality. For an action

µ̂ : Ĝ→ Aut(K),

let us analyse the iterated crossed product

(9)
(
K⊗ (C oω N)

)
oµ̂⊗inf Ĝ,

where we assume that the 2-cocycle ω has an extension to G which we again
denote by ω. We need

Definition 3.1. Suppose that G is a locally compact abelian group.

3To keep notation down, whenever there is a canonical action γ of a quotient G/N (or

Ĝ/N⊥) we will simply denote by inf (rather than by inf γ) the inflated action of G (or Ĝ).
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(1) By the Heisenberg cocycle ∨ on G× Ĝ we understand the 2-cocycle
given by

(h, ψ) ∨ (g, χ) := 〈ψ, g〉.
(2) The Heisenberg cocycle on Ĝ×G is denoted by ∧, i.e.,

(ψ, h) ∧ (χ, g) := 〈h, χ〉.

(3) For ω ∈ Z2(G,U(1)) and ω̂ ∈ Z2(Ĝ,U(1)) we denote by ω ∨ ω̂ the

product ω ·∨ · ω̂ in which we regard ω and ω̂ as cocycles on G× Ĝ by

pullback along the projections to G and Ĝ, respectively. Similarly,

we define ω̂ ∧ ω ∈ Z2(Ĝ×G,U(1)).

Lemma 3.2. If [ω̂] is the Mackey obstruction of µ̂, then (9) is G-equivari-
antly isomorphic to

(10) K⊗ (C oω∨ω̂ (N × Ĝ)),

where G acts dually on the second factor of N × Ĝ.

Proof. The product and the involution of the crossed product (9) on the
basis of the inflation action are given in terms of the pairing

〈 , 〉 : N × Ĝ→ U(1)

which on the level of L1-functions can be expressed in terms of the cocycle
∨. In fact, similar to (4), we can define an isomorphism

K⊗ L1(N ×G,ω ∨ ω̂)
∼=
Ψ
// L1(N ×G,K) ∼= L1(G,K⊗ L1(N,ω))

K⊗
(
Co

ω∨ω̂(N × Ĝ)
)∩

L1(G,K⊗ (C oω N))

∩

(
K⊗ (C oω N)

)
oµ̂⊗inf Ĝ

∩

by Ψ(k⊗f)(n, χ) = f(n, χ)kV̂ (χ) where V̂ : Ĝ→ U(H) is a Borel map with

µ̂ = Ad ◦V̂ and such that ω̂−1 = ∂V̂ . It is straightforward to check that this
isomorphism is G-equivariant with respect to the dual actions. �

Applying Proposition 2.4 to (10) for the subgroup N × Ĝ ⊂ G × Ĝ we
obtain the Morita equivalent system

(11) K⊗ (C oω∨ω̂ (G× Ĝ)) odual (N⊥ × 0),

whereon G acts by the dual action on the second group factor of the inner
crossed product. We want to apply Proposition 2.7 to this inner crossed
product, so we are interested in the properties of

hω∨ω̂ : G× Ĝ→ Ĝ×G
defined in (5).
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Lemma 3.3. The homomorphism hω∨ω̂ : G× Ĝ→ Ĝ×G is given by

hω∨ω̂ =

(
hω id

Ĝ
−idG hω̂

)
: (g, χ) 7→ (hω(g) + χ, hω̂(χ)− g).

Proof. We have

〈hω∨ω̂(g, χ), (h, ψ)〉 = ω ∨ ω̂((g, χ), (h, ψ)) ω ∨ ω̂((h, ψ), (g, χ))−1

= 〈hω(g), h〉〈hω̂(χ), ψ〉〈χ, h〉〈ψ, g〉−1

= 〈hω(g) + χ, h〉〈hω̂(χ)− g, ψ〉.

The canonical identification G ∼= ̂̂
G yields the result. �

Lemma 3.4. The following three conditions are equivalent:

(1) φ := idG + hω̂ ◦ hω : G→ G is an isomorphism.

(2) φ̂ := id
Ĝ

+ hω ◦ hω̂ : Ĝ→ Ĝ is an isomorphism.
(3) hω∨ω̂ is an isomorphism.

Proof. The equivalence of the first two statements follows from the obser-
vation that φ̂ is the dual of φ. Alternatively, if φ−1 exists, then a one-line
calculation shows that id

Ĝ
− hω ◦ φ−1 ◦ hω̂ is an inverse for φ̂.

Now, if hω∨ω̂ is an isomorphism, then

h†ω∨ω̂ := flip ◦ hω∨ω̂ ◦ flip =

(
hω̂ −idG
id
Ĝ

hω

)
is an isomorphism, where flip : Ĝ ×G → G × Ĝ is transposition. Then the
composed ismorphism is

hω∨ω̂ ◦ h†ω∨ω̂ =

(
id
Ĝ

+ hω ◦ hω̂ 0
0 idG + hω̂ ◦ hω

)
=

(
φ̂ 0
0 φ

)
.

Conversely, if φ, φ̂ are isomorphisms then

h−1
ω∨ω̂ := h†ω∨ω̂ ◦

(
φ̂−1 0

0 φ−1

)
exists and is obviously a right inverse. The property of being a left inverse
requires a small calculation. First we have

h−1
ω∨ω̂ ◦ hω∨ω̂ =

(
hω̂ ◦ φ̂−1 ◦ hω + φ−1 hω ◦ φ−1 − φ̂−1 ◦ hω̂
φ̂−1 ◦ hω − hω ◦ φ−1 φ̂−1 + hω ◦ φ−1 ◦ hω̂

)
.

Inserting now φ̂−1 = id
Ĝ
− hω ◦ φ−1 ◦ hω̂ into this, we derive at

h−1
ω∨ω̂ ◦ hω∨ω̂ =

(
idG 0
0 id

Ĝ

)
. �

Let’s assume one of the equivalent conditions of Lemma 3.4. Then the
inner crossed product in (11) is isomorphic to the compacts. Having deter-
mined h−1

ω∨ω̂ we can compute the dual cocycle (hω∨ω̂)∗(ω ∨ ω̂)−1 according
to Proposition 2.7. The result helps us to understand the remaining outer
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crossed product with N⊥ in (11) and also the remaining G-action on it. To
state the result, some more notation is useful.

Definition 3.5. For a 2-cocycle ω on G and a 2-cocycle ω̂ on Ĝ, we define

new cocycles on G and Ĝ by

ωoω̂ := ω · h∗ωω̂−1, ω̂oω := ω̂ · h∗ω̂ω−1.

Moreover, if φ = idG + hω̂ ◦ hω is an isomorphism, we define

ωōω̂ := φ∗(ωoω̂), ω̂ōω := φ̂∗(ω̂oω).

Lemma 3.6. In H2(Ĝ×G,U(1)) the following equality holds:4

[(hω∨ω̂)∗(ω ∨ ω̂)−1] = [ω̂ōω]+[ωōω̂]−(φ̂× idG)∗[∧],(12)

where the classes on Ĝ and G are understood as classes on Ĝ×G by pullback
along the projections.

Proof. Before we start with the actual computation we need to be aware of
some general cocycle properties. Let ν be a 2-cocycle on any abelian group.
Twofold application of the cocycle identity gives

ν(x+ y,−(x+ y)) = ν(y,−x− y) ν(x,−x)−1 ν(x, y)−1

= ν(0, x) ν(−x,−y)−1 ν(y,−y) ν(x,−x)−1 ν(x, y)−1

which means that c(x) := ν(x,−x)ν(0, 0) is a cochain that implements
ν(x, y) ∼ ν(−y,−x)−1.

Furthermore, a fourfold application of the cocycle identity gives

ν(a+ x, b+ y) = ν(a, b) ν(x, y)

· ν(x, b) ν(b, x)−1

· ν(a, x)−1ν(b, y)−1ν(a+ b, x+ y).

Or, if we define a 2-cocycle ν̃ on the product of the group with itself by
ν̃
(
(a, x), (b, y)

)
:= ν(a+ x, b+ y)−1, then

ν̃
(
(a, x), (b, y)

)
= ν(a, b)−1 ν(x, y)−1 〈hν(x), b〉−1 (dν)

(
(a, x), (b, y)

)
∼ ν(a, b)−1 ν(x, y)−1 〈x, hν(b)〉,

where d is the boundary operator on the product of the group with itself.
Let us now turn to the actual computation. By definition we have to

compute (h−1
ω∨ω̂)∗(ω ∨ ω̂)−1, for

h−1
ω∨ω̂ =

(
hω̂ −idG
id
Ĝ

hω

)
◦
(
φ̂−1 0

0 φ−1

)
.

4We denote the group operation on U(1)-valued 2-cocycles multiplicatively, whereas
we denote the group operation on any cohomology group additively.
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Let us use the shorthands χ′ := φ̂−1χ and g′ := φ−1g. Then we have

(hω∨ω̂)∗(ω ∨ ω̂)−1
(
(χ, g), (ψ, h)

)
= ω(hω̂(χ′)− g′, hω̂(ψ′)− h′)−1(13)

· 〈χ′ + hω(g′), hω̂(ψ′)− h′〉−1(14)

· ω̂(χ′ + hω(g′), ψ′ + hω(h′))−1(15)

The middle term (14) decomposes to

(14) = 〈χ′, h′〉 〈hω(g′), hω̂(ψ′)〉−1 ω̂(χ′, ψ′) ω̂(ψ′, χ′)−1 ω(g′, h′) ω(h′, g′)−1

∼ 〈χ′, h′〉 〈hω(g′), hω̂(ψ′)〉−1 ω̂(χ′, ψ′) ω̂(−χ′,−ψ′) ω(g′, h′) ω(h′, g′)−1.

But as ((χ, g), (ψ, h)) 7→ 〈χ, h〉 is cohomologous to ((χ, g), (ψ, h)) 7→ 〈ψ, g〉−1

(just by the cochain (χ, g) 7→ 〈g, χ〉) this can be transformed to

(14) ∼ 〈g′, ψ′〉−1 〈hω(g′), hω̂(ψ′)〉−1 ω̂(χ′, ψ′) ω̂(ψ′, χ′)−1 ω(g′, h′) ω(h′, g′)−1.

To transform (13) and (15), we apply the above identity for ν̃. We find

(15) ∼ ω̂(χ′, ψ′)−1 ω̂(hω(g′), hω(h′))−1 〈(hω(g′), hω̂(ψ′)〉
and

(13) ∼ ω(hω̂(χ′), hω̂(ψ′))−1 ω(−g′,−h′)−1 〈−g′, hω(hω̂(ψ′))〉
∼ ω(hω̂(χ′), hω̂(ψ′))−1 ω(h′, g′) 〈−g′, hω(hω̂(ψ′))〉.

Multiplying these partial results we get

(13) · (14) · (15) ∼ 〈g′, ψ′ + hω(hω̂(ψ′))〉−1(16)

· ω(g′, h′) h∗ωω̂(g′, h′)−1

· ω̂(−χ′,−ψ′) h∗ω̂ω(χ′, ψ′)−1

which is the claimed formula up to the minus sign inside the argument of

ω̂. However, the injectivity of the map [ω̂] 7→ hω̂ ∈ Hom(Ĝ,G) implies that
ω̂(χ, ψ) ∼ ω̂(−χ,−ψ). So the lemma is proven. �

Remark 3.7. It is very important for later purposes (Theorem 4.8) to
observe at this point that the computation done in the proof of Lemma 3.6
is based on explicit cochains (given in terms of ω̂, ω or 〈 , 〉) up to and
including (16). Only the very last step ω̂(χ, ψ) ∼ ω̂(−χ,−ψ) required an
abstract argument. If ω̂ is cohomologous to a bicharacter then this last
relation can also be made explicit: Let ω̂ = dc η̂ for some bicharacter η̂,
then

ω̂(χ, ψ) = dc(χ, ψ) η̂(χ, ψ)

= dc(χ, ψ) η̂(−χ,−ψ)

= dc(χ, ψ) dc(−χ,−ψ)−1 dc(−χ,−ψ)η̂(−χ,−ψ)

= dc̃(χ, ψ) ω̂(−χ,−ψ),
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for c̃(χ) := c(χ)c(−χ)−1. These explicit cohomology relations are abstract
cocycle identities and do not depend on U(1) as a module. In fact, Lem-
ma 3.6 remains valid if (1) the involved cocycles are not just U(1)-valued
but C(B,U(1))-valued (trivial module structure) for some space B, if (2)
they are cohomologous to bihomomorphisms (rather than bicharacters), and
if (3) we have control over the continuity properties of the quantities hω, hω̂
which then should be regarded as bundle maps

B ×G hω //

��

B × Ĝ hω̂ //

��

B ×G

��
B B B.

This will ensure that if a cocycle with values in C(B,U(1))) is point-wise
pulled back by hω, hω̂ or pushed foreward by φ (which involves inversion in
Aut(G)!), then the resulting point-wise defined object is again mapping to

C(B,U(1)). Equality (12) then holds in H2(Ĝ×G,C(B,U(1))).

The structure of [(hω∨ω̂)∗(ω ∨ ω̂)−1] given by its three summands now
immediately yields the following corollary.

Corollary 3.8. If φ is an isomorphism, the crossed product (11) is G-
equivariantly isomorphic to

(17) K⊗K⊗ (C oω̂ōω N
⊥),

where G acts by id⊗ µ⊗ inφ for an action µ with Mackey obstruction

Ma(µ) = [ωōω] ∈ H2(G,U(1)),

and
(inφg(f))(n) := 〈g, φ̂−1(n)〉−1f(n).

So except from the part of the action given by inφ we have found a struc-
ture rather similar to the one with which we have started. To manipulate it
a little further we need an extra assumption.

Definition 3.9.

(1) A homomorphism G → G is said to be an automorphism of (N,G)
if it is an automorphism of G and if it maps N bijectively to itself.
We denote by Aut(N,G) the set of all of those.

(2) A pair of cocycles ω : G×G→ U(1), ω̂ : Ĝ×Ĝ→ U(1) (or their coho-
mology classes) is called transverse if φ = idG+hω̂ ◦hω∈ Aut(N,G).

(Equivalently, one might require that φ̂ = id
Ĝ

+ hω ◦ hω̂ is an auto-

morphism of (N⊥, Ĝ).)
(3) The binary relation defined by transversality is denoted by

t ⊂ H2(G,U(1))×H2(Ĝ,U(1)),

i.e., ω t ω̂ if and only if ω and ω̂ are transverse.
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(4) Let µ̂⊗inf be a Ĝ-action on K⊗(CoηN). The actions µ̂ or µ̂⊗inf or

the dynamical system (K⊗(CoηN), Ĝ, µ̂⊗ inf) are called transverse
if the cocycle η : N ×N → U(1) has an extension ω to G such that
ω t Ma(µ̂).

Corollary 3.10. If the dynamical system
(
K ⊗ (C oω N), Ĝ, µ̂ ⊗ inf

)
is

transverse, then its dual system((
K⊗(CoωN)

)
oµ̂⊗infĜ,G, ˆ̂µ⊗ inf

)
∼=
(
K⊗K⊗(Coω̂ōωN

⊥), G, id⊗µ⊗inφ
)

is G-equivariantly isomorphic to

K⊗ (C oω̂oω N
⊥),

where G acts by µ⊗ inf with Mackey obstruction

Ma(µ) = [ωōω̂] (= [φ∗(ω o ω̂)]).

Proof. Using K⊗K ∼= K and Corollary 3.8 it suffices to show that(
K⊗ (C oω̂ōω N

⊥), G, µ⊗ inφ
)
∼=
(
K⊗ (C oω̂oω N

⊥), G, µ⊗ inf
)
.

By transversality, φ̂ induces an isomorphism of N⊥, so it induces an isomor-
phism

(18) φ̂? : C oφ∗(ω̂oω) N
⊥ ∼= C oω̂oω N

⊥

given by pullback: f 7→ f ◦ φ. Similarly, the inversion on the group 	 :
N⊥ → N⊥ induces an automorphism by pullback

(19) 	? : C oω̂oω N
⊥ ∼= C o	∗(ω̂oω) N

⊥.

Note that

(inφg(f))(φ(−n)) = 〈g,−n〉−1f(φ(−n)) = 〈g, n〉f(φ(−n)),

so the composition 	? ◦ φ? turns inφ into the ordinary inflation action.
However, pullback of a 2-cocycle along the inversion gives a cocycle that is
similar to the original one, i.e., they have the same cohomology class (see
Remark 3.7). Then their twisted group algebras are equivariantly isomor-
phic. �

By Takai duality, we know that the dual of the constructed system

(K⊗ (C oω̂oω N
⊥), µ⊗ inf)

(i.e., the bidual of the original system) is Morita equivalent to the original
(transverse) system. The following lemma shows that the dual system of a
transverse system is transverse again.
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Lemma 3.11. The assignment (ω, ω̂) 7→ (ωōω̂, ω̂ o ω) defines a bijection
t → t such that

t

��

∼= // t

��
Aut(N,G)

id // Aut(N,G)

commutes, where the vertical arrows are given by the tautological map.

Proof. Firstly, φ′ := id + hω̂oω ◦ hωōω̂ is an isomorphism of (N,G): A

one-line computation gives hh∗ω̂ω−1 = hω̂ ◦ hω ◦ hω̂ : Ĝ→ Ĝ, and so

hω̂oω = hω̂·h∗ω̂ω−1 = hω̂ + hω̂ ◦ hω ◦ hω̂ = hω̂ ◦ φ̂,

wherein as before φ̂ = id + hω ◦ hω̂. The same algebra gives

hωōω̂ = hφ∗(ωoω̂) = φ̂−1 ◦ hωoω̂ ◦ φ−1 = φ̂−1 ◦ hω.
Therefore

φ′ = id + hω̂oω ◦ hωōω̂ = id + (hω̂ ◦ φ̂) ◦ (φ̂−1 ◦ hω) = φ

which is an automorphism of (N,G) by assumption. This also shows that
the diagram of the lemma commutes.

Secondly, another straight forward calculation shows that the inverse of
(ω, ω̂) 7→ (ωōω̂, ω̂ o ω) is given by

(ω, ω̂) 7→ (ω o ω̂, ω̂ōω). �

Corollary 3.10 tells that transversality gives a sufficient condition to an-
swer the question raised in (8). Combining it together with Lemma 3.11
we have found a class of C∗-dynamical systems which is closed under taking

crossed products: Let us denote by NCT (N ; Ĝ) the 2-category of systems

(K⊗ (C oω N), Ĝ, µ̂⊗ inf), which has Ĝ-equivariant Morita equivalences as
1-morphisms and equivariant isomorphisms between them as 2-morphisms.

There is a proper subcategory NCT (N ; Ĝ)t ⊂ NCT (N ; Ĝ) which consists
of systems which are 2-isomorphic (i.e., Morita equivalent) to a transverse
representative. This whole section is summarised in the following theorem:

Theorem 3.12. The duality functor oG defined on all C∗-dynamical sys-
tems with group G restricts to a duality of transverse dynamical systems:

C∗-Dynamical Systems
with Group G

∼ // C∗-Dynamical Systems

with Group Ĝ

NCT (N⊥;G)

∪
NCT (N ; Ĝ)

∪

NCT (N⊥;G)t

∪
∼ // NCT (N ; Ĝ)t

∪

.
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3.3. Classification remarks. Recall from Section 2.4 that the C*-dynam-

ical systems KoαN or CoωN equipped with their canonical N̂ -actions are
classified up to equivariant Morita equivalence by second Borel cohomology

Ma(α), [ω] ∈ H2(N,U(1)).

We start with an example that illustrates that the objects with which we
are dealing are more involved.

Example 3.13. Let G = R2 and N = Z2, and choose

1

3
,
2

3
∈ R/Z = T ∼= H2(N,U(1)).

Denote by µ̂3 an action of Ĝ = R2 on K with Mackey obstruction

3 ∈ R ∼= H2(R2,U(1)).

Then there is a Ĝ-equivariant Morita equivalence(
K⊗ (C o 2

3
N), µ̂3 ⊗ inf

)
∼
(
K⊗ (C o 1

3
N), id⊗ inf

)
.

Proof. A lengthy but direct proof is given in Appendix A. Using our theory
of transversality one can significantly shorten the proof. This is done in
Section 3.4 below. �

To understand why this example could possibly be true let us try to
understand what can be said in general about an equality of classes

[ω1], [ω2] ∈ H2(N,U(1))

if there is a Ĝ-equivariant Morita equivalence

(20) K⊗ (C oω1 N) ∼ K⊗ (C oω2 N),

where Ĝ acts on both sides diagonally by actions on the compacts

µ̂i : Ĝ→ Aut(K), i = 1, 2,

tensor the inflated actions

infi : Ĝ→ Aut(C oωi N), i = 1, 2,

on the respective twisted group C*-algebras. Denote by S ⊂ N the symme-

try group of ω2 that is the kernel of the map hω2 : N → N̂ . The dual group

Ŝ of S is homeomorphic to the primitive spectrum of K ⊗ (C oω2 N), and,
by the Daums–Hofmann Theorem (see [W07]), the U(1)-valued functions
thereon are isomorphic to the center of the unitary group of its multiplier
algebra, i.e., there is a short exact sequence

1→ C(Ŝ,U(1))→ UM(K⊗ (C oω2 N))
Ad→ Inn(K⊗ (C oω2 N))→ 1,

and this sequence is N̂ -equivariant for the actions that are induced by the

dual action on K⊗(Coω2N). On C(Ŝ,U(1)) this action is just translation in

the argument after restriction N̂ → Ŝ. Using the polish topology on Inn(A)
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induced from the polish strict topology of UM(A) together with [RaR88,
Corollary 0.2], this short exact sequence induces a (not very long) exact
sequence in Borel cohomology

· · · // H1(N̂ , C(Ŝ,U(1))) // H1(N̂ ,UM(K⊗ (C oω2 N)))

..
H1(N̂ , Inn(K⊗ (C oω2 N)))

δ // H2(N̂ , C(Ŝ,U(1)))

which terminates at H2(N̂ , C(Ŝ,U(1))) due to the noncommutativity of the
involved coefficient groups.

Now, let us tensor both sides of (20) with another copy of the compacts
which we then equip with an action µ̂op1 which has the inverse Mackey ob-
struction of µ̂1: Ma(µ̂op1 ) = −Ma(µ̂1). As µ̂op1 ⊗ µ̂1 is Morita equivalent
to the trivial action, we have to deal with the Morita equivalent actions
id ⊗ id ⊗ inf1 and µ̂op1 ⊗ µ̂2 ⊗ inf2. Because being Morita equivalent is the
same as being (stably) outer conjugate, we conclude that the action on the
left hand side (id⊗ id⊗ inf1) is conjugate to

Ad(u) ◦ (µ̂op1 ⊗ µ̂2 ⊗ inf2) = Ad(u) ◦ (µ̂op1 ⊗ µ̂2 ⊗ id)︸ ︷︷ ︸ ◦(id⊗ id⊗ inf2)

=: γ,

for some continuous 1-cocycle u : Ĝ→ UM(K⊗K⊗ (C oω2 N)). It follows
right from the definition of γ that it vanishes on N⊥. Indeed, we have the
following:

Lemma 3.14. The above defined map γ factors over the quotient map

Ĝ
γ //

����

Inn(K⊗K⊗ (C oω2 N))

N̂
γ̇

66

and γ̇ satisfies the cocycle relation

γ̇(n̂+ m̂) = γ̇(n̂) ◦
(
(n̂ · γ̇(m̂)

)
, n̂, m̂ ∈ N̂ ,

where · is precisely the action of N̂ on the inner automorphisms that occurred
in the short exact sequence above.

Proof. Let’s denote the isomorphism which implements the stable outer
conjugacy between the two actions by Φ, i.e.,

Φ ◦ (id⊗ id⊗ inf1) ◦ Φ−1 = γ ◦ (id⊗ id⊗ inf2),
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and let 〈η, 〉i := (id⊗ id⊗ infi)(η). We just compute:

γ(χ+ ψ) = Φ ◦ 〈χ+ ψ, 〉1 ◦ Φ−1 ◦ 〈χ+ ψ, 〉−1
2

= Φ ◦ 〈χ, 〉1 ◦ Φ−1 ◦ Φ ◦ 〈ψ, 〉1 ◦ Φ−1 ◦ 〈χ+ ψ, 〉−1
2

=
(

Φ ◦ 〈χ, 〉1 ◦ Φ−1 ◦ 〈χ, 〉−1
2

)
◦ 〈χ, 〉2

◦
(

Φ ◦ 〈ψ, 〉1 ◦ Φ−1 ◦ 〈ψ, 〉−1
2

)
◦ 〈χ, 〉−1

2

= γ(χ) ◦ 〈χ, 〉2 ◦ γ(ψ) ◦ 〈χ, 〉−1
2 .

The multiplication action on the unitary group of the multiplier algebra
turns into conjugation when passsing to the inner automorphisms by Ad,
so we obtain the cocycle identity γ(χ + ψ) = γ(χ) ◦

(
χ|N · γ(ψ)

)
for γ. In

particular, it follows that γ(n⊥ + ψ) = γ(n⊥) ◦ γ(ψ) = γ(ψ), for n⊥ ∈ N⊥,
i.e., γ is constant on the cosets. �

The cocycle γ̇ determines a cohomology class which – by abuse of notation
– we again denote by

γ ∈ H1
(
N̂ , Inn

(
K⊗K⊗ (C oω2 N)

))
.

By the (not very long) exact sequence it defines an obstruction class

δ(γ) ∈ H2(N̂ , C(Ŝ,U(1))).

If this obstruction class vanishes, γ has a unitary lift, and this lift then
implements a Morita equivalence between the two actions infi, i = 1, 2. The
next lemma shows that in this case the classes [ω1], [ω2] ∈ H2(N,U(1)) agree
if we assume that these classes extend to G:

Lemma 3.15. Let [ω1], [ω2] ∈ H2(N,U(1)) be two classes in the image of
the restriction map H2(G,U(1))→ H2(N,U(1)). If

C oω1 N ∼ C oω2 N

is a Ĝ-equivariant Morita equivalence, where Ĝ acts on both sides by the
inflated actions, then

[ω1] = [ω2] ∈ H2(N,U(1)).

Proof. If µi is a G-action on K with Mackey obstruction [ωi], then

K⊗ C(G/N) with µi ⊗ (left translation)

is the (pre-)dual of C oωi N , i = 1, 2. But these systems are induced sys-

tems IndGN (K, µi|N ) by [E90, Theorem] which are classified up to Morita
equivalence by their actions µi|N : N → Aut(K). �

Under certain circumstances one might indeed conclude that the obstruc-
tion class δ(γ) vanishes:
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Corollary 3.16. Assume that N is torsion-free, and assume ω2 (or ω1) is

totally skew. If there is a Ĝ-equivariant Morita equivalence

K⊗ (C oω1 N) ∼ K⊗ (C oω2 N),

with diagonal Ĝ-actions on both algebras as assumed in (20), then

[ω1] = [ω2] ∈ H2(N,U(1)).

Proof. A totally skew cocycle has trivial symmetry group S = {0}, and if

N is torsion-free, then N̂ is connected, and so the whole obstruction group
vanishes:

H2(N̂ , C(Ŝ,U(1))) = H2(N̂ ,U(1)) ↪→ Hom(N̂ ,N) = 0. �

In Example 3.13 both of the involved noncommutative tori were rational.
However, if one of the involved classes is irrational, then its symmetry group
is trivial, so one can apply the above corollary.

Example 3.17. Let G = R2, N = Z2, and let r ∈ R/Z ∼= H2(Z2,U(1)) be
an irrational number, and let ωr be a corresponding cocycle. If there is an
R2-equivariant Morita equivalence

K⊗ (C oω Z2) ∼ K⊗ (C oωr Z2),

where R2 acts on both algebras diagonally as in (20), then

[ω] = [ωr] ∈ H2(Z2,U(1)).

Let us continue with some further analysis of the class δ(γ) constructed
above. Consider the following diagram of induced maps

H2(N̂ , C(Ŝ,U(1)))

q∗

��

3 δ(γ)

H2(Ĝ, C(Ŝ,U(1)))

i∗

��

H2(Ĝ,U(1))

i#

��

c∗oo 3 Ma(µ̂op1 ⊗ µ̂2)
_

?

��
H2(N⊥, C(Ŝ,U(1)))

ev#

// H2(N⊥,U(1))
? _

c#oo 3 0,

where c : U(1)→ C(Ŝ,U(1)) is the obvious inclusion, and

ev : C(Ŝ,U(1))→ U(1)

is the evaluation at 0 ∈ Ŝ which is N⊥-equivariant, because N⊥ acts trivially
on both sides. As ev# ◦ c# = id, c# is injective. It is easily seen that the
Mackey obstruction class Ma(µ̂op1 ⊗ µ̂2) of the action

µ̂op1 ⊗ µ̂2 : Ĝ→ Aut(K⊗K),
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is connected to δ(γ) by5 q∗(δ(γ)) = −c∗(Ma(µ̂op1 ⊗ µ̂2)). But the composition
i∗ ◦ q∗ is zero, so by commutativity of the square and by injectivity of c#,

we see that i#(Ma(µ̂op1 ⊗ µ̂2)) = 0, and we have just proven the following
statement:

Lemma 3.18. Let K ⊗ (C oω1 N) ∼ K ⊗ (C oω2 N) be a Ĝ-equivariant

Morita equivalence, where Ĝ acts on both sides diagonally by actions on the

compacts µ̂i : Ĝ→ Aut(K), i = 1, 2, tensor the inflated actions

infi : Ĝ→ Aut(C oωi N), i = 1, 2,

on the respective crossed products. Then the Mackey obstructions of the
restricted actions µ̂i|N⊥ agree:

Ma(µ̂1|N⊥) = Ma(µ̂2|N⊥) ∈ H2(N⊥,U(1)).

An instance of Lemma 3.18 already appeared in Example 3.13, wherein
the R2-action µ̂3 has trivial Mackey obstruction when restricted to Z2. In
general, Lemma 3.18 gives an obstruction map

(21) Ma
(N ;Ĝ)

: [NCT (N ; Ĝ)]→ H2(N⊥,U(1))

(here the brackets [.] denote 2-isomorphism classes, i.e., Morita equivalence
classes). This map will enable us to identify the “commutative theory”
inside our theory as we explain next.

If µ̂ ⊗ inf is a transverse Ĝ-action on K ⊗ (C oω N), then the previous

section shows that its crossed product K ⊗ (C oω N) oµ̂⊗inf Ĝ together

with the dual G-action is Morita equivalent to an algebra K ⊗ (C oη̂ N
⊥)

equipped with a transverse action µ ⊗ inf. Corollary 3.10 determines the
class [η̂] ∈ H2(N⊥,U(1)) to a certain extend. Namely

(22) [η̂] ∈ (Ma(µ̂)|N⊥)t ⊂ H2(N⊥,U(1)),

where, for θ̂ ∈ H2(N⊥,U(1)), we have used the notation

(23) θ̂t :=
{

[ω̂ o ω]|N⊥ : [ω̂]|N⊥ = θ̂, ω t ω̂
}
.

For θ̂ in the image of the restriction map r̂es : H2(Ĝ,U(1))→ H2(N⊥,U(1))
)

this set is never empty. In fact, the trivial cocycle 1 is transverse to any
cocycle ω̂, so for θ̂ = [ω̂]|N⊥ we have

θ̂ = [ω̂]|N⊥ = [ω̂ o 1]|N⊥ ∈ θ̂t.
The element relation (22) restricts the possible classes for building the dual
algebra to the set (Ma(µ̂)|N⊥)t. This set is a Morita invariant of both the
original system (K⊗(CoωN), µ̂⊗ inf) and of its dual system. (Just because
of Lemma 3.18 which states that the class Ma(µ̂)|N⊥ is a Morita invariant
of the original system.) However, the element [η̂] itself is not a specified

5The sign reflects the fact that the Mackey obstruction is defined to be the negative of
the actual connecting homomorphism in (1).
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element in (Ma(µ̂)|N⊥)t. In fact, it varies with the choices of the extension
of ω from N to G, and these choices can make a difference (see Section 3.4
for a detailed example). Nevertheless, the following lemma shows that in a
very important case the set (Ma(µ̂)|N⊥)t reduces to a singleton.

Lemma 3.19. For θ̂ ∈ H2(N⊥,U(1)) the following three statements are
equivalent:

(1) θ̂ = 0.

(2) θ̂t = {0}.
(3) 0 ∈ θ̂t.

Proof. Let us compute the image of θ̂t under

h : H2(N⊥,U(1)) ↪→ Hom(N⊥, G/N).

Let x := [ω̂oω]|N⊥ ∈ θ̂t. In the proof of Lemma 3.11 we have already seen
that

hω̂oω = φ ◦ hω̂,

for φ = id + hω̂ ◦ hω. By transversality, φ : G
∼=→G induces an isomorphism

φ̇ : G/N
∼=→G/N . Now, the commutativities of the outer square, of the

bottom triangle and of the two trapezoids in

N⊥
hx //� _

��

hθ ""

G/N

G/N
φ̇

;;

G

OOOO

φ

##
Ĝ

hω̂oω
//

hω̂

;;

G

OOOO

imply that the upper triangle commutes, i.e., hx = φ̇ ◦ hθ. But as φ̇ is an
isomorphism, hx vanishes if and only if hθ vanishes. The lemma is then
obvious. �

The important thing about this last lemma is that we have found an
invariant that can distinguish the commutative systems, i.e., those which
are equivariantly Morita equivalent to a system (K⊗C(G/N), µ⊗ inf), from

those who are genuinely noncommutative. Let us denote by CT (N ; Ĝ) ⊂
NCT (N ; Ĝ) the corresponding subcategory. Together with the results of
the previous section we have found:
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Figure 1. t ⊂ R× R

Theorem 3.20. The set of 2-isomorphism classes [CT (N ; Ĝ)] is the kernel

of the composition [NCT (N ; Ĝ)t]→ [NCT (N⊥;G)t]→ H2(N,U(1)) in

H2(N⊥,U(1)) [NCT (N ; Ĝ)]
Ma

(N ;Ĝ)oo [NCT (N⊥;G)]
Ma

(N⊥;G) // H2(N,U(1))

[NCT (N ; Ĝ)t]

∪
// [NCT (N⊥;G)t]oo

∪

[CT (N ; Ĝ)]

∪
[CT (N⊥;G)].

∪

3.4. Example: duality for the NC-torus in dimension 2. Let

G := R2 = Ĝ, and N := Z2 = N⊥.

Recall the isomorphisms H2(Z2,U(1)) ∼= T and H2(R2,U(1)) ∼= R. Let us
identify the transversality relation t ⊂ R× R: A cocycle corresponding to
θ ∈ R is given by ωθ(x, y) := exp(2πiθx2y1), so one obtains

hθ =

(
0 θ
−θ 0

)
: R2 → R2.

Then for some θ̂ ∈ R we have

φ = idR2 + hθ̂ ◦ hθ = (1− θθ̂) · idR2

which is invertible as long as θθ̂ 6= 1. Moreover, it restricts to an isomorphism
of Z2 if and only if θθ̂ = 0 or θθ̂ = 2. Therefore t ⊂ R× R consists of the
union of the coordinate axis and of the graph of x 7→ 2

x (see Figure 1).
We can now answer the following question about transverse actions com-

pletely:

Q: If θ̇ ∈ T, what are the transverse actions µ̂⊗ inf on K⊗ (C oθ̇ N)?
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A: If θ̇ = 0̇ ∈ T, then every action µ̂ ⊗ inf is transverse. If θ̇ 6= 0̇ ∈ T,
and θ ∈ R is some lift of θ̇, then every action µ̂ ⊗ inf is transverse
which has a Mackey obstruction

Ma(µ̂) ∈
{

0,
2

θ + n

∣∣∣ n ∈ Z

}
.

Let us compute the dual system of (K⊗(Coθ̇Z2), µ̂⊗inf), for a transverse

action µ̂ with Ma(µ̂) = θ̂:

(i) In the simple case of θ̇ = 0 we can choose θ = 0 as a transverse lift

to θ̂. Then we have

K⊗ C(T) oµ̂⊗inf R2 ∼ K⊗ (C o ˙̂
θ

Z2),

on which R2 acts by id⊗ inf, and
˙̂
θ is the restriction of θ̂ to Z2.

(ii) In case of θ̇ 6= 0̇, there are two subcases. First, if θ̂ = 0, then let θ

be any lift of θ̇, and we have

K⊗ (C oθ̇ Z2) oµ̂⊗inf R2 ∼ K⊗ C(T2),

on which R2 acts by µ⊗ inf with Ma(µ) = θ. Second, if θ̂ 6= 0, then

transversality means that there is a lift θ of θ̇ such that θ̂ = 2/θ. We
now only need to compute the cocycles occurring in Corollary 3.8:

h∗
θ̂
ω−1
θ (x, y) = exp(2πiθ(−θ̂x1)(θ̂y2))−1

= exp(2πi2θ̂x1y2)

∼ exp(2πi2θ̂x2y1)−1,

so [ω̂θ̂ ·h
∗
θ̂
ω−1
θ ] = −θ̂, and similarly [ωθ ·h∗θω̂

−1

θ̂
] = −θ. Pushing these

classes forward along φ = φ̂ = −idR2 doesn’t change the class. So if

we denote by
˙̂
θ ∈ T the restricted class of θ̂ and if µ−θ is an action

with Mackey obstruction −θ, then the dual is given by

(24) (K⊗ (C o
− ˙̂
θ

Z2), µ−θ ⊗ inf).

Note that we re-obtain Example 3.13 at this stage: In fact, for θ = 2
3 and

θ̂ = 3 the dual system of (K⊗ (C oθ̇ Z2), µ̂⊗ inf) is according to (24)

(K⊗ C(T2), µ− 2
3
⊗ inf).

Then we might take the bidual according to (i) which is

(K⊗ (C o− 2
3

Z2), id⊗ inf).

However, 1
3 = −2

3 mod Z, and this is exactly what we observed in Exam-
ple 3.13.
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3.5. Example: duality for 3-dimensional NC-tori. We consider now
the standard lattice Zn ⊆ Rn. Recall from [BaK73] that for every 2-cocycle ω
on Rn there is a unique strictly upper triangular real n×n matrix A such that
ω is cohomologous to ωA : Rn × Rn → U(1) given by ωA(x, y) = e2πi〈Ax,y〉.
Moreover, every 2-cocycle on Zn is cohomologous to the restriction of some
ωA to

Zn × Zn ⊆ Rn × Rn

and two such restrictions lie in the same class in H2(Zn,U(1)) if and only

if the difference A − A′ has integer entries. If we identify Rn with R̂n via
x 7→ χx with χx(y) = e2πi〈x,y〉, then a straight-forward computation shows
that

hωA : Rn → Rn

is given by matrix multiplication with the skew symmetric matrix A − At.
Now, given another strictly upper triangular matrix B defining a 2-cocycle

ω̂ = ωB on R̂n ∼= Rn, then the pair (ωA, ωB) is transverse if and only if the
matrix

Φ := In + (B −Bt)(A−At)

lies in GL(n,Z). As a consequence, given an action µ̂ ⊗ inf of R̂n ∼= Rn on
K⊗ (C oη Zn) such that Ma(µ̂) = [ωB], then the system(

K⊗ (C oη Zn), R̂n, µ̂⊗ inf
)

is transversal if and only if there exists a strictly upper triangular matrix A
such that η ∼ ωA|Zn×Zn and such that In + (B −Bt)(A−At) ∈ GL(n,Z).

Of course, this will always be the case if B = 0, which results to give
Mathai–Rosenberg duality between commutative and noncommutative tori.
For the case n = 2 we completely solved this question in the previous ex-
ample. In particular we saw that every noncommutative 2-torus has non-
commutative duals. We shall now show that this is not always the case in
higher dimensions.

For this we have a look at the case n = 3: Suppose that

A =

0 a1 a2

0 0 a3

0 0 0

 and B =

0 b1 b2
0 0 b3
0 0 0

 .

Then a short computation shows that

Φ := I3 + (B −Bt) · (A−At)

=

1− (b1a1 + b2a2) −b2a3 b1a3

−b3a2 1− (b1a1 + b3a3) −b1a2

b3a1 −b2a1 1− (b2a2 + b3a3)

 .

A lengthy but straightforward computation gives

(25) det Φ = 1− 2(c1 + c2 + c3) + 2(c1c2 + c1c3 + c2c3) + c2
1 + c2

2 + c2
3,
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with ci := aibi, i ∈ {1, 2, 3}. In order that Φ ∈ GL(3,Z) we need det Φ = ±1.
Since all entries of the matrix Φ need to be integers, it follows that all
mixed terms cicj with i 6= j are integers as well. Also, all sums ci + cj
with i 6= j need to be integers. Using this, it easily follows that 2ci ∈ Z for
all i ∈ {1, 2, 3} (e.g., we get 2c1 = (c1 + c2) + (c1 + c3) − (c2 + c3) ∈ Z).
But then it follows that c2

1 + c2
2 + c2

3 ∈ Z. It is an easy exercise to check
that the sum of three squares of half-integers is an integer if and only if all
three numbers are integers themselves. Thus we get c1, c2, c3 ∈ Z and we
need to search for integer solutions c1, c2, c3 for the equation det Φ = ±1.
Using standard forms for quadratic equations one can check that there are
precisely the following two sets of solutions

c3 = −c1 − c2 or c3 = 2− c1 − c2 ∀c1, c2 ∈ Z,

in which cases the determinant will be 1. Moreover, the matrix Φ will have
integer entries if and only if nij := aibj ∈ Z for all 1 ≤ i, j ≤ 3. If B = 0,
the conditions will always be fulfilled. On the other hand, if just one entry
bi 6= 0, this will force any of the pairs aj , ak to be rationally dependent, since
if both aj , ak 6= 0, then the equations 0 6= ajbi = nji and 0 6= αkbi = nki
implies that aj =

nji
nki
ak.

Thus, a general noncommutative 3-torus which admits a noncommutative

dual will be attached to a matrix of the form A = θ

0 α1 α2

0 0 α3

0 0 0

 with

0 6= θ ∈ R and α1, α2, α3 ∈ Q. Then B = 1
θ

0 β1 β2

0 0 β3

0 0 0

 with β1, β2, β3 ∈ Q

such that αi ·βj ∈ Z for all 1 ≤ i, j ≤ 3 and α1β1 +α2β2 +α3β3 ∈ {0, 2} will
match up with A to give a dual pair of noncommutative three dimensional
tori. As an example: if all αi = 1, then (β1, β2, β3) = (n, k,−n − k) as
well as (β1, β2, β3) = (n, k, 2 − n − k), with n, k ∈ Z, will give compatible
parameters for B.

3.6. Example: tensor products of duality pairs. Duality pairs are
closed under taking tensor products: Suppose that (ωA, ωB) is a duality
pair for Zn ⊆ Rn and (ωC , ωD) is a duality pair for Zm ⊆ Rm. Then
(ωA · ωC , ωB · ωD) is a duality pair for Zn+m ⊆ Rn+m, where ωA · ωC is the
cocycle on Rn+m given by the product

ωA ·ωC((x1, y1), (x2, y2)) = ωA(x1, x2)ωC(y1, y2) ∀ (x1, y1), (x2, y2) ∈ Rn+m



956 SIEGFRIED ECHTERHOFF AND ANSGAR SCHNEIDER

(and similarly for ωB · ωD). Note that ωA · ωC = ωdiag(A,C) if we denote by

diag(A,C) the matrix

(
A 0
0 B

)
∈Mn+m(R). Since

In+m +
(
diag(B,D)− diag(B,D)t

)(
diag(A,C)− diag(A,C)t

)
= diag

(
In + (B −Bt)(A−At), Im + (D −Dt)(C − Ct)

)
it follows that (ωA · ωC , ωB · ωD) is a dual pair if and only if (ωA, ωB) and
(ωC , ωD) are both dual pairs.

4. Noncommutative C*-dynamical T-duality

In classical (commutative) C*-dynamical T-duality the objects are princi-
pal torus bundles E → B equipped with a locally trivial bundle of compact
operators F → E that is trivialisable over the fibres Eb → b. The C*-algebra
of sections vanishing at infinity A := Γ0(E,F ) is a bundle of C*-algebras
whose fibres are stable commutative tori K ⊗ C(Tn). We consider more
general bundles whoses fibres are twisted group algebras.

In this section the word space will always mean a second countable, locally
compact Hausdorff space.

4.1. C0(B)-algebras and continuous bundles of C*-algebras. Re-
call that a C*-algebra A is called a C0(B)-algebra for a space B, if A is
equipped with a fixed nondegenerate ∗-homomorphism Φ : C0(B)→ ZM(A),
the center of the multiplier algebra M(A) of A. If A is a C0(B)-algebra, then
for any closed subset X ⊂ B we let IX denote the closed ideal Φ(C0(B\X))A
of A and the quotient A|X := A/IX is called the restriction of A to X. For
a single point {b} = X, A|b is called the fibre of A over b. The elements of A
can be viewed as sections of a fibre-bundle over B with fibres A|b by writing
a(b) := a + Ib ∈ A|b, for a ∈ A and b ∈ B. A C0(B)-algebra A is called a
continuous bundle of C*-algebras over B if these sections are continuous in
the sense that b 7→ ‖a(b)‖ is continuous. We refer to [W07, Appendix C] for
a detailed treatment of C0(B)-algebras.

An action α : G→ Aut(A) on a C0(B)-algebra A, is called fibre-preserving
if it is C0(B)-linear, i.e., if αg(f · a) = f · αg(a) for all a ∈ A, g ∈ G and
f ∈ C0(B), where we write f · a for Φ(f)a. If α is C0(B)-linear, it induces
actions α|b on each fibre A|b by setting (α|b(g))(a(b)) := (αg(a))(b). Then
α is completely determined by the actions on the fibres.

If A1 and A2 are two C0(B)-algebras, then we say that an A1-A2-equival-
ence bimodule E is C0(B)-linear, if f · ξ = ξ · f for all f ∈ C0(B), ξ ∈ E,
where the left and right actions of C0(B) on E are given via extending the
left and right actions of A1 and A2 to their multiplier algebras. We then say
that A1 and A2 are C0(B)-linearly Morita equivalent.

We will typically deal with a situation in which the Morita equivalences
are assumed to be both, G-equivariant and C0(B)-linear.
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4.2. Families of twisted group algebras and ω-triviality. Let B be a
locally compact space, and consider a C0(B)-linear action on K⊗C0(B), i.e.,
a continuous homomorphism µ : G → C(B,PU(H)), where C(B,PU(H))
is equipped with the compact open topology (this is the C0(B)-linear auto-
morphism group of K⊗C0(B) with the topology of point-wise convergence).
We can construct such a homomorphism µ literally by formula (2) from a
cocycle ω ∈ Z2(G,C(B,U(1))) by the left regular ω-representation. I.e.,
one just has to apply (2) point-wise for ω|b ∈ Z2(G,U(1)) (the evaluation
of ω at b ∈ B). The resulting function indeed is continuous as a map
G → C(B,PU(H)) [HuORR86, Proof of Prop. 3.1]. This gives rise to a
map

(26) ξB,G : H2(G,C(B,U(1)))→ EG(B),

where EG(B) denotes the Morita equivalence classes of systems

(K⊗ C0(B), µ,G).

It is shown in [CrKRW93] that EG(B) is a group by forming the balanced
tensor product over B, and the above map is a homomorphism. For the
one-point space B = pt, Proposition 2.5 tells that the above map is an
isomorphism, namely the inverse of the Mackey obstruction. Yet, for general
B this fails:

Proposition 4.1 ([CrKRW93, Sec. 6.3]). If the second Čech cohomology
Ȟ2(B,Z) is countable, then there is an exact sequence

0→ H2(G,C(B,U(1)))
ξB,G−→ EG(B) −→ Hom(G, Ȟ2(B,Z)).

In the remainder of this article we will exclusively deal with actions µ
on K ⊗ C0(B) which are in the image of ξB,G. Instead of analysing the
crossed product (K⊗C0(B))oµG we will therefore mostly consider twisted
transformation group algebras defined as follows: If ω ∈ Z2(G,C(B,U(1))),
then the Banach space L1(G,C0(B)) is turned into a Banach *-algebra by
the same formulas as in (3). Its enveloping C*-algebra is denoted by

C0(B) oω G.

It has a canonical action of the dual group Ĝ by point-wise multiplication
of characters. Furthermore, it is a C*-algebra over B and its fibres are(
C0(B) oω G

)
|b ∼= C oω|b G, where again ω|b denotes the restriction of ω to

b ∈ B. (We refer to [EW02] for a more detailed discussion of twisted trans-
formation group algebras.) If now µ : G→ C(B,PU) is a given action in the

image of ξB,G, then there is a Ĝ-equivariant and C0(B)-linear isomorphism

Ψ : K⊗ (C0(B) oω G) ∼= (K⊗ C0(B)) oµ G

given literally by formula (4). In other words, we can go back and forth
between families of twisted group algebras and their corresponding crossed
product algebras without losing information.
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Figure 2. A function for defining a bundle of algebras.

We are now coming back to our general situation in which N ⊆ G is a
cocompact discrete subgroup of the abelian group G.

Definition 4.2. Let B be a space and let A be a (separable and stable)
C0(B)-algebra.

(1) A is called ω-trivial if there exists ω ∈ Z2(G,C(B,U(1))) together
with a C0(B)-linear Morita equivalence A ∼ C0(B) oω N . The pair
of such a cocycle together with such a Morita equivalence is called
an ω-trivialisation.

(2) A is called locally ω-trivial if there exists an open covering (Ui)i∈I of
B such that for all i ∈ I the restricted algebras A|U i over the closure

U i ⊃ Ui are ω-trivial.
(3) The open sets together with their ω-trivialisations are called charts,

and a collection of charts covering all of B is called an atlas.

(We use the term (local) ω̂-triviality if we consider the groups N⊥, Ĝ instead
of N,G.)

Note that although the Morita equivalence in this definition only refers
to the cocycle on N , we require the cocycle to extend to G.

Example 4.3. Let G := R2, N := Z2. Let B := [0, 1] be the interval and
S1 := B/(0 ∼ 1) be the circle.

(1) Let ω(1) ∈ Z2(R2, C(B,U(1))) be given by the class function6

t 7→ [ω
(1)
t ] ∈ R ∼= H2(R2,U(1))

which is defined by Figure 2.

6I.e., ω
(1)
t (x, y) := exp(2πi[ω

(1)
t ]x2y1).
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Figure 3. Another function for defining a bundle of algebras.

Let X := C(B) oω(1) Z2, which is a globally ω-trivial (nonstable)

algebra over B. Note that ω
(1)
0 |Z2×Z2 = ω

(1)
1 |Z2×Z2 , so the fibres

X|0 and X|1 over the two endpoints of B are canonically isomorphic
(they are equal after identifying X|t ∼= CoωtZ

2 by the obvious map).
Let us denote by A1 the algebra which is obtained by gluing along
this isomorphism, i.e., the pullback in

A1

��

// X

i∗0×i∗1
��

X|0
id×can// X|0 ⊕X|1

,

and denote by A(1) its stabilisation K⊗A1. If we let

η ∈ Z2(N,C(S1,U(1)))

be the cocycle given point-wise by ω(1)|N×N , then A(1) is canonically
isomorphic to K⊗C(S1)oη Z2. This is not an ω-trivial algebra any
more, yet it is still a locally ω-trivial algebra over the circle S1.

(2) Let us do a slightly more involved construction with the cocycle

ω(2) ∈ Z2(R2, C(B,U(1))) whose class function is given by Figure 3.
Let Y := C(B) oω(2) Z2. In this case, the fibres Y |0, Y |1 over the

two endpoints of B are two nonisomorphic but Morita equivalent
noncommutative tori with classes 0 and 1

2 . So there is a stable
isomorphism ϕ : K ⊗ Y |0 ∼= K ⊗ Y |1. We use this isomorphism to

glue the stabilisation K⊗Y over the endpoints to itself: Let A(2) be
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the pullback in

A(2)

��

// K⊗ Y

i∗0×i∗1
��

K⊗ Y |0
id×ϕ // (K⊗ Y |0)⊕ (K⊗ Y |1)

.

We claim that A(2) is a locally ω-trivial algebra over the circle S1.
It is clear that Y itself gives a chart for, say, V := (1

8 ,
7
8) ⊂ S1.

The critical issue is to find a local ω-trivialisation around the gluing
point: For, say, U := [0, 1

4) t (3
4 , 1]/(0 ∼ 1) ⊂ S1 we have

A(2)|U ∼=
{

(f, g) ∈ (K⊗ Y |[0,− 1
4

])⊕ (K⊗ Y |[ 3
4
,1])

∣∣∣ ϕ(f |0) = g|1
}
.

But the isomorphism ϕ extends to a fibre-wise isomorphism

ϕ̃ : K⊗ Y |[0, 1
4

]

∼=→ K⊗ Y |[ 3
4
,1]

just because all fibres are the same. So we obtain

A(2)|U ∼=
{

(ϕ̃f, g) ∈ (K⊗ Y |[ 3
4
,1]])⊕ (K⊗ Y |[ 3

4
,1])

∣∣∣ (ϕ̃f)|1 = g|1
}

∼ C(U) oω 1
2

Z2,

and this means that V,U give an atlas for A(2).

4.3. Duality for polarisable pairs. Recall that for a fibre-preserving ac-
tion α : G → Aut(A), i.e., a C0(B)-linear action, the crossed product C*-
algebra Aoα G is again a C0(B)-algebra.

Definition 4.4. Let B be a space.

(1) An action α : G → Aut(A) on a locally ω̂-trivial C0(B)-algebra A
is called locally transverse if there exists an atlas (Ui, ω̂i)i∈I for A
and cocycles ωi ∈ Z2(G,C(U i,U(1))) which are point-wise trans-

verse to ω̂i together with Ĝ-equivariant and C0(U i)-linear Morita
equivalences

(Aoα G)|U i ∼ C0(U i) oω̂i∧ωi (N⊥ ×G).

(The Ĝ-equivariance is required for the dual actions on both sides.)
These local data Ui, ω̂i, ωi and the Morita equivalences are called
transverse charts which altogether constitute a transverse atlas.

(2) A NC pair (A,α) over B is a locally ω̂-trivial C0(B)-algebra A to-
gether with a locally transverse action.

(3) We use the term NC dual pair for a locally ω-trivial algebra with a

locally transverse Ĝ-action.

Remark 4.5. Local transversality of an action α can be rephrased in
terms of the local actions α|U i on A|U i

∼= K ⊗ C0(U i) oω̂i N
⊥. It is
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equivalent to require, firstly, that α|U i factorises as µi ⊗ inf, and, sec-

ondly, that the element in EG(U i) given by µi : U i → C(G,PU(H)) is
in the image of H2(G,C(U i,U(1))) ↪→ EG(U i) such that its pre-image in
H2(G,C(U i,U(1))) is point-wise transverse to ω̂i.

If (A,α) is a NC pair, then the crossed product A oα G is a C0(B)-
algebra and its fibres can be computed point-wise according to Section 3.2

which shows that the dual action of Ĝ on A oα G is transverse in each
fibre. However, the crossed product algebra A oα G need not to be locally
ω-trivial, and even if it is, then the point-wise computation of Section 3.2
determines the dual action only up to Morita equivalence in each fibre which
is in general not enough to determine a unique action with these properties.
So we cannot simply conclude that the dual action is locally transverse.

Definition 4.6. Let B be a space.

(1) A local polarisation over U ⊂ B is just a continuous family of group

automorphims ϕ : U → Aut(Ĝ×G), where Aut(Ĝ×G) is equipped
with the Bracconier topology. This is the topology generated by
the compact open topology and the pre-images of the open sets by

inversion in Aut(Ĝ×G). By the exponetial law ([Br64]) this means
that ϕ is continuos if and only if

U × Ĝ×G→ U × Ĝ×G
(u, χ, g) 7→ (u, ϕ(u)(χ, g))

is a homoeomorphism.
(2) Let (A,α) be a NC pair, and let (Ui, ω̂i, ωi)i∈I be a transverse atlas.

The atlas is called polarisable if there exist local polarisations ϕi over
Ui such that

[ω̂i ∧ ωi] = ϕ∗i [∧] ∈ H2(Ĝ×G,C(U i,U(1))).

(3) A NC pair (A,α) is called polarisable if it permits a polarisable atlas.

Polarisability is a slight restriction on the class of objects we consider.
In fact, if an atlas is polarisable, then it follows that the involved cocycles
ω̂i, ωi are cohomologous to bihomomorphisms, just because

(27) ωi = (ω̂i ∧ ωi)|(0×G)×(0×G) ∼ (ϕ∗i∧)|(0×G)×(0×G),

and the latter cocycle is a bihomomorphism G × G → C(U i,U(1)). This
means that the bundle theory does not cover all the cases of the point-
wise theory in the previous sections. However, for G = Rn and N = Zn all
cocycles are cohomologous to bicharacters, and, as we see next, polarisability
is no restriction at all:

Proposition 4.7. For G = Rn, N = Zn every NC pair is polarisable.
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Proof. Let Ui, ω̂i, ωi be a chart. The first thing to note is that for R2n we
always have an isomorphism7 [EW01, Sec. 5]

H2(R2n, C(U i,U(1))) ∼= C(U i, H
2(R2n,U(1))).

which is given by point-wise evaluation. Secondly, the Braconnier topology
coincides with the usual topology on Aut(Rn × Rn) = Gl(2n,R).

Now, if η̂ ∧ η is a type I and totally skew cocycle on R2n, then hη̂∧η :
R2n → R2n is an invertible, anti-symmetric matrix. But if As(2n,R) denotes
the set of all anti-symmetric 2n× 2n-matrices, then

c : Gl(2n,R)� Gl(2n,R) ∩As(2n,R),

ϕ 7→ ϕ̂ ◦ h∧ ◦ ϕ,

where

h∧ =

(
0 1
−1 0

)
,

is surjective and admits local sections. (Here the dual map ϕ̂ coincides
with the transpose map ϕt.) In fact, surjectivity is a standard fact about
anti-symmetric matrices. To conclude the existence of local sections, it is
sufficient to observe that c is a submersion, i.e., we claim that its derivative

dc(ϕ) : Mat(2n,R)→ As(2n,R)

M 7→ M̂ ◦ ϕ̂ ◦ h∧ + h∧ ◦ ϕ ◦M

is surjective for all ϕ ∈ Gl(2n,R). But this is immediate: for any X in

As(2n,R) we can choose a Y ∈ Mat(2n,R) such that X = Y − Ŷ , then
MY := ϕ−1 ◦ h−1

∧ ◦ Y satisfies

dc(ϕ)(MY ) = Ŷ ◦ ĥ−1
∧ ◦ h∧ + Y = Ŷ ◦ (−1) + Y = X.

So (after passing to a possibly finer covering, again called Ui) we find lifts
in

Gl(2n,R)

��
U i

hω̂i∧ωi

//

∃ϕi
55

Gl(2n,R) ∩As(2n,R)

and so h(ϕi)∗∧ = ϕ̂i ◦ h∧ ◦ ϕi = hω̂i∧ωi which means that

[(ϕi)
∗∧] = [ω̂i ∧ ωi]. �

7Z2(G,U(1)) has the topology of almost everywhere point-wise convergence, and

H2(G,U(1)) has the corresponding quotient topology. Then H2(Rn,U(1)) ∼= Rn(n−1)/2 as
topological groups.
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If (A,α) is a C∗-dynamical system over B (i.e., A is a C0(B)-algebra and
α is fibre-preserving) and (A′, α′) is a C∗-dynamical system over B′, then a
morphism

(f,M) : (A,α)→ (A′, α′)

consists of a continous function f : B → B′ together with a Morita equiva-
lence AMf∗A′ over B. If

(f,M) : (A,α)→ (A′, α′) and (f ′,M ′) : (A′, α′)→ (A′′, α′′)

are two morphisms, then the composition is (f ◦ f ′,M ⊗f∗A′ f∗M ′) which
is only associative up to isomorphism. So define a 2-morphism between two
morphisms (g, L) and (g, L′) to be an isomorphism L ∼= L′ over B, and
we have just defined the 2-category of C∗-dynamical systems over spaces.
Apparently, NC pairs and polarisable NC pairs form 2-subcategories.

Theorem 4.8. The duality functor oG defined on all C∗-dynamical sys-
tems over spaces with group G restricts to a duality of polarisable NC pairs:

C∗-Dynamical Systems
over Spaces with Group G

∼ // C∗-Dynamical Systems

over Spaces with Group Ĝ

NC Pairs

∪
NC Dual Pairs

∪

Polarisable
NC Pairs

∪
∼ // Polarisable

NC Dual Pairs

∪

.

Moreover, if (A,α) is a polarisable NC pair with polarisable atlas Ui, ω̂i, ωi,
then Ui, ωio ω̂i, ω̂ioωi (defined point-wise as in Definition 3.5) is a polaris-
able atlas for the dual.

Proof. Let (A,α) be a polarisable NC pair. We show first that A oα G is

locally ω-trivial and that the dual Ĝ-action on it is locally transverse in the
sense of Definition 4.4(1). The proof is organised in 8 steps.

Step 0. Fix a polarisable atlas Ui, ω̂i, ωi with polarisations ϕi, i.e.,

ω̂i ∧ ωi ∼ (ϕi)
∗ ∧ .

Step 1. We have an isomorphism

C0(Ui) oω̂i∧ωi (Ĝ×G)
∼=−→ C0(Ui) o∧ (Ĝ×G)

f 7→ ci · f ◦ ϕ−1
i ,

where ci : Ĝ × G → C(U i,U(1)) relates ω̂i ∧ ωi ∼ (ϕi)
∗∧. (Note: it is not

difficult to show that ϕi is measure-preserving. If it weren’t, there would
occur a positive factor in this isomorphism to rescale the Haar measure.)
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The dual action of G× Ĝ is transformed into the dual action pre-composed
with ϕ̂−1

i .

Step 2. We have to make a version of the Takai duality isomorphism ex-
plicit:

T : C0(Ui) o∧ (Ĝ×G)
∼=−→ K(L2(Ĝ))⊗ C0(Ui)

which is given for f ∈ L1(Ĝ×G,C0(U i)) by

f̃(χ, χ′) :=

∫
G
f(χ− χ′, g)〈g, χ′〉 dg ∈ C0(U i),

where f̃ is the integral kernel for Tf , i.e., for ξ ∈ L2(Ĝ) and u ∈ U i we have

(Tf)|u(ξ)(χ) =

∫
Ĝ
f̃(χ, χ′)|u ξ(χ′) dχ′.

In fact, it is a lengthy but straight forward calculation that T defines
a ∗-homomorphism which is injective, because T is composed by injec-
tive transformations such as the Fourier transformation. The image of

L1(Ĝ × G,C0(U i)) is dense in C0(Ui) ⊗ K(L2(Ĝ)) and thus T is an iso-
morphism.

Step 3. The dual action of G× Ĝ on C0(U i) o∧ (Ĝ×G) transforms under
T into8

(28) α̂i(g, χ) := T ◦ 〈(g, χ), ( , )〉 ◦ T−1 = Ad
(
〈g, 〉R(χ)

)
⊗ idC0(U i)

,

where R : Ĝ → U(L2(Ĝ)) is the right regular representation. α̂i is Morita

equivalent to the action α̂i ⊗ idK(L2(G)) on K(L2(Ĝ))⊗C0(U i)⊗K(L2(G)),

and this action is exterior equivalent to id
K(L2(Ĝ))

⊗ α̂′i with

α̂′i(g, χ) := idC0(U i)
⊗Ad

(
L(g)〈 , χ〉

)
,

where L : Ĝ → U(L2(Ĝ)) is the left regular representation. The cocycle
which implements the exterior equivalence is given by

v(g,χ) := 〈g, 〉R(χ)⊗ idC0(U i)
⊗ 〈 , χ〉−1L(g)−1.

The important thing to notice here is that α̂′i is in the image of ξ
U i,G×Ĝ from

(26): It is the image of ∨−1 ∈ Z2(G× Ĝ, C(U i,U(1))) which reads explicitly

(g, χ) ∨−1 (h, ψ) = 〈h, χ〉−1.

As a consequence a crossed product with the action α̂i (or α̂′i) precom-

posed with ϕ̂−1
i is Morita equivalent to a twisted group algebra with cocycle

(ϕ̂i)∗∨−1.

8We denote multiplication operators on L2 by the same symbol as their defining func-

tions, e.g., 〈g0, 〉 : ξ 7→ 〈g0, 〉ξ, for ξ ∈ L2(Ĝ).
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Step 4. Note that for the Heisenberg cocycle ∧ on Ĝ×G we have

〈h∧(χ, g), (ψ, h)〉 = 〈(g,−χ), (ψ, h)〉

which means that h∧ is the map (χ, g) 7→ (g,−χ) and so(
(h∧)∗ ∧

)
((g, χ), (h, ψ)) = 〈g,−ψ〉 ∼ (g, χ) ∨ (h, ψ).

This relation holds in Z2(G× Ĝ,U(1)) but also in Z2(G× Ĝ, C(U i,U(1))),
where we consider the above cocycles as constant in the fibres. We can use
this intermediate step to compute the cocycle of α̂′i from above:(

(ϕ̂i)∗ ∨
)−1
∼
(

(ϕ̂i)∗(h∧)∗ ∧
)−1

=
(

(ϕ̂i)∗(h∧)∗(ϕi)∗(ϕi)
∗ ∧
)−1

=
(

(ϕ̂i ◦ h∧ ◦ ϕi)∗
(
(ϕi)

∗ ∧
))−1

=
((
h(ϕi)∗∧

)
∗
(
(ϕi)

∗ ∧
))−1

∼
((
hω̂i∧ωi

)
∗ (ω̂i ∧ ωi)

)−1
.

So apart from an interchange of G and Ĝ, this is exactly the formula we
analysed in Lemma 3.6.

Step 5. By the continuity and openness of ϕi, the equality

ϕ̂i(u) ◦ h∧ ◦ ϕi(u) = hω̂i∧ωi|u =

(
hω̂i|u idG
−id

Ĝ
hωi|u

)
shows that (u, g) 7→ (u, hωi|u(g)) is continuous and open, so

φi : U i → Aut(G)

u 7→ (g 7→ g + hω̂i|u(hωi|u(g)))

is continuous for the Bracconier topology on Aut(G). We already remarked
in (27) that the involved cocycles are all bihomomorphisms, so as explained
in Remark 3.7 we have(

(ϕ̂i)∗ ∨
)−1
∼ ωioω̂i · ω̂ioωi · (φi × id

Ĝ
)∗ ∨−1 .

This relation holds in ∈ Z2(G×Ĝ, C(U i,U(1))), i.e., this is a local statement
rather than just a point-wise statement.
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Step 6. We can now locally compute the dual

(Aoα G)|U i ∼ C0(U i) oω̂i∧ωi (N⊥ ×G)

∼ C0(U i) oω̂i∧ωi (Ĝ×G) odual (N × 0)

∼= C0(U i) oϕ∗i∧ (Ĝ×G) odual (N × 0)

∼= C0(U i) o∧ (Ĝ×G) odual◦ϕ̂−1
i

(N × 0)

∼= K(L2(Ĝ))⊗ C0(U i) oαi◦ϕ̂−1
i

(N × 0)

∼ C0(U i) o(ϕ̂i)∗∨−1 (N × 0)

∼= C0(U i) oωioω̂i (N × 0)

∼= C0(U i) oωioω̂i (N × 0),

where the last isomorphism is pullback by φi. This implies the local ω-
triviality of Aoα G and shows that ω o ω̂i gives an atlas.

Step 7. Using these Morita equivalences, we can similarly compute the dual

action of Ĝ on (Aoα G)|U i (note that all equivalences are G-equivariant):

(Aoα G)|U i odual Ĝ ∼ C0(U i) oω̂i∧ωi (N⊥ ×G) odual Ĝ

∼ C0(U i) oω̂i∧ωi (Ĝ×G) odual (N × Ĝ)

∼ C0(U i) o(ϕ̂i)∗∨−1 (N × Ĝ)

∼= C0(U i) oωioω̂i·(φi×id
Ĝ

)∗∨−1·ω̂ioωi (N × Ĝ)

∼= C0(U i) oωioω̂i·∨−1·ω̂ioωi (N × Ĝ)

∼= C0(U i) oωioω̂i·∨·ω̂ioωi (N × Ĝ),

where the last step is pullback along the inversion 	 in N together with
the isomorphism induced by the cochain that relates 	∗(ωi o ω̂i) ∼ ωi o ω̂i.
This again requires the computation of Remark 3.7. As ωi o ω̂i and ω̂ioωi
are point-wise transverse, this completes the proof. �

By Lemma 3.18, we can associate to a given NC pair (A,α) an obstruction
function

(29) θ : B → H2(N,U(1))

which at each point of B has the Mackey obstruction of the local and re-
stricted N -action as its value. This function is continuous. In fact, it is
locally continuous as it is given by point-wise evaluation9

Z2(N,C(U i,U(1))) ∼= C(U i, Z
2(N,U(1)))→ C(U i, H

2(N,U(1))).

9Here evaluation is an isomorphism because N is discrete, so the topology of almost ev-
erywhere point-wise convergence on Z2(N,U(1)) coincides with the compact open topology
for which we can apply the exponential law for locally compact Hausdorff spaces X,Y, Z:
C(X × Y,Z) ∼= C(X,C(Y,Z))
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Similarly, to a NC dual pair we associate an obstruction function

(30) θ̂ : B → H2(N⊥,U(1)).

Using these functions we can talk about the commutative subtheory inside
polarisable NC pairs:

Definition 4.9. A polarisable NC pair (A,α) is called (point-wise) commu-

tative if the obstruction function θ̂ defined by its dual (AoαG, α̂) vanishes.

If we restrict to the groups G = Rn, N = Zn the next proposition shows
that this notion of commutativity reproduces the familiar objects from clas-
sical T-duality.

Proposition 4.10. Let G = Rn, N = Zn, and let (A,α) be a (polarisable)
NC pair. Then (A,α) is point-wise commutative if and only if there is a
locally trivial principal G/N -bundle E → B and a locally trivial bundle of
compact operators F → E such that

(31) A ∼= Γ0(E,F ).

Moreover, F → E is trivialisable over (a neighbourhood of) all fibres E|b, b ∈
B, and there is a G-action on F that covers the G/N action on E such that
the isomorphism in (31) can be chosen to be G-equivariant.

Proof. It is clear that if an isomorphism (31) exists, then θ̂ = 0.

Conversely, if θ̂(b) = 0, then by Lemma 3.19 θ̂(b)t = {0} which deter-
mines the class of each fibre to be 0. So we have locally

A|U i ∼ C0(U i) oω̂i N
⊥,

where the cocycle ω̂i : Z2(Ĝ, C(U i,U(1))) is such that its restrictions

η̂i := ω̂i|N⊥ ∈ Z2(N⊥, C(U i,U(1))) ∼= C(U i, Z
2(N⊥,U(1)))

are point-wise in the image of the boundary operator

d : C1(N⊥,U(1))→ C2(N⊥,U(1)) : η̂i|b ∈ B2(N⊥,U(1)).

The kernel of d is Hom(N⊥,U(1)) ∼= G/N = Tn which is a Lie group. So
just as in the proof of [Ro86, Theorem 2.1] we apply the Palais cross-section
theorem [Pa61, 4.1] which implies that d : C1(N⊥,U(1))→ B2(N⊥,U(1)) is
a locally trivial G/N -bundle. Then, after passing to a possibly finer covering
of B which we again call Ui, we have lifts ν̂i in

C1(N⊥,U(1))

d����
U i

η̂i

//

ν̂i

99

B2(N⊥,U(1))

which implies the existence of local G-equivariant isomorphisms

A|U i
∼= K⊗ C0(U i) od◦ν̂i N

⊥ ∼= K⊗ C0(U i) o1 N
⊥ ∼= C0(Ui ×G/N,K).
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Now, consider the transition on the overlap Uij := Ui ∩ Uj of two charts

C0(U j ×G/N,K)

����

C0(U i ×G/N,K)

����
C0(U ji ×G/N,K)

∼=
ϕij
// C0(U ij ×G/N,K).

It is G-equivariant, and it induces a G-equivariant automorphism on the
spectrum γji : U ij ×G/N ∼= U ji ×G/N . By equivariance γji is of the form

γji(u, z) = (u, gji(u) + z) for some gji : U ij → G/N . Clearly, the gji define

a Čech cocycle and thus a principal G/N -bundle E → B. Precomposition
of ϕij with (γ−1

ji )∗ yields then a spectrum fixing automorphism of

C0(U ij ×G/N,K),

i.e., a function ζji : U ij ×G/N → PU such that

ϕij(f)(u, z) = ζ−1
ji (u, z)[f(u, gji(u) + z)]

for f ∈ C0(U ji ×G/N,K)� C0(U j ×G/N,K). The ζij satisfy the twisted

Čech identity
ζkj(u, gji(u) + z) ζji(u, z) = ζki(u, z)

and hence define a bundle of compact operators F → E. It is then clear from
the construction that F is trivialisable over a neighbourhood of each fibre
E|b ⊂ E, and F carries a G-action which covers the principal G/N -action
on E.

For any a ∈ A the quotient maps A � C0(U i × G/N,K) define a com-
patible family of functions, i.e., they define a section of F → E. Hence we
get a G-equivariant map

A→ Γ(E,F ).

Because this map is C0(B)-linear, one can use a partition of unity on B as
an approximate identity on C0(B) to show that this map takes values in the
sections vanishing at infinity only and that this assignment is injective and
surjective

A
∼=→ Γ0(E,F ) ⊂ Γ(E,F ). �

4.4. NC bundles. If (A,α) is a NC pair we have seen that it is not rea-
sonable to ask for the cohomology classes of the fibres of A rather than to
handle this issue with the ambiguity which is measured by the set θ̂t as
defined in (23). So if we want to deal with bundles without actions the
following definition is appropriate.

Definition 4.11. A NC bundle (A, θ̂) is a locally ω̂-trivial algebra together

with a continuous function θ̂ : B → H2(N⊥,U(1)) such that there exists an

altas Ui, ω̂i of A which has the property that for all i we have [ω̂i|b]|N ∈ θ̂(b)t,

for all b ∈ Ui. A NC bundle (A, θ̂) is called commutative if θ̂ = 0.
(The notion of (commutative) NC dual bundles is defined analogously.)
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These are the objects of the category of NC bundles. The morphisms
(A, θ̂)→ (A′, θ̂′) are pairs (f,M) of a continuous function f : B → B′ such

that θ̂ = θ̂′ ◦ f and a C0(B)-linear Morita equivalence AMf∗A′ . Here we
assume that A′ is a C0(B′)-algebra.

If (A,α) is any polarisable NC pair, we can use the obstructions function

θ̂ : B → H2(N⊥,U(1)) of its dual (A oα G, α̂) to define an assignment on

objects (A,α) 7→ (A, θ̂) which extends to a functor

Θ :
Polarisable
NC Pairs

// NC Bundles

that gives the underlying NC bundle of a polarisable NC pair. Similarly,
there is a functor

Θ̂ :
Polarisable

NC Dual Pairs
// NC Dual

Bundles

that gives the underlying NC dual bundle of a polarisable NC dual pair.
An extension of a NC (dual) bundle (A, θ̂) is a polarisable NC (dual) pair

(A,α) such that Θ(A,α) = (A, θ̂), and a NC (dual) bundle is called dualis-

able if it has an extension. Now, if (Â, θ) is a dualisable NC dual bundle,
one might ask the question whether it has an extension that is the dual of
a commutative polarisable NC pair. In other words, we ask whether the
functor

Ξ :
Polarisable
NC Pairs

∼ // Polarisable
NC Dual Pairs

Θ̂ // NC Dual
Bundles

and its restriction

Ξ|com :
Commutative

Polarisable
NC Pairs

⊂ Polarisable
NC Pairs

∼
��

Polarisable
NC Dual Pairs

Θ̂ // NC Dual
Bundles

have the same (essential) image. If the answer to this question were yes, then
the theory we developed wouldn’t be significantly richer than the classical
commutative and semi-comutative theory of Mathai and Rosenberg, because
all NC bundles could be understood as crossed products of classical bundles
(with all their possible G-actions). However, this is not the case:

Proposition 4.12. Let G := R2 and N := Z2. Then the essential images
of the functors Ξ and Ξ|com do not coincide.

Proof. In Section 5.2 below we give an example of a NC bundle that cannot
be obtained as the dual of a commutative polarisable NC pair. �
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5. Example: The Heisenberg bundle and its relatives

In this section we always let G := R2 and N := Z2 and we use the

canonical identifications R̂2 ∼= R2 and (Z2)⊥ ∼= Z2. We will typically denote
elements in T = R/Z or T2 = R2/Z2 by x, y, z or by ġ if g is in R or R2.

By S1 we denote the unit interval [0, 1] with glued end-points 0 ∼ 1.
Sometimes it is convenient to have one of the endpoints, say 1, thickened
to a whole (nonempty) interval 111 := [1−, 1+], i.e., we then consider the
space S111 := ([0, 1] t 111)/∼, where 1 ∼ 1− and 0 ∼ 1+ which, of course, is
homeomorphic to S1. For t ∈ R we denote by ωt the 2-cocycle on R2 given
by ωt(g, h) := exp(2πitg2h1). We will use the notation λt, t ∈ R, for the
actions R2 → Aut(K) which are given by λtg := Ad(L−t(g)) for the left
regular ω−t-representation

(L−t(g)(ξ))(h) := ω−t(g, h− g)ξ(h− g), ξ ∈ L2(R2).

The actions λt have Mackey obstruction +t ∈ R ∼= H2(R2,U(1)).

5.1. The Heisenberg bundle. Consider the function

ωS1 : S1 → Z2(N,U(1))

given by ωS1(ṡ) := ωs|N×N which is well-defined as ωn|N×N = 1, for n ∈ Z.
The Heisenberg bundle is the C*-algebra over S1 given by

Â0 := K⊗ (C(S1) oωS1
N).

Its fibres are the stable noncommutative tori Â|ṡ ∼= K⊗ (Coωs|N×N N). We

equip it with the canonical Ĝ-action α̂0 := id⊗inf. The following proposition
is immediate.

Proposition 5.1. (Â0, α̂0) is a (polarisable) NC dual pair.

The obstruction function θ0 : S1 → H2(Z2,U(1)) defined by (Â0, α̂0) is
just the composition of the canonical identifications S1 ∼= T ∼= H2(Z2,U(1)).

Let us construct a (commutative) NC pair which will turn out to be the
dual of the Heisenberg bundle. Consider the trivial principal T2-bundle
E0 := S1 × T2 → S1. Its total space E0 is a compact orientable three
manifold so its 3rd (Čech) cohmology is Ȟ3(E0,Z) ∼= Z. Let F1 → E
be a locally trivial K-bundle representing the canonical generator of 3rd
cohomology:

Ȟ3(E0,Z)
∼=−→ Z.

[F1] 7→ 1

Let Γ(E0, F1) be the section C*-algebra of F1 → E. We construct an action
on this algebra which covers the principal T2-action on

E0 = Prim(Γ(E0, F1)).

To do so, observe first that one can describe the bundle F1 slightly different.
Up to isomorphism any K-bundle over E0 can be obtained from a function
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T2 → Aut(K) which is used to glue the two boundary parts of the trivial
K-bundle

(32) [0, 1]× T2 ×K→ [0, 1]× T2

to each other. In particular, the bundle F1 is obtained by using a classifying
map T2 → BU(1) = PU(H) = Aut(K) of the canonical U(1)-bundle over T2,
i.e., a function whose class in 2nd cohomology Ȟ2(T2,Z) ∼= Z corresponds
to 1.

Let us identify such a function T2 → Aut(K) by the following construc-
tion. Choose K = K(L2(R2)) and define a C([0, 1])-linear action β on the
sections C([0, 1]× T2,K) of (32) by βg(f)(t, x) = λtg(f(t, x− ġ)). For t = 1
the cocycle involved in λ1, ω−1 : (g, h) 7→ exp(2πi(−1)g2h1), becomes trivial
when restricted to N = Z2. To continue we need a lemma:

Lemma 5.2. The canonical isomorphism

H2(R2, L∞(R2/Z2,U(1))→ H2(Z2,U(1))

of [Mo76, Thm. 6] makes the diagram

H2(R2,U(1))

�� ))
H2(Z2,U(1)) H2(R2, L∞(R2/Z2,U(1)))

∼=oo

commute, where the vertical map is restriction and the diagonal map is
induced by the inclusion of coefficients.

Proof. See Appendix B. �

Because of this lemma there is a Borel function10

c : R2 → L∞(T2,U(1)) ⊂ U(L2(T2))

such that ω−1 = dc, i.e.,

(33) ω−1(g, h) = c(h)(z − ġ) c(g + h)(z)−1 c(g)(z),

for almost all z ∈ T2. Note at this point that (33) implies that the restriction
c|Z2 : Z2 → L∞(T2,U(1)) is a homomorphism, i.e., there is a measure-one

set S ⊂ T2 such that n 7→ c(n)(z) is in Ẑ2, for all z ∈ S. The function c
determines a function c̃ ∈ L∞(R2 × T2,U(1)) ⊂ U(L2(R2 × T2)) which for
each g satisfies

(34) ω−1(g, h) = c̃(h, z − ġ) c̃(g + h, z)−1 c(g)(z),

for almost all (h, z) ∈ R2 × T2. (By choosing a Borel representative of c̃) we
consider for z ∈ T2 the unitary multiplication operator c̃( , z) ∈ U(L2(R2))

10We always consider L∞(X,U(1)) as a subspace of U(L2(X)) by associating to an
L∞-function the multiplication operator that multiplies L2-functions point-wise with the
given L∞-function.
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which sends a funtion ξ ∈ L2(R2) to h 7→ c̃(h, z)ξ(h). These operators define
a Borel function z 7→ η0(z) := Ad(c̃( , z)) ∈ PU(L2(R2)).

Lemma 5.3.

(1) There exists a continuous function

η : T2 → PU(L2(R2))

which agrees almost everywhere with η0.
(2) The class of η in Ȟ2(T2,Z) ∼= Z is the generator +1, i.e., η is a

classifying map for the canonical line bundle over T2.
(3) The equality

η(z) λk+1
g = λkg η(z − ġ) ∈ PU(L2(R2))

holds, for all k ∈ Z, g ∈ R2, z ∈ T2.

Proof. (1) Consider the countable dense subgroup Q2 ⊂ R2. By (34) there
is for each g ∈ Q2 a set Sg ⊂ T2 of measure one such that

ω−1(g, ) = c̃( , z − ġk) c̃(gk + , z)−1 c(gk)(z) ∈ U(L2(R2))

holds for all z ∈ Sg. Choose some z0 ∈ S ∩
⋂
g∈Q2 Sg. Then

ω−1(g, ) = c̃( , z0 − ġ) c̃(g + , z0)−1 c(g)(z0) ∈ U(L2(R2))

holds for all g ∈ Q2. The map

g 7→ Ad(c̃( , z0 − ġ))

= Ad(ω−1(g, )c̃(g + , z0))

= Ad(ω−1(g, )L0(−g)c̃( , z0)L0(g))

is clearly continuous on Q2 (as one can see in line three) and clearly factors
over the quotient Q2/Z2 (as one can see in line one). Then define

ηz0 : T2 → PU(L2(R2))

to be its continuous extension (which is just given by the formula in line
three, for all g ∈ R2), and let η(z) := ηz0(z0 − ġ). By construction it’s clear
that η satisfies (1) of the lemma.

(2) The Čech classes of η and of z 7→ η(z − z0) agree. We compute the
Čech class of the latter. Choose continuous, local sections σk : Vk → R2 of
the quotient map R2 → T2 such that the open domains Vk ⊂ T2 cover T2.
Then by line two from above

ηk(z) := ω−1(−σk(z), ) c̃(−σk(z) + , z0) ∈ U(L2(G))

are continuous unitary local lifts of z 7→ η(z − z0), so its class in

Ȟ1(T2,U(1)) ∼= Ȟ2(T2,Z)
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is given by the cocycle

ηkl(z) :=ηk(z)ηl(z)
−1

=ω−1(−σk(z), ) c̃(−σk(z) + , z0) c̃(−σl(z) + , z0)−1

· ω−1(−σl(z), )−1

=ω−1(−σk(z) + σl(z), ) c̃(−σk(z) + , z0)

· c̃((−σk(z) + ) + (σk(z)− σl(z)), z0)−1

=ω−1(−σk(z) + σl(z), ) ω−1(σk(z)− σl(z), σk(z) + )

· c(σk(z)− σl(z))(z0)−1

=ω−1(σk(z)− σl(z), σk(z)) c((σk(z)− σl(z)))(z0)−1 ∈ U(1).

We claim that c((σk(z)− σl(z)))(z0)−1 is a coboundary term. In fact,

σk(z)− σl(z) ∈ Z2,

and so choose by surjectivity of R̂2 → Ẑ2 an extension χ ∈ R̂2 of the char-
acter n 7→ c(n)(z0) which gives χ(σk(z))χ(σl(z))

−1 = c((σk(z)− σl(z)))(z0).
This indeed is a coboundary term and does not effect the class of η. The
expressions

z = (z1, z2) 7→ ω−1(σl(z)− σk(z),
σk(z)) = 〈σk(z)2 − σl(z)2, z1〉,

are transition functions for the canonical line bundle on T × T [S07, Sec.
2.6], i.e., they give the class of the canonical line bundle.

(3) Just multiply both sides of (33) by the left regular representation
L−k(g) and apply Ad : U(L2(G))→ PU(L2(G)) to both sides. �

Part (3) of the lemma just says for k = 0 that

C(1× T2,K)
β|1(g) //

η∗
��

C(1× T2,K)

η∗
��

C(0× T2,K)
β|0(g) // C(0× T2,K)

commutes, where β|0, β|1 are the actions on the fibres over t = 0, 1 given by
the fibre-wise action β, and η∗(f)(1, z) := η(z)(f(0, z)). So by construction
we have shown the following proposition.
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Proposition 5.4. Let (A0, α0) be the pullback in the category of C*-dy-
namical systems of the diagram

(A0, α0)

��

// (C([0, 1]× T2,K), β)

i∗0×i∗1

��
(C(1× T2,K), β|1)

η∗×id // (C(0× T2,K)⊕ C(1× T2,K), β|0 × β|1)

then there is a canonical isomorphism A0
∼= Γ(E0, F1).

It is clear that (A0, α0) is a polarisable NC pair with a trivial obstruction

function θ̂0 = 0 : S1 → H2(Z,U(1)), so its dual is commutative:

Proposition 5.5. (A0, α0) and (Â0, α̂0) are dual to each other, i.e.,

A0 oα0 R2

with its dual R̂2-action is Morita equivalent to (Â0, α̂0).

Proof. Consider the function ω[0,1] : [0, 1]→ Z2(Z2,U(1)) given by

ω[0,1](t) := ωt|Z2×Z2 ,

then the Heisenberg bundle Â0 with its induced action α̂0 is the pullback in
(35)

(Â0, α̂0)

��

// (K⊗ (C([0, 1]) oω[0,1]
Z2), id⊗ inf)

i∗0×i∗1

��
(C(1× T2,K), inf)

diag // (C(0× T2,K)⊕ C(1× T2,K), inf ⊗ inf).

In the diagram of Proposition 5.4 we can take crossed product with R2. Be-
cause taking crossed products is a continuous functor, this leads to another
pullback diagram. But this new diagram is stably isomorphic to diagram
(35). �

Remark 5.6. The duality stated in Proposition 5.5 has already been ob-
served in [MaR06, Section 4]. However, they follow a different approach
which is less explicit then the one presented here, and we can use the inter-
mediate steps of our approach for the construction of the twisted Heisenberg
bundle which we do next.
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5.2. The twisted Heisenberg bundle. Let us use the pullback descrip-
tion of the two NC (dual) pairs from above to construct a chimaera out of
the two. Consider the algebra K ⊗ (C([0, 1]) oω[0,1]

Z2), where ω[0,1] is as

in (35). This algebra carries the fibre-wise action γ that is given in each

fibre by γ|t := λ
2

1+t ⊗ inf. As t moves from 0 to 1, the Mackey obstuction

of λ
2

1+t moves from 2 to 1. For k = 1 part 3. of Lemma 5.3 implies that
η(z)λ2

g = λ1
gη(z − ġ), i.e.,

C(1× T2,K)
γ|1(g) //

η∗

��

C(1× T2,K)

η∗

��
C(0× T2,K)

γ|0(g) // C(0× T2,K)

commutes, for η∗(f)(1, z) := η(z)−1(f(0, z)). So naively, what we now could
consider is the pullback in

(Â1, α̂1)

��

// (K⊗ (C([0, 1]) oω[0,1]
Z2), γ)

i∗0×i∗1

��
(C(1× T2,K), γ|1)

η∗×id // (C(0× T2,K)⊕ C(1× T2,K), γ|0 × γ|1).

Indeed Â1 is a bundle over S1 with fibers Â1|ṡ ∼= K⊗(CoωsN). However, it
fails to be ω-trivial around 0̇ = 1̇ ∈ S1. We can get around this by thickening
the gluing-point to the interval 111: We define the twisted Heisenberg bundle
Â111 together with its action α̂111 to be the pullback in

(Â111, α̂111)

��

// (K⊗ (C([0, 1]) oω[0,1]
Z2), γ)

i∗0×i∗1

��
(C(111× T2,K), γ|111)

(η∗◦i∗1+ )×i∗1− // (C(0× T2,K)⊕ C(1× T2,K), γ|0 × γ|1),

where the action γ|111 is just γ|1 in each fibre.

Proposition 5.7. The twisted Heisenberg bundle (Â111, α̂111) is a (polarisable)
NC dual pair over S111.

Proof. Let 1± ∈ 111 be the middle. We consider the open cover of S111 given
by the two open sets U := ((0, 1]t [1−, 1±))/∼ and V := ([0, 1

2)t(1−, 1+])/∼.
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Then

Â111|U ∼
{

(f, g) ∈ C([0, 1]) oω[0,1]
Z2 × C([1−, 1±]× T)

∣∣∣ f |1 = g|1−
}

∼ C(U) oωU
Z2,

where we let ωU (s) := ω1+s, for s ∈ [0, 1] and ωU (s) := ω2, for s ∈ [1−, 1±].
If we let ω̂U (s) := ω 2

1+s
, for s ∈ [0, 1] and ω̂U (s) := ω1, for s ∈ [1−, 1±],

then ωU and ω̂U are point-wise transverse (cp. Section 3.4). Moreover, by
construction of the action α̂111 we have

(Â111 oα̂111 R̂2)|U ∼= K⊗ (C(U) oωU∨ω̂U (Z2 × R̂2)).

We have shown that U is a chart for (Â111, α̂111). To show that V is a chart
we need one more step in between. In fact, we use that we can extend the
isomorphism η∗ (fibre-wise) to an isomorphism

(36) η∗ : C(111× T2,K)→ C(000× T2,K),

where 000 := [0−, 0+] := 111 − 1 is just the intervall 111 shifted by 1. This
isomorphims turns the action γ|111 into γ|000, which in each fibre s ∈ 000 just is
γ|000|s = γ|0. Then we find

Â111|V
∼=
��{

(f, g) ∈ K⊗
(
C([0, 1

2 ]) oω[0,1]
Z2)× C(111× T,K)

) ∣∣∣ f |0 = η∗g|1+
}

∼= (f,g)7→(f,η∗g)
��{

(f, h) ∈ K⊗
(
C([0, 1

2 ]) oω[0,1]
Z2)× C(000× T,K)

) ∣∣∣ f |0 = h|0+
}

∼=
��

K⊗ (C(V ) oωV
Z2)

wherein ωV (s) := ω1+s, for s ∈ [0, 1
2 ] and ωV (s) := ω1, for s ∈ 111. We have

θ111|V = [ωV |Z2×Z2 ], and we let ω̂V (s) := ω 2
1+s

, for s ∈ [0, 1
2 ] and ω̂V (s) := ω2,

for s ∈ 111. By construction ωV and ω̂V are point-wise transverse, and by
construction of the action α̂111 we have

(Â111 oα̂111 R̂2)|V ∼= K⊗ (C(V ) oωV ∨ω̂V (Z2 × R̂2)). �

Remark 5.8.

(1) The possibility of finding the extension (36) is the crucial step in

proving the local triviality of Â111. This extension exists on a bundle
of commutative tori, but could not have been found if we had not
thickened 1 to 111.
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(2) The essential point for point-wise transversality is that the point-
wise cocycles ω[0,1](s) : Z2 × Z2 → U(1) have extensions

ω1+s : R2 × R2 → U(1)

whose cohomology classes vary in the interval [1, 2] which (together
with [−2,−1]) is the only interval of integer length which is preserved
by the map s 7→ 2

s . The relevance of the second interval [−2,−1]
becomes clear below: It is the interval from which the (pre-)dual of

(Â111, α̂111) takes its Mackey obstructions.

Let us identify the pre-dual of the twisted Heisenberg bundle. Knowing its
local structure from the proof of Proposition 5.7 and knowing the calculation
in Section 3.4 it is rather clear how the pre-dual looks like. Let (A111, α111) to
be the pullback in

(A111, α111)

��

// (K⊗ (C([0, 1]) oω̂[0,1]
Z2), δ)

i∗0×i∗1

��
(C(111× T2,K), δ|111)

(η∗◦i∗1+ )×i∗1− // (C(0× T2,K)⊕ C(1× T2,K), δ|0 × δ|1),

where the action δ is point-wise given by δ|t := λ−(1+t) ⊗ inf, t ∈ [0, 1], the
action δ|111 is just δ|1 in each fibre, and the cocycle ω̂[0,1] is defined by

ω̂[0,1](t) := ω −2
1+t

∣∣∣
N⊥×N⊥

, t ∈ [0, 1] and N = Z2.

Then one can prove that (A111, α1) is a (polarisable) NC pair over S111 just
along the lines of Proposition 5.7. Moreover, the computation of its dual is
a point-wise repetition of Section 3.4:

Proposition 5.9. The NC pair (A111, α1) is dual to (Â111, α̂1).

Let (Â111, θ1) := Θ̂(Â111, α1) be the underlying NC bundle of the twisted
Heisenberg bundle as explained in Section 4.4. Note that

θ1 : S111 → H2(Z2,U(1)) ∼= T

has winding number 1, and this is the key to proof what we have claimed
in Proposition 4.12. Let us denote by Fn → E a locally trivial K-bundle
on E := S111 × T2 such that [Fn] ∈ Ȟ3(E,Z) ∼= Z corresponds to n ∈ Z.
Then (up to isomorphism) all commutative NC pairs over S111 are given by
Γ(E,Fn) with suitable R2-actions.

Proposition 5.10. (Â111, θ1) is not in the essential image of Ξ|com.

Proof. The proof makes use of the K-theory bundle introduced in [ENO09].
This is the group bundle over S111 whose fibres are given by the K-theory of
the fibres. According to [ENO09, Sec. 5], the K0-bundle of the Heisenberg
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bundle Â0 is the Z2-bundle over S111 which is given by gluing the trivial
Z2-bundle over the interval with the matrix

M :=

(
1 1
0 1

)
.

The Heisenberg bundle is a crossed product of Γ(E,F1) by a fibre-preserving
R2-action, so by Connes’ Thom isomorphism their fibres have the same K-
theory, and thus the K-theory bundles are the same (see [ENO09, Theorem
3.5 and Remark 4.4]). This implies that η∗ induces the above map M in K-
theory. The twisted Heisenberg bundle then has a trivial K0-bundle, because
it has the additional gluing with η∗ (rather than with η∗). (The bundle Â−111
which is obtained from the Heisenberg bundle with twist η∗ has K0-bundle
glued by M2.) Therefore, if Γ(E,Fn) is a crossed product of the twisted
Heisenberg bundle it also must have a trivial K-theory bundle. But as Fn
is obtained by gluing with ηn, the K0-bundle of Γ(E,Fn) is given by gluing
the trivial Z2-bundle with Mn which is trivial if and only if n = 0. Now,
consider Γ(E,F0) ∼= K ⊗ C(E) with any (transverse) R2-action α. Since
E = S111 × T2 is a trivial T2-bundle, it follows from [E90, Theorem] that
the crossed product K ⊗ C(E) oα R2 is equivariantly Morita equivalent to
K⊗C(S111 × {0}) oα|Z2

Z2 with the R2-action that is inflated from the dual

action of T2 (see the discussion in Section 3.1). However, K⊗C(S111) oα Z2

with the dual T2-action is a NCP-torus bundle in the sense of [ENO09] which
has a trivial K-theory bundle. Then [ENO09, Theorem 7.2] implies that the
Mackey obstruction function

S111 → H2(Z2,U(1)) ∼= T

of α|Z2 ∈ Aut(K ⊗ C(S111 × {0})) is null-homotopic. Since every null-
homotopic map S111 → T ∼= H2(Z2,U(1)) can be lifted to a continuous
map S111 → R ∼= H2(R2,U(1)), this implies that there exists an action
µ : R2 → Aut(K ⊗ C(S111 × {0})) such that µ|Z2 is Morita equivalent to
α|Z2 . But this implies (see Section 3.1) that α is Morita equivalent to the
R2-action µ ⊗ inf on (K ⊗ C(S111)) ⊗ C(T2). This means we have a global
chart, and so the Mackey obstruction function of α|Z2 coincides with the
obstruction function θ1 defined by the polarisable NC pair (K ⊗ C(E), α)
which has winding number 1. This is a contradiction. �

Appendix A. Example 3.13

Let G = R2 and N = Z2, and choose 1
3 ,

2
3 ∈ R/Z = T ∼= H2(N,U(1)).

Denote by µ̂3 an action of Ĝ = R2 on K with Mackey obstruction

3 ∈ R ∼= H2(R2,U(1)).

Then there is a Ĝ-equivariant Morita equivalence(
K⊗ C o 2

3
N, µ̂3 ⊗ inf

)
∼
(
K⊗ C o 1

3
N, id⊗ inf

)
.



NONCOMMUTATIVE T-DUALITY 979

Proof.

Step 1. The symmetry groups S ⊂ N of the two classes 1
3 ,

2
3 agree, i.e., the

maps h 1
3
, h 2

3
: N → N̂ have the same kernel S = (3Z)2. The annihilator of

S in Ĝ = R2 is S⊥ = (1
3Z)2, and the annihilator of S in N̂ is S⊥N = (1

3Z/Z)2.
We are in the following situation:

N⊥� _

��
S⊥ �
� //

����

Ĝ

����

// // Ĝ/S⊥

N̂/S S⊥/N⊥ S⊥N
� � // N̂

����

// // N̂/S⊥N

Ŝ .

The quotient map N = Z2 → (Z/3Z)2 = N/S induces a map in cohomology,
and let us denote by 1

3 also the pre-image of 1
3 in

1
3 ∈_

��

1
3Z/Z
� _

inclusion

��

∼= // H2(N/S,U(1))

induced map

��
1
3 ∈ T

∼= // H2(N,U(1)).

The action of Ĝ on Ŝ ∼= Prim(C o 1
3
N) ∼= Prim(C o 2

3
N) has stabiliser

S⊥ which acts via the quotient S⊥ → S⊥N = N̂/S and the dual actions on
Co 1

3
N/S and Co 2

3
N/S on these two algebras. Let us denote these actions

by σ and τ , respectively. Then there are Ĝ-equivariant isomorphisms(
K⊗ (C o 2

3
N), µ̂3 ⊗ inf

)
∼=
(
K⊗ IndĜS⊥(C o 2

3
N/S, τ), µ̂3 ⊗ Ind(τ)

)
∼=
(

IndĜS⊥(K⊗ (C o 2
3
N/S), µ̂3|S⊥ ⊗ τ), Ind(µ̂3|S⊥ ⊗ τ)

)
and (

K⊗ (C o 1
3
N), id⊗ inf

)
∼=
(
K⊗ IndĜS⊥(C o 1

3
N/S, σ), id⊗ Ind(σ)

)
∼=
(

IndĜS⊥(K⊗ (C o 1
3
N/S), id⊗ σ), Ind(id⊗ σ)

)
.
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Step 2. The product in C o 1
3
N/S is given by

(f ∗ f ′)(n) =
∑

m∈N/S

f(m)f ′(n−m) exp

(
2πi

1

3
m2(n1 −m1)

)
.

It is a straight forward computation to see that the mapping which assigns
to a function f : N/S → C the matrix f̃ with entries

f̃(a, b) :=
∑

c=0,1,2

f(c, b− a) exp

(
2πi

1

3
ca

)
, a, b = 0, 1, 2,

defines an isomorphism ˜: C o 1
3
N/S ∼= M3(C) = K(L2(Z/3Z)). The action

σ transforms under this isomorphism to a conjugation action

σ̃ : S⊥ → Aut(K(L2(Z/3Z))),

i.e., σ̃s = Ad(V (s)), where the unitary V (s) ∈ U(L2(Z/3Z)) is given by

(V (s)ψ)(a) = exp

(
2πi

1

3
c(a+ d)

)−1

ψ(a+ d),

for s = (1
3c,

1
3d) ∈ S⊥ = (1

3Z)2, ψ ∈ L2(Z/3Z). One can then start calculat-
ing

(∂V )(s, s′) = V (s′)V (s+ s′)−1V (s) = exp

(
2πi

1

3
dc′
)

= exp

(
2πi

2

3
dc′
)−1

.

So after identifying 1
3 · : Z2 ∼= (1

3Z)2 = S⊥, we find the Mackey obstruction
of σ̃ satisfying

H2(S⊥,U(1))
( 1
3
· )∗

∼= // H2(Z2,U(1))
∼= // T

Ma(σ̃)

∈

� // 2
3 .

∈

Step 3. The Mackey obstruction of µ̂3|S⊥ is given by the cocycle

ω(s, s′) = exp
(
2πi 3 s2s

′
1

)
= exp

(
2πi

1

3
dc′
)
,

for s = (s1, s2) = (1
3c,

1
3d), s′ = (s′1, s

′
2) = (1

3c
′, 1

3d
′) ∈ S⊥. So here we find

H2(S⊥,U(1))
( 1
3
· )∗

∼= // H2(Z2,U(1))
∼= // T

Ma(µ̂|S⊥)

∈

� // 1
3 .

∈
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Step 4. A similar isomorphism to that found in Step 2 can be used to
identify Co 2

3
N/S also with K(L2(Z/3Z)). In fact, the product in Co 2

3
N/S

agrees with the product in C o 2
3
N/S up to a sign:

(f ∗ f ′)(n) =
∑

m∈N/S

f(m)f ′(n−m) exp

(
2πi

2

3
m2(n1 −m1)

)

=
∑

m∈N/S

f(m)f ′(n−m) exp

(
2πi

1

3
m2(n1 −m1)

)−1

.

Following this sign in the construction made in Step 2 one finally finds that
the Mackey obstruction of τ is exactly the inverse of σ:

H2(S⊥,U(1))
( 1
3
· )∗

∼= // H2(Z2,U(1))
∼= // T

Ma(τ)

∈

� // 1
3 .

∈

Step 5. Summing up all the Mackey obstructions, we see that the two
C*-dynamical systems

(K⊗ C o 2
3
N/S, S⊥, µ̂3|S⊥ ⊗ τ) and (K⊗ C o 1

3
N/S, S⊥, id⊗ σ)

are equivalent. This implies that also their induced systems are equivalent
which proves the claim. �

Appendix B. Lemma 5.2

The canonical isomorphismH2(G,L∞(G/N,U(1))→ H2(N,U(1)) of ([Mo76,
Thm. 6]) makes the diagram

(37) H2(G,U(1))

�� ))
H2(N,U(1)) H2(G,L∞(G/N,U(1)))

∼=oo

commute, where the vertical map is restriction and the diagonal map is
induced by the inclusion of coefficients.

Proof. Let us introduce some notation used in ([Mo76]). Let

I(X) := {N → X}
for any X. It has the structure of an N -module by left translation:

n · f := f( − n) ∈ I(N).

Let us denote by A the quotient of I(U(1)) by the constants U(1), i.e., we
have an N -equivariant short exact sequence

(38) 1→ U(1)→ I(U(1))→ A→ 1,
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where U(1) has the trivial N -structure and A has the quotient structure.
We obtain an N -equivariant embedding i : A→ I(A) by (ia)(n) := (−n) ·a,
for a ∈ A,n ∈ N . The quotient of I(A) by i(A) is denoted by U(A), i.e., we
have another N -equivariant sequence

1→ A→ I(A)→ U(A)→ 1.

By definition (cp. the axioms of group cohomology as a derived functor
([Mo76, Sec. 4])) we have an exact sequence

1→ AN → I(A)N → U(A)N → H1(N,A)→ 0,

where the exponent denotes taking invariants. Let IGN (Y ) denote the induced
G-module for any Y -module, i.e., equivalence classes of functions f : G→ Y ,
such that for all n ∈ N (f(g − n) = n · (f(g)) holds for almost all g ∈ G.
Two functions are identified if they agree almost everywhere. IGN (Y ) is a
G-module by left translation. Note that IGN (U(1)) = L∞(G/N,U(1)) as G-
modules. The functor IGN ( ) from N -modules to G-modules is exact ([Mo76,
Proposition 19]) and again by the axioms and ([Mo76, Proposition 18]) we
have an exact sequence

1→ IGN (A)G → IGN (I(A))G → IGN (U(A))G → H1(G, IGN (A))→ 0.

The canonical isomorphism H2(N,U(1)) → H2(G, IGN (U(1))) is defined by
the diagram:

1

��

1

��
AN

��

∼= // IGN (A)G

��
I(A)N

��

∼= // IGN (I(A))G

��
U(A)N

��

∼= // IGN (U(A))G

��
H2(N,U(1)) H1(N,A)

∼=oo

��

∼= // H1(G, IGN (A))

��

∼= // H2(G, IGN (U(1)))

0 0

.

Here the top three isomorphisms are given by sending an invariant element
ν to the constant function ν̄ : g 7→ ν (cp. [Mo76, Proposition 19]). The
dotted isomorphism is induced by the one above and the two isomorphisms
to the left and right are the connecting morphisms in the long exact sequence
induced by (38).
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Let us describe the dotted arrow. To do so, start with some element
x ∈ H1(N,A) and choose some ν ∈ U(A)N which maps to x. Following the
isomorphism to the right we get ν̄ ∈ IGN (U(A))G ⊂ IGN (U(A)). Let us denote
by ν̃ ∈ IGN (I(A)) an element that maps to ν̄. Then the image y of x under
the dotted arrow is (the class of) dGν̃ : G→ IGN (A) defined by

G 3 g → ν̃( − g) ν̃( )−1 ∈ IGN (i(A)) ∼= IGN (A).

Let us now describe the element x in terms of ν̃: We consider for each
n ∈ N a co-null set Sn ⊂ G such that ν̃(g − n) = n · ν̃(g) holds for all
g ∈ Sn. Then let S1 :=

⋂
n∈N Sn. So ν̃(g− n) = n · ν̃(g) holds for all n ∈ N

and all g ∈ S1. Moreover, there is another co-null set S2 ⊂ G such that
ν̃(g) mod A = ν for all g ∈ S2. Let s ∈ S1 ∩S2, then ν̃(s) ∈ I(A) is a lift of
ν ∈ U(A)N , and x is represented by the class of dN (ν̃(s)) : N → A defined
by

N 37→ n · (ν̃(s)) ν̃(s)−1 = ν̃(s− n) ν̃(s)−1 ∈ i(A) ∼= A.

Note that that the operation restriction to N and evaluation at s transforms
dGν̃ into dN (ν̃(s)): (dGν̃)(n)(s) = dN (ν̃(s))(n).

Let σ : A → I(U(1)) be a Borel section of the quotient map. Then the
element [ωN,ν,s] in H2(N,A) corresponding to x = [dn(ν̃(s))] is given by

ωN,ν̃,s(n,m) = σ(dN (ν̃(s))(m)) σ(dN (ν̃(s))(n+m))−1 σ(dN (ν̃(s))(n)).

The element [ωG,ν̃ ] in H2(G, IGN (U(1))) corrsponding to y = [dGν̃] is given
by

ωG,ν̃(g, h) = σ∗((dGν̃)(h)( − g)) σ∗((dGν̃)(g + h)( ))−1 σ∗((dGν̃)(g)( ))

where σ∗ : IGN (A) → IGN (I(U(1))) is just composition with σ. Note again
that that the operation restriction to N and evaluation at s transforms ωG,ν̃
into ωN,ν̃,s: ωG,ν̃(n,m)(s) = ωN,ν̃,s(n,m).

Now let us turn to the commutativity of (37). Let [ω] ∈ H2(G,U(1)), and
consider its image y (also given by ω) in H2(G, IGN (U(1))). We can represent
y as above by finding some ν, ν̃ such that for all g, h

ω(g, h) (dGc)(g, h) = ωG,ν̃(g, h)

holds in IGN (U(1)), for some cochain c : G→ IGN (U(1)). So there is another
co-null set S3 such that

ω(n,m) (dc)(n,m)(s) = ωG,ν̃(n,m)(s)

holds for all n,m ∈ N and all s ∈ S3. If we choose s0 ∈ S1∩S2∩S3, then by
the above construction we have that the image of [ω] along the composition
in diagram (37) is given by the cocycle

ωN,ν̃,s0(n,m) = ωG,ν̃(n,m)(s0)

= ω(n,m) c(m)(s0) c(n+m)(s0)−1 c(n)(s0).

It follows that ωN,ν̃,s0 ∼ ω|N×N by the cochain n 7→ c(n)(s0). This proves
the lemma. �
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