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Finite volume calculation of K-theory
invariants

Terry A. Loring and Hermann Schulz-Baldes

Abstract. Odd index pairings of K1-group elements with Fredholm
modules are of relevance in index theory, differential geometry and ap-
plications such as to topological insulators. For the concrete setting of
operators on a Hilbert space over a lattice, it is shown how to calculate
the resulting index as the signature of a suitably constructed finite-
dimensional matrix, more precisely the finite volume restriction of what
we call the spectral localizer. In presence of real symmetries, secondary
Z2-invariants can be obtained as the sign of the Pfaffian of the spec-
tral localizer. These results reconcile two complementary approaches to
invariants of topological insulators.

Contents

1. Overview and main results 1112

1.1. Odd-dimensional index pairings 1112

1.2. Aims of the paper 1112

1.3. Construction of the spectral localizer 1113

1.4. Localized index pairings 1114

1.5. Connection with the η-invariant 1116

1.6. Even-dimensional pairings 1117

1.7. Implementation of symmetries 1117

1.8. Applications to topological insulators 1120

1.9. K-theoretic perspectives 1122

2. The image of the index map 1123

3. Application to the Hilbert space over the lattice Zd 1128

4. Quantitative estimate on stabilization of signature 1130

5. The η-invariant of the spectral localizer 1133

Acknowledgements 1138

References 1138

Received May 22, 2017.
2010 Mathematics Subject Classification. 46L80, 19K56, 58J28.
Key words and phrases. K-theory, spectral flow, topological insulator.
The first author was in part supported by a grant from the Simons Foundation

(#419432). The second author was in part supported by the DFG.

ISSN 1076-9803/2017

1111

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2017/Vol23.htm
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1. Overview and main results

1.1. Odd-dimensional index pairings. To start out, let us spell out an
example of an invariant from classical differential topology which can be
calculated by the tools described below. Suppose we are given a smooth
function k ∈ Td 7→ A(k) of complex invertible N ×N matrices on the torus
Td of odd dimension d. An invariant of this function A is the odd Chern
number given by

(1) Chd(A) =
(1

2(d− 1))!

d!

( ı

2π

) d+1
2

∫
Td

Tr
((
A−1dA

)d)
,

where d denotes exterior differentiation. Note that for d = 1 and N = 1
this is just the winding number of a complex-valued function and therefore
Chd(A) is also called a generalized winding number. It can be interpreted
as the result of a paring of the class in K1(Td) specified by A with a de
Rham cohomology class and thus is indeed a homotopy invariant. The
normalization constant is chosen such that Chd(A) ∈ Z. Actually, it is
possible to calculate Chd(A) as the index of a Fredholm operator in the
following manner. Suppose we are given a faithful irreducible representation
of the complex Clifford algebra Cd by selfadjoint matrices Γ1, . . . ,Γd on CN
(possibly given only after augmenting N). Consider the associated Dirac

operator D = ı
∑d

j=1 Γj ∂kj on L2(Td,CN ) as well as its positive spectral

projection Π = χ(D ≥ 0), also called the Hardy projection. Then viewing
A as a multiplication operator on L2(Td,CN ), the operator ΠAΠ + (1−Π)
is Fredholm and the following index theorem holds:

(2) Chd(A) = Ind
(
ΠAΠ + (1−Π)

)
.

For d = 1 and N = 1 this is historically the very first index theorem proved
by Fritz Noether in 1920 [23]. The case of larger N goes back to at least
Gohberg and Krein [16]. For larger odd d, a proof is contained as a special
case in [27], which also considers extensions to noncommutative crossed
product algebras, but there likely exist earlier contributions for d ≥ 3. The
particular form of the Fredholm operator ΠAΠ + (1 − Π) on the r.h.s. of
(2) always appears in index theorems, both in classical differential topology
and in noncommutative geometry [10]. It is the main object of the analysis
below.

1.2. Aims of the paper. The main aim of this paper is to provide an
alternative way to calculate the index in (2) as the signature of a suitably
constructed finite-dimensional matrix which we call the spectral localizer.
As will be discussed below, this makes the invariant calculable by numerical
means in interesting applications, and, in particular, also when there is no
classical differential calculus available so that (1) fails and noncommutative
analysis tools are needed. From an analytic perspective, this allows to cal-
culate the index of the Fredholm operator ΠAΠ + (1 − Π), an intrinsically
infinite-dimensional object, from finite-dimensional analysis.



FINITE VOLUME CALCULATION OF K-THEORY INVARIANTS 1113

As already stressed in the title of the paper and in Section 1.1, the above
Fredholm operator stems from the pairing of a K1-class with the Hardy
projection of a Dirac operator. In the terminology of K-homology and
noncommutative geometry, the latter fixes an unbounded K-cycle or an
unbounded odd Fredholm module. In Section 1.7 we will further implement
symmetries invoking a real structure and then the spectral localizer also
allows to calculate parings of KR-group elements with KR-cycles, still as
signature or as sign of the Pfaffian of the spectral localizer.

While all these abstract structures are in the background and actually
tools from K-theory will be essential for our proof of the main result, it can
and will be stated by only appealing to basic notions of functional analysis,
see Section 1.4. We hope that this makes the result accessible to a wider
mathematical audience and to users from the field of numerical K-theory.
In Section 1.9 we then give a complementary K-theoretic perspective on the
main results.

1.3. Construction of the spectral localizer. To construct the spectral
localizer and at the same time considerably enlarge the class of index pairings
beyond the example in Section 1.1, we use the discrete Fourier transform
to pass from L2(Td,CN ) to `2(Zd,CN ). The (dual) Dirac operator then
becomes

(3) D =

d∑
j=1

Γj Xj ,

where, as above, the faithful representation of the Clifford algebra acts on
the matrix degrees of freedom only and X1, . . . , Xd are the d components of
the selfadjoint commuting position operators on `2(Zd) defined by Xj |n〉 =

nj |n〉, where n = (n1, . . . , nd) ∈ Zd and |n〉 ∈ `2(Zd) is the Dirac Bra-Ket
notation for the unit vector localized at n. The Fourier transform of the
multiplication operator by k ∈ Td 7→ A(k) is a bounded invertible operator
A on `2(Zd,CN ) given by a discrete convolution. The differentiability of
k ∈ Td 7→ A(k) implies that

(4) ‖[D,A]‖ < ∞.

This means that the commutator [D,A] extends to a bounded operator.
The bound (4) is the crucial hypothesis below. It holds for a much wider
class of invertible operators A on `2(Zd,CN ) than those obtained by Fourier
transform of a differentiable multiplication operator. From now on we will
work with general invertible operators A on the Hilbert space `2(Zd,CN )
satisfying (4), which we also call a locality bound on A. One of the conse-
quences of (4) is that the operator ΠAΠ + (1 − Π) is Fredholm where still
Π = χ(D ≥ 0) is the Hardy projection (e.g., p. 462 in [17]).
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From D and A let us now build two self-adjoint operators D′ and H on
`2(Zd,C2N ):

(5) D′ =

(
D 0

0 −D

)
, H =

(
0 A

A∗ 0

)
.

Then the spectral localizer Lκ associated to A and tuning parameter κ > 0
is defined by

(6) Lκ = κD′ +H =

(
κD A

A∗ −κD

)
.

Just as D, also D′ is an unbounded operator with discrete spectrum which
is not invertible. A standard procedure to eliminate the kernel is to add
a constant mass term, either to D or in the off-diagonal entries of D′. It
will, however, be part of the main result below that also with the local and
invertible off-diagonal entry A the spectral localizer Lκ has trivial kernel.
Let us note that, if A is invertible, then so is H and the spectral gaps
g = ‖A−1‖−1 = ‖H−1‖−1 coincide.

1.4. Localized index pairings. Clearly the spectral localizer Lκ = L∗κ is
self-adjoint. As D′ is unbounded and has discrete spectrum, the bounded
operator H will be viewed as a perturbation. This perturbation does modify
the eigenvalues. While those of D′ lie symmetrically around the origin,
there may well be a spectral asymmetry for Lκ. The main result of this
paper states that this spectral asymmetry can already be read off from
finite volume approximants of Lκ and that it is equal to the index of the
Fredholm operator discussed above. This finite volume restriction is

(7) Lκ,ρ =

(
κDρ Aρ

A∗ρ −κDρ

)
,

where Dρ and Aρ are the (Dirichlet) restrictions to the finite-dimensional

Hilbert space `2(Dρ) ⊗ CN over the discrete ball Dρ = {x ∈ Zd : ‖x‖ ≤ ρ}
of radius ρ > 0. Also the matrix Lκ,ρ will be referred to as the spectral
localizer.

Theorem 1. Let A be an invertible, bounded operator on `2(Zd) ⊗ CN ,
satisfying (4), with d odd. Provided that

(8) ‖[D,A]‖ ≤ g3

18 ‖A‖κ
,

and

(9)
2 g

κ
≤ ρ,
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the matrix Lκ,ρ is invertible and thus has a well-defined signature, which is
given by

(10)
1

2
Sig(Lκ,ρ) = Ind

(
ΠAΠ + (1−Π)

)
.

This result achieves our main goal to read off the topological information
contained in the index from basic spectral data of the matrix Lκ,ρ, justifying
hence the name spectral localizer. Let us note that this localization is on
the eigenvalues of Lκ,ρ with small absolute value. Actually, Lκ has infinitely
many positive and negative eigenvalues (and a compact resolvent) and the
effect of A is to determine the asymmetry of the low lying spectrum of Lκ,
which can then already be read off from Lκ,ρ. In our situation where D
is given by (3), this localization also takes place in the physical space of
the underlying lattice Zd so that it also makes sense to speak of spatial
localization. This discussion also justifies the following terminology:

Definition 1. The half-signature on the l.h.s. of (10) is called the localized
index pairing of the invertible operator A with the Fredholm module specified
by D.

This deviates from the first author’s work [20] where Lκ,ρ was called the
Bott operator and its half-signature the Bott index. While there are some
good reasons to include Bott in the name (see Section 1.9), these terms have
in the meanwhile been used in numerous publications for a different object
[1, 11, 22, 31]. To avoid future confusion and also because of the broader
mathematical scope linked to Lκ,ρ (see also Section 1.9), we suggest using
spectral localizer for Lκ,ρ as well as Definition 1 in the future.

The proof of Theorem 1 will ultimately be given at the end of Section 4.
Here is a way to apply the result. From A one first infers ‖[D,A]‖, ‖A‖
and the gap g = ‖A−1‖−1, then next choses κ sufficiently small such that
the first bound (8) holds, and uses the second bound (9) to determine the
minimal system size ρ0. Then just remains to build the finite matrix Lκ,ρ
as in (6) and calculate its signature. This signature is equal to the index for
any ρ ≥ ρ0, also arbitrarily large. If g, ‖A‖ and ‖[D,A]‖ are of the order of
unity, then one infers roughly ρ0 ≈ 100. Hence only relatively small matrix
sizes are needed. We further note that for a unitary A, one has ‖A‖ = g = 1
so that the bounds in Theorem 1 somewhat simplify. More comments on
the numerical implementation are given in Section 1.8.

Let us also add a few words of caution by discussing situations where
Theorem 1 does not apply. Suppose d = 1 and that A is given by the right
shift on [−2ρ, 2ρ] and the identity outside of [−2ρ, 2ρ]. Now the signature
of Lκ,ρ is 1, but on the other hand the Fredholm operator ΠAΠ + 1− Π is
a compact perturbation of the identity and thus has vanishing index. The
problem is, of course, that the invertibility of A is a global assumption which
is violated due to the defect at −2ρ. If one reestablishes the invertibility by
using periodic boundary conditions so that A consists of the cyclic shift on
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[−2ρ, 2ρ], then the added matrix element leads to a commutator [X,A] of
the order of ρ, which according to (8) and (9) forces one to use considerably
larger volumes for the finite volume calculation, which then leads indeed to
a vanishing signature invariant.

1.5. Connection with the η-invariant. The η-invariant was introduced
by Atiyah-Patodi-Singer [3] as a measure of the spectral asymmetry of an
invertible self-adjoint operator L = L∗ on a Hilbert space under the con-
dition that L has compact resolvent with eigenvalues decaying sufficiently
fast such that |L|−s is trace class for s > 0 sufficiently large. Then first the
η-function is defined by

(11) ηs(L) = Tr(L|L|−s−1) =
∑
j

sgn(λj) |λj |−s,

where λj are the eigenvalues of L. The η-function has a meromorphic ex-
tension given by

(12) ηs(L) =
1

Γ( s+1
2 )

∫ ∞
0

dt t
s−1

2 Tr(Le−tL
2
).

Whenever ηs(L) is regular at s = 0, one says that the η-invariant of L is
well-defined and given by

(13) η(L) = η0(L) =
1√
π

∫ ∞
0

dt t−
1
2 Tr(Le−tL

2
).

As L = L∗ one then has η(L) ∈ R. Comparing with (11), one also sees that
η(L) can indeed be interpreted as a measure of the spectral asymmetry of
the spectrum. If L is a matrix, then clearly η(L) exists and

(14) η(L) = Sig(L).

Getzler [14] pointed out that there is a close relation between the η-
invariant, θ-summable Fredholm modules and the JLO-cocycle [19]. Further
elements of this theory as well as an extension to the semifinite case were
developed by Carey and Phillips [9]. For the setting described above, the
following result is proved in Section 5. Roughly, it makes more precise in
which sense the limit ρ→∞ in Theorem 1 may be taken.

Theorem 2. Let A be local on `2(Z,C) in the sense that (4) holds. Then
the spectral localizer Lκ defined in (6) has a well-defined η-invariant which
is equal to twice the index in (10). In particular, whenever the conditions
(8) and (9) hold,

η(Lκ) = Sig(Lκ,ρ).

As an application of Theorem 2, we provide an alternative proof, for the
case d = 1, of Theorem 1 in Section 5. It shows that the conditions (8) and
(9) cannot be improved considerably.



FINITE VOLUME CALCULATION OF K-THEORY INVARIANTS 1117

1.6. Even-dimensional pairings. Theorem 1 only considers odd-dimen-
sional systems leading to odd index pairings. This is all we actually prove
in this paper, but as an outlook to future work let us state that the spectral
localization technique also works for even index pairings. As an example
of such a pairing, consider a projection P on `2(Zd,CN ) with d even. The
even-dimensional Dirac operator has a grading Γd+1 allowing us to extract

the Dirac phase F as a unitary operator from D|D|−1 =
(

0 F
F ∗ 0

)
. Then the

Fredholm operator PFP + (1 − P ) is the resulting even index pairing and
its index is equal to the top Chern number of P [27]. On the other hand,
one can construct an associated spectral localizer

Lκ = κD + (2P − 1)Γd+1.

In an upcoming publication we show that, if ‖[D,P ]‖ <∞, κ is sufficiently
small and ρ sufficiently large, the index of PFP + (1 − P ) is equal to the
signature of the finite volume restriction Lκ,ρ. It is then also possible to
implement symmetries for such even index pairings, similar to what is done
in Section 1.7 for odd index pairings.

1.7. Implementation of symmetries. Whenever the Hilbert space has
a real structure, the invertible operator A can be real, symmetric, quater-
nionic or antisymmetric and then specifies a class in KR-theory of a suitable
operator algebra [5, 18]. Furthermore, also the Dirac operator D given in
(3) can have symmetry properties involving the real structure, so that it de-
fines a KR-cycle. In the spirit of the presentation above, we will not stress
these abstract notions, but rather present here a hands-on approach show-
ing how Z2-invariants can be produced from the spectral localizer by using
the sign of its Pfaffian, just as in the first author’s earlier work [20]. This
will be established by appealing to the paper [18] by Grossmann and the
second author which systematically analyzes the fate of the index pairings
T = ΠAΠ + (1 − Π) in the presence of real symmetries when the complex
Hilbert space is equipped with a fixed real structure which we simply denote
by a complex conjugation bar. It is shown in [18] that the irreducible rep-
resentation Γ1, . . . ,Γd of the Clifford algebra can be chosen such that there
exists a real unitary matrix Σ on the representation space leading to

(15)

dmod 8 1 3 5 7

Σ∗DΣ = D −D D −D
Σ2 = 1 −1 −1 1

Σ∗Π Σ = Π 1−Π Π 1−Π

As an example, let us consider d = 3. Then D = X1σ1 +X2σ2 +X3σ3 where
σ1, σ2, σ3 are the Pauli matrices, namely σ1 and σ3 are real and σ2 is purely
imaginary. Hence here Σ = ıσ2, where ı =

√
−1 is the imaginary unit. The

last line in (15) follows from the second one as Π = χ(D > 0) (some care is
needed on the kernel of D, where Σ has to be defined separately, see [18] for
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details). Hence Π is respectively real, odd Lagrangian, quaternionic or even
Lagrangian.

The other ingredient A of the index pairing can be even symmetric,
quaternionic, odd symmetric or real with respect to another real unitary
symmetry operator S which is supposed to be given:

(16)

jmod 8 2 4 6 8

S∗AS = A∗ A A∗ A

S2 = 1 −1 −1 1

Here the index j is merely used for book keeping, in a way consistent with
[18] which also specifies the associated Real K-theory. We, moreover, sup-
pose that

S Σ = ΣS, S D = DS, ΣA = AΣ.

This is guaranteed if, e.g., the representation space of Γ1, . . . ,Γd is tensored
to the Hilbert space on which A is acting, a situation that is given in the
application to topological insulators (Section 1.8). It is convenient to encode
the tables (15) and (16) into four signs sD, s′D, sA and s′A by the following
equations:

Σ∗DΣ = sDD, Σ2 = s′D 1, S∗AS = A[sA], S2 = s′A 1,

where A[1] = A and A[−1] = A∗. Given a combination of these symmetries,
the Noether index of T = ΠAΠ + (1 − Π) can be forced to either be even
or to vanish, and in the latter case it may nevertheless be possible that the
parity of its nullity is a well-defined secondary Z2-invariant:

Ind2(T ) = dim(Ker(T )) mod 2 ∈ Z2.

Theorem 1 in [18], with the roles of d and j exchanged and shifted, states
that index parings T = ΠAΠ + (1−Π) take the following values (using Ind
and Ind2):

(17)

Ind(2)(T ) j = 2 j = 4 j = 6 j = 8

d = 1 0 2Z Z2 Z
d = 3 2Z Z2 Z 0

d = 5 Z2 Z 0 2Z
d = 7 Z 0 2Z Z2

This concludes the symmetry analysis of the index pairings on the r.h.s.
of (10). Now let us consider the l.h.s. and analyze the symmetries of the
spectral localizers Lκ given by (6), as well as its finite volume restriction
Lκ,ρ. For that purpose, we diagonally extend Σ and S to 2 × 2 matrices.
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Then

(ΣS)∗Lκ(ΣS) =

(
κΣ∗DΣ S∗AS

(S∗AS)∗ −κΣ∗DΣ

)

=

(
κ sDD A[sA]

(A[sA])∗ −κ sDD

)
.

This can conveniently be rewritten using the Pauli matrices σ1 =
(

0 1
1 0

)
and

σ3 =
(

1 0
0 −1

)
. Setting σ

{s}
j = (σj)

1−s
2 , one finds

(ΣS)∗Lκ(ΣS) = σ
{sA}
1

(
κ sA sDD A

A∗ −κ sA sDD

)
σ
{sA}
1

= sA sD σ
{sA}
1 σ

{sAsD}
3 Lκσ

{sAsD}
3 σ

{sA}
1 .

Introducing the real symmetry R = ΣSσ
{sA}
1 σ

{sAsD}
3 and signs sL and s′L by

R∗ LκR = sB Lκ, R2 = s′L 1,

one then has sL = sA sD and s′L = s′Ds
′
A (sA)

sD+1

2 . Inserting this into a
table gives

(18)

sL = , s′L = j = 2 j = 4 j = 6 j = 8

d = 1 −1, −1 1, −1 −1, 1 1, 1

d = 3 1, −1 −1, 1 1, 1 −1, −1

d = 5 −1, 1 1, 1 −1, −1 1, −1

d = 7 1, 1 −1, −1 1, −1 −1, 1

As all real symmetry operators Σ, S and R are local (commute with the
position operators), the symmetry properties of the finite volume approxi-
mations Lκ,ρ are the same as those of Lκ. The pattern of signs in (18) is
the same as in (17), so it merely remains to understand why the four com-
bination of signs sL and s′L imply that the invariant of Lκ,ρ takes the four
different values appearing in (17). This is achieved as follows:

Proposition 1. Let L = L∗ be an invertible complex matrix, and R = R a
real unitary matrix of same size such that for two signs sL and s′L

R∗ LR = sL L, R2 = s′L 1.

(i) If sL = 1 and s′L = 1, then Sig(L) ∈ Z can take any integer value.
(ii) If sL = 1 and s′L = −1, then Sig(L) ∈ 2Z can take any even integer

value.
(iii) If sL = −1 and s′L = 1, then Sig(L) = 0, but setting M = R

1
2

one obtains a real antisymmetric matrix ıMLM∗ with invariant
sgn(Pf(ıMLM∗)) ∈ Z2.

(iv) If sL = −1 and s′L = −1, then Sig(L) = 0.
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Proof. In (i) and (ii) the self-adjoint matrix L is real and quaternionic
respectively, implying the claim. The signature in (iii) and (iv) vanishes be-
cause R∗LR = −L and the signature is invariant under complex conjugation
and matrix conjugation. In (iii), the first branch of the root is used so that
the spectrum of M is {ı, 1}. As M = M∗ = M−1, the matrix MLM∗ is an-
tisymmetric and selfadjoint so that ıMLM∗ is real antisymmetric. It hence
has a well-defined real Pfaffian Pf(ıMLM∗), which cannot vanish because
L and M are invertible. Let us note that choosing the other branch of the
root leads to a different sign. �

In conclusion, provided the conditions (8) and (9) in Theorem 1 hold,
the eight integer valued invariants of the index pairing ΠAΠ + (1 − Π)
in (17) can be calculated as the signature of the associated finite volume
spectral localizer Lκ,ρ. Furthermore, Proposition 1(iii) suggests that the
four Z2-entries in (17) can be calculated from the sign of the Pfaffian of the
localizer. A formal proof of this fact is not given here. Let us note, however,
that due to the homotopy invariance of both Z2-invariants (by homotopies
conserving the symmetries) it is sufficient to verify the equality on each
connected component. In any case, all the invariants extracted from Lκ,ρ by
Proposition 1 are well-defined and are called Real localized index pairings,
similar as in Definition 1. Examples are given in the next section.

1.8. Applications to topological insulators. In this section, we indi-
cate how the mathematical results of this paper can be applied to topologi-
cal insulators. After comments on numerical implementation, we focus on a
few physically relevant examples. A more detailed account with numerical
results will be given elsewhere. For background information on topological
insulators, we refer to [6, 7, 18, 20, 21, 27, 29].

Theorem 1 can immediately be applied to so-called chiral tight-binding
Hamiltonians H on `2(Zd) ⊗ C2N of the form (5). The chiral symmetry

then reads J∗HJ = −H where J =
(
1 0
0 −1

)
. The described system is then

an insulator when 0 is not in the spectrum of H, which is equivalent to
the invertibility of A. Furthermore, the commutator bound (4) reflects the
locality ofH and it generally holds for tight-binding Hamiltonians of physical
interest. The index of ΠAΠ + (1 − Π) is then [27] precisely the strong
invariant ”higher winding number” used in the physics literature, e.g., [29],
which, when nonzero, makes the insulator into a topological one. Theorem 1
now states that it can be calculated as the localized index pairing. For d = 1
and d = 3, this was explicitly spelled out and numerically implemented in
[20] (and called the Bott index there, see the discussion in Section 1.4).

Let us now advertise the advantages of the spectral localizer when it comes
to the numerical calculation of topological indices. First of all, the definition
of Lκ,ρ is directly given in terms of the Hamiltonian and does not involve
a spectral flattening as in many other numerical procedures. Secondly, the
determination of the signature of Lκ,ρ by the block Chulesky algorithm is
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only polynomial in the system size and can hence be carried out very effi-
ciently (note that the block Cholesky decomposition itself is not needed).
To assure the validity of the result (and thus the good choices of κ and ρ),
an easy test is to determine the gap size of Lκ,ρ by the inverse power method
and verify that it is sufficiently large. Several further advantages explored
in future work are the following. The spectral gap of Lκ,ρ still remains open
in an Anderson localization regime and thus the method also applies in this
regime. The particular choice of Dirichlet boundary conditions is completely
irrelevant, merely locality of the boundary conditions is crucial. One can
modify the definition of the spectral localizer to calculate weak topological
phases and spin Chern numbers. Moreover, the local character of Lκ,ρ allows
for the analysis of topologically inhomogeneous materials and hence changes
in the quantum phase.

Next we briefly mention other numerical approaches to disordered topo-
logical insulators. In [12] a scattering theory approach is implemented. The
works [26, 30] successfully implement the noncommutative version of (1) to
calculate the invariants. Another attempt to localize topological informa-
tion in physical space is [4]. Finally the works [1, 11, 22, 31] use the Bott
index.

The above discussion only addressed complex topological insulators with-
out particle-hole and time-reversal symmetry. If the chiral Hamiltonian has
a supplementary real symmetry, we are in the framework of Section 1.7. The
paper [18] systematically analyzes the symmetries of the Hamiltonian as well
as the Dirac operators and shows how the periodic table of topological in-
sulators [29] can be explained from an index theory point of view. Of the
64 real classes, the 16 cases of (17) only correspond to the odd-dimensional
chiral systems. As the systems with integer invariants are dealt with directly
by Theorem 1, let us highlight the two Z2-invariants in low dimension. For
d = 1, if the SSH model has a even time-reversal symmetry and thus lies
in Class DIII, one can calculate the Z2-index from the spectral localizer by
using Proposition 1(iii). This agrees with Section 4.4 in [20]. For d = 3,
the chiral Hamiltonian should have a supplementary odd time-reversal sym-
metry and thus lie in Class CII in order to have a nontrivial Z2-invariant,
calculable again by Proposition 1(iii).

Let us point out that the tools of this paper only allow us to deal with
chiral Hamiltonians and that this does not cover all Z2-indices of interest.
Important in dimension d = 1 is the Class D with the so-called Kitaev chain
as standard topologically nontrivial representative. Section 4.3 of [20] states
that the sign of the determinant of a spectral localizer gives the desired
invariant in this case. This invariant has been used for a numerical study of
a model of a potential two-dimensional weak topological superconductor in
Class D [13]. To show that it coincides with the Z2-index of [18] will be the
another objective of a future publication.
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1.9. K-theoretic perspectives. The Dirac operator (3) defines an un-
bounded odd Fredholm module (and thus a K-homology class) for the com-
mutative C∗-algebra generated by the invertible operator A on `2(Zd,CN ).
In the spirit of noncommutative geometry this specifies a spatial structure
[10] and the finite volume restriction in (7) is precisely w.r.t. to this notion of
space. The particular form of the Hilbert space and D was chosen to accom-
modate our applications to topological insulators, and because it naturally
extends the introductory example of Section 1.1. However, the technique
of the spectral localizer applies to any odd index pairing constructed from
an invertible operator A and an unbounded odd Fredholm module for a C∗-
algebra containing A. The K-theoretic proof given in the remainder of the
paper goes through with minor modifications.

The K-theoretic proof below is rooted in a general principle, namely that
the index map of an odd-dimensional fuzzy sphere is an even-dimensional
fuzzy sphere (and similarly, even-dimensional fuzzy spheres are mapped un-
der the exponential map of K-theory to an odd-dimensional sphere, but this
will not be used here). Before explaining this in some detail, let us state a
definition and general fact (following readily from Proposition 3 below):

Definition 2. Let Q be a unital C∗-algebra. A fuzzy d-sphere of width δ < 1
is a collection of self-adjoints Y1, . . . , Yd+1 ∈ Q with spectrum in [−1, 1] such
that ∥∥∥∥∥∥1−

∑
j=1,...,d+1

(Yj)
2

∥∥∥∥∥∥ < δ, ‖[Yj , Yi]‖ < δ.

Proposition 2. Let 0→ K ↪→ B → Q→ 0 be a short exact sequence of C∗-
algebras. If d is odd, a fuzzy d-sphere in Q specifies an element [A]1 ∈ K1(Q)
via

A =
∑

j=1,...,d

Yj Γj + ı Yd+1.

If B ∈ B is a lift of A and B∗B = R2, the image of the index map in K0(K)
is given by

Ind[A]1 =

[(
2R2 − 1 2(1−R2)

1
2B

2B∗(1−R2)
1
2 −(2R2 − 1)

)]
0

.

In our situation, K and B are the compact and bounded operators on
H and Q is the Calkin algebra. If A is unitary, the Fredholm operator
ΠAΠ + (1 − Π) is nothing but a unitary in the Calkin algebra and its real
and imaginary part can hence also be seen as a (not so fuzzy) 1-sphere. It
is now shown in Theorem 3 that Ind[A]1 can be understood as a fuzzy 2-
sphere in K. The topological content of this fuzzy 2-sphere is essentially the
Bott projection, and it will be show that it can be read off of finite-volume
approximations by the signature.
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Sections 1.7 and parts of Section 1.8 alluded to notions of Real K-theory
and Real K-homology. Despite considerable recent efforts [5, 6, 7, 18], sev-
eral aspects of the theory (in particular, the boundary maps) are not in a
satisfactory state. Nevertheless, the cited papers allow the expert to readily
read off the KR-homology classes of D and KR-classes of A.

2. The image of the index map

Let us begin by recalling the definition of the K-groups of a C∗-algebra
A which may be unital or nonunital. As in [5] or [18, Section 4.2], we prefer
to work with self-adjoint unitaries rather than projections for the definition
of K0(A). The unitization A+ = A ⊕ C is equipped with the product
(A, t)(B, s) = (AB + As + Bt, ts) and the adjunction (A, t)∗ = (A∗, t) as
well as the natural C∗-norm ‖(A, t)‖ = max{‖A‖, |t|}. The unit in A+ is
1 = (0, 1). The unitization sits in an exact sequence of C∗-algebras

0→ A i
↪→ A+ ρ→ C→ 0.

A right inverse to ρ is given by i′(t) = (0, t), and the map

s = i′ ◦ ρ : A+ → A+

extracts the scalar part. Set

(19) V0(A) =
{
V ∈ ∪n≥1M2n(A+) : V ∗ = V, V 2 = 1, s(V ) ∼0 E2n

}
,

where M2n(A+) are the 2n× 2n matrices with entries in A+, and s(V ) ∼0

E2n forces the scalar part of V to be homotopic to

E2n = E⊕
n

2 with E2 =

(
1 0

0 − 1

)
.

An equivalence relation ∼0 on V0(A) is defined by homotopy within the
self-adjoint unitaries of fixed matrix size, complemented by

(20) V ∼0

(
V 0

0 E2

)
∈ M2(n+1)(A+), V ∈ M2n(A+).

Then the quotient K0(A) = V0(A)/ ∼0 becomes an abelian group with
neutral element 0 = [E2] via

(21) [V ] + [V ′] =

[(
V 0

0 V ′

)]
.

By [5, 18], this definition of K0(A) is equivalent to the standard one which
can be found, e.g., in [17, 28]. The standard way to introduce the group
K1(A) is to set

V1(A) =
{
U ∈ ∪n≥1Mn(A+) : U−1 = U∗

}
,
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and to define an equivalence relation ∼1 by homotopy and [U ] = [
(
U 0
0 1

)
].

Then K1(A) = V1(A)/ ∼1 with addition again defined by

[U ] + [U ′] = [U ⊕ U ′].

If A is unital, one can work with Mn(A) instead of Mn(A+) in V1(A),
without changing the definition of K1(A).
K-theory connects the K-groups of a given short exact sequence

(22) 0 → K → B π→ Q → 0

of C∗-algebras in an associated exact sequence of abelian groups. The main
focus is here on one of the connecting maps, namely the index map

Ind : K1(Q)→ K0(K).

While there is a standard definition of this map [17, 28], let us bring it into
a form convenient for our purposes, as in [5].

Proposition 3. Let the contraction B ∈ Mn(B+) be a lift of a unitary
U ∈ Mn(Q+), namely π+(B) = U where π+ : B+ → Q+ is the natural
extension of π in (22). Then

(23) Ind[U ] = [V ], V =

(
2BB∗ − 1 2B

√
1−B∗B

2B∗
√

1−BB∗ 1− 2B∗B

)
.

Proof. First of all, let us note that indeed V ∈ K+ is a self-adjoint unitary
V ∈ K+ with s(V ) ∼0 E2n because

π+(2BB∗ − 1) = 1 and π+(1− 2B∗B) = −1,

and B∗
√

1−BB∗ =
√

1−B∗BB∗. The definition of Ind as given in [28]
uses a lift W ∈ B+ of diag(U,U∗) and is

(24) Ind[U ] = ϕ0

([
W

(
1 0

0 0

)
W ∗

]
−

[(
1 0

0 0

)])
,

where ϕ0 is the map defined in [18, Proposition 10] identifying the standard
projection picture of K0(A) from [28] to (19). Due to (20), this eliminates
the second summand in (24) and leads to

Ind[U ] =

[
2W

(
1 0

0 0

)
W ∗ −

(
1 0

0 1

)]
.

Choosing

W =

(
B −

√
1−BB∗

√
1−B∗B B∗

)
,

now concludes the proof. �
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Under supplementary hypothesis, it is possible to choose further refined
representatives of the image of the index map. The following version is
tailored to analyze odd index pairings of the type ΠAΠ + 1−Π where A is
unitary and Π is a projection. It will be shown in Section 3 below how this
abstract result can be applied to a concrete situation.

Theorem 3. Suppose 0 → K → B π→ Q → 0 is a short exact sequence of
C∗-algebras with Q unital. Suppose A ∈ B is unitary and that P and N are
elements of B satisfying

0 ≤ P,N ≤ 1, PN = 0, [P,A], [N,A], P 4 +N4 − 1 ∈ K.
This implies that

U = π(PAP +N2)

is a unitary in Q. Let us introduce the hermitian operator W equal to(
2P 4 + 2N4 − 1 2(1− P 4)

1
4PAP (1− P 4)

1
4 +N2(1−N4)

1
2

2(1− P 4)
1
4PA∗P (1− P 4)

1
4 +N2(1−N4)

1
2 1− 2P 4 − 2N4

)
,

and denote

δ = ‖[P 2, A]‖.
Then, with V given by (23) with the lift PAP +N2 of U ,

‖V −W‖ ≤ 2 δ + 4 δ
1
4 .

If

(25) δ < 0.0036,

the operator W is invertible and the boundary map in K-theory is

Ind [U ] = [W+ −W−],

where W+ and W− are the positive and negative spectral projections of W .

The key principle behind the proof is the following: one may perturb
the matrix entries of V in (23) without changing the associated K0-class
as long as the perturbation is sufficiently small so that the spectral gap of
V does not close under the perturbation. An adequate measure of the size
of the perturbation is the quantity δ. For the formal proof, some technical
preparations are needed.

Lemma 1. If P and N are positive elements of a C∗-algebra and 0 ≤ α ≤ 1,
then

‖Pα −Nα‖ ≤ ‖P −N‖α.

Proof. This is proved in [2] for matrices and the proof transposes to com-
pact operators, but we could not find this result anywhere for the operator
norm on infinite-dimensional Hilbert spaces so we include a short proof. By
[24, Haagerup’s Lemma], if U is unitary and Q ≥ 0, then

‖[U,Qα]‖ ≤ ‖[U,Q]‖α.
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When applied to

Q =

(
P 0

0 N

)
, U =

(
0 1

1 0

)
,

one finds ∥∥∥∥∥
(

0 Nα − Pα

Pα −Nα 0

)∥∥∥∥∥ ≤
∥∥∥∥∥
(

0 N − P
P −N 0

)∥∥∥∥∥
α

,

which proves the lemma. �

Lemma 2. Suppose A is a unitary and 0 ≤ P ≤ 1 in some unital C∗-
algebra. Then ∥∥2(PAP )(PAP )∗ − 1− (2P 4 − 1)

∥∥ ≤ 2 δ,

where δ = ‖[P 2, A]‖.

Proof. This is basic:

‖(PAP )(PAP )∗ − P 4‖ = ‖PAP 2A∗P − P 3AA∗P‖
≤ ‖AP 2 − P 2A‖. �

Lemma 3. Suppose A is a unitary and 0 ≤ P ≤ 1 in some unital C∗-
algebra. Then∥∥∥2(PAP )

√
1− (PAP )∗(PAP )− 2P (1− P 4)

1
4AP (1− P 4)

1
4

∥∥∥ ≤ 4 δ
1
4

where δ = ‖[P 2, A]‖.

Proof. We notice
2(PAP )

√
1− (PAP )∗(PAP )

equals

2 (1− (PAP )(PAP )∗)
1
4 PAP (1− (PAP )∗(PAP ))

1
4

giving us a more symmetric formula as a starting point. From the previous
lemma, one finds

‖1− (PAP )∗(PAP )− (1− P 4)‖ ≤ δ

so using Lemma 1 we deduce

‖ (1− (PAP )∗(PAP ))
1
4 −

(
1− P 4

) 1
4 ‖ ≤ δ

1
4

and, by symmetry,

‖ (1− (PAP )(PAP )∗)
1
4 −

(
1− P 4

) 1
4 ‖ ≤ δ

1
4 .

These imply∥∥∥(1−(PAP )∗(PAP ))
1
4PAP (1−(PAP )∗(PAP ))

1
4 −

(
1−P 4

) 1
4PAP

(
1−P 4

) 1
4

∥∥∥
is less than or equal to 2 δ

1
4 concluding the proof. �
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Proof of Theorem 3. We estimate the distance from W to the unitary V
given by (23) with the lift PAP +N2 for U . Let us, just for the purpose of
this proof, use the notation AP = PAP . Then V is set equal to(

2(AP +N2)(AP +N2)∗−1 2(AP +N2)
√

1−(AP +N2)∗(AP +N2)

2(AP +N2)∗
√

1−(AP +N2)(AP +N2)∗ 1−2(AP +N2)∗(AP +N2)

)
.

Notice that PN = 0 implies that

V =

(
2(AP )(AP )∗ − 1 2(AP )

√
1− (AP )∗(AP )

2(AP )∗
√

1− (AP )(AP )∗ 1− 2(AP )∗(AP )

)

+

(
2N4 − 1 2N2

√
1−N4

2N2
√

1−N4 1− 2N4

)
and on the other hand

W =

(
2P 4 − 1 2(1− P 4)

1
4AP (1− P 4)

1
4

2(1− P 4)
1
4A∗P (1− P 4)

1
4 1− 2P 4

)

+

(
2N4 − 1 2N2

√
1−N4

2N2
√

1−N4 1− 2N4

)
.

Setting

A1,1 = 2APA
∗
P − 1− (2P 4 − 1), A2,2 = 2A∗PAP − 1− (2P 4 − 1),

and

A1,2 = 2AP
√

1−A∗PAP − 2(1− P 4)
1
4AP (1− P 4)

1
4 ,

A2,1 = 2A∗P
√

1−APA∗P − 2(1− P 4)
1
4A∗P (1− P 4)

1
4 ,

one has

V −W =

(
A1,1 0

0 A2,2

)
+

(
0 A1,2

A2,1 0

)
,

so that Lemmas 2 and 3 imply

(26) ‖V −W‖ ≤ max{‖A1,1‖, ‖A2,2‖}) + max{‖A1,2‖, ‖A2,1‖} ≤ 2 δ+ 4 δ
1
4 .

As V is a hermitian unitary, any condition that forces δ+2δ
1
4 < 1

2 will assure

that the gap of W remains open. Since δ+2δ
1
4 is an increasing function and

0.0036 + 2× 0.0036 ≈ 0.4935

the condition δ < 0.0036 will work. �
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3. Application to the Hilbert space over the lattice Zd

Here we choose the algebras in the short exact sequence (22) to be the
bounded operators B = B(H) and compact operators K = K(H) on the
separable Hilbert space H = `2(Zd)⊗CN . Hence Q is the associated Calkin
algebra. The key idea is to choose P = p(D) and N = n(D) in Theorem 3
to be given in terms of two functions p, n : R→ [0, 1] of the form

p(x) =


0, x ≤ −ρ,
p(x), |x| ≤ ρ,
1, x ≥ ρ,

n(x) =

{
1, x ≤ −ρ,
0, x > −ρ,

where p is supposed to be smooth and increasing. Then P and N = N2 are
compact perturbations of Π and 1−Π respectively and therefore

Ind
(
ΠAΠ + (1−Π)

)
= Ind

(
PAP +N2

)
.

We now want to apply Theorem 3 to the r.h.s.. Indeed, P and N au-
tomatically satisfy many of the conditions in Theorem 3. In particularly,
[A,P ], [A,N ] ∈ K follows from the fact that A is local in the sense (4), which
implies that 〈k|A|m〉 → 0 as |k−m| → ∞. Also P 4 +N4−1 is compact and,
what is crucial in the argument below, actually nonvanishing only on a ball
of size ρ. What is missing is merely to check that the estimate (25) holds.
This is connected to a judicious choice of p and depends on the following
fact.

Proposition 4 (Theorem 3.2.32 in [8]). For differentiable f : R → R and
Fourier transform defined with normalization factor 1

2π ,

‖[f(D), A]‖ ≤ ‖f̂ ′‖L1(R) ‖[D,A]‖.

Lemma 4. There exists an even differentiable function Gρ : R→ [0, 1] with

Gρ(x) =

{
0, |x| ≥ ρ,
1, |x| ≤ ρ

2 ,

such that ‖Ĝ′ρ‖L1(R) ≤ 8
ρ .

Proof. (The choice below goes back to the late Uffe Haagerup.) Let us
first consider ρ = 1 and then rescale later on. The construction starts by
setting f ′(x) = max{0, 1− |x|} which has integral 1. Integrating, one finds
for |x| ≤ 1

f(x) =

{
1
2(1 + x)2, x ∈ [−1, 0],

1− 1
2(1− x)2, x ∈ [0, 1].

On the other hand, one calculates that

f̂ ′(p) =
1− cos(p)

πp2
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and consequently ‖f̂ ′‖L1(R) = 1. Now set

G1(x) = f(4x+ 3)− f(4x− 3)

for which ‖Ĝ′1‖L1(R) ≤ 8. Then

Gρ(x) = G1

(
x

ρ

)
has all the desired properties. �

Associated to Gρ will be a function Fρ increasing from 0 to 1 in [−ρ, ρ]
and satisfying G4

ρ = 4Fρ(1 − Fρ), a relation which stems from Theorem 3
when choosing P = Fρ(D), see below. Thus

Fρ(x) =
1

2

(
1 + sgn(x)(1 +Gρ(x)4)

1
2
)
∈ [0, 1].

Of course, one could construct a function Fρ increasing from 0 to 1 in [−ρ, ρ]
more directly by the technique of Lemma 4 and this actually would improve
the quantitative estimate in Proposition 5. However, even such an improved
estimate would not be sufficient for the proof of Theorem 1, and the main
point of Proposition 5 is rather that it already allows to calculate the index
pairing as the signature of a finite matrix. On the other hand, the function
Gρ will be our best choice in the proof of Theorem 1 later on, and lead to
the quantitative estimate stated there.

Proposition 5. Suppose that A ∈ B(H) is unitary and that ρ > 0 is such
that

(27) ‖[D,A]‖ < ρ

32
(0.0036)4.

Then ΠAΠ+(1−Π) is Fredholm and its index is equal to the (well-defined!)
signature of the hermitian matrix

(28) L(Fρ, Gρ) =

(
2Fρ − 1ρ GρAGρ

GρA
∗Gρ −2Fρ + 1ρ

)
,

where Gρ = Gρ(Dρ) and Fρ = Fρ(Dρ), and Dρ and 1ρ are the restrictions

of D and 1 to `2(Dρ)⊗CN over the discrete disc Dρ = {x ∈ Zd : ‖x‖ ≤ ρ}.
Here ‖x‖ denotes the euclidean norm.

Proof. Using P = Fρ(D)
1
4 , Haagerup’s inequality and then Proposition 4

shows

‖[P 2, A]‖ = ‖[Fρ(D)
1
2 , A]‖ ≤ ‖[Fρ(D), A]‖

1
2 ≤ ‖[Gρ(D)4, A]‖

1
4

≤
(

4 ‖[Gρ(D), A]‖
) 1

4 ≤
(32

ρ
‖[D,A]‖

) 1
4
< 0.0036,

by hypothesis (27). Therefore (25) holds and the K-theoretic index map of
PAP + N2 is given in Theorem 3 in terms of the hermitian W . Now the

restriction to Dcρ = Zd\Dρ of P 4+N4 is the identity 1cρ and N2(1−N4)
1
2 = 0.



1130 TERRY A. LORING AND HERMANN SCHULZ-BALDES

Furthermore, 1− P 4 = (1− P 4)1ρ = 1ρ − P 4
ρ . Thus the operator W has a

direct sum representation on
(
`2(Dρ)⊕ `2(Dcρ)

)
⊗ C2N given by(

2P 4
ρ − 1ρ 2Pρ(1ρ − P 4

ρ )
1
4APρ(1ρ − P 4

ρ )
1
4

2Pρ(1ρ − P 4
ρ )

1
4A∗Pρ(1ρ − P 4

ρ )
1
4 1ρ − 2P 4

ρ

)
⊕

(
1cρ 0

0 −1cρ

)
.

Therefore we have expressed the index in terms of the signature of a finite
matrix,

Ind
(
ΠAΠ + (1−Π)

)
equals

Sig

(
2P 4

ρ − 1ρ 2Pρ(1ρ − P 4
ρ )

1
4APρ(1ρ − P 4

ρ )
1
4

2Pρ(1ρ − P 4
ρ )

1
4A∗Pρ(1ρ − P 4

ρ )
1
4 1ρ − 2P 4

ρ

)
.

Replacing Pρ = Fρ(Dρ)
1
4 now implies the claim because
√

2Pρ(1ρ − P 4
ρ )

1
4 = Gρ. �

4. Quantitative estimate on stabilization of signature

In this section we complete the proof of Theorem 1. This requires us to
deform the functions Fρ and Gρ in Proposition 5 in such a manner that (28)
becomes the finite volume spectral localizer Lκ,ρ defined in (7). During the
deformation the finite matrix has to remain invertible so that the signature
does not change. Moreover, the following quantitative estimate on the size
of the gap of Lκ,ρ assures that the signature in Theorem 1 is well-defined.

Theorem 4. Let A be an invertible, bounded operator on H = `2(Zd)⊗CN .
With g = ‖A−1‖−1, suppose that κ > 0 and ρ <∞ are such that the bounds
(8) and (9) in Theorem 1 hold. Then

(29) L2
κ,ρ ≥

g2

2
.

Proof. Both the aim described in the introduction to this section and The-
orem 4 can be attained by the same technique. Therefore, as a preparation
for the proof of Theorem 1, let us consider the more general case of

Lκ(F,G) =

(
κ ρ (2F − 1ρ) GAρG

GA∗ρG −κ ρ (2F − 1ρ)

)
,

where F = F (Dρ) and G = G(Dρ) is built from smooth functions F,G :
R→ [0, 1] given by

(30) F = λFL + (1− λ)Fρ, G = λGL + (1− λ)Gρ,

where λ ∈ [0, 1] and

FL(x) =
1

2

(
1 +

x

ρ

)
, GL(x) = 1.
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For the latter two functions, one has Lκ(FL, GL) = Lκ,ρ, and on the other
hand L 1

ρ
(Fρ, Gρ) is the matrix L(Fρ, Gρ) in (28) in Proposition 5. There-

fore Lκ(F,G) allows to connect the matrix in Proposition 5 to the spectral
localizer by a smooth two-parameter homotopy in λ and κ. What has to
be assured in the following is that Lκ(F,G) remains invertible throughout.
The existence of a gap of Lκ(F,G) will follow from a lower bound on

Lκ(F,G)2 =κ2 ρ2

(
(2F − 1ρ)

2 0

0 (2F − 1ρ)
2

)

+

(
GAρG

2A∗ρG 0

0 GA∗ρG
2AρG

)

+ 2κ ρ

(
0 [F,GAρG]

[GA∗ρG,F ] 0

)
.

The first two summands are nonnegative and will be shown to combine
to a strictly positive operator. The last term is an error which has to be
controlled.

Let us begin with a lower bound on the second summand. Due to G ≥ Gρ,
GA∗ρG

2AρG = GA∗G2AG

≥ GA∗G2
ρAG

= GGρA
∗AGρG+G

(
[A∗, Gρ]GρA+GρA

∗[Gρ, A]
)
G

≥ g2GG2
ρG+G

(
[A∗, Gρ]GρA+GρA

∗[Gρ, A]
)
G,

and similarly for GAρG
2A∗ρG. The error term here is bounded using Propo-

sition 4 with the function from Lemma 4:

‖G
(
[A∗, Gρ]GρA+GρA

∗[Gρ, A]
)
G‖ ≤ 2 ‖A‖ ‖G‖ ‖Gρ‖ ‖[Gρ, A]‖

≤ 2 ‖A‖ 8

ρ
‖[D,A]‖.

An estimate on the third summand is obtained from

‖[F,GAρG]‖ ≤ ‖G‖2 ‖[F,A]‖
≤ λ ‖[FL, A]‖ + (1− λ) ‖[Fρ, A]‖

=
λ

2ρ
‖[D,A]‖+ (1− λ) ‖[Fρ, A]‖ .

Just replacing the first summand and dealing with the error terms as in (26),
one obtains by combining all the above and suppressing the 2 × 2 matrix
degree

Lκ(F,G)2 ≥κ2 ρ2 (2F − 1ρ)
2 + g2G2G2

ρ(31)

− 16

ρ
‖A‖ ‖[D,A]‖ − κλ ‖[D,A]‖+ κ ρ (1− λ) ‖[Fρ, A]‖.
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For the proof of Theorem 4, let us now choose λ = 1 so that G = GL = 1ρ
and F = FL. The first term will then be bounded by

κ2 ρ2 (2FL − 1ρ)
2 = κ2 (Dρ)

2 ≥ g2 (1ρ −G2
ρ),

as κρ ≥ 2g by (9). Indeed, then the bound holds on Dρ\D ρ
2

as 1ρ−G2
ρ ≤ 1ρ,

while it holds trivially on D ρ
2

where 1ρ−G2
ρ = 0. Replacing in (31) it follows

that

L2
ρ,κ ≥ g2 1ρ −

(16

ρ
‖A‖ + κ

)
‖[D,A]‖ ≥ g2 1ρ − 9

κ

g
‖A‖ ‖[D,A]‖,

where the inequalities ‖A‖ ≥ 1 and g ≤ 1 were used, as well as (9) in the

form 1
ρ ≤

κ
2g . Now (8) leads to L2

ρ,κ ≥
g2

2 1ρ. �

Proof of Theorem 1. As already explained above, the first step consists
in showing that the path (30) is within the invertible matrices for all λ. This
is done using the lower bound (31) and will first be done for a unitary A
only. Then the error term ‖[Fρ, A]‖ in (31) can be bounded by Haagerup’s
equality exactly as in the proof of Proposition 5. The other main variation
on the above argument is how to estimate 2F −1ρ from below. This will be
based on some analysis of the functions FL and Fρ. One can check that

(2FL(x)− 1) ≥ cF (2Fρ(x)− 1)

holds for x ≥ 0 and cF = 3
4 . As the functions

2F (x)− 1 = λ(2FL(x)− 1) + (1− λ)(2Fρ(x)− 1)

are odd and all three positive for x ≥ 0, one thus has

(2F (x)− 1)2 ≥ λ2(2FL(x)− 1)2 + (1− λ)2(2Fρ(x)− 1)2

≥ 1

4
c2
F (2Fρ(x)− 1)2

=
1

4
c2
F (1−Gρ(x)4).

This bound holds uniformly in λ ∈ [0, 1]. Replacing in (31) shows

Lκ(F,G)2 ≥κ2 ρ2 1

4
c2
F (1ρ −G4

ρ) + g2G4
ρ

− 16

ρ
‖A‖ ‖[D,A]‖ − κλ ‖[D,A]‖

+ κ ρ (1− λ)
(32

ρ
‖[D,A]‖

) 1
2
.

Now let us choose κ = 1
ρ . Then

L 1
ρ
(F,G)2 ≥ 1

4
c2
F 1ρ −

C

ρ
1
2

max{‖[D,A]‖, ‖[D,A]‖
1
2 }
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for some constant C. In particular, for ρ large enough, L 1
ρ
(F,G) remains

for all λ ∈ [0, 1]. As already pointed out, for λ = 0 the matrix L 1
ρ
(F,G)

is that given in (28) , which by Proposition 5 has a signature equal to
2 Ind

(
ΠAΠ + (1 − Π)

)
. By homotopy this is also true for λ = 1, for which

due to the choice (30) of the path leads to L 1
ρ
(F,G) being equal L 1

ρ
,ρ. Now

in a second step, one can change the parameters κ and ρ in Lκ,ρ. As long
as the bounds (8) and (9) hold Theorem 4 implies that the signature of Lκ,ρ
does change. (Strictly speaking, L 1

ρ
,ρ falls out of the range of parameters of

Theorem 1 if the gap g is larger than 1
2 , but this can always be circumvented

by decreasing g as a parameter.) This concludes the proof of Theorem 1 for
a unitary A. If A is merely invertible, one first uses the polar decomposition
to deform it by t ∈ [0, 1] 7→ A|A|−t into a unitary. Along this path the index
does not change. For the unitary the estimates (8) and (9) may be worse,
but they still allow the above argument to run. At the end, one can deform
back to A and note that Theorem 4 did not use the unitarity of A. �

5. The η-invariant of the spectral localizer

Proposition 6. Let d = 1. Suppose that (4) holds, namely that ‖[D,A]‖ <
∞, and that Lκ defined in (6) is invertible. Then Lκ has a well-defined
η-invariant.

The proof is a combination of nowadays standard techniques, e.g., [9, 14,
15, 19].

Proof. We will use the representation (12) of the η-function ηs(Lκ) in terms
of the heat kernel of L2

κ and split it into ηs(Lκ) = η′s(Lκ) + η′′s (Lκ) with

η′s(Lκ) =
1

Γ( s+1
2 )

∫ 1

0
dt t

s−1
2 Tr

(
Lκ e

−tL2
κ
)
,

η′′s (Lκ) =
1

Γ( s+1
2 )

∫ ∞
1

dt t
s−1

2 Tr
(
Lκ e

−tL2
κ
)
.

Hence estimates on the trace norm of the heat kernel are needed. They will
be obtained by a perturbative argument. Let us write

L2
κ = ∆ + V,

where ∆ = κ2(D′)2 and

V =

(
AA∗ κ[D,A]

κ[D,A]∗ A∗A

)
,

Let us note that ∆ ≥ 0 and that, by hypothesis, V is a bounded operator
which is viewed as a perturbation. Furthermore, ∆ is even w.r.t. the grad-
ing where J =

(
1 0
0−1
)
, namely ∆J = J∆, and H is odd as HJ = −JH.
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Replacing DuHamel’s formula

(32) e−tL
2
κ = e−t∆ + t

∫ 1

0
dr e−(1−r)t∆Ve−rtL2

κ ,

formally into (12) leads to

η′s(Lκ) =
1

Γ( s+1
2 )
×

(33)

∫ 1

0
dt t

s−1
2

(
Tr
(
Lκ e

−t∆)+ t

∫ 1

0
drTr

(
Lκe

−(1−r)t∆Ve−rtL2
κ
))

.

Of course, we have to show that all traces and integrals exist, but this will
be achieved below. Then the aim is to show that the limit s→ 0 exists. For
this we will use that e−t∆ is traceclass for all t > 0. The crucial fact for this
is that the first summand vanishes because, with Lκ = κD′ +H as in (6),

Tr
(
Lκ e

−t∆) = κTr
(
D′ e−t∆

)
+ Tr

(
H e−t∆

)
,

and Tr(D′e−t∆) = Tr(D′e−tκ
2D′2) = 0 due to the symmetry of the spectrum

of D′ = D ⊗ σ3, and furthermore Tr(He−t∆) = 0 using the cyclicity of the
trace as well as the fact that H is odd while e−t∆ is even w.r.t. J . Hence it
only remains to bound the second summand in (33) and show that it remains
bounded as s→ 0. For that purpose, let us again decompose Lκ = κD′+H
and focus on the contribution containing D′. By Cauchy–Schwarz,∣∣Tr

(
κD′e−(1−r)t∆Ve−rtL2

κ
)∣∣2 ≤ Tr

(
∆e−2(1−r)t∆) Tr(V∗Ve−2rtL2

κ
)

≤ ‖V‖2 Tr
(
∆e−2(1−r)t∆)Tr

(
e−2rtL2

κ
)
.

As the the spacial dimension is d = 1, the factor Tr(∆e−2(1−r)t∆) can be
bounded by the derivative of a Gaussian integral, namely a constant times

(t − tr)−
3
2 . To bound Tr(e−2rtL2

κ), let us expand the heat kernel into a
norm-convergent Dyson series by using iteratively DuHamel’s formula (32):

e−tL
2
κ

= e−t∆

+

∞∑
n=1

tn
∫ 1

0
dr1

∫ r1

0
dr2 · · ·

∫ rn−1

0
drn e

−(1−r1)t∆Ve−(r2−r1)t∆V· · ·Ve−rnt∆ .

Now the first trace norm ‖e−t∆‖1 = Tr(e−t∆) can for d = 1 be bounded

above by a Gaussian integral, and hence by a constant times t−
1
2 . If D′

were invertible and thus ∆ strictly positive, then ‖e−t∆‖1 would have ex-
ponential decay for large t by the arguments below, but this will actually
not be needed. Rather, using the multiple Hölder inequality for the inverse
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exponent (1− r1) + (r2 − r3) + . . .+ rn = 1, the positivity of e−t∆ and the
norm estimate ‖AB‖p ≤ ‖A‖ ‖B‖p for the Schatten norms leads to

‖e−tL2
κ‖1

≤ ‖e−t∆‖1

+
∞∑
n=1

tn
∫ 1

0
dr1

∫ r1

0
dr2· · ·

∫ rn−1

0
drn

( n∏
j=0

‖e−(rj−rj+1)t∆‖ 1
rj−rj+1

)
‖V‖n

where we set r0 = 1 and rn+1 = 0. Hence summing up the series

(34) ‖e−tL2
κ‖1 ≤ et‖V‖ ‖e−t∆‖1 ≤ C et‖V‖ t−

1
2 .

Consequently, with a constant C ′ depending also on ε and ‖V‖,∣∣Tr
(
κD′e−(t−r)∆Ve−rL2

κ
)∣∣ ≤ C ′ (t− r)− 3

4 r−
1
4 .

As Tr(He−(t−r)∆Ve−rL2
κ) is bounded by the same expression, replacing in

the above shows

η′s(Lκ) ≤ 1

|Γ( s+1
2 )|

∫ 1

0
dt t

<e(s)−1
2

∫ t

0
dr C ′′ ‖V‖ (t− r)−

3
4 r−

1
4 < ∞,

as long as <e(s) > −1, so in particular for s = 0.
For η′′s (Lκ) and hence large t, the estimate (34) is of little help. It has to

be boosted by using the gap of Lκ. Suppose that L2
κ ≥ ε, a lower bound that

can be given by (29) as ε = g2

2 . Then, for any α ∈ (0, 1), by Cauchy-Schwarz

Tr
(
Lκ e

−tL2
κ
)2 ≤ Tr

(
L2
κ e
−2αtL2

κ
)

Tr
(
e−2(1−α)tL2

κ
)

≤ (2αt)−1 Tr
(
e−αtL

2
κ
)
‖e−2(1−2α)tL2

κ‖ Tr
(
e−2αtL2

κ
)
,

where the bound xe−xt ≤ t−1e−
xt
2 for x, t > 0 was used. Hence with (34)

Tr
(
Lκ e

−tL2
κ
)
≤ (2αt)−

1
2 e−(1−2α)tε Tr

(
e−αtL

2
κ
)

≤ (2αt)−
1
2 e−(1−2α)tε eαt‖V‖C (αt)−

1
2 .

Choosing α ≤ 1
4 min{1, ε

‖V‖}, one infers that for some constant C ′′′ depend-

ing on ε

(35) Tr
(
Lκ e

−tL2
κ
)
≤ C ′′′ e−

tε
4 .

Hence also η′′s (Lκ) is bounded, actually for all s. �

Combining Proposition 6 with Theorem 4 taken in the limit ρ→∞ leads
to:

Corollary 1. Let A be an invertible, bounded operator on H = `2(Z)⊗CN .
Suppose that κ > 0 is sufficiently small such that (8) holds. Then η(Lκ)
exists.
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The following result connects the η-invariant to the spectral flow Sf of
a certain path of unbounded selfajoint operators with compact resolvent.
Given such a path, the spectral flow is intuitively defined as the spectrum
passing 0 from left to right along the path, minus the spectrum passing from
right to left. We refer to [9, 25] for a careful definition of the spectral flow.
That there is a general connection between η-invariants and spectral flow is
already proved in [9, 14], and the following result is merely a corollary of
these papers.

Theorem 5. Let d = 1. Suppose that Lκ = κD′ + H has a well-defined
η-invariant. Consider the path λ ∈ [0, 1] 7→ Lκ(λ) = κD′+λH of selfadjoint
operators with compact resolvents. Then

η(Lκ) = 2 Sf
(
λ ∈ [0, 1] 7→ Lκ(λ)

)
.

Proof. Let us first give an intuitive argument. According to Proposition 6,
Lκ(λ) has a well-defined η-invariant as long as it is invertible. Precisely
when it is not invertible, there is a crossing of an eigenvalue by 0. Each such
crossing modifies the η-invariant by ±2, pending on whether the eigenvalue
moves from left to right or from right to left. Thus twice the spectral flow
gives η(Lκ(1))− η(Lκ(0)). But η(Lκ(1)) = η(Lκ) because Lκ(1) = Lκ, and
η(Lκ(0)) = η(κD′) = 0 because the spectrum of D′ is symmetric, see the
proof of Proposition 6.

The more formal proof uses Theorem 2.6 of [14] or, equivalently, Corol-
lary 8.10 of [9] for the I∞ case. Indeed, the regularized η-invariants ηε(Lκ(1))
and ηε(Lκ(0)) converge in the limit ε ↓ 0 to the η-invariants by Proposition 6
(here the index ε denotes as in [9, 14] a cut-off on the integration domain
[0,∞) to [ε,∞) and not the parameter s). Then the above mentioned results
conclude the proof provided that

(36) lim
ε↓0

√
ε
π

∫ 1

0
dλ Tr

(
∂λLκ(λ) e−ε Lκ(λ)2

)
= 0.

As ∂λLκ(λ) = H, one hence needs to control Tr(He−εLκ(λ)2). This will be
done uniformly in λ, so let us drop the argument λ (or absorb it in H). Let
us simply replace DuHamel’s formula (32) to deduce

Tr
(
He−εL

2
κ
)

= Tr
(
He−ε∆

)
+ ε

∫ 1

0
drTr

(
He−(1−r)ε∆Ve−rεL2

κ
)
.

As above, the first summand Tr(H e−t∆) vanishes because H is odd and ∆
is even w.r.t. J . Hence using Cauchy-Schwarz and then (34)

Tr
(
He−εL

2
κ
)
≤ ε ‖H‖ ‖V‖

∫ 1

0
dr
(
‖e−2(1−r)ε∆‖1 ‖e−rεL

2
κ‖1
) 1

2

≤ ε ‖H‖ ‖V‖
∫ 1

0
dr
(
C
(
2(1− r)ε

)− 1
2 C erε‖V‖

(
rε
)− 1

2

) 1
2
.

This readily implies (36), and thus concludes the formal proof. �
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As it is well-known [9, 25] that the spectral flow has certain homotopy
invariance properties, one can deduce the following corollary by combining
Corollary 1 (essentially Proposition 6 and Theorem 4) with Theorem 5. Let
us stress that the argument leading to it does not use the results of Sections 2
and 3.

Corollary 2. Suppose that λ ∈ [0, 1] 7→ A(λ) is a continuous path of invert-
ibles on `2(Z) and that κ is such that the locality bound (8) holds uniformly in
λ. If Lκ(λ) is defined from A(λ) by (6), the associated η-invariants η(Lκ(λ))
are well-defined and constant in λ.

To conclude this section, we will show how Theorem 5 can be used to
calculate the η-invariant and thus also the finite volume signature. This
provides an alternative, purely analytic proof of Theorem 1 which does not
depend on the K-theoretic arguments of Sections 2 and 3. However, we only
treat the case of dimension d = 1. The argument also shows that (8) is close
to optimal.

Sketch of an alternative proof of Theorem 1 for d = 1. The homoto-
py invariance of the spectral flow implies it is sufficient to prove the con-
nection between Fredholm index and η-invariant for the n-fold right shift
operators A = Sn, for all n ∈ Z. These operators form a set of representa-
tives for each K1-class (for the Banach algebra of operators on `2(Z) with
bounded [D,A] = [X,A]), and the indices of the associated Fredholm oper-
ators ΠSnΠ + 1−P are equal to n and thus also in bijection with Z. Hence
we are lead to study the spectral flow of the path

λ ∈ [0, 1] 7→ Lκ(λ) =

(
κX λSn

λ (S∗)n −κX

)
,

and to verify that this spectral flow is n. The spectrum of Lκ(λ) can be
determined explicitly by solving the eigenvalue equation for a spectral pa-
rameter b:

Lκ(λ)

(
φ

ψ

)
=

(
κXφ+ λSnψ

λ (S∗)nφ − κXψ

)
= b

(
φ

ψ

)
.

Multiplying the second equation by λ leads to λ2(S∗)nφ = λ(b+κX)ψ, and
replacing this into the first equation multiplied by by (b + κX)(S∗)n leads
to

κ(b+ κX)(S∗)nXφ + λ2(S∗)nφ = b(b+ κX)(S∗)nφ.

Applying Sn and using SXS∗ = X − 1 shows

κ(b+ κ(X − n))Xφ + λ2φ = b(b+ κ(X − n))φ.

Hence φ has to be diagonal in the eigenbasis of X, namely it is a state
φ = |k〉 localized at site k ∈ Z. This is possible provided

κ(b+ κ(k − n))k + λ2 = b(b+ κ(k − n)),
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or equivalently

b±(k) = κn
2 ±

(
(κn2 − κk)2 + λ2

) 1
2 .

Hence the spectrum for fixed n is

σ(Lκ(λ)) =

{
κ
2

(
n ±

(
(n− 2k)2 + 4λ2

κ2

) 1
2
)

: k ∈ Z
}
.

For say n > 0, only eigenvalues b−(k) with k ∈ (0, n] can cross 0, precisely
when

n2 − (n− 2k)2 = 4λ2

κ2
.

This always happens for some λ ∈ [0, 1] when 2
κ ≥ n. But

‖[D,A]‖ = ‖[X,Sn]‖ = n,

so that the condition reads 2
κ ≥ ‖[D,A]‖ which holds due to (8), as g = 1 and

‖A‖ = 1 in the present situation. As all these n eigenvalues b−(1), . . . , b−(n)
move from left to right, the spectral flow is +n and the claim is checked. �
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