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Harmonic cocycles, von Neumann
algebras, and irreducible affine isometric

actions

Bachir Bekka

Abstract. Let G be a compactly generated locally compact group and
(π,H) a unitary representation of G. The 1-cocycles with coefficients in
π which are harmonic (with respect to a suitable probability measure
on G) represent classes in the first reduced cohomology H̄1(G, π). We
show that harmonic 1-cocycles are characterized inside their reduced
cohomology class by the fact that they span a minimal closed subspace
of H. In particular, the affine isometric action given by a harmonic
cocycle b is irreducible (in the sense that H contains no nonempty, proper
closed invariant affine subspace) if and only if the linear span of b(G) is
dense in H. Our approach exploits the natural structure of the space of
harmonic 1-cocycles with coefficients in π as a Hilbert module over the
von Neumann algebra π(G)′, which is the commutant of π(G). Using
operator algebras techniques, such as the von Neumann dimension, we
give a necessary and sufficient condition for a factorial representation
π without almost invariant vectors to admit an irreducible affine action
with π as linear part.
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1. Introduction, statement of results, and background
material

Let G be a locally compact group and (π,H) a continuous unitary (or
orthogonal) representation of G on a complex (or real) Hilbert space H.
Recall that a 1-cocycle with coefficients in π is a continuous map b : G→ H
such that b(gh) = b(g) + π(g)b(h) for all g, h ∈ G and that a 1-cocycle is a
coboundary if it is of the form ∂v for some v ∈ H, where ∂v(g) = π(g)v − v
for g ∈ G. The space Z1(G, π) of 1-cocycles with coefficients in π is a vector
space containing the space B1(G, π) of coboundaries as linear subspace. The
1-cohomology H1(G, π) is the quotient Z1(G, π)/B1(G, π).

The space B1(G, π) is not necessarily closed in Z1(G, π), endowed with
the topology of uniform convergence on compact subsets of G (see Propo-
sition 1), and the reduced 1-cohomology with coefficients in π is defined as

H
1
(G, π) = Z1(G, π)/B1(G, π).
Assume now that G is compactly generated, that is, G = ∪n∈ZQn for

a compact subset Q, which we can assume to be a neighbourhood of the
identity e ∈ G and to be symmetric (Q−1 = Q).

Harmonic 1-cocycles in Z1(G, π), with respect to an appropriate probabil-
ity measure on G, form a set of representatives for the classes in the reduced

cohomology H
1
(G, π), as we will shortly explain. Such cocycles appear in

[BeV] in the case where π is the regular representation of a discrete group G,
in relation with the first `2-Betti number of G; they play an important role
in Ozawa’s recent proof of Gromov’s polynomial growth theorem ([Oza]) as
well as in the work [ErO] and [GoJ].

Harmonic 1-cocycles were implicitly introduced in [Gui, Theorem 2]; it
was observed there that Z1(G, π) can be identified with a closed subspace
of the Hilbert space L2(Q,H,mG), where mG is a (left) Haar measure on

G and so H
1
(G, π) corresponds to the orthogonal complement B1(G, π)⊥

of B1(G, π) in Z1(G, π). Following [ErO], we prefer to embed Z1(G, π) in
a more general Hilbert space, defined by a class of appropriate probability
measures similar to those appearing there. For this, we consider the word
length on G associated to Q, that is, the map g 7→ |g|Q, where

|g|Q = min{n ∈ N : g ∈ Qn}.

Definition 1. A probability measure µ on G is cohomologically adapted (or,
more precisely, 1-cohomologically adapted) if it has the following properties:

• µ is symmetric;
• µ is absolutely continuous with respect to the Haar measure mG;
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• µ is adapted: the support of µ is a generating set for G;
• µ has a second moment:

∫
G |x|

2
Qdµ(x) <∞.

Observe that the class of cohomologically adapted measures is indepen-
dent of the generating compact set Q, since the length functions associated
to two compact generating sets are bi-Lipschitz equivalent.

We consider the Hilbert space L2(G,H, µ) of measurable square-integrable
maps F : G→ H. Then Z1(G, π) is a subset of L2(G,H, µ) (see Section 2).
Moreover, the linear operator

∂ : H → Z1(G, π), v 7→ ∂v

is bounded, has B1(G, π) as range, and it is straightforward to check that

its adjoint is −1

2
Mµ, where

Mµ : Z1(G, π)→ H, b 7→
∫
G
b(x)dµ(x).

So, the orthogonal complement B1(G, π)⊥ of B1(G, π) in Z1(G, π) can be
identified with the space of harmonic cocycles in the sense of the following

definition. In particular, the reduced cohomology H
1
(G, π) can be identified

with Harµ(G, π).

Definition 2. A cocycle b ∈ Z1(G, π) is µ-harmonic if Mµ(b) = 0, that is,∫
G b(x)dµ(x) = 0. We denote by Harµ(G, π) the space of µ-harmonic cocyles

in Z1(G, π) and by

PHar : L2(G,H, µ)→ Harµ(G, π)

the orthogonal projection on Harµ(G, π).

Observe that, by the cocycle relation, b ∈ Z1(G, π) is µ-harmonic if and
only if it has the mean value property

b(g) =

∫
G
b(gx)dµ(x) for all g ∈ G.

In our opinion, the Hilbert space structure of H
1
(G, π) given by its real-

ization as a space of harmonic cocycles, together with its module structure
over the von Neumann algebra π(G)′ (see below), deserves more attention
than it has received so far in the literature. Our aim in this paper is to use
this structure in relation with a natural notion of irreducibility for affine
isometric actions (see Definition 3).

Our first result shows that harmonic 1-cocycles b are characterized by a
remarkable minimality property of the space span(b(G)), the closure of the
linear span of b(G).

Theorem 1. Let G be a compactly generated locally compact group. Let
(π,H) be an orthogonal or unitary representation of G and µ a cohomologi-
cally adapted probability measure on G. Let b ∈ Harµ(G, π) be a µ-harmonic
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cocycle. We have

span(b(G)) =
⋂
b′

span(b′(G)),

where b′ runs over the 1-cocycles in the class of b in H
1
(G, π).

In particular, Theorem 1 shows that, for a µ-harmonic cocycle b, the closed
linear subspace spanned by b(G) only depends on the reduced cohomology
class of b and not on the choice of µ.

Recall that, given a cocycle b ∈ Z1(G, π), a continuous action απ,b of G
on H by affine isometries is defined by the formula

απ,b(g)v = π(g)v + b(g) for all g ∈ G, v ∈ H.

Conversely, let α be a continuous action of G on H by affine isometries.
Denote by π(g) and b(g) the linear part and the translation part of α(g) for
g ∈ G. Then π is a unitary (or orthogonal) representation of G on H, b is a
1-cocycle in Z1(G, π), and α = απ,b. For all this, see Chapter 2 in [BHV].

The following notion of irreducibility of affine actions was introduced in
[Ner] and further studied in [BPV].

Definition 3. An affine isometric action α of G on the complex or real
Hilbert space H is irreducible if H has no nonempty, closed and proper
α(G)-invariant affine subspace.

First examples of irreducible affine isometric actions arise as actions απ,b,
where π is an irreducible unitary representation of G with non trivial 1-
cohomology and b ∈ Z1(G, π) a cocycle which is not a coboundary. By [Sha1,
Theorem 0.2], such a pair (π, b) always exists, provided G does not have
Kazhdan’s Property (T). A remarkable feature of irreducible affine isometric
actions of a locally compact group G is that they remain irreducible under
restriction to “most” lattices in G (see [Ner, 3.6], [BPV, Theorem 4.2]),
whereas this is not true in general for irreducible unitary representations.

Let b ∈ Z1(G, π). Observe that span(b(G)) is απ,b(G)-invariant. So,
for απ,b to be irreducible, it is necessary that span(b(G)) is dense in H.
This condition is not sufficient (see [BPV, Example 2.4]; however, see also
Proposition 3 below). The following corollary of Theorem 1 relates harmonic
cocycles to this question.

Corollary 1. Let G, (π,H), and µ be as in Theorem 1. Let b ∈ Z1(G, π)
and PHarb its projection on Harµ(G, π).

(i) If span(PHarb(G)) is dense in H, then the affine action απ,b is irre-
ducible.

(ii) Assume that B1(G, π) is closed; if the affine action απ,b is irre-
ducible, then span(PHarb(G)) is dense in H.

Remark 1.
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(a) Point (ii) in Corollary 1 does not hold in general when B1(G, π) is
not closed; indeed, let G = F2 denote the free group on 2 generators.
On the one hand, H1(G, π) 6= 0 for every unitary representation π
of G (see [Gui, §9, Example 1]). On the other hand, there exists

an irreducible unitary representation π of G with H
1
(G, π) = 0 (see

[MaV, Theorem 1.1]), so that Harµ(G, π) = 0 for any cohomologi-
cally adapted probability measure µ on G. Now, let b be a 1-cocycle
in Z1(G, π) which is not a coboundary. Then the affine action απ,b
is irreducible.

(b) Although we will not need it, we will give an explicit formula for the
projection

PHar : Z1(G, π)→ Harµ(G,µ)

in the case where B1(G, π) is closed (see Proposition 4 below).

In view of Corollary 1, it is of interest to know when B1(G, π) is closed.
Write H = HG ⊕ H0, where HG is the space of π(G)-invariant vectors in
H and H0 its orthogonal complement. Let π0 denote the restriction of π
to H0. Observe that B1(G, π0) = B1(G, π) and that Z1(G, π0) is closed
in Z1(G, π); so, the following result is both a (slight) strengthening and a
consequence of Théorème 1 in [Gui].

Proposition 1 ([Gui]). Let (π,H) be an orthogonal or unitary representa-
tion of the σ-compact locally compact group G. Then B1(G, π) is closed in
Z1(G, π) if and only if (π0,H0) does not weakly contain the trivial represen-
tation 1G.

Our approach to the proof of Theorem 1 uses the fact, observed in [BPV,

§3.1] and [BeV] that H
1
(G, π) is, in a natural way, a module over the (real

or complex) von Neumann algebra π(G)′, which is the commutant of π(G)

in B(H); see Section 2. Viewing, as we do, H
1
(G, π) as the Hilbert space

Harµ(G, π), one is lead to the study of Harµ(G, π) as a Hilbert module over
π(G)′.

For instance, if M := π(G)′ is a finite von Neumann algebra (that is, if
there exists a faithful finite trace on M) then, we can define (as in [GHJ,

Definition p.138] or [Bek, p. 327]) the von Neumann dimension of H
1
(G, π)

as
dimMH

1
(G, π) := dimMHarµ(G, π) ∈ [0,+∞) ∪ {+∞};

for more details, see Section 2. It is worth mentioning that in case π is the

regular representation of a discrete group G, dimMH
1
(G, π) coincides with

β1
2(G), the first `2-Betti number of G (see [BeV, Proposition 2]).
We now give some applications of von Neumann techniques to the problem

of the existence of an irreducible affine isometric action of G with a given
linear part π.

Let b ∈ Z1(G, π). It was shown in Item (A3) of Proposition 2.3 in [BPV]
that απ,b is irreducible if and only if PKb /∈ B1(G, π0) for every nonzero
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subrepresentation (π0,K) of (π,H), where

PKb := PK ◦ b ∈ Z1(G, π0)

is the orthogonal projection of b on K. The following definition as well as
the statement of Proposition 2 were suggested by the referee.

Definition 4. Let b ∈ Z1(G, π). The affine isometric action απ,b is strongly

irreducible if PKb /∈ B1(G, π0) for every nonzero subrepresentation (π0,K)
of (π,H).

Recall that a vector v in a Hilbert module over a von Neumann algebra
M is a separating vector for M if Tv = 0 for T ∈M implies T = 0.

Proposition 2. For G, (π,H), and µ as in Theorem 1, and b ∈ Harµ(G, π),
the following properties are equivalent:

(i) απ,b is irreducible.
(ii) απ,b is strongly irreducible.
(iii) b is a separating vector for M = π(G)′.
(iv) span(b(G)) is dense in H.

We mention that, as shown in [BPV, Corollary 3.7], the equivalence of
(i) and (iii) in Proposition 2 holds more generally for any b ∈ Z1(G, π). For
an application of this equivalence in the case where G is a discrete finitely
generated group and π a subrepresentation of a multiple of the regular repre-
sentation of G, see [BPV, Theorem 4.25]. We extend this result to arbitrary
factor representations, that is, to unitary representations (π,H) such that
the von Neumann subalgebra π(G)′′ of B(H) generated by π(G) is a factor
(equivalently, such that π(G)′ is a factor). Concerning general facts about
factors, such as their type classification, see [Dix1].

Theorem 2. Let (π,H) be a factor representation of the compactly gen-
erated locally compact group G on the separable complex Hilbert space H.
Assume that B1(G, π) is closed in Z1(G, π). Set M := π(G)′ and let µ be a
cohomologically adapted probability measure on G. Depending on the type of
M, there exists b ∈ Z1(G, π) such that απ,b is irreducible if and only if:

(i) The factor M is of type I∞ or of type II∞ and its commutant in
B(Harµ(G, π)) is of infinite type (that is, of type I∞ or II∞, respec-
tively).

(ii) The factor M is of finite type (that is, of type In for n ∈ N or of
type II1) and dimMHarµ(G, π) ≥ 1.

(iii) The factor M is of type III and Harµ(G, π) 6= {0}.

Remark 2. Let (π,H) be a unitary representation of G such that B1(G, π)
is closed in Z1(G, π); let

π =

∫ ⊕
Ω
πωdν(ω)
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be the central integral decomposition of π, so that the πω’s are mutually
disjoint factor representations of G (see [Dix2, Theorem 8.4.2]). One checks
that one has a corresponding decomposition of Harµ(G, π) as a direct integral
of Hilbert spaces:

Harµ(G, π) =

∫ ⊕
Ω

Harµ(G, πω)dν(ω).

Moreover, B1(G, πω) is closed in Z1(G, πω) and there exists a separating
vector for π(G)′ in Harµ(G, π) if and only if there exists a separating vector
for πω(G)′ in Harµ(G, πω) for ν-almost every ω. So, Theorem 2 can be used
to check the existence of an irreducible affine with any unitary representation
π as linear part (provided B1(G, π) is closed in Z1(G, π)).

As an illustration of the use of Theorem 2, we will treat the example of
a wreath product of the form Γ = G oZ and a unitary representation π of Γ
which factorizes through a representation of G; the reduced cohomology of
such groups was considered in [Sha2, §5.4].

Theorem 3. Let G be a finitely generated group, and let (π,H) be a unitary
representation of the wreath product Γ = G oZ in the separable Hilbert space
H. Assume that π factorizes through G and that H1(G, π) = 0.

(i) For a suitable cohomologically adapted probability measure µ on Γ,
the space Harµ(Γ, µ) can be identified, as a module over π(Γ)′, with
the Hilbert space H.

(ii) There exists an irreducible affine action of Γ with linear part π if
and only if the representation (π,H) is cyclic.

Remark 3.

(i) When π is a factor representation, a necessary and sufficient con-
dition for the existence of a cyclic vector for π(G) (equivalently, a
separating vector for π(G)′) in H is given in Theorem 2, with H
replacing Harµ(G,µ) there.

(ii) By the Delorme–Guichardet theorem ([BHV, Theorem 2.12.4]), the
condition H1(G, π) = 0 is satisfied for every unitary representation
π of G if (and only if) G has Kazhdan’s property (T).

(iii) Assume that G is not virtually abelian (that is, G does not have
an abelian normal subgroup of finite index). Then G has a factorial
representation π for which π(G)′ is of any possible type. Indeed,
G is not of type I, by Thoma’s theorem ([Tho, Satz 6]); the result
follows then from Glimm’s theorem [Gli, Theorem 2]).

We are grateful to Pierre de la Harpe and Paul Jolissaint for useful com-
ments and discussions; thanks are also due to the referee for his suggestions.
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2. The space of harmonic cocycles as a von Neumann
algebra module

Let G be a locally compact group which is generated by a compact subset
Q, which we assume to be a symmetric neighbourhood of the identity e ∈ G.
Let (π,H) be an orthogonal or unitary representation of G. The map

b 7→ ‖b‖Q = sup
x∈Q
‖b(x)‖

is a norm which generates the topology of uniform convergence on compact
subsets and for which Z1(G, π) is a Banach space.

Let M := π(G)′ be the commutant of π(G) in B(H), that is,

M = {T ∈ B(H) : Tπ(g) = π(g)T for all g ∈ G};
M is a (real or complex) von Neumann algebra, that is, M is a unital self-
adjoint subalgebra of B(H) which is closed for the weak (or strong) operator
topology.

As observed in [BPV, §3.1]), H1(G, π) is a module over M; indeed, if
b ∈ Z1(G, π) and T ∈ π(G)′, then Tb ∈ Z1(G, π), where Tb is defined by

Tb(g) = T (b(g)) for all g ∈ G;

moreover, T∂v = ∂Tv for every vector v ∈ H.
Let µ be a cohomologically adapted probability measure on G (Defini-

tion 1). We consider the Hilbert space L2(G,H, µ) of measurable mappings
F : G→ H such that

‖F‖22 :=

∫
G
‖F (x)‖2dµ(x) <∞.

Then every b ∈ Z1(G, π) belongs to L2(G,H, µ); indeed, the cocycle relation
shows that

‖b(x)‖ ≤ |x|Q‖b‖Q for all x ∈ G,
and hence

‖b‖22 ≤ ‖b‖2Q
∫
G
|x|2Qdµ(x) <∞.

In fact, the norms ‖ · ‖2 and ‖ · ‖Q on Z1(G, π) are equivalent (see [ErO,
Lemma 2.1]). So, we can (and will) identify Z1(G, π) with a closed subspace
of the Hilbert space L2(G,H, µ).

The von Neumann algebra M acts on H in the tautological way and on
L2(G,H, µ) by

TF (g) = T (F (g)) for all T ∈ π(G)′, F ∈ L2(G,H, µ), g ∈ G,
preserving Z1(G, π) and B1(G, π). Since the operator

Mµ : Z1(G,µ)→ H
is equivariant for these actions, the space Harµ(G, π) = kerMµ as well as its

orthogonal complement B1(G, π) are modules over M.
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The image of M in B(L2(G,H, µ)) ∼= B(L2(G,µ))⊗ B(H) is

M̃ = I ⊗ π(G)′,

which is a von Neumann algebra isomorphic to M. The orthogonal projec-
tion PHar : L2(G,H, µ)→ Harµ(G, π) belongs to the commutant

M̃′ = B(L2(G,µ))⊗ π(G)′′

ofM in B(L2(G,H, µ)), where π(G)′′ is the von Neumann algebra generated
by π(G) in B(H). The commutant of M in Harµ(G, π)) is then the reduced
von Neumann algebra (see Chap.1, §2, Proposition 1 in [Dix1])

PHarM̃′PHar = PHar(B(L2(G,µ))⊗ π(G)′′)PHar.

Assume now that M is a finite von Neumann algebra, with faithful nor-
malized trace τ. Let L2(M) be the Hilbert space obtained from τ by the
GNS construction. We identify M with the subalgebra of B(L2(M)) of op-
erators given by left multiplication with elements fromM. The commutant
of M in B(L2(M)) is M′ = JMJ, where J : L2(M) → L2(M) is the con-
jugate linear isometry which extends the map M→M, x 7→ x∗. The trace
on M′, again denoted by τ, is defined by τ(JxJ) = τ(x) for x ∈M.

As everyM-module, L2(G,H, µ) can be identified with anM-submodule
of L2(M)⊗`2, withM acting on L2(M)⊗`2 by T 7→ T ⊗I. The orthogonal
projection Q : L2(M) ⊗ `2 → L2(G,H, µ) belongs to the commutant of M
in B(L2(M)⊗`2), which isM′⊗B(`2). The projection P = PHar◦Q belongs
therefore to the commutant of M in B(L2(M)⊗ `2).

Let {en}n be a basis of `2 and let (Pij)i,j be the matrix of P with respect
to the decomposition L2(M)⊗`2 = ⊕i(L2(M)⊗ei). Then every Pij belongs
to M′ and the von Neumann dimension of the M-module Harµ(G, π) is

dimMH =
∑
i

τ(Pii).

3. Proofs of the main results

3.1. Proof of Theorem 1. Let b0 ∈ Harµ(G, π). Let b1 ∈ B1(G, π) and set
b := b0 + b1. We claim that b0(G) is contained in the closure of span(b(G)).

Indeed, let K denote the closure of span(b(G)) and PK : H → K the
corresponding orthogonal projection. Since K is π(G)-invariant, PK belongs
to the commutant π(G)′ of π(G). Therefore (see Section 2), PKb0 is contained

in Harµ(G, π) and PKb1 is contained in B1(G, π). On the other hand, since
b take its values in K, we have that

PKb = b = b0 + b1.

It follows that PKb0 = b0 and PKb1 = b1. Therefore,

b0(G) ⊂ K = span(b(G)),

as claimed. �
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3.2. A characterization of irreducible affine isometric actions. We
will repeatedly use one of the several characterizations of irreducible affine
actions from Proposition 2.1 in [BPV]; for the convenience of the reader, we
give a direct and short argument.

Proposition 3 ([BPV]). For b ∈ Z1(G, π), the following properties are
equivalent:

(i) The action α = απ,b is irreducible.
(ii) the linear span of (b+ ∂v)(G) is dense in H for every v ∈ H.

Proof. Observe that

απ,b+∂v(g) = t−v ◦ απ,b(g) ◦ tv for all g ∈ G, v ∈ H,
where tv is the translation by v. So, απ,b is irreducible if and only if απ,b+∂v
is irreducible. This shows that (i) implies (ii).

To show the converse implication, let F be a non empty closed απ,b(G)-
invariant affine subspace of H. Then F = v + K for a vector v ∈ H and a
closed linear subspace K of H. Set b0 := b+ ∂v. Then

v + b0(g) = απ,b(g)v ∈ F for all g ∈ G,
and b0(G) is hence contained in K. Therefore, K = H, since span(b0(G)) is
dense in H. �

3.3. Proof of Corollary 1. Let b ∈ Z1(G, π) and set

b0 := PHarb ∈ Harµ(G, π).

(i) Assume that span(b0(G)) is dense in H. By Theorem 1, the linear
span of (b+ ∂v)(G) is dense for every v ∈ H, and Proposition 3 shows that
απ,b is irreducible.

(ii) Assume that B1(G, π) is closed in Z1(G, π) and that απ,b is irreducible.
Write b = b0 + ∂v0 for b0 = PHarb and v0 ∈ H. Then απ,b0 = απ,b−∂v0 is also

irreducible, by Proposition 3; hence, span(b0(G)) is dense. �

3.4. Proof of Proposition 2. Let b ∈ Harµ(G, π) and set M = π(G)′.
We establish the following sequence of implications:

(i) ⇒ (iv) ⇒ (ii) ⇒ (i) ⇒ (iii) ⇒ (i).

Assume that απ,b is irreducible; then span(b(G)) is dense in H, by Propo-
sition 3. This shows the implication (i) ⇒ (iv).

Assume that span(b(G)) is dense in H and let (π0,K) be a nonzero sub-
representation of (π,H). On the one hand, the orthogonal projection PK
on K belongs to M and hence PKb = PK ◦ b belongs to Harµ(G, π). On
the other hand, we have PKb 6= 0, since span(b(G)) is dense in H. Hence,

PKb /∈ B1(G, π). This shows the implication (iv) ⇒ (ii).
The fact that (ii) ⇒ (i) being obvious, assume that απ,b is irreducible.

Let T ∈ M be such that Tb = 0, that is, T (b(g)) = 0 for all g ∈ G. Then
T = 0, since span(b(G)) is dense in H, by Theorem 1. So, b is a separating
vector for M. This shows the implication (i) ⇒ (iii)
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Assume that b is a separating vector for M. The orthogonal projection
P on b(G)⊥ belongs to M (see the proof of Theorem 1); since Pb = 0, we
have P = 0. Hence, span(b(G)) is dense in H. So, απ,b is irreducible by
Corollary 1(i). This shows the implication (iii) ⇒ (i). �

3.5. Proof of Theorem 2. Let (π,H) be a unitary representation of G;
we assume that B1(G, π) is closed in Z1(G, π). Let µ be a cohomologically
adapted probability measure on G.

In view of Proposition 2, we have to investigate under which conditions
M = π(G)′ has a separating vector in Harµ(G, π). We may assume that
Harµ(G, π) 6= {0}.

Observe that a vector in Harµ(G, π) is separating for M if and only if it
is cyclic for the commutant N of M in B(Harµ(G, π)). Three cases cases
can occur.

Case 1. N is an infinite factor. Then M always has a separating vector
(see Corollaire 11 in Chap. III, §8 of [Dix1]).

Case 2. N is a finite factor and M is an infinite factor. Then N has a
cyclic vector in Harµ(G, π) if and only if dimN Harµ(G, π) ≤ 1 (see [Bek,
Corollary 1]). For this to happen a necessary condition is thatM is a finite
factor. So, M has no separating vector.

Case 3. N andM are finite factors. In this case, we have (see [GHJ, Prop.
3.2.5])

dimMHarµ(G, π) dimN Harµ(G, π) = 1;

hence, M has a separating vector in Harµ(G, π) if and only if

dimMHarµ(G, π) ≥ 1.

Claims (i), (ii), and (iii) follow from this discussion. �

3.6. Proof of Theorem 3. We first consider the general case of the wreath
product Γ = G o H of two finitely generated groups G and H. Recall that
Γ = G n H(G), for H(G) =

⊕
g∈GH and G acts on H(G) by shifting the

copies of H. We view H as a subgroup of Γ, by identifying it with the copy
of H inside H(G) indexed by e.

Let S1 and S2 finite symmetric generating sets for G and H, respectively.
Then S1 ∪ S2 is a finite symmetric generating set for Γ. Let µ1 and µ2

be cohomologically adapted probability measures on G and H respectively.
Then µ = 1

2(µ1 + µ2) is a cohomologically adapted probability measure on
Γ.

Let (π,H) be a unitary representation of G, viewed as representation of
Γ. We have an orthogonal π(Γ)-invariant decompositions

`2(Γ,H, µ) = `2(G,H, µ1)⊕ `2(H,H, µ2).

This decomposition gives rise to a decomposition

Harµ(Γ, π) = Harµ1(G, π)⊕Harµ2(H,π).
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Indeed, it is clear that Harµ(Γ, π) is contained in Harµ1(G, π)⊕Harµ2(H,π);
so, we only have to show the converse inclusion.

Let b1 ∈ Harµ1(G, π). Define b : Γ → H by b(g, n) = b1(g) for (g, n) ∈ Γ.
Then b extends b1 and one checks that b ∈ Z1(Γ, π) and that b ∈ Harµ(Γ, π).

Let b2 ∈ Harµ2(H,π). Define b : Γ→ H by

b(g,⊕x∈Ghx) = ⊕x∈Gπ(x−1)(b2(hg−1x)) for (g,⊕x∈Ghx) ∈ Γ.

Then b extends b2 and one checks that b ∈ Z1(Γ, π) and that b ∈ Harµ(Γ, π).
Since π is trivial on H, the space Z1(H,π) coincides with Hom(H,H),

the set of homomorphisms H → H. Observe that every b ∈ Hom(H,H) is
automatically µ2-harmonic, since∑

h∈H
b(h)µ2(h) =

∑
h∈H

b(h−1)µ2(h) = −
∑
h∈H

b(h)µ2(h).

Hence, Harµ2(H,π) = Hom(H,H) (alternatively, this follows from the fact
that B1(H,π) = B1(H, 1H) is trivial); therefore, we have

Harµ(Γ, π) = Harµ1(G, π)⊕Hom(H,H).

We specialize by taking H = Z; then Hom(H,H) can be identified with
H and we have

Harµ(Γ, π) = Harµ1(G, π)⊕H;

moreover, the action of the von Neumann algebra

π(Γ)′ = π(G)′

on Harµ(G,µ) corresponds to the direct sum of the actions of π(G)′ on
Harµ1(G,µ1) and on H.

In particular, when the 1-cohomology H1(G, π) is trivial, we have

Harµ(Γ, π) = H,

so that Claim (i) is proved. Claim (ii) follows from Proposition 2. �

4. An explicit formula for the projection on harmonic
cocycles

We give an explicit formula for the orthogonal projection PHar in terms
of an averaging (or Markov) operator associated to µ, in the case where
B1(G, π) is closed.

Consider the operator π0(µ) ∈ B(H0) defined by

π0(µ)v =

∫
G
π(x)vdµ(x) for all v ∈ H0.

The operator π0(µ) − I : H0 → H0 is invertible if and only if π0 does
not weakly contain the trivial representation 1G (see Proposition G.4.2 in
[BHV]); in view of Proposition 1, this is the case if and only if B1(G, π) is
closed.
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Proposition 4. Assume that B1(G, π) is closed. For b ∈ Z1(G, π), we have
PHarb = b− ∂v, where

v = (π0(µ)− I)−1(Mµ(b)).

Proof. Indeed, observe first that Mµ(b) ∈ H0; indeed, for every w ∈ HG,
we have

〈Mµ(b), w〉 =

∫
G
〈b(x), w〉dµ(x) =

∫
G
〈b(x), π(x)w〉dµ(x)

=

∫
G
〈π(x−1)b(x), w〉dµ(x) = −

∫
G
〈b(x−1), w〉dµ(x)

= −
∫
G
〈b(x), w〉dµ(x) = −〈Mµ(b), w〉.

Moreover, for v = (π0(µ)− I)−1(Mµ(b)), we have

Mµ(∂v) =

∫
G

(π(x)v − v)dµ(x) = (π0(µ)− I)v = Mµ(b). �
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