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Følner’s condition and expansion of
Cayley graphs for group actions

M. Sangani Monfared

Abstract. Suppose G is a group acting on a set X. If G is finitely
generated and A and B are two finite symmetric generating sets, then
we show that the Cayley graph CayA(G,X) is amenable if and only if
CayB(G,X) is amenable. We prove that (G,X) satisfies the Følner’s
condition if and only if for every finitely generated subgroup H of G,
Cay(H,X) is amenable. If G is finitely generated, we show that (G,X)
and Cay(G,X) have the same Følner’s sequences.
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1. Introduction and preliminaries

Følner’s condition for group actions and its relation to the existence of
invariant means have been studied by Rosenblatt [17]. Among the extensive
literature on Følner’s condition, invariant means and their applications we
may mention Følner [6], Namioka [15], Lau [10, 11], Eymard [5], Rosenblatt
[18], Lau and Takahashi [12], Stokke [21], Dales and Polyakov [2], and Will-
son [22]. Rosenblatt’s results have been used by McMullen [14] in the study
of covering spaces. A covering p : Y −→ X of connected manifolds is called
amenable if there exists an invariant mean for the canonical action of the
fundamental group π1(X) on the coset space π1(X)/π1(Y ). This amenabil-
ity is then characterized (among other things) in terms of the expansion of
the coset graphs of K/(K ∩ π1(Y )), for finitely generated subgroups K of
π1(X) ([14, Proposition 3.1]).

In this paper we show that a similar characterization of Følner’s condition
exists in the more general setting where a group G acts on a set X. Since we
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do not require the transitivity of the group action, our results are applicable
to spaces more general than coset spaces. Our results will also extend some
known results in the literature for particular case that X = G, and G acts
on itself by group multiplication.

Before summarizing the results of this paper, let us recall some terminol-
ogy. If G = (V,E) is a graph (finite or infinite) and F is a subset of V ,
then the border of F is the set of all vertices in V − F that are connected
to F by an edge. We denote the border of F by b(F ). There exist several
definitions for the expansion of a graph in the literature. In this paper we
follow McMullen [14, p. 98] to define the expansion of G by

(1) γ(G) = inf

{
|b(F )|
|F |

: F ⊂ V, 0 < |F | <∞
}
,

where |·| denotes the number of elements. (For infinite graphs, this definition
is consistent with the one given by Bekka et al. [1, p. 254]. For infinite k-
regular graphs, it is easily seen that γ(G) ≤ h(G) ≤ kγ(G), where h(G) is
the Cheeger constant. For more on Cheeger constant, see Lubotzky [13],
Davidoff et al. [3].) A graph G is called amenable if γ(G) = 0 (McMullen
[14]). Thus a graph is amenable if and only if there exists a sequence (Fn)n
of finite subsets of V such that limn→∞ |b(Fn)|/|Fn| = 0. Such a sequence
is called a Følner’s sequence of G. Note that all finite graphs are amenable.

Let G be a group and X be a nonempty set. We say that G acts on
X if there exists a mapping G × X −→ X, (s, x) 7→ s · x, such that (i)
e · x = x, and (ii) s · (t · x) = (st) · x, for all x ∈ X and s, t ∈ G. Let
`∞R (X) denote the Banach space of all bounded real functions on X. A
mean for (G,X) is a positive linear functional m ∈ `∞R (X)∗ with norm 1. If
m satisfies the condition m(Lsf) = m(f) for all s ∈ G, f ∈ `∞R (X) (where
(Lsf)(x) = f(s · x), x ∈ X), then m is called an invariant mean for (G,X).
In this paper we shall need the following characterizations of the existence
of invariant means, due to Rosenblatt [17, Theorem 4.10]. (We shall state
only a special case of Rosenblatt’s result, which is nonetheless sufficient for
our purposes in this paper.) In the following, ∆ denotes the symmetric
difference of sets.

Theorem 1.1 (Rosenblatt). Let G be a group acting on a set X. The
following statements are equivalent.

(i) (G,X) has an invariant mean.
(ii) For every ε > 0 and every finite subset A of G, there exists a finite

set F ⊂ X such that for all a ∈ A,

(2)
|a · F∆F |
|F |

≤ ε (Følner’s condition).

(iii) There exists a net (Fα)α of finite subsets of X such that for all s ∈ G,

(3) lim
α

|s · Fα∆Fα|
|Fα|

= 0 (Følner’s net).
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We call (G,X) amenable if any one of the above equivalent conditions
holds. In the special case that X = G and the action of G is the group mul-
tiplication, amenability of (G,G) is the same as the amenability of the group
G (Day [4], Runde [19]). We remark that if G is finitely generated, then
Følner’s net can be replaced by a Følner’s sequence in the above theorem.

Suppose G acts on a set X and G is finitely generated with A = A−1 a
finite symmetric set of generators of G. The Cayley graph CayA(G,X) (also
known as the Schreier graph) is defined as follows: the vertices of the graph
are the points in X and two vertices x, y ∈ X are connected by an edge if
a ·x = y for some a ∈ A. (The assumption that A is symmetric ensures that
the graph is undirected.) Although Cayley graphs depend on the generating
sets A, the results in this paper are in effect independent of a particular
choice of A (see Theorem 2.5). For this reason we shall usually drop the
subscript A from the notation and denote a Cayley graph by Cay(G,X).
In the special case that X = G and the action of G on itself is the group
multiplication, Cay(G,G) will be called the Cayley graph of G and denoted
by Cay(G). (We should remark that some authors use a different convention
to define Cay(G): two vertices x, y ∈ G are connected by an edge if xa = y
for some a ∈ A. The convention used in this paper is consistent with the
one used for group actions.)

The main results of this paper are as follows. In Theorem 2.2 we show that
the expansion of a graph is determined by the expansions of its components.
More precisely, if (Gi)i∈I are the components of a graph G, then

γ(G) = inf
i∈I

γ(Gi).

Suppose G is a finitely generated group acting on a set X and A and B are
two finite symmetric generating sets of G. In Theorem 2.5 we show that
CayA(G,X) is amenable if and only if CayB(G,X) is amenable (in other
words, the amenability of a Cayley graph is independent of its generating
sets).

In Section 3 we show that if G acts on a set X, then the amenability
of (G,X) can be characterized in terms of the amenability of Cay(H,X),
where H is a finitely generated subgroup of G (Theorem 3.2). As an inter-
esting consequence, it follows that if G is an amenable group acting on a
set X, then Cay(H,X) is amenable for every finitely generated subgroup H
of G (Corollary 3.5). For finitely generated groups G, the result in Theo-
rem 3.2 is further strengthened in Theorem 3.7, where we show that (G,X)
and Cay(G,X) have the same Følner’s sequences. As an example, we give
an explicit construction of a Følner’s sequence for both Zn and Cay(Zn)
(Example 3.8).

2. The expansion γ(G)

Recall that a graph G = (V,E) is connected if every two vertices in V
can be connected by a path. A component of G is a connected subgraph in
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which no vertex is connected to a vertex outside the subgraph. To compute
γ(G) we only need to consider the components of G. To prove this fact we
need the following:

Lemma 2.1. If xi > 0, x′i ≥ 0, for i = 1, . . . , n, then

x′1 + · · ·+ x′n
x1 + · · ·+ xn

≥ min

{
x′1
x1
, . . . ,

x′n
xn

}
.

Proof. This follows by a simple induction. The case of n = 2 is easy to
check. For the general case we write

x′1 + · · ·+ x′n
x1 + · · ·+ xn

≥ min

{
x′1 + · · ·+ x′n−1
x1 + · · ·+ xn−1

,
x′n
xn

}
≥ min

{
x′1
x1
, . . . ,

x′n
xn

}
. �

Theorem 2.2. If G is a graph and {Gi}i∈I are its components, then

γ(G) = inf
i∈I

γ(Gi).

Proof. Let i ∈ I and Vi be the set of vertices of Gi. Since Gi is a component
of G, if F is a finite subset of Vi, then the border points of F in G (if any)
are all inside Vi, and from this it follows that γ(G) ≤ γ(Gi). Thus we have
γ(G) ≤ infi∈I γ(Gi).

To prove the reverse inequality, let F be a finite set of vertices of G. Then
there are indices i1, . . . , in, such that F has nonempty intersection with each
Vij and F ⊂ Vi1 ∪ · · · ∪ Vin . Let xj be the number of elements of F ∩ Vij ,
and x′j be the number of its bordering points in Vij . If b(F ) is the border of

F in G, then |b(F )| = x′1 + · · ·+ x′n, and we have

|b(F )|
|F |

=
x′1 + · · ·+ x′n
x1 + · · ·+ xn

≥ min

{
x′1
x1
, . . . ,

x′n
xn

}
≥ inf

i∈I
γ(Gi).

The inequality γ(G) ≥ infi∈I γ(Gi) follows. �

The following corollary will be used in the next section (cf. Corollary 3.3).

Corollary 2.3. If H is a finitely generated subgroup of a group G, then the
graphs Cay(H,G) and Cay(H) have the same expansion.

Proof. The components of the graph Cay(H,G) are of the form Cay(H,Hz),
where Hz (z ∈ G) are the right cosets of H in G. Let F be a subset of H,
b(Fz) be the border of Fz in Cay(H,Hz), and b(F ) be the border of F in
Cay(H). Then it is easy to check that b(Fz) = b(F )z. It follows that the
graphs Cay(H,Hz) and Cay(H) have the same expansion for every z ∈ G.
Now the corollary follows from Theorem 2.2. �

To prove our next result, let us state the following:

Lemma 2.4. Let G be a finitely generated group and A be a finite symmetric
generating subset of G. Let G act on a set X and F be a nonempty subset
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of X. Suppose that x ∈ F and a1, . . . , an ∈ A and y = a1a2 · · · an · x. Then

(4) y ∈
n⋃
j=0

b(j)(F ),

where b(0)(F ) = F and b(j)(F ) = b(b(· · · (b(F )) · · · )), j-times.

Proof. We use induction on n. The case n = 1 follows immediately from
the definition of b(F ). Suppose, as induction hypothesis, that

(5) a2a3 · · · an · x ∈
n−1⋃
j=0

b(j)(F ).

To prove (4), assume that

(6) y 6∈
n−1⋃
j=0

b(j)(F ),

we must then show that y ∈ b(n)(F ). For every 0 ≤ j ≤ n − 2, (6) implies

that y 6∈ b(j)(F ) ∪ b(j+1)(F ), and hence a2a3 · · · an · x 6∈ b(j)(F ). Now it

follows from (5) that a2a3 · · · an · x ∈ b(n−1)(F ). We know from (6) that

y 6∈ b(n−1)(F ), thus we must have y ∈ b(b(n−1)(F )) = b(n)(F ), as we wanted
to show. �

The following theorem states that the amenability of a Cayley graph
(associated to a group action) is independent of its generating set (for related
results see Soardi [20, Theorem 7.34], Bekka et al. [1, Example 3.6.2(ii)], and
Grigorchuk [7, p. 5]).

Theorem 2.5. Let G be a finitely generated group and A and B be two
symmetric sets of generators of G. Suppose G acts on a set X. Then
CayA(G,X) is amenable if and only if CayB(G,X) is amenable.

Proof. Expressing each a ∈ A as a reduced word in B, let M be the length
of the longest such words. Similarly, by expressing each b ∈ B as a reduced
word in A, let us define N to be the length of the longest such words.

Let F be a finite subset of X and bA(F ) and bB(F ) denote the border of F
in CayA(G,X) and CayB(G,X), respectively. Let y ∈ bB(F ), so that y 6∈ F
but y = b ·x for some b ∈ B, x ∈ F . If b = a1a2 · · · an is a representation of b
as a reduced word in A, then n ≤ N , y = a1a2 · · · an · x, and by Lemma 2.4,

we have y ∈
⋃n
j=1 b

(j)
A (F ) (note that y 6∈ F = b

(0)
A (F )). Since the above holds

for every y ∈ bB(F ), we obtain bB(F ) ⊂
⋃N
j=1 b

(j)
A (F ), and consequently

|bB(F )| ≤
N∑
j=1

|b(j)A (F )|.
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It follows from the definition of the border that |bA(bA(F ))| ≤ |A||bA(F )|,
and by repeated applications of this inequality we get

|b(j)A (F )| ≤ |A|j−1|bA(F )|, 1 ≤ j ≤ N.

Hence

|bB(F )| ≤

N−1∑
j=0

|A|j
 |bA(F )|.

By a similar argument, changing the roles of A and B, we can obtain

|bA(F )| ≤

M−1∑
j=0

|B|j
 |bB(F )|.

If we write C1 = (
∑M−1

j=0 |B|j)−1 and C2 =
∑N−1

j=0 |A|j , then clearly both C1

and C2 are nonzero, and the last two inequalities can be written as

(7) C1|bA(F )| ≤ |bB(F )| ≤ C2|bA(F )|.

If we denote the expansion of CayA(G,X) by γA and the expansion of
CayB(G,X) by γB, then it follows from (7) that C1γA ≤ γB ≤ C2γA. The
claim of the theorem follows immediately. �

3. Amenable group actions

We begin this section with a result estimating |b(F )|. For related results
in the case that G acts on itself see Følner [6, Theorem, p. 245], and Bekka
et al. [1, Corollary G.5.6].

Lemma 3.1. Let G be a finitely generated group and A be a finite symmetric
set of generators of G. Suppose G acts on a set X and Cay(G,X) is the
corresponding Cayley graph. Then for every nonempty finite subset F of X,

(8)
1

2|A|
∑
a∈A
|a · F∆F | ≤ |b(F )| ≤ 1

2

∑
a∈A
|a · F∆F |.

Proof. For each a ∈ A,

|a · F∆F | = |a · F − F |+ |F − a · F |(9)

= |a · F − F |+ |a · (a−1 · F − F )|
= |a · F − F |+ |a−1 · F − F |.

Since
⋃
a∈A a · F consists of all vertices that are adjacent to vertices in F ,

we have
⋃
a∈A(a · F − F ) = b(F ). Using (9) and the fact that A−1 = A, we

obtain

|b(F )| ≤
∑
a∈A
|a · F − F | = 1

2

∑
a∈A
|a · F∆F |.



FØLNER’S CONDITION AND EXPANSION OF CAYLEY GRAPHS 1301

To prove the first inequality in (8), we write∑
a∈A
|a · F∆F | = 2

∑
a∈A
|a · F − F | ≤ 2|A|max

a∈A
|a · F − F | ≤ 2|A||b(F )|. �

Theorem 3.2. Let G be a group acting on a set X. Then (G,X) is amenable
if and only if for every finitely generated subgroup H of G, Cay(H,X) is
amenable.

Proof. If (G,X) is amenable, then (H,X) is amenable since Følner’s condi-
tion (2) for (G,X) clearly implies the Følner’s condition for (H,X). Now let
A be a finite symmetric generating set for H. Følner’s condition for (H,X)
implies that for a given ε > 0 there exists a finite set F ⊂ X such that

|a · F∆F |
|F |

≤ ε

|A|
(a ∈ A).

It follows from (8) that

|b(F )|
|F |

≤ 1

2

∑
a∈A

|a · F∆F |
|F |

≤ 1

2

∑
a∈A

ε

|A|
=
ε

2
,

thus Cay(H,X) is amenable.
To prove the converse, suppose Cay(H,X) is amenable for every finitely

generated subgroup H of G. We will show that the Følner’s condition holds
for (G,X). Let ε > 0 and A be a finite subset of G. By enlarging A if
necessary, we may assume that A is symmetric. Let H be the subgroup of
G generated by A. By assumption Cay(H,X) is amenable, and hence there
exists a finite set F ⊂ X with the property that

|b(F )|
|F |

≤ ε

2|A|
.

Then using (8), for each a ∈ A,

|a · F∆F |
|F |

≤ 2|A| |b(F )|
|F |

≤ 2|A| ε

2|A|
= ε.

Thus Følner’s condition holds and (G,X) is amenable. �

By applying Theorem 3.2 to the special case that X = G and using
Corollary 2.3, we obtain the following interesting result:

Corollary 3.3. A group G is amenable if and only if Cay(H) is amenable
for every finitely generated subgroup H of G.

Example 3.4. Let Fn (n ≥ 2) be the free nonabelian group on n genera-
tors. This group is nonamenable (Paterson [16]) and hence by Corollary 3.3,
Cay(Fn) has nonzero expansion. It is not difficult to verify that Cay(Fn) is
a 2n-regular infinite tree, i.e., a connected, infinite, acyclic graph in which
each vertex has degree 2n. As a result, Cay(Fn) has expansion γ = 2n − 2
(cf. McMullen [14, p. 98]). �
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In view of Theorem 3.2, it is interesting to note that if G is amenable then
so is (G,X) whenever G acts on X. To see this, let x0 ∈ X be fixed and

for each f ∈ `∞R (X) define f̃ ∈ `∞R (G) by f̃(s) = f(s · x0) (s ∈ G). If m is a

left invariant mean on G, then m′ ∈ `∞R (X)∗ defined by m′(f) = m(f̃) is an
invariant mean for (G,X). It is possible, however, that G is a nonamenable
group acting on a set X such that (G,X) is amenable. For example, we may
take G = F2 the free nonabelian group on two generators, H a subgroup of
finite index, and X = G/H the space of left cosets which is equipped with
the canonical action of G on G/H; in that case 1X/|X| is an invariant mean
for (G,X).

We may now state the following:

Corollary 3.5. If G is an amenable group acting on X, then Cay(H,X) is
amenable for every finitely generated subgroup H of G.

In preparation for our next theorem, we have:

Lemma 3.6. Let G be a finitely generated group and A be a finite symmetric
set of generators of G. Suppose G acts on a set X and F is a finite subset
of X.

(i) For every a ∈ A and s ∈ G,

(10) as · F∆F ⊂ (as · F∆ s · F ) ∪ (s · F∆F ).

(ii) For every a ∈ A,

(11) |b(a · F )| ≤ (3 + |A|)|b(F )|.

Proof. (i) The inclusions

as · F − F ⊂ (as · F − s · F ) ∪ (s · F − F ),

and
F − as · F ⊂ (F − s · F ) ∪ (s · F − as · F ),

imply directly that

(as · F − F ) ∪ (F − as · F ) ⊂ (as · F∆ s · F ) ∪ (s · F∆F ),

which proves (10).
(ii) It follows from the equality a · F = (a · F ∩ F ) ∪ (a · F ∩ F c) that

(12) b(a · F ) ⊂ b(a · F ∩ F ) ∪ b(a · F ∩ F c).
Next we estimate the sizes of the two sets on the right side of (12). It is
easy to check that

b(a · F ∩ F ) ⊂ b(F ) ∪ (F − a · F ) = b(F ) ∪ a · (a−1 · F − F ).

From this it follows that

(13) |b(a · F ∩ F )| ≤ |b(F )|+ |a−1 · F − F | ≤ 2|b(F )|.
Since a · F ∩ F c ⊂ b(F ) it follows that

b(a · F ∩ F c) ⊂ b(b(F )) ∪ b(F ),
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and hence

(14) |b(a·F∩F c)| ≤ |b(b(F ))|+|b(F )| ≤ |A||b(F )|+|b(F )| = (|A|+1)|b(F )|.

Combining (12), (13) and (14), we get |b(a · F )| ≤ (3 + |A|)|b(F )|. �

For the case of finitely generated groups, the following theorem improves
the result in Theorem 3.2 by showing that (G,X) and Cay(G,X) have the
same Følner’s sequences.

Theorem 3.7. Let G be a finitely generated group acting on a set X and A
be a finite symmetric generating set of G. A sequence (Fn)n of finite subsets
of X is a Følner’s sequence of (G,X) if and only if it is a Følner’s sequence
of Cay(G,X). In particular, (G,X) is amenable if and only if Cay(G,X) is
amenable.

Proof. First we prove the ‘only if’ part. Let (Fn)n be a Følner’s sequence
for (G,X). Using (8) and (3), we have

lim
n→∞

|b(Fn)|
|Fn|

≤ 1

2
lim
n→∞

∑
a∈A

|a · Fn∆Fn|
|Fn|

=
1

2

∑
a∈A

lim
n→∞

|a · Fn∆Fn|
|Fn|

= 0.

Thus (Fn)n is a Følner’s sequence for Cay(G,X).
To prove the ‘if’ part, suppose (Fn)n is a Følner’s sequence for Cay(G,X).

Note that for each a ∈ A, (8) implies that |a · Fn∆Fn| ≤ 2|A||b(Fn)|, from
which it follows that

lim
n→∞

|a · Fn∆Fn|
|Fn|

≤ 2|A| lim
n→∞

|b(Fn)|
|Fn|

= 0.

It remains to show that the above limit holds if a ∈ A is replaced by an
arbitrary s ∈ G. Let s = a1a2 · · · ak (ai ∈ A) be an arbitrary but fixed
element of G. Let also si = aiai+1 · · · ak, for i = 1, . . . , k, so that s1 = s and
sk = ak. Put sk+1 = e. Then for each n ∈ N, using (10) repeatedly, we can
write

(15) s · Fn∆Fn ⊂
k∑
i=1

(si · Fn∆si+1 · Fn).

Furthermore, by letting C = 3 + |A|, and using (8) and (11), we get

|si · Fn∆si+1 · Fn| ≤
∑
a∈A
|asi+1 · Fn∆si+1Fn| ≤ 2|A||b(si+1 · Fn)|(16)

≤ 2|A|Ck−i|b(Fn)|.

It follows from (15) and (16) that

|s · Fn∆Fn| ≤
k∑
i=1

|si · Fn∆si+1 · Fn| ≤ 2|A|
k∑
i=1

Ck−i|b(Fn)|.
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If we let

R = 2|A|
k∑
i=1

Ck−i =
2|A|(Ck − 1)

C − 1
,

then for each n ∈ N, we obtain

|s · Fn∆Fn| ≤ R|b(Fn)|,
where R is independent of n. Thus

lim
n→∞

|s · Fn∆Fn|
|Fn|

≤ R · lim
n→∞

|b(Fn)|
|Fn|

= 0,

which completes the proof that (Fn)n is a Følner’s sequence for (G,X). �

An interesting application of the above theorem is that the ‘geometry’ of
the graph Cay(G,X) can be used in finding a Følner’s sequence for (G,X).
This is illustrated in the following example.

Example 3.8. Consider the abelian group Zn, generated by

A = {±ei : 1 ≤ i ≤ n},
where ei is the n-tuple with 1 in the ith coordinate and 0 elsewhere. The
Cayley graph Cay(Zn) is the infinite lattice in Rn whose vertices are the
points in Zn and whose edges are line segments of unit length parallel to
the axes, joining the vertices. By Corollary 3.3, Cay(Zn) is amenable. To
construct a Følner’s sequence, let Fr be the set of vertices of this graph that
are on or inside the closed ball Br in Rn of radius r > 0 and center 0. Let
N(r) = |Fr| be the number of lattice points that belong to Br. We recall
that if |Br| is the volume (i.e., the n-dimensional Lebesgue measure) of Br,
then

|Br| = |B1|rn =
πn/2

Γ(n2 + 1)
rn.

We can find estimates of N(r) with the help of a classical argument due to
Gauss (cf. Hardy and Wright [8, pp. 270–271], de la Harp [9, pp. 5–6]). Each
v = (m1, . . . ,mn) ∈ Zn uniquely identifies a unit cell

Sv = [m1 − 1,m1]× · · · × [mn − 1,mn]

in Rn which has v as its upper-right corner. If v ∈ Br, then Sv ⊂ Br+
√
n,

and hence
N(r) ≤ |Br+√n| = |B1|(r +

√
n)n.

Similarly, if Sv ∩Br−√n 6= ∅, (r >
√
n), then Sv ⊂ Br, and hence

N(r) ≥ |Br−√n| = |B1|(r −
√
n)n.

Thus

(17) |B1|(r −
√
n)n ≤ N(r) ≤ |B1|(r +

√
n)n,

from which it follows that

N(r) = |B1|rn +O(rn−1).
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Next we estimate |b(Fr)|. If w ∈ b(Fr), then w 6∈ Br, but w is connected by
an edge to some vertex v ∈ Br. Thus w ∈ Br+√n. Then using (17),

|b(Fr)| ≤ N(r +
√
n)−N(r) ≤ |B1|(r + 2

√
n)n − |B1|(r −

√
n)n,

from which it follows that |b(Fr)| = O(rn−1). Therefore

lim
r→∞

|b(Fr)|
|Fr|

= lim
r→∞

O(rn−1)

|B1|rn +O(rn−1)
= 0.

It follows that (Fr)r∈N is a Følner’s sequence for both Zn and Cay(Zn). �
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Progress in Mathematics, 125. Birkhäuser Verlag, Basel, 1994. xii+195 pp. ISBN:
3-7643-5075-X. MR1308046, Zbl 0826.22012.

[14] McMullen, Curt. Amenability, Poincaré series and quasiconformal maps.
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