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On the Medvedev–Scanlon conjecture for
minimal threefolds of nonnegative

Kodaira dimension
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Abstract. Motivated by work of Zhang from the early ‘90s, Medvedev
and Scanlon formulated the following conjecture. Let F be an alge-
braically closed field of characteristic 0 and let X be a quasiprojective
variety defined over F endowed with a dominant rational self-map φ.
Then there exists a point x ∈ X(F ) with Zariski dense orbit under φ
if and only if φ preserves no nontrivial rational fibration, i.e., there ex-
ists no nonconstant rational functions f ∈ F (X) such that φ∗(f) = f .
The Medvedev–Scanlon conjecture holds when F is uncountable. The
case where F is countable (e.g., F = Q) is much more difficult; here
the Medvedev–Scanlon conjecture has only been proved in a small num-
ber of special cases. In this paper we show that the Medvedev–Scanlon
conjecture holds for all varieties of positive Kodaira dimension, and ex-
plore the case of Kodaira dimension 0. Our results are most definitive
in dimension 3.
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1. Introduction

Consider a dominant rational self-map φ : X 99K X of an irreducible
variety X, defined over a field k. For an integer n ≥ 0, we will denote by
φn the n-th compositional power of φ. Given a point x ∈ X, we define its
orbit under φ (denoted Oφ(x)) to be the set of all φn(x) (as n ranges over
the nonnegative integers) whenever x is not in the indeterminacy locus for
φn.

The Medvedev–Scanlon Conjecture predicts when there is a point in X(Q)
with dense φ-orbit. Certainly, no such Q-point can exist if φ preserves a
rational fibration, i.e., if there is a dominant rational map π : X 99K Y with
dimY > 0 such that π ◦ φ = π. The Medvedev–Scanlon conjecture asserts
that this necessary condition is also sufficient.

Conjecture 1.1 ([MS14, 7.14]). Let X be an irreducible variety over an
algebraically closed field F of characteristic 0 and φ : X 99K X be a dominant
rational self-map. If φ does not preserve a rational fibration, then there is a
point x ∈ X(F ) with Zariski dense forward orbit under φ.

In the case, where F is uncountable, Conjecture 1.1 was proved earlier
by Amerik and Campana [AC08, Theorem 4.1] (and under the stronger
hypothesis that φ is an automorphism of X independently by Bell, Rogalski
and Sierra [BRS10, Theorem 1.2]). Conjecture 1.1 was, in fact, motivated by
this theorem and by an older conjecture of Zhang [Zha06, Conjecture 4.1.6]
about Zariski dense orbits for polarizable endomorphisms.

For the rest of the introduction we will assume that F is a countable alge-
braically closed field of characteristic 0 (e.g., F = Q). Here the Medvedev–
Scanlon conjecture has only been proved in a few special cases, using subtle
diophantine techniques:

(1) Medvedev and Scanlon [MS14, Theorem 7.16] established Conjec-
ture 1.1 for endomorphisms φ of X = Am of the form

φ(x1, . . . , xm) = (f1(x1), . . . , fm(xm)),

where f1, . . . , fm ∈ F [x]. Their proof combines techniques from
model theory, number theory and polynomial decomposition theory
to obtain a complete description of all periodic subvarieties.

(2) In the case where X is an abelian variety and φ : X → X is a
dominant self-map, Conjecture 1.1 was proved by Ghioca and Scan-
lon [GS17]. The proof uses an explicit description of endomorphisms
of an abelian variety and relies on the Mordell–Lang conjecture, due
to Faltings [Fal94].

(3) In the case where dim(X) ≤ 2 and φ : X 99K X is a birational
isomorphism, Conjecture 1.1 was established by Xie [Xie15]. We re-
mark that in [Xie15, Theorem 1.4], this result is stated under the
additional assumption that the first dynamical degree of φ is greater
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than 1; however, the same proof goes through without this assump-
tion. We will not use [Xie15, Theorem 1.4] in this paper, but we will
appeal to the case of regular automorphisms of surfaces, which was
settled earlier in [BGT15, Theorem 1.3]. These results are proved
by p-adic techniques, in particular, the so-called p-adic arc lemma.
For details on the p-adic arc lemma and its applications we refer the
reader to [BGT16, Chapter 4], [A15, Section 1].

(4) Xie [Xie, Theorem 1.1] recently proved Conjecture 1.1 for all polyno-
mial endomorphisms of A2. The proof relies on valuation-theoretic
techniques.

In this paper we will explore Conjecture 1.1 in the case where

φ : X 99K X

is a birational automorphism and dim(X) ≥ 3 by using techniques of higher-
dimensional algebraic geometry. We begin by observing that if X is an
irreducible projective variety of Kodaira dimension κ(X) > 0, then every
dominant rational self-map φ : X 99K X preserves a rational fibration; see
Proposition 2.3. In particular, the Medvedev–Scanlon Conjecture is vacu-
ously true in this case.

For the remainder of this paper we will consider the case of Kodaira
dimension 0. Recall that a smooth projective variety X over Q is called
hyperkähler if its complex analytification is simply connected and H0(Ω2

X)
is spanned by a symplectic form. In dimension 2, hyperkähler varieties are
nothing more than K3 surfaces.

We use the convention that a smooth projective variety of dimension ≥ 3
defined over Q is Calabi–Yau if the complex analytification XC is simply
connected, KX ' OX , and Hp(OX) = 0 for 0 < p < dimX. Since we
are working over Q, by the symmetry of the Hodge diamond, this latter
condition is equivalent to requiring H0(Ωp

X) = 0 for 0 < p < dimX.
We are now ready to state the main results of this paper.

Theorem 1.2. Fix an integer n ≥ 1. Then the following conditions are
equivalent.

(a) The Medvedev–Scanlon Conjecture 1.1 holds for all birational self-
maps of smooth projective minimal n-folds X over Q such that the
canonical divisor KX is numerically trivial,

(b) The Medvedev–Scanlon Conjecture 1.1 holds for all birational self-
maps of smooth projective minimal n-folds X of the form

X = A×
∏
i

Yi ×
∏
j

Zj ,

where A is an abelian variety, the Yi are Calabi–Yau, and the Zj are
hyperkähler.
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Remark 1.3. The Abundance Conjecture [KM98, Conjecture 3.12] implies
that KX is numerically trivial for every smooth projective minimal variety
X of Kodaira dimension 0.

In the case of threefolds, we obtain the following stronger result

Theorem 1.4. The Medvedev–Scanlon Conjecture 1.1 holds for birational
self-maps of smooth projective minimal threefolds over Q of Kodaira dimen-
sion 0 if and only if it holds for smooth Calabi–Yau threefolds.

Finally, we handle the case of Calabi–Yau threefolds, contingent on con-
jectures in the minimal model program. Via the intersection product, the
second Chern class c2(X) defines a linear form on the nef cone Nef(X).
Miyaoka [Miy87] shows that this linear form always assumes nonnegative
values on the nef cone. We separately consider the cases where c2(X) is
strictly positive and where it is not.

Theorem 1.5. Let X be a smooth projective Calabi–Yau threefold over Q.
Then the Medvedev–Scanlon Conjecture 1.1 holds for all (regular) automor-
phisms φ : X → X if either:

(1) c2(X) is positive on Nef(X), or
(2) there is a semi-ample divisor D 6= 0 on X such that c2(X) ·D = 0.

Here by “divisor” we mean that D is an integral point of Nef(X), i.e., D is
the linear combination of classes of codimension 1 irreducible subvarieties of
X with integer coefficients. Note also that here c2(X) 6= 0. Indeed, otherwise
there would exist a finite étale cover A→ X, where A is an abelian variety.
Since we are assuming that X is simply connected, this cannot happen.

Remark 1.6 (Concerning the hypothesis in Theorem 1.5(2)). If the hy-
pothesis in Theorem 1.5(1) fails, then as mentioned above, Miyaoka’s theo-
rem implies Z := c2(X)⊥ ∩ Nef(X) is a nonzero face of Nef(X). A priori,
Z could be irrational. If Z contains a nonzero rational class D, then the
semi-ampleness conjecture [LOP, Conjecture 2.1] implies that some scalar
multiple mD is a semi-ample divisor, and so the hypothesis in (2) holds.

Thus, assuming the semi-ampleness conjecture, the only Calabi–Yau vari-
eties X that Theorem 1.5 does not apply to are those for which Z is nonzero
and contains no nonzero rational classes. If [Ogu01, Question-Conjecture
2.6] of Oguiso is true over Q, then this situation never occurs when the
Picard number ρ(X) is sufficiently large.

In light of Remark 1.6, we have the following result.

Corollary 1.7. If the semi-ampleness conjecture [LOP, Conjecture 2.1]
and [Ogu01, Question-Conjecture 2.6] are true over Q, then the Medvedev–
Scanlon Conjecture 1.1 is true for all automorphisms of smooth minimal
threefolds of nonnegative Kodaira dimension and sufficiently large Picard
number.
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Arapura, Stéphane Druel, Najmuddin Fakhruddin, Fei Hu, Jesse Kass, Brian
Lehman, John Lesieutre, Sándor Kovács, Tom Scanlon, Alan Thompson,
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2. The case of positive Kodaira dimension

We begin with two useful lemmas.

Lemma 2.1. In order to prove Conjecture 1.1 for the dynamical system
(X,φ), it is sufficient to prove Conjecture 1.1 for an iterate (X,φm), for
some m ∈ N.

Proof. It is clear that if φm has a Zariski dense orbit, then so does φ.
It remains to show that if φ does not preserve a nonconstant fibration,

then neither does φm. Indeed, suppose there exists a nonconstant f ∈ F (X)
such that (φm)∗(f) = f . Then φ preserves the symmetric function gi in the
rational functions f, φ∗(f), . . . , (φm−1)∗(f), for each i = 1, . . . ,m. Since f is
nonconstant, then at least one of g1, . . . , gm is nonconstant. In other words,
there exists a nonconstant function gi fixed by φ∗, as desired. �

Lemma 2.2. Let φ : X 99K X be a birational automorphism defined over
a field k. Let F be an uncountable algebraically closed field containing k.
Then the following conditions are equivalent:

(1) k(X)φ = k.
(2) There exists a F -point x ∈ X(F ) such that the orbit

{φn(x) |n = 0, 1, 2, . . . }

is dense in X.
(3) F (X)φ = F .

Proof. The implication (1) =⇒ (2) follows from [BGR17, Theorem 1.2].
The remaining implications (2) =⇒ (3) and (3) =⇒ (1) are obvious. �

Proposition 2.3. If X is an irreducible projective variety of Kodaira di-
mension κ(X) > 0 defined over a field k of characteristic 0 and φ : X 99K X
is a dominant rational self-map, then φ preserves a rational fibration. In
particular, the Medvedev–Scanlon Conjecture 1.1 is vacuously true in this
case.

Proof. Let k0 be a finitely generated subfield of k such that both X and φ
are defined over k0. After replacing k by k0 we may assume that k is finitely
generated over Q and thus is isomorphic to a subfield of C. We want to show
that φ preserves a rational fibration X 99K Y or equivalently, k(X)φ 6= k.
By Lemma 2.2, we may assume without loss of generality that k = C.
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Note also that we may replace X by a birationally equivalent variety; this
does not change C(X) or C(X)φ. After resolving the singularities of X, we
may also assume that X is smooth.

Next, consider the Iitaka fibration, i.e., the rational map f : X 99K Wm

defined by the complete linear system |mKX | for m sufficiently divisible.
By a theorem of Nakayama and Zhang [NZ09, Theorem A], there exists an
automorphism ψ : Wn →Wn of finite order such that the diagram

X
φ
//

f
��

X

f
��

Wn
ψ
// Wn,

commutes. (In the case, where φ is an automorphism of X, this was proved
earlier by Deligne and Ueno [Uen75, Thm 14.10].) By Lemma 2.1, we may
replace φ by φe, where e is the order of ψ, and thus assume that ψ = idWn .
In other words, f is a rational fibration preserved by φ. �

3. The Beauville–Bogomolov decomposition theorem over Q
We now recall the Beauville–Bogomolov decomposition theorem. Suppose

X is a smooth complex projective variety with numerically trivial canonical

divisor KX . Beauville [Bea83, p. 9] defines π : X̃ → X to be a minimal split

cover if it is a finite étale Galois cover, X̃ ' A × S, where A is an abelian
variety and S is simply connected, and there is no nontrivial element of the
Galois group that simultaneously acts as translation on A and the identity on
S. The main theorem together with Proposition 3 of [Bea83] show that every
such X has a minimal split covering and that it is unique up to nonunique
isomorphism.

In the sequel we will need a variant of the Beauville–Bogomolov decom-
position theorem [Bea83] over Q. For lack of a suitable reference, we will
prove it below.

Proposition 3.1. Let X be a smooth projective minimal variety over Q
with KX numerically trivial. Then there exists a finite étale Galois cover

π : X̃ → X defined over Q such that:

(1) X̃ = A ×
∏
i Yi ×

∏
j Zj, where A is an abelian variety, the Yi are

Calabi–Yau, and the Zj are hyperkähler.
(2) No element of the Galois group acts simultaneously as translation

on A and the identity on all of the Yi and Zj.

(3) If π′ : X̃ ′ → X is a finite étale cover and X̃ ′ = A′ × S′ with A′ an
abelian variety and S′ a simply connected variety, then there exists

a (not necessarily unique) map α : X̃ ′ → X̃ such that π′ = π ◦ α.

Proof. The Beauville–Bogomolov decomposition theorem tells us that there
is a finite group G and a G-torsor B → XC with B = A ×

∏
i Yi ×

∏
j Zj ,
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where A is an abelian variety, the Yi are Calabi–Yau varieties, and the Zj are
hyperkähler varieties. By a standard limit argument, there exists a finitely
generated field extension F/Q so that we can descend B → XC to a G-torsor
B′ → XF , the abelian variety A to an abelian variety A′ over F , and the
Yi (resp. Zj) to smooth proper F -schemes Y ′i (resp. Z ′j). Moreover, after

possibly enlarging F , we can descend the isomorphism B ' A×
∏
i Yi×

∏
j Zj

to an isomorphism B′ ' A′×
∏
i Y
′
i ×

∏
j Z
′
j . Since H0(Ωp

Y ′i
)⊗FC = H0(Ωp

Yi
),

we have H0(Ωp
Y ′i

) = 0 for 0 < p < dimY ′i . By similar reasoning, we see

H0(Ω2
Z′j

) is 1-dimensional and that KY ′i
' OY ′i ; the latter statement can be

proved by using the fact that a line bundle L on a projective variety is trivial
if and only if H0(L) and H0(L∨) are both nonzero. Choosing a generator
ωj ∈ H0(Ω2

Z′j
), we have an induced map TZ′j → Ω1

Z′j
and nondegeneracy of

ωj is equivalent to this map being an isomorphism. Since this is true after
a field extension from F to C, it is true over F .

Next, let V be a smooth Q-variety with function field F . After possibly
shrinking V , we can extend B′ → XF to a G-torsor B′′ → XV , extend A′ to
an abelian scheme A′′ → V , Y ′i and Z ′j to smooth proper V -schemes Y ′′i and

Z ′′j , and can assume B′′ ' A′′×
∏
i Y
′′
i ×

∏
j Z
′′
j over V . Let πi : Y ′′i → V and

ψj : Z ′′j → V be the structure maps. After suitably shrinking V , we may

assume that (πi)∗Ω
p
Y ′′i /V

= 0 for 0 < p < dimY ′′i , that (ψj)∗Ω
2
Z′′j /V

' OV ,

and that there is a nonvanishing section ωj of (ψj)∗Ω
2
Z′′j /V

whose induced

map TZ′′j /V → Ω1
Z′′j /V

is an isomorphism.

Finally, we show that for any C-point t : SpecC → V , the complex
analytifications of the (Y ′′i )t and (Z ′′j )t are simply connected. First note
that by the Beauville–Bogomolov decomposition theorem, these varieties
have virtually abelian fundamental groups; specifically, if W denotes one
of these varieties, then there is a finite Galois cover A × S → W with A
an abelian variety and S simply connected, so π1(W ) contains π1(A) ' Zr
as a finite index subgroup. Next, note that if the étale fundamental group
πet1 (W ) is trivial, then so is π1(W ). Indeed, if πet1 (W ) = 0, then r = 0, so
π1(W ) is finite and therefore, π1(W ) = πet1 (W ) = 0. Thus, it suffices to
prove that for every geometric point v of V , the étale fundamental groups
πet1 ((Y ′′i )v) and πet1 ((Z ′′j )v) are trivial. Since the étale fundamental groups

of the geometric generic fibers (Y ′′i )η = Yi and (Z ′′j )η = Zj are trivial,
this follows immediately from specialization results of the étale fundamental
group [StPrj, Proposition 0C0Q].

Choosing any Q-point v ∈ V gives our desired G-torsor of B′′v → X.
Lastly, condition (3) follows word-for-word from the proof of [Bea83, Propo-
sition 3]: since π and π′ are defined over Q, each of the Galois covers in
Beauville’s proof is also defined over Q. �
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4. Proof of Theorem 1.2

In this section we will prove Theorem 1.2. The key ingredients of the
proof are supplied by Lemma 4.1 and Proposition 4.4 below.

Lemma 4.1. Consider the commutative diagram

X
φ
//

π
��

X

π
��

Y
ψ
// Y,

where π : X → Y is a dominant morphism of irreducible varieties, φ and ψ
are birational isomorphisms of X and Y , respectively, and the entire diagram
is defined over Q. Further suppose that dim(X) = dim(Y ) and Q(X)φ = Q.
Then:

(a) Q(Y )ψ = Q.

In parts (b) and (c), assume further that π : X → Y is a G-torsor for
some finite smooth group scheme G.

(b) If φ is regular at x ∈ X, then ψ is regular at y := π(x) ∈ Y .
(c) If the Medvedev–Scanlon Conjecture holds for (X,φ), then there ex-

ists a point y ∈ Y (Q) whose ψ-orbit is dense in Y .

Proof. (a) Viewing Q(Y ) as a subfield Q(X) via π∗, we see that

Q ⊂ Q(Y )ψ ⊂ Q(X)φ = Q ,

and part (a) follows.
(b) The composition π◦φ : X 99K Y is a G-invariant rational map which is

regular at x. Hence, it descends to a rational map Y 99K Y which is regular
at y. Clearly, this map coincides with ψ. In other words, ψ is regular at y,
as claimed.

(c) Since the Medvedev–Scanlon Conjecture holds for φ, there exists a
point x ∈ X(Q) such that the φ-orbit of x is dense in X. Using part (b) for
each iterate of φ, we conclude that for each n ∈ N such that φn is defined
at x, we have that ψn is defined at y := π(x). Furthermore, since the orbit
of x under φ is dense in X, we conclude that the orbit of y under ψ is dense
in Y as well. �

The next two technical lemmas are used to prove Proposition 4.4.

Lemma 4.2. Let X be a smooth projective minimal variety over Q with KX

numerically trivial. Suppose G is a finite group and that

X̃ ′
ϕ
//

π′

��

X̃

π

��

X
φ
// X
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is a commutative diagram, where π and π′ are G-torsors, and φ and ϕ are
birational maps. Then there are finite groups H and Γ, and a commutative
diagram

Y ′
ψ
//

p′

��

Y

p

��

X̃ ′
ϕ
// X̃

such that:

(i) ψ is a birational H-equivariant map.
(ii) p and p′ are H-torsors.
(iii) π ◦ p and π′ ◦ p′ are Γ-torsors.
(iv) Y ′ ' A′ × S′ with A′ an abelian variety and S′ simply connected.

Proof. Since π′ is étale, we see (π′)∗KX = K
X̃′ and so K

X̃′ is numerically

trivial. Thus, by Proposition 3.1, there is a minimal split cover q′ : Z ′ → X̃ ′

defined over Q. Taking a further étale cover Y ′ → Z ′, we can assume that
the composite map Y ′ → X ′ is Galois with group Γ. Since Z ′ is the product
of an abelian variety and a simply connected variety, and since Y ′ → Z ′ is
étale, we see Y ′ = A′×S′ with A′ an abelian variety and S′ simply connected.

Let p′ denote the composite map Y ′ → X̃ ′ and let H be its Galois group.
Next, φ is a birational automorphism of X, so as Lazić shows in [Laz13,

p. 197] between Remarks 6.1 and 6.2, φ is a pseudo-automorphism, i.e., nei-
ther φ nor φ−1 contracts a divisor. We can therefore find open subsets
U and V of X whose complements have codimension at least 2 such that
φ|U : U → V is an isomorphism. Since p′ is an H-torsor, we see

Y ′|U := Y ′ ×X U → X̃ ′ ×X U =: X̃ ′|U

is as well. Pulling this torsor back via the isomorphism X̃|V → X̃ ′|U , we

obtain an H-torsor W → X̃|V and thus a Cartesian diagram

Y ′ ⊇
p′

��

Y ′|U

��

' // W

��

X̃ ′ ⊇

π′

��

X̃ ′|U

��

' // X̃|V

��

⊆ X̃

π

��

X ⊇ U
' // V ⊆ X.

Since π is étale and the complement of V in X has codimension at least

2, we see the complement of X̃|V in X̃ has codimension at least 2. Then

by [Ols12, Proposition 3.2], the H-torsor W → X̃|V extends uniquely to

an H-torsor p : Y → X̃. Since X r V has codimension at least 2, another
application of [Ols12, Proposition 3.2] shows that π ◦ p is a Γ-torsor. We
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have therefore obtained a commutative diagram

Y ′
ψ
//

p′

��

Y

p
��

X̃ ′
ϕ
//

π′

��

X̃

π

��

X
φ
// X.

We have shown properties (ii)–(iv). Since the H-torsor W → X̃|V was

obtained as the pullback of the H-torsor Y ′ → X̃ ′|U it follows by construc-
tion that Y ′|U → W is H-equivariant. Thus, ψ is H-equivariant, proving
property (i). �

Lemma 4.3. Under the hypotheses of Lemma 4.2, if π : X̃ → X is the

minimal split cover of Proposition 3.1, then X̃ ′ is the product of an abelian
variety and a simply connected variety.

Proof. Let Y , Y ′, p, p′, ψ, H, and Γ be as in the conclusion of Lemma
4.2. In particular, Y ′ = A′ × S′ where A′ is an abelian variety and S′ is

simply connected. By construction, X̃ is a product of an abelian variety and

a simply connected variety, and since Y is a finite étale cover of X̃, we also
see that Y = A × S with A an abelian variety and S a simply connected

variety. Moreover, since X̃ is the minimal split covering of X, the proof
of [Bea83, Proposition 3] tells us that the H-action on Y realizes H as the
normal subgroup of elements in Γ acting simultaneously as translation on A

and the identity on S. As a result, X̃ = (A/H)× S.
To finish the proof, it suffices to show that H acts on Y ′ through trans-

lation on A′ and the identity on S′. Indeed, provided we can show this, we

then know that X̃ ′ = (A′/H)× S′, as desired. To prove that H acts on Y ′

as stated, we compare it with the H-action on Y = A × S. Since ψ is an
H-equivariant map, it induces an H-equivariant birational map ψ : A′ 99K A
on Albanese varieties. Every rational map of abelian varieties is regular, so
ψ is in fact an isomorphism. Moreover, after suitable choice of origin, it
respects the group structure. Given γ ∈ H, we know it acts on A as transla-

tion tz by some z, so γ acts on A′ as ψ
−1
tzψ which is translation by ψ

−1
(z).

Now, choosing a general point a ∈ A′, ψ induces a birational map on fibers
S′ = Y ′a 99K Yψ(a) = S that commutes with the H-action. Since each γ ∈ H
acts as the identity on S, the action of γ on S′ is an automorphism that
agrees with the identity map on a dense open. As a result, it is the identity
map. �

Proposition 4.4. Let X be a smooth projective minimal variety over Q
with KX numerically trivial, and let π : X̃ → X be a minimal split cover
provided by Proposition 3.1. Then for every birational automorphism φ of
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X over Q, there exists a birational automorphism φ̃ of X̃ over Q such that

π ◦ φ̃ = φ ◦ π.

Proof. We know that π : X̃ → X is a G-torsor for a finite group G, and

that X̃ = A × S with S simply connected and A an abelian variety. Since
X is smooth, φ is regular on an open subset U ⊆ X with X r U having
codimension at least 2. Consider the Cartesian diagram

X̃ ×X U //

��

X̃

π

��

U
φ|U

// X.

Since X r U has codimension at least 2, by [Ols12, Proposition 3.2], the

G-torsor X̃ ×X U → U extends uniquely to a G-torsor π′ : X̃ ′ → X. We
therefore have a commutative diagram

X̃ ′ ⊇

π′

��

X̃ ×X U //

��

X̃

π

��

X ⊇ U
φ|U

// X.

In other words, we have a commutative diagram

X̃ ′
ϕ
//

π′

��

X̃

π

��

X
φ
// X.

So, Lemma 4.3 tells us that X̃ ′ is the product of an abelian variety and a
simply connected variety. Then by Proposition 3.1(3), there exists a map

α : X̃ ′ → X̃ such that π′ = π ◦ α. Since π and π′ are both G-torsors, hence
finite maps of the same degree, α must be an isomorphism. Therefore,

φ̃ = ϕ ◦ α−1 is our desired birational map. �

Proof of Theorem 1.2. The implication (a) =⇒ (b) is obvious. To show
that (b) =⇒ (a), let X be a smooth projective minimal variety defined
over Q with numerically trivial canonical divisor, and let φ be a birational
automorphism of X. By Proposition 3.1, there exists a minimal split cover

π : X̃ → X defined over Q. By Proposition 4.4, φ lifts to a birational

automorphism φ̃ of X̃. By Lemma 4.1(c), it is then enough to show that

Medvedev–Scanlon holds for φ̃. �

5. Proof of Theorem 1.4

Our proof will rely on the following lemma.
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Lemma 5.1. Consider the commutative diagram

X
φ
//

π
��

X

π
��

Y
ψ
// Y,

where π : X → Y is a dominant morphism of irreducible varieties, φ is
birational isomorphisms of X, ψ is an automorphism of Y , and the entire
diagram is defined over Q. Suppose Q(X)φ = Q (and hence, Q(Y )φ = Q;
see Lemma 4.1(a), and there exists a y ∈ Y (Q) whose ψ-orbit is dense in
Y . Assume further that either

(a) π is birational, or
(b) φ is a (regular) automorphism and dim(X) = dim(Y ) + 1.

Then there exists an x ∈ X(Q) whose φ-orbit is dense in X.

Proof. (a) Suppose π restricts to an isomorphism between dense open sub-
sets X0 of X and Y0 of Y . After replacing y by an iterate, we may assume
that y ∈ Y0. We claim that the preimage x ∈ X0 of y has a dense φ-orbit
in X. Indeed, set yn := ψn(y) ∈ Y . Then there is a sequence i1 6 i2 6 . . .
such that the points yi1 , yi2 , . . . , all lie in Y0 and are dense in Y . Then
xn := φn(x) are well defined for n = i1, i2, . . . and are dense in X. This
proves the claim.

(b) By [BRS10, Theorem 1.2], X has only finitely many φ-invariant codi-
mension 1 subvarieties. Denote their union by H ⊂ X. Once again, set
yn := ψn(y) ∈ Y . The union of the fibers π−1(yn), as n ranges over the non-
negative integers, is dense in X. Hence, one of these fibers is not contained
in H. After replacing y by an iterate, we may assume that π−1(y) 6⊂ H.
Choose a Q-point x ∈ π−1(y) which does not lie in H. We claim that
the φ-orbit of x is dense in X. Indeed, denote Zariski closure of the orbit
of x by Z. By our construction π(Z) contains the ψ-orbit of y and thus
is dense in Y . Hence, dim(Y ) 6 dim(Z) 6 dim(X) = dim(Y ) + 1. On
the other hand, since x 6∈ H, Z cannot be a hypersurface in X. Thus
dim(Z) = dim(X) = dim(Y ) + 1, i.e., Z = X, as desired. �

We now proceed with the proof of Theorem 1.4. Since the abundance
conjecture is known for threefolds [Kaw92], Theorem 1.2 tells us that the
Medvedev–Scanlon Conjecture 1.1 holds for all smooth projective minimal
threefolds of Kodaira dimension 0 if and only if it holds for products of
Calabi–Yau varieties, hyperkähler varieties, and abelian varieties over Q;
see Remark 1.3. We are therefore reduced to three possibilities:

(i) X is an abelian threefold.
(ii) X is a product E × S, where E is an elliptic curve and S is a K3

surface.
(iii) X is a smooth Calabi–Yau 3-fold.
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The Medvedev–Scanlon conjecture holds in case (i) by [GS17]. The main
result of this section, Proposition 5.3, asserts that Conjecture 1.1 also holds
in case (ii). This will leave us with case (iii), thus completing the proof of
Theorem 1.4.

Lemma 5.2. Suppose X = E × S, where E an elliptic curve and S is a
smooth minimal surface with trivial Albanese and κ(S) ≥ 0. Every bira-
tional isomorphism φ : X 99K X is of the form φ = φE × φS with φE an
automorphism of E and φS an automorphism of S. In particular, every
birational isomorphism of X is regular.

Proof. The projection π : X → E is the Albanese map for X. Thus
φ induces a birational automorphism φE of E such that π ◦ φ = φE ◦ π.
Since E is a smooth curve, φE is an automorphism of E. Replacing φ by
φ ◦ (φ−1

E , idS), we see that to prove the lemma, we may assume φE = idE .
Since X is smooth, the indeterminacy locus I(φ) of φ has codimension

at least 2, and so I(φ) ∩ Xt has codimension at least 1 for all t ∈ E. We
therefore obtain a map f : E → Bir(S) given by t 7→ φ|Xt . Since κ(S) ≥ 0,
S is not ruled, so S is a unique smooth minimal surface in its birational
class, and Bir(S) = Aut(S), see for example [Bea96, Theorem V.19]. Our
goal is to show that the resulting map f : E → Aut(S) is constant. Choose
a point t0 ∈ E and let σ := f(t0) ∈ Aut(S). After composing φ with
(1, σ−1) : E × S → E × S, we may assume that f(t0) = 1 ∈ Aut(S). Since
E is irreducible, this implies that the image of f lies in Aut0(S). Since S
has trivial Albanese, by [Fuj78, Corollary 5.8], Aut0(S) is an affine algebraic
group. Thus, f must be a constant map, as claimed. We now define φS to
be the image of this map. �

Proposition 5.3. Suppose X = E×S, were E an elliptic curve and S is a
surface with trivial Albanese and κ(S) ≥ 0. Let φ : X 99K X be a birational
isomorphism such that Q(X)φ = Q. Then Conjecture 1.1 holds for (X,φ).

Proof. Let π : S → Smin be the minimal model of S. By Lemma 5.1, φ
descends to an automorphism E×Smin → E×Smin of the form (φE , φmin),
where φE is an automorphism of E and φmin is an automorphism of Smin.
Now consider the commutative diagram

E × S
φ

//

id×π
��

E × S

id×π
��

E × Smin
φE×φmin

//

pr

��

E × Smin
pr

��

Smin
φmin

// Smin,

By [BGT15, Theorem 1.3] the Medvedev–Scanlon conjecture holds for the
automorphism φmin of the surface Smin. By Lemma 5.1(b), E × Smin has a
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Q-point with a dense (φE , φmin)-orbit. Applying Lemma 5.1(a), we conclude
that E × S has a Q-point with a dense φ-orbit, as desired. �

6. Pseudo-automorphisms that preserve a line bundle

The following result will be used in the proof of Theorem 1.5 in the next
section.

Proposition 6.1. Suppose φ : X 99K X is a pseudo-automorphism of a
smooth projective variety defined over a field k of characteristic 0, L is a
line bundle such that φ∗(L) ' L, and Y is the closure of the image of
the natural rational map i : X 99K P(H0(X,L)∗). Here, as usual H0(X,L)
denotes the finite-dimensional space of global sections of L, and H0(X,L)∗

denotes the dual space. Then:

(a) φ induces a linear automorphism φ̄ of the projective space

P(H0(X,L)∗)

preserving Y .

Moreover, assume k(X)φ = k. Then:

(b) There is a dense φ̄-invariant subset U of Y such that the φ̄-orbit of
y is dense in Y for every y ∈ U .

(c) Y is a rational variety over the algebraic closure k.

Note that since φ is a pseudo-automorphism, it induces an automorphism
φ∗ : Pic(X)→ Pic(X).

Proof. (a) We begin with the following preliminary observation. Suppose
L and L′ are isomorphic line bundles on a complete variety X defined over
k. We claim that there is a canonically defined linear isomorphism between
the finite-dimensional projective spaces P(H0(X,L)) and P(H0(X,L′)). To
define this linear isomorphism, write L = OX(D) and L′ = OX(D′), where
D and D′ are divisors on X. Since L and L′ are isomorphic, these divisors
are linearly equivalent. That is,

(6.2) D′ = D + (f),

where (f) denotes the divisor associated to a rational function f ∈ k(X).
Once f is chosen, we can define an isomorphism of vector spaces

H0(X,L)→ H0(X,L′)

α 7→ fα.

The rational function f in (6.2) is uniquely determined by L and L′ up
to a nonzero scalar factor. The induced isomorphism of projective spaces
P(H0(X,L)) → P(H0(X,L′)) depends only on L and L′ and not on the
choice of f . This proves the claim.

We now apply this claim in the setting of the proposition, with

L′ := φ∗(L).
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The line bundles L and L′ are isomorphic by our assumption. On the other
hand, φ induces an isomorphism

φ∗ : H0(X,L′)∗ → H0(X,L)∗

via pull-back. Composing with the dual P(H0(X,L)∗) → P(H0(X,L′)∗) of
the isomorphism P(H0(X,L′))→ P(H0(X,L)) constructed above, we obtain
a desired automorphism

φ̄ : P(H0(X,L)∗)→ P(H0(X,L)∗)

such that the diagram

X
φ

//

i
��

X

i
��

P(H0(X,L)∗)
φ̄
// P(H0(X,L)∗)

commutes.
(b) Let Y be the closure of image of X in P(V ) under i, where

V := H0(X,L)∗.

Since k(X)φ = k, clearly k(Y )φ = k as well.
Set G to be the subgroup of PGL(V ) of automorphisms of P(V ) which

preserve Y . Then φ̄ ∈ G, and G is a closed subgroup of PGL(V ) and hence,
a linear algebraic group. Let G0 be the Zariski closure of the subgroup
generated by φ̄ inside G. Then G0 is an abelian linear algebraic group.
Moreover, for any y ∈ Y , the orbit of y under φ has the same closure in Y
as the orbit of y under G0. So, it suffices to show that there is a dense open
subset U ⊂ Y such that every y ∈ U has a dense orbit under G0. The last
assertion is a consequence of Rosenlicht’s theorem; see [Ro56, Theorem 2],
cf. also [BGR17, Theorem 1.1] and [BRS10, Proposition 7.4(1)]; in fact, we
can take U to be a dense G0-orbit in Y .

(c) Since U is a G0-orbit, it is isomorphic to the homogeneous space
G0/H0, for some subgroup H0 ⊂ G0. Since G0 is abelian, H0 is normal
in G0. Hence, as a variety, U is isomorphic to the abelian linear algebraic
group G0/H0. Every abelian linear irreducible algebraic group over k is
isomorphic to a direct product of copies of Ga and Gm; we conclude that U
is rational over k and hence, so is Y . �

7. Proof of Theorem 1.5

Let X be a minimal threefold with KX torsion. The automorphism
φ : X → X induces an automorphism φ∗ of the nef cone Nef(X). Every
minimal Gorenstein threefold Y with c1(Y ) = c2(Y ) = 0 has an étale cover
by an abelian variety [SBW94]. So, if X is a Calabi–Yau variety (hence sim-
ply connected) we must have c2(X) 6= 0. As mentioned in the introduction,
a theorem of Miyaoka [Miy87] then tells us that c2(X) is positive on the
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ample cone Amp(X) and nonnegative on Nef(X). We first consider the case
where c2(X) is strictly positive on the nef cone. Our proof of Theorem 1.5(1)
was motivated by the arguments given in Chapter 4 of [Ki10].

Lemma 7.1. Suppose ` : Rn → R is a linear function and C is a closed
cone in Rn such that `(z) > 0 for any z ∈ C other than the origin. Then for
any real number M ≥ 0, the region CM := {z ∈ C | `(z) ≤M} is compact.

Proof. Let S be the intersection of C with the unit sphere. Clearly S is
compact. Define the function f : S → R given as follows. For p ∈ S, let
Ip be the intersection of the line through p and the origin with the strip
0 ≤ `(z) ≤ M . Since ` is positive on C, Ip is an interval of finite length.
Let f(p) be the length of Ip. Since f is continuous and S is compact, f
attains its maximal value r on S. Consequently, CM is contained in the ball
of radius r centered at the origin. Thus CM is closed and bounded, hence
compact. �

Proof of Theorem 1.5. (1) Since c2(X) is strictly positive on Nef(X),
Lemma 7.1 shows that for all M ≥ 0, the region

{D ∈ Nef(X) | c2(X) ·D ≤M}

is compact. As a result, c2(X) achieves a minimum positive value on
Pic(X)∩Amp(X) and this value is achieved by only finitely many Di. Tak-
ing the sum of these finitely many Di, we obtain an ample class A which
is fixed by φ∗. Let M be an ample line bundle representing the class of
A. Since the Albanese of X is trivial, rational equivalence is the same as
linear equivalence. Since φ∗A = A in NS(X)⊗ C, we have φ∗M'M⊗N
where N is a torsion line bundle. Replacing A by a scalar multiple, we
may assume that φ∗(A) is isomorphic to A and that A is very ample. If φ
preserves a rational fibration, we are done. Otherwise, with notation as in
Proposition 6.1(b), there is a dense set of y ∈ Y with dense orbit under φ̄.
However, A is very ample, so Y = X which gives the desired conclusion.

(2) We will now consider the case where there is a semi-ample divisor
D 6= 0 on X such that c2(X) · D = 0. Let π : X → Y be the associated
c2-contraction. Oguiso shows ([Ogu01, Theorem 4.3]) that there are only
finitely many c2-contractions, and so after replacing φ by a further iterate,
we can assume φ∗[D] = [D]. By Proposition 6.1(a), φ descends to an auto-
morphism φ of Y . Since D is nonzero, Y is not a point. We now consider
three cases.

Case 1. dim(Y ) = 3, i.e., D is big. Since contractions have connected fibers,
π is birational. If X preserves a rational fibration, we are done. Otherwise,
Proposition 6.1(c) tells us that Y is rational over Q, which is not possible
since X has Kodaira dimension 0. So, the Medvedev–Scanlon Conjecture
for φ holds in this case.
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Case 2. dim(Y ) = 2. By [BGT15, Theorem 1.3], the Medvedev–Scanlon
conjecture holds for Y . Applying Lemma 5.1(b) to the c2-contraction

π : X → Y,

we see that the Medvedev–Scanlon conjecture holds for X as well.

Case 3. dim(Y ) = 1. By Proposition 6.1(c), Y ' P1 (over Q). Let Z ⊆ P1

be the locus of points t where the fiber Xt is singular. Then φ(Z) = Z.
Since Z is a finite set, after replacing φ by a further iterate, we can assume
φ fixes Z point-wise. By [VZ01, Theorem 0.2], we know that Z contains at
least 3 points. It follows that φ is the identity since it fixes at least three
points of P1. In other words, there exists a rational function on X which is
invariant under some iterate of φ, as desired. �
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