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The quasi-isomorphism class of the
Kakimizu complex

Jessica E. Banks

Abstract. It has been shown that the Kakimizu complex of a knot is
quasi-isomorphic to Zn for some n ≥ 0. We give a lower bound on n,
matching the upper bound previously given.

A Seifert surface for a knot K in S3 is a compact, connected, orientable
surface whose boundary is K. We consider Seifert surfaces up to ambient
isotopy in the knot exterior E = S3 \N (K). The Kakimizu complex MS(K)
of K is a simplicial complex that records the structure of the set of minimal
genus Seifert surfaces for K. The vertices are given by the isotopy classes of
minimal genus Seifert surfaces for K, and distinct vertices span a simplex if
the vertices can be realised disjointly in E. The Kakimizu complex of the
unknot is a single vertex; we will assume in this paper that K is not the
unknot (the result is immediate in this case).

It is known that, given K, there is an upper bound on the dimension of
any simplex in MS(K). If K is either a torus knot or hyperbolic then MS(K)
has only finitely many vertices, but if K is a satellite knot then MS(K) may
be infinite ([6]) and even locally-infinite ([1]). In addition, Przytycki and
Schultens have shown that MS(K) is contractible ([7]).

In [5], Johnson, Pelayo and Wilson proved that MS(K) is quasi-Euclidean.
That is, there exists n ∈ N ∪ {0} such that MS(K) is quasi-isomorphic to
Zn. Here the metric on MS(K)1 is the graph metric where each edge has
length 1. The authors give an upper bound on n, and suggest that this is
also a lower bound. Our aim is to show that this is indeed a lower bound.
To do so, we must recall the key elements of their proof.

Consider an incompressible torus T properly embedded in E. In S3,
it must bound a solid torus on one side, and this solid torus necessarily
contains K. We will describe the solid torus as being ‘inside’ T , and the
knot-complement component of E \ T as being ‘outside’ T .

We next need to consider the JSJ decomposition of E (see, for example,
[3]). Choose a minimal collection T1, . . . , TN of incompressible tori, pairwise
disjoint, such that the complement of

⋃
Ti consists of Seifert fibered pieces

and atoroidal pieces. Let E0, . . . , EN be the (closures of the) regions of
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E \
⋃
Ti. We may arrange that E0 meets N (K), and, for 1 ≤ j ≤ N ,

that Ej has Tj as one of its boundary components with Ej lying outside Tj .
Following the terminology of [5], we will refer to each Ej as a block. Set T0
to be the torus ∂E = ∂N (K). Then T0 is also incompressible in E and is a
boundary component of E0, with E0 outside of T0.

Johnson, Pelayo and Wilson define the core of E to be the union of the
core blocks, where Ej is a core block if every (minimal genus) Seifert surface
for K intersects Ej . Equivalently, Ej is a core block if K is homologically
nontrivial in the solid torus Vj inside Tj . Note that the core of E is connected
and contains E0. The following result shows that each Tj contained in the
interior of the core of K has a preferred slope. For each j, let Kj be the
core of Vj , and view Vj as a neighbourhood of Kj .

Proposition 1 ([5] Proposition 2). If Ej is a core block then there is a
slope αj on Tj such that, if R is any minimal genus Seifert surface for K,
every curve of R ∩ Tj that is essential in Tj (of which there is at least one)
is parallel to αj. Moreover, αj is the longitude of Vj (that is, αj is the
boundary of a Seifert surface for Kj, as an unoriented curve).

Although the slope αj is determined by the knot Kj in S3, the number
and orientation of the curves R ∩ Tj are controlled by the position of the
surface R. More precisely, [R ∩ Tj ] = aj [αj ] = [K] in H1(Vj ;Z) for some
aj ∈ Z. Here |aj | is equal to the winding number of K in Vj .

A group action

Johnson, Pelayo and Wilson make use of an action of ZN on MS(K). For
a fixed k, choose a product neighbourhood Wk of Tk in E. Choose a product
structure on Wk, expressing it as S1×S1× I, where the first S1 corresponds
to the slope αk on Tk. Define φTk : E → E by

φTk(x) =

{
x x /∈Wk,

(z, ei(θ+2πt), t) x = (z, eiθ) ∈Wk.

Note that if the product neighbourhoods Wi are disjoint then these homeo-
morphisms of E act independently.

We then define the action Φ: ZN ×MS(K)→ MS(K) by

Φ(r1, . . . , rN , R) = φr1T1 ◦ · · · ◦ φ
rN
TN

(R).

The moral of [5] is that all infinite directions in MS(K) come from ‘spinning
around the tori’ using this action. The upper bound on the quasi-dimension
of MS(K) comes from counting the number of different ways of spinning
around tori like this. To give a lower bound, we will fix a minimal genus
Seifert surface RK for K, and show that acting on RK gives enough Seifert
surfaces that are different (and distant in MS(K)) from each other.
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Basepoint

Choose a minimal genus Seifert surface RK for K, for use as a reference
point. We will now edit RK to suit our purposes, but continue to denote it
by RK . For this we will use the following two results, which, although not
explicitly stated, make up the proof of [4] Lemma 16.3.

Lemma 2. Let KS be a (satellite) knot, and let TS be an essential torus in
the complement of KS. Let RS be a minimal genus Seifert surface for KS,
in general position with respect to TS. Then it is possible, by surgering along
subdics and subannuli of TS and discarding closed components, to change RS
to a minimal genus Seifert surface R′

S such that all components of R′
S ∩ TS

are parallel and oriented in the same direction.

Lemma 3. Let KS be a knot in S3, and let RS be a connected, oriented
surface properly embedded in the exterior of KS, such that all boundary
components of RS are longitudes of KS oriented in the same direction. Then
RS has at most one boundary component.

Choose a JSJ torus Tk. We can edit RK so that all components of RK∩Tk
are parallel and oriented in the same direction. If Tk does not lie in the
interior of the core then RK is disjoint from Tk. On the other hand, if Tk
lies in the interior of the core then these curves are parallel to αk and there
are |ak| of them. Then RK \ Vk is formed of |ak| minimal genus Seifert
surfaces for Kk. We may then replace these with |ak| parallel copies of a
single one of those components. Note that these changes all take place in
Wk or outside Tk, without affecting anything further inside.

By working in this way inductively outwards from K, we achieve the
following result.

Lemma 4. We may choose RK such that, for each j, all curves of RK ∩Tj
are parallel to αj and oriented the same way, and all components of RK∩Ej
are parallel to each other with a single boundary component each on Tj.

Some readers may find it helpful to picture the surface RK we have just
constructed in terms of branched surfaces. We will not explicitly use this
viewpoint in this paper.

Fibred blocks

The upper bound on the dimension of MS(K) given in [5] depends on
the number of core blocks that are fibred. For each core block Ej , we can
ask whether a connected component Rj of RK ∩ Ej is a fibre for Ej (that
is, whether the complement of Rj in Ej is Rj × I). Note that the answer
to this question is determined only by the curves RK ∩

⋃
Ti (which depend

only on K), and is not dependent on the specific choice of surface RK . It
is possible that a block might be fibred with a different ‘boundary pattern’,
but we are not interested in such cases in this paper. The upper bound in
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[5] is one less that the number of core blocks that are not fibred. Denote
this number by N ′. Our aim is to construct a quasi-isometric embedding of
ZN ′

into MS(K).
The intuitive explanation for this value is that we can spin RK around

each torus it intersects, but spinning around T0 can be reversed by isotopy,
and if Ej is fibred then spinning around Tj has the same effect, up to isotopy,
as spinning around each of the other boundary components of Ej .

For the purposes of our proof, we will need to forget about some of the
tori T0, . . . , TN , according to which ones we will use for spinning around.
For convenience, we will re-label the objects we are considering. Starting
with the list T0, . . . , TN , remove each Tj such that Ej is not a core block.
Also remove T0. If Ej is fibred for j ≥ 1 then remove Tj . Finally, if E0

is fibred then remove one remaining torus that is now ‘innermost’, in the
sense that it is not separated from K by any of the other remaining tori.
Re-label the remaining list of tori as T ′

1, . . . , T
′
N ′ and their neighbourhoods

as W ′
1, . . . ,W

′
N ′ . For convenience, write W ′ =

⋃
W ′
i . Also label the regions

of E \
⋃
T ′
i as E′

0, . . . , E
′
N ′ . As before we may arrange that T ′

j is a boundary

component of E′
j , with E′

j lying outside T ′
j . The advantage of our new

notation is that T ′
j ∩RK 6= ∅ for each j, and no E′

j is fibred.
We are now ready to define our quasi-isometric embedding using the group

action Φ. Note that, in defining each Φj , we had some choice in the prod-
uct structure on Wj . For notational convenience, we will assume that the
product structure on each W ′

j has been chosen such that, moving from the

inside of W ′
j to outside, φT ′

j
twists in the direction given by the orientation

on the Seifert surface RK . Figure 1 illustrates this convention for the torus
T ′
1.

E′
0

E′
1

φT ′
1

Figure 1.
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We define Θ: ZN ′ → MS(K) by

Θ(r1, . . . , rN ′) = (φT ′
1
)5r1 ◦ · · · ◦ (φT ′

N′ )
5rN′ (RK).

That is, up to re-labelling, Θ is the restriction of Φ5 to the coordinates
corresponding to the tori T ′

1, . . . , T
′
N ′ and the surface RK . The use of the

power 5 here is not significant; its purpose is to remove the need to consider
‘small cases’ later.

Distances

To show that Θ is a quasi-isometric embedding, we need to calculate
distances in MS(K). The distance dMS(K) between two vertices in MS(K)
is defined using the graph metric where each edge has length 1. In [6],
Kakimizu gave a method for calculating the distance using the infinite cyclic
cover of E corresponding to the kernel of the linking number lk : π1(E)→ Z.

Choose a minimal genus Seifert surface R for K. We can build the infinite

cyclic cover Ẽ of E as follows. Let ER be E cut along the surface R. Then
the boundary of E is divided into three parts: two copies of R, which can
be distinguished using the orientation of R, and an annulus that is the torus

∂E cut along the simple closed curve ∂R. To form Ẽ, stack countably many
copies of ER by gluing the positive side of R in the nth copy of ∂ER to
the negative side of R in the (n+ 1)th copy. The quotient map is given by
mapping each copy of ER to ER by the identity, then taking the quotient
map from ER to E. The covering transformation is given by translating
along the line of copies of ER.

Now choose a second minimal genus Seifert surface R′ for K that is not
isotopic to R. We can calculate the distance between vertices R and R′

in MS(K) as follows. Choose a lift R̃′ of R′ to Ẽ. Isotope R̃′ within

Ẽ to minimise the number, d, of copies of ER that it intersects. Then

dMS(K)(R,R
′) = d. Note that d = 1 if and only if R̃′ can be isotoped to

be disjoint from all lifts of R in Ẽ, which is as we would expect given the
definition of adjacency in MS(K).

The difficult part of using this criterion is establishing when R̃′ has been
suitably positioned. The following result, which has its roots in work of
Waldhausen, enables us to verify this by only considering the position of the
surface R′ relative to R within E. This version is restricted to the case of
knots in S3 (the original was for use in more general manifolds).

Definition 5. Let S be a compact, connected, orientable surface, and let ρ
be a finite (possibly empty, possibly disconnected) submanifold of ∂S. Let
MS be the manifold given by taking S× I and identifying {x}× I to a point
for each x ∈ ρ. We call any manifold of this form a product region.

We say that the surfaces R and R′ bound a product region if there exists
a product region MS of this form properly embedded in (the closure of)
E \ (R ∪R′) such that MS ∩R = S × {0} and MS ∩R′ = S × {1}.
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This definition should be viewed as the three-dimensional analogue of
when two arcs or curves in a surface ‘bound a bigon’.

Proposition 6 ([7] Proposition 3.2). If R and R′ intersect transversely and
do not bound a product region then R and R′ realise dMS(K)(R,R

′).

Accordingly, if we can arrange thatR andR′ are transverse and E\(R∪R′)
does not include any product regions, we can count the distance between R
and R′ without needing to consider any further isotopy of R′ (or equivalently

of R̃′). This is the technique we will use to verify that the images of points
under Θ are suitably far apart in MS(K).

Note that if MS is a product region between R and R′, the intersection
MS∩R is a connected, orientable surface. Thus if a component of E\(R∪R′)
meets R on both the positive and the negative sides then this component is
not a product region between R and R′.

Proof

Proposition 7. The map Θ is a quasi-isometric embedding of ZN ′
into

MS(K).

Proof. Let (r1, . . . , rN ′), (s1, . . . , sN ′) ∈ ZN ′
. Using the action Φ, we may

assume without loss of generality that (r1, . . . , rN ′) = (0, . . . , 0). With this
assumption, Θ(r1, . . . , rN ′) = RK . We may also assume that (s1, . . . , sN ′) 6=
(0, . . . , 0), which implies that max(|s1|, . . . , |sN ′ |) > 0.

Denote by S a copy of Θ(s1, . . . , sN ′). We will position S carefully with
respect to RK , show that there are no product regions bounded by RK and
S, and read off a lower bound on dMS(L)(RK , S). If there is a value of k
such that sk = 0 then the torus T ′

k plays no part in this process. We should
therefore forget about T ′

k, as we have already forgotten about some of the
other Ti. Rather than re-labelling the tori and complementary regions again,
we will instead assume that sk 6= 0 for each k. This does not impact on the
method of proof; it is simply for notational convenience.

We can think of the surface S as being divided into different pieces. In
E′
j \W ′, RK and S coincide, and are made up of |aj | parallel copies of the

same connected surface. Meanwhile, each component of S∩W ′
j is an annulus

that winds |sj | times around Tj relative to RK . We will re-position S by
considering these pieces separately.

First consider W ′
k for some k. Each of RK ∩W ′

k and S ∩W ′
k consists of

parallel annuli properly embedded in W ′
k. Picture the case where RK ∩W ′

k
is a single annulus AK and S ∩ W ′

k is a single annulus AS . Note that
initially ∂AK = ∂AS . Because AS winds around W ′

k at least once relative
to AK , there is a well-defined choice of direction to isotope each boundary
component of AS within a neighbourhood of ∂AK to make ∂AS and ∂AK
disjoint without otherwise affecting AK ∩ AS (see Figure 2a). When there
are instead multiple components to consider, we treat all the parallel copies
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(a)

AK

AS

(b)

Figure 2

as a product neighbourhood of a single copy, and isotope this neighbourhood
as we just described for one annulus (see Figure 2b).

Similarly, in each E′
j \W ′, we will treat all parallel copies of a connected

component as a product neighbourhood of one component. Again, therefore,
picture the case where RK ∩ (E′

k \W ′) has a single component (the same
will then be true of S ∩ (E′

k \W ′)). Denote the component of RK by BK
and the component of S by BS .

Initially BK and BS coincide. We have already defined our isotopy on
∂(E′

k \W ′); we wish to extend this isotopy to E′
k \W ′ so that BS becomes

transverse to BK . Each boundary component has a pre-defined direction
that it needs to be moved. Since BS is connected, a suitable isotopy of the
surface BS exists after which |BK ∩ BS | ≤ 1, with BK and BS disjoint if
possible.

We can see more explicitly how the isotopy is chosen as follows. Each
boundary component of BS needs to be moved either in the direction given
by the orientation on BK or in the opposite direction. Mark a boundary
component with a + if the direction it needs to move agrees with the orien-
tation of BK , and with a − otherwise. These signs can also be determined
using the coefficients si. Recall that BS lies outside T ′

k. If sk > 0 then the
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boundary component of BS on ∂W ′
k has a − sign, and if sk < 0 then it has

a + sign. If BS has a boundary component on ∂W ′
j for some j 6= k then

BS lies inside T ′
j . If sj > 0 then this boundary component has a +, and if

sj < 0 then it has a −. If all boundary components of BS have the same
sign, we may isotope BS to be disjoint from BK in a way that behaves as
required on the boundary. Otherwise, choose a single simple closed curve
on BS that separates all boundary components with a + from all boundary
components with a −. In this case we can choose a suitable isotopy that
leaves this curve as the intersection between BK and BS . The section of BS
on the + side of the curve is isotoped to the positive side of BK , while the
section on the − side is isotoped to the negative side of BK .

There is one case not included in this description. If k = 0 then BS
has one boundary component on T0. There is no pre-determined position
we must isotope this boundary component to. To avoid creating product
regions, if all other boundary components have the same sign then we must
also assign that sign to this boundary component. Otherwise, we may freely
assign it either a + or a −.

We have now made RK and S transverse by an isotopy of S in E. To
apply Proposition 6, we must verify that our choice of isotopy was a good
one, that there are now no product regions bounded by RK and S. We must
therefore check each of the complementary regions of E \ (RK ∪ S) to see if
it is a product region.

The first thing to note is that any complementary region that lies between
two parallel copies of a section of RK will meet RK on both its positive and
negative sides, since we have chosen RK such that all such sections of surface
are oriented in the same direction. Therefore, these complementary regions
cannot be product regions. The same holds for parallel sections of S. See
Figure 3a; the shaded regions pick out one complementary region between
parallel sections of RK , one between parallel sections of S, and one coming
from the intersection of parallel regions that therefore lies both between
parallel sections of RK and between parallel sections of S.

Hence once more we can imagine that each part of each of the surfaces
RK and S has a single component rather than multiple parallel copies of a
component. Observe that, under this assumption, our choice of sign for the
boundary component of S on T0 ensures that every complementary region
meets T ′

j for some j ∈ {1, . . . , N ′}.
Next we turn our attention to the complementary regions that are con-

tained entirely within W ′. This is depicted in Figure 3b. Again we find that
each such complementary region (such as that marked M1 in Figure 3b)
meets S on both the positive and negative sides. This is also true of any
complementary region that intersects E′

j ∩ ∂W ′ in a ‘small’ sub-annulus of

E′
j∩∂W ′ across which S was isotoped (such as that marked A1 in Figure 3b).

Finally, we consider a complementary region that intersects E′
j ∩ ∂W ′ in

a ‘larger’ sub-annulus coming from a component of (E′
j ∩ ∂W ′) \ RK (such
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(a)

S

RK

(b)

RK S

A1
A2

M1

Figure 3

as that marked A2 in Figure 3b). There are two possibilities. If RK and S
intersect in E′

j \W ′ (that is, if there are boundary components of S∩E′
j that

were marked with different signs) then once again the complementary region
meets both RK and S each on the positive side and on the negative side.
The other possibility is that S ∩E′

j and RK ∩E′
j are disjoint and parallel in

E′
j \W ′. This time we cannot necessarily use the boundary pattern to rule

out the possibility that the complementary region of interest is a product
region. However, the fact that RK ∩ E′

j is not a fibre for E′
j tells us this

instead.
As RK and S do not bound a product region, Proposition 6 allows us to

use S to calculate the distance between RK and S in MS(K) without any
further isotopy. Choose k ∈ {1, . . . , N ′} such that sk = max(|s1|, . . . , |sN ′ |).
An annulus of S ∩W ′

k contains at least 5|sk| − 1 curves of intersection with
RK , each a core curve of the annulus and all oriented in the same direction.

Therefore, in the cover Ẽ of E constructed using RK , a lift of S intersects
at least 5|sk| lifts of E \RK . Hence

dMS(K)(RK , S) ≥ 5|sk| = 5 max(|s1|, . . . , |sN ′ |)
= 5 max(|s1 − r1|, . . . , |sN ′ − rN ′ |).

We can also find an upper bound on dMS(K)(RK , S), since this is at most
|RK ∩ S|+ 1. Set M = max(|RK ∩ T ′

1|, . . . , |RK ∩ T ′
N ′ |). Then

|RK ∩ S| ≤M2(5 max(|s1|, . . . , |sN ′ |)− 1) + (N ′ + 1),

so

dMS(K)(RK , S) ≤ 5M2 max(|s1 − r1|, . . . , |sN ′ − rN ′ |) + (N ′ + 2).
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These inequalities together show that Θ is a quasi-isometric embedding. �

Corollary 8. The upper bound on dimension given in [5] is also a lower
bound. That is, for a knot K in S3, the Kakimizu complex MS(K) of K is
quasi-isometric to ZM , where M is equal to one less than the number of core
JSJ blocks that are not fibred.

A word on links

The results in this paper, like those in [5], are specifically stated for knots,
rather than links in general. The definition of the Kakimizu complex and
the metric on it can be extended to links. However, the definitions should
be stated in a different form before generalising. For more details on this
see [7] and [2].

The reason for the restriction to knots comes in Theorem 7 of [5], which
shows that there are only finitely many subsurfaces in each block that are
relevant for the main proof. This is proved using the classification of Seifert
fibred submanifolds of S3 given by Budney in [3]. Although Budney’s re-
sult applies equally well for multi-component link complements as for knot
complements, the same is not true of [5] Theorem 7.

As a counter-example, consider the (9, 6) torus link (that is, three parallel
copies of a trefoil), with all components oriented in parallel. The complement
of this link is Seifert fibred over a punctured sphere with two exceptional
fibres. Since there is therefore only one block in the link complement, we
would want to conclude that the Kakimizu complex is quasi-isomorphic to a
point. On the other hand, there is an essential torus in the link complement
separating two of the link components from the third, which can be used for
spinning around. In calculating the dimension of the Kakimizu complex of
a link complement, it is thus important to allow for the presence of toroidal
Seifert fibred pieces in the JSJ decomposition.
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