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Harnack inequalities for critical
4-manifolds with a Ricci curvature bound

Brian Weber

Abstract. We study critical Riemannian 4-manifolds with bounded
Ricci curvature, but with no apriori analytic constraints such as on
Sobolev constants. We derive elliptic-type estimates for the local curva-
ture radius, which itself controls sectional curvature. The method is use
degenerating, collapsing metrics to create a noncollapsed blow-up limit,
and then use a geometric triviality result for complete Ricci-flat mani-
folds with a Killing field to rule out such a blow-up. The Cheeger–Tian
ε-regularity theorem on Einstein manifolds is reproved as a byproduct.
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1. Introduction

We develop certain Harnack inequalities for critical metrics on 4-manifolds
in terms of local Ricci curvature bounds, and explore some consequences.
Our results are of collapsing type, in the sense that volume ratios and
Sobolev constants are immaterial. A particular consequence of our main
theorem is that we recover the Cheeger–Tian ε-regularity result [10] on Ein-
stein 4-manifolds with a simpler argument.
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The main quantities of investigation are the local curvature radius and
local Ricci curvature radii:

rsR(p) = sup
{
r ∈ (0, s) and |Rm | < r−2 on B(p, r)

}
,(1)

rsRC(p) = sup
{
r ∈ (0, s) and |Ric | < r−2 on B(p, r)

}
.

Notice these have a built-in cutoff, so they are often called the s-local curva-
ture radii. We use rR, rRC for r∞R , r∞RC , respectively, for the corresponding
radii without any cutoff. The geometric meaning of rR(p) is that if distances

are scaled by the quantity (rR(p))−1, then the ball of radius 1 centered on
p will have |Rm | ≤ 1 throughout, and |Rm | = 1 somewhere; similarly for
rRC(p). The usefulness of the rR function on critical Riemannian mani-
folds has been made clear in [10] and elsewhere, where it played a crucial
role in collapsing constructions and in proving the Cheeger–Tian structure
theorems for Einstein 4-manifolds in [10].

The methods of this paper rely on the interplay between Riemannian
geometry, topology, and analysis—the new ingredient in this paper is the
“geometric vanishing” theorem of [21], used to show that certain blow-up
limits of collapsing manifolds are trivial. This “vanishing” theorem (theorem
1 of [21]) states that a complete Ricci-flat manifold with a Killing field is
flat.

We also prove elliptic-type estimates for the behavior of rR, in low energy
regions of the manifold, which incidentally recovers the ε-regularity result of
Cheeger–Tian [10] on Einstein manifolds. Noteworthy is that our method
does not require the iterative improvement argument, proposition 8.2, [10].

We work exclusively with “critical” 4-manifolds, which we take to mean
simply that the curvature tensor satisfies an elliptic system. These could
be any of the following: Einstein, half conformally-flat with constant scalar
curvature or otherwise Bach flat with constant scalar curvature, a metric
with harmonic curvature, or a scalar-flat or extremal Kähler metric.

Theorem 1.1 (Main Regularity Estimate). Assume (M4, g) is a critical
Riemannian manifold. There exist constants ε0, δ0 > 0 with the following
property. If

∫
B(p,r) |Rm |2 < ε0, then rR(q) > δ0 min{r, rRC(q)} for all

q ∈ B(p, 1
2r).

The conclusion gives an estimate for the Riemannian curvature radius in
terms of both the radius of the ball and the Ricci curvature radius. This
theorem implies theorem 0.8 of [10]. The constants ε0, δ0 are universal in
the sense that they do not depend on the particular metric (or on Sobolev
constants, injectivity radii, etc). An immediate corollary is the following.

Corollary 1.2. There are constants ε0, δ0 < 0 so that if
∫
B(p,r) |Rm |2 < ε0,

then for any q ∈ B(q, 1
2r) we have |Rm |q < δ−2

0 max{r−2, rRC(q)
−2}.
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Another immediate consequence is the following Harnack-style estimate
on the size of the curvature radius; this essentially states that if rR is not
too small at the center of a low-energy ball, it is not too small everywhere.

Corollary 1.3 (Harnack inequality I). There exist constants ε0, δ0 > 0 with
the following property. If

∫
B(p,r) |Rm |2 < ε0 and rR(p) < 1

2r, then

rR(q) > δ0 min{rR(p), rRC(q)}

for any q ∈ B(p, 1
2r).

Theorem 1.4 (Harnack inequality II). Given k > 0 and µ > 0, there exist
numbers ε0 > 0 and C = C(µ, k) < ∞ so that the following holds. If
rRC(p) ≥ (1 + µ)rR(p) and

∫
B(p, (1+µ)rR(p)) |Rm |2 ≤ ε0, then

(2) rR(p) ≥ C

(
−
∫
B(p,rR(p))

|Rm |k
)− 1

2k

.

(The dash-through indicates averaging the integral, by dividing by the
Riemannian volume of the domain of integration). To explain the rele-
vance of this theorem, note that by definition we have |Rm | ≤ rR(p)−2

on B(p, rR(p)). Theorem 1.4 says the reverse inequality holds in an average
sense, provided energy is small. These “Harnack” inequalities are of analytic
interest.

We also prove the following elliptic-type estimate on the curvature scale.

Corollary 1.5 (Local elliptic estimates for the curvature radius). Given
K < ∞ and l ∈ N, there is an ε0 = ε0(K) > 0 and C = C(K, l) so that if
rR(p) < KrRC(p) and

∫
B(p, 2rR(p)) |Rm |2 ≤ ε0, then

(3) sup
B(p,rR(p))

∣∣∣∇lrR∣∣∣ ≤ C (rR(p))1−l .

Setting l = 1 we see that |∇rR| has an absolute bound—this is expected,
as we already noted rR has an apriori Lipschitz constant (e.g., (1.9) of [10]).
When l > 1, µ ∈ (0, 1] and

∫
B(p,2rR(p)) |Rm |2 < ε0, then using (17) we have

any of the following

sup
B(p,rR(p))

∣∣∣∇lrR∣∣∣ ≤ C −
∫
B(q,µrR(q))

|Rm |
l−1
2 ,(4)

sup
B(p,rR(p))

∣∣∣∇lrR∣∣∣ ≤ C

(
−
∫
B(q,µrR(q))

|Rm |2
) l−1

4

, and

sup
B(p,rR(p))

∣∣∣∇lrR∣∣∣ ≤ C (rR(p))2−l

(
−
∫
B(q,µrR(q))

|Rm |2
) 1

2

.
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2. Definitions and background results

Here we outline prior definitions and results that will be important for
us. The first is “standard” ε-regularity; the second is an analytic criterion
for collapsing from [10]; the third is a criterion for certain 4-manifolds to
be flat (from [21]). Finally we outline the (unfortunately rather involved)
theory of N-structures.

2.1. ε-regularity, collapsing, and Ricci-pinched manifolds.

Lemma 2.1 (Standard ε-regularity). There exists numbers ε0 > 0, C <∞
so that r ≤ rRC(p) and

(5)
1

VolB(p, r)

∫
B(p,r)

|Rm |2 ≤ ε0 r
−4

imply

(6) sup
B(p,r/2)

|Rm | ≤ C

(
1

VolB(p, r)

∫
B(p,r)

|Rm |2
) 1

2

.

Among the numerous references with this type of theorem, see [19] [17]
[1] [2] [4] [18] [11] [20].

Lemma 2.1 is normally used in a noncollapsing setting, for obvious rea-
sons: if one assumes bounded volume ratios, say

VolB(p, r) ≥ δrn,

then one may measure
∫
B(p,r) |Rm |2 against the apriori controlled quan-

tity r−4VolB(p, r). An argument found in [10], effectively a contrapositive,
extends its usefulness to the collapsing setting, providing a way of forcing
collapse with locally bounded curvature. The significance of collapse with
locally bounded curvature is explained in Section 2.2.

Lemma 2.2 (Collapse criterion [10]). Given τ > 0, there is an ε = ε(τ) > 0
so that rR(p) ≤ 1

2rRC(p) and
∫
B(p,2rR(p)) |Rm |2 ≤ ε imply

VolB(p, rR(p)) ≤ τ · rR(p)4.

Proof. There is a point q ∈ B(p, rR(p)) with |Rm(q)| = rR(p)−2. Now,
assuming that rR(p)−4 VolB(p, rR(p)) > τ , then choosing ε0 small enough
we have (5). But then the conclusion of Lemma 2.1 holds, so

(7) rR(p)−2 ≤ C

(
1

VolB(p, 2rR(p))

∫
B(p,2rR(p))

|Rm |2
) 1

2

.

Thus rR(p)−4VolB(p, rR(p)) < C2ε0. Possibly choosing ε0 still smaller, we
again have rR(p)−4VolB(p, rR(p)) ≤ τ . �
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The third result, from [20], is a “geometric vanishing” theorem for certain
manifolds with a Killing field. We shall use it in a contradition argument
to conclude that certain blow-ups of collapsing manifolds, which are apriori
nonflat, are in fact flat.

Lemma 2.3 (Flatness criterion [21]). Assume (N4, g) is a complete 4-
manifold with a nowhere-zero Killing field. If N4 is Ricci-flat, then N4

is flat.

The usefulness of this theorem is that, in the case of collapse with bounded
curvature, we have N-structures whose associated locally-defined Killing
fields have bounded local variation. By passing to appropriate covers, we
obtain complete manifolds where the Killing field(s) obtained from the N-
structure automatically have asymptotically bounded local variation, which
allows us to use this theorem.

2.2. Collapsing with bounded curvature: F- and N-structures.
The F-structures of Cheeger–Gromov [7] [8] and N-structures of Cheeger–
Gromov-Fukaya [6] will be decisive in what follows, so we define them pre-
cisely. A number of variant definitions are available; ours is essentially from
[9], with one main difference that is explained below.

2.2.1. Definitions. An N-structure N is a triple (Ω, N , ι) where Ω is a
domain in a differentiable manifold, N is a sheaf of nilpotent Lie algebras
on Ω, and ι : N → X (Ω) (called the action) is a sheaf monomorphism from
N into the Lie algebra sheaf X (Ω) of differentiable vector fields on Ω, all
so that a collection of sub-structures A = {(Ni,Ωi, ιi)}i exists that satisfies
the three conditions below. In what follows, if p ∈ Ωi, then its Ni-stalk will
be denoted Ni,p and its N -stalk will be denoted Np.

(i) (Completeness of the cover). The collection of sets {Ωi} is a locally
finite cover of Ω, and given p ∈ Ω there is at least one Ωi so that
Ni,p = Np.

(ii) (Uniformity of the action). The lifted sheaf Ñi over the universal

cover Ω̃i → Ωi is a constant sheaf (each stalk is canonically isomor-

phic to the Lie algebra of global sections Ñi(Ω̃i)).

(As a side note, the lifted action ι̃i : Ñi → X (Ω̃i) is not uniquely
defined but depends on a choice of fundamental domain. This man-
ifests on the Ωi as a holonomy phenomenon on the stalks.)

(iii) (Integrability of the action). Given Ωi, there is a connected, simply-
connected nilpotent Lie group Gi so that for any choice of ι̃i there is

an action of Gi on Ω̃i whose derived action is equal to the image of

the Lie algebra of sections Ñi(Ω̃i) under ι̃i.

An N-structure is an called an F-structure if the associated sheaf N is
abelian. The difference between our definition of F-structures and the com-
mon definition is that we do not require that a torus acts on a finite normal
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cover of Ωi, but rather some Rk acts on its universal cover. This is a con-
venience in what follows for the reason that we will make frequent passages
to universal covers, and wish to refer to the structures obtained there as F-
or N-strucutres, whether orbits are closed or not.

Via the action of the groups Gi on covers, an N-structure partitions Ω into
orbits; the orbit through p ∈ Ω is denoted Op. An orbit Op is called singular
if its dimension is not equal to the dimension of the stalk Np; the singular
locus of N is the union of all its singular orbits. In addition, orbits may be
exceptional; these are orbits for which nearby orbits are identified to it in
a k-to-1 fashion. An example would be S3 ⊂ C2 with a Killing field given
by differentiating the action t 7→ (e2πit/kz1, e

2πilt/kz2), k, l ∈ Z relatively
prime; the exceptional orbits in this case are the collection of points (z1, 0)
or (0, z2) in S3.

The rank of an N-structure N at p ∈ Ω is the dimension of the orbit of
N through that point. We say N has positive rank if it has positive rank at
every point. An N-structure is called pure if the dimension of its stalks is
locally constant.

An N-structure is called polarized if it has positive rank and no singular
orbits—this does not mean the orbit dimension (the rank) is locally constant,
as the stalk and orbit dimensions may vary together. An N-structure is
called polarizable if it contains a polarized substructure. An example of
Cheeger–Gromov [7] shows the existence of a nonpolarizable F-structure on
a 4-dimensional manifold.

Let Ω be a domain that is saturated for some polarized N-structure N
of positive rank. An atlas for N, denoted A = {(Ωi, Ni)}i, consists of a
collection of countably many open sets Ωi with Ω =

⋃
i Ωi, so that each

Ωi is saturated under N (not just Ni), so that Ni = (Ωi,Ni, ιi) is a pure
substructure of N|Ωi , and so that the Ωi themselves have universal covers

πi : Ω̃i → Ωi on which the lifted structure Ñi is a constant sheaf whose
action integrates to a global action of a connected, simply connected Lie
group. Further, that each p ∈ Ω lies in finitely many of the Ωi, that the
stalks Ni,p at p can be ordered by strict inclusion: Ni1,p ⊂ · · · ⊂ Nik,p, and
that there is always some i so that Ni,p = Np. Lemma 1.2 of Cheeger–
Gromov [7] states that an atlas always exists. An atlas is called polarized if
each pure N-structure Ni is polarized.

We present some definitions that describe interactions between N-struc-
tures and geometry. A metric is called invariant under an N-structure if
the action of N is isometric—more precisely, if the image of the monomor-
phism ι : N → X lies in the sub-sheaf of Killing fields. A polarized atlas
A = {(Ωi, Ni)} will be called C-regular if the norm of the second fundamen-
tal form of any orbit of Ni is bounded from above by C, and the multiplicity
of the covering {Ωi} is also bounded by C. A polarized atlas will be called
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C-regular with locally bounded curvature if the norm of the second funda-
mental form of any orbit of Ni at a point pi ∈ Ui is bounded from above by
CrR(pi)

−1 and the multiplicity of the cover {Ui} is bounded by C.

Theorem 2.4 (Cheeger–Gromov [8], Cheeger–Fukaya–Gromov [6]). There
exists τ = τ(n, δ, α) > 0 so that if Ω ⊂ Nn is a domain in a complete

Riemannian manifold N with |Rm | < 1 on Ω(1), and if VolB(p, 1) ≤ τ

for all p ∈ Ω, then a neighborhood of Ω exists (that is within Ω(1)) that is
saturated with respect to an N-structure N, and so that the metric on N is
δ-close in the C1,α sense to a metric for which N is invariant.

In the case the metric has an elliptic system, C1,α-closeness can be im-
proved to Ck,α-closeness, but where τ depends also on k.

Theorem 2.5 (Cheeger–Rong [9]). If, in addition to the hypotheses of The-
orem 2.4, τ is sufficiently small compared to the diameter of Ω ⊆ Nn, then
N is pure.

Theorem 2.6 (Rong [16]). If, in addition to the hypotheses of Theorem 2.4,
τ is also sufficiently small compared to the diameter of Ω ⊆ N4 and Ω ⊂ N4

is 4-dimensional, then N is polarizable.

Theorem 2.7 (Cheeger–Fukaya–Gromov [6]). Under the hypotheses of The-
orem 2.4, the center of the resulting N-structure is itself an F-structure of
positive rank.

In addition, there exists a C < ∞ so that N has a polarized C-regular
atlas.

Theorem 2.8 (Naber–Tian [14]). If π : Ω → Ω′ (where Ω ⊆ N4) is the
projection onto the orbit space of a pure N-structure N, then N is an orbifold
with C∞ orbifold points.

Theorem 2.9 (Cheeger–Fukaya–Gromov [6], Naber–Tian [14], Cheeger–
Rong [9]). Under the hypotheses of Theorem 2.4 if the metric on N is N-
invariant, the quotient N → N ′ along the orbits of N is a Riemannian
orbifold with C∞ orbifold points, and injectivity radius bounded from below
on compact sub-domains.

2.2.2. Additional properties of N-structures.

Lemma 2.10 (Global integrability for N-structures). If N is any N-struc-
ture on a domain Ω with an invariant metric, and if Ω is simply connected,
then any element b ∈ Np of the stalk at any point p ∈ Ω extends uniquely to
a Killing field V on Ω.

Proof. This is equivalent to showing that H0(Ω, N ) is canonically isomor-
phic to the stalk of Np at any point p. On any (differentiable) Riemannian
manifold, a Killing field is locally determined by its germ at a point.

Suppose γ(t), t ∈ [0, 1] is any loop with γ(0) = γ(1) = p. Assume µs(t) is
a homotopy of γ(t) to the constant path at p; that is, µ0(t) = γ(t), µ1(t) = p,
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and µs(1) = µs(0) = p. We assume that the map µ : [0, 1] × [0, 1] → N is
C0, and is analytic when restricted to (0, 1)× (0, 1).

Letting v ∈ Np, in any sufficiently small neighborhood of p, the element
v has a unique extension to a Killing field V . Covering γ(t) by sufficiently
small open sets, we obtain an extension of v to a Killing field V in some
neighborhood of γ(t). This extension is unique along γ itself; the issue is
that V (γ(0)) might not equal V (γ(1)).

Repeating this for any s ∈ [0, 1], we can extend V along the path t 7→
µs(t). We then obtain a function

[0, 1]→ TpN(8)

s 7→ V (µs(1))

given by V (µs(1)). Because Killing fields on analytic Riemannian manifolds
analytic (for instance they satisfy the system 4V + Ric(V ) = 0), this map
is also analytic. However, when s is small enough that the path t 7→ µs(t)
lies in a neighborhood of p so small that V is uniquely determined, the map
s 7→ V (µs(1)) is constant. Since V solves an elliptic system, it cannot have
zeros that accumulate; thus it is constant for all s.

This shows that given v ∈ Np, we can define the field V at any point q
by connecting p to q with any path and extending V along this path. The
argument above is then used to show the vector V (q) is independent of the
path chosen. �

Vital to the argument Section 3 is the ability to trivialize the topol-
ogy of a space with an N-structure, provided the leaf-space is contractible.
Specifically, assuming Ωn is some saturated region of an n-manifold with a
positive-rank N-structure and π : Ωn → Ω′ being the projection to the orbit

space, we wish to say that the universal cover Ω̃n of Ωn has no closed orbits,
provided Ω′ is contractible.

If Ωn were a fiber bundle, this would be trivial. But the existence of
exceptional fibers and/or singular fibers means Ωn → Ω′ is not even a fibra-
tion, so arguments based on lifting homotopies form the base to the total
space won’t work.

Still, we give arguments that N-structures are trivial when the domain is
simply connected domains and the quotient by the orbits of the N-structure
is contractible, when the dimension of the total space is 2, 3, or 4. The
case n = 2 is essentially trivial, and if n = 3 this basic question has been
studied in the context of Seifert fibrations. In the n = 4 case, the author
cannot immediately find a reference in the literature, so we present our own
argument below.

Lemma 2.11 (Local triviality for n = 2). Assume Ω2 is a differentiable
simply connected 2-dimensional orbifold, possibly with boundary, that is sat-
urated and metrically invariant with respect to a rank-1 N-structure N, and
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let π : Ω2 → Ω′ be the projection to the orbit space. Then Ω2 is a dif-
ferentiable manifold (possibly with boundary), and if Ω′ is contractible, the
N-structure’s orbits are all unbounded.

Proof. Since Ω2 is a differentiable orbifold, it is a topological manifold.

Since it is simply connected, N is represented by a Killing field Ṽ on Ω2.
All orbifold points on a 2-dimensional orbifold are isolated or are geodesic

boundaries, but are also invariant with respect to Ṽ . Since Ṽ has no fixed
points, Ω2 must be a differentiable manifold, possibly with (totally geodesic)
boundary.

Since Ṽ has no fixed points, and since a 1-dimensional foliation on a
2-dimensional manifold cannot have exceptional fibers, the projections

Ω2 → Ω′

are indeed fiber bundles. If the orbits happen to be compact (in other words,
circles) then they must carry a class in H1(Ω2,Z), by the Gysin sequence.
But since H1(Ω2,Z) = ∅, the manifold Ω2 must have R1 fibers. �

Before moving to the 3- and 4-dimensional cases, we require a technical
lemma form the theory of Seifert fibered spaces. We reproduce a proof here.

Lemma 2.12. Assume Ω3 is a Seifert fibered manifold with boundary with
projection π : Ω3 → Ω′ onto its orbit space, and assume Ω′ is contractible.
Then there is a homeomorphism Ω3 = D2×S1 where D2 is a standard 2-disk.

Proof. Since Ω′ is a 2-disk by assumption, the boundary ∂Ω3 is a 2-torus.
Gluing in a solid torus via a (1, 1) torus gluing along this boundary gives
us a closed Seifert fibered 3-manifold M3, with projection M3 →M ′, where
M ′ is a sphere. Also, M3 is oriented.

The basic theory of Seifert fibered spaces (e.g., [15]) says that the funda-
mental group of M3 is

(9) π1 =
〈
g1, . . . , gr, h

∣∣ gihg−1
i = h, gαi

i h
βi = 1, g1 . . . gr = hb

〉
for certain integers 0 < βi < αi and b ∈ Z. The generator h is represented
by a regular fiber, and the generators gi are represented in a canonical way
by certain cycles in appropriate neighborhoods of the exceptional fibers.

One easily verifies that this group is finite unless b+
∑r

i=1
βi
αi

= 0, in which

case 〈h〉 is an infinite cyclic subgroup. Passing to the universal cover M̃3,

in the case π1 was finite we have M̃3 = S3 (by the solution of the Poincare
conjecture) and in the case that π1 was infinite, we still have a projection

M̃3 →M ′ = S2, so M̃3 is an R-bundle over S2, and so M̃3 = S2 × R.

From the structure of M̃3 we can deduce the structure of M3. In the case
M̃3 ≈ S3, let π̃ : M̃3 →M3 be the covering map, and consider Ω̃3 = π̃−1Ω3.

Then Ω̃3 is still fibered, and clearly we retain a projection Ω̃′ → Ω′ onto

the disk Ω′. This means Ω̃3 is a solid torus, and since the only orientable
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quotients of solid tori are solid tori, we have that Ω3 is a solid torus, and we
are done in this case.

In the case M̃3 ≈ S2×R, the manifold M3 has S2×R geometry, and the
classification of such manifolds gives just 4 possibilities: it can be S2 × S1,
RP 2×S1, the mapping torus of the antipodal map on S2, or RP 3#RP 3. Of
these only RP 3#RP 3 and S2 × S1 are oriented. In the case of RP 2#RP 3,
removal of a solid torus gives an S1-bundle over a Möbius strip; however
this is impossible because we assumed that passing to the leaf-space gives
a disk, not a Möbius strip. In the case of S2 × S1, removal of a solid torus
clearly leaves behind just a solid torus, so the theorem holds. �

Lemma 2.13 (Local triviality for n = 3). Assume Ω3 is a simply-connected
3-dimensional differentiable orbifold with boundary and that is saturated and
invariant with respect to a rank-1 N-structure N, and let π : Ω3 → Ω′ be
the projection to the orbit space. If Ω′ is contractible, then the N-structure’s
orbits are all unbounded.

Proof. Since Ω3 is oriented, it has no point-like orbifold points; this is
because any such point must be a cone over RP 3, which is nonorientable.
Therefore all orbifold points have a neighborhood of the form D′ × (0, 1)
where D′ is a 2-dimensional disk with a single orbifold point in its center.
Since D′ is a topological (though not a differentiable) manifold, Ω3 is also a
manifold.

We are now in the situation of Lemma 2.12, and so Ω3 is homeomorphic
to a solid torus. �

Lemma 2.14 (Local triviality for n = 4). Assume Ω4 is a simply con-
nected 4-dimensional differentiable manifold, possibly with boundary, that
is saturated and invariant with respect to a rank-1 N-structure N, and let
π : Ω4 → Ω′ be the projection to the orbit space. If Ω′ is contractible, then
the orbits of N on Ω4 are all unbounded.

Proof. For a contradiction, assume there is some regular circle fiber O in
Ω4; by Lemma 2.10, N is generated by some globally defined vector field

Ṽ . The plan is to use the contractibility of O to build a simply connected
4-manifold M4 with a circle action and a spherical boundary, and then
compute its Euler number to show that actually no such manifold exists.

Construction of M4. Instead of Ω4, we shall consider Ω8 = Ω4×R4; this
will give us more room to adjust disk and ball embeddings. Because Ω8 is
simply connected, there is a map i : D2 → Ω8 from some standard 2-disk
to Ω8, where i : ∂D → O is bijective. Projecting down, we also have a map
i′ , π ◦ i : D2 → Ω′ × R4.

We may assume i(D2) and i′(D2) are in general position, which we take
to mean i(D2) and i′(D2) have no self-intersections, and the intersection of
D2 with the locus of exceptional fibers occurs only at isolated points (this
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can be done because the locus of exceptional fibers on Ω4 is 2-dimensional,
so is 6-dimensional on Ω8).

Restricted to the boundary circle, we have that i′ : ∂D2 → Ω′ × R4

maps ∂D2 to a point. Quotienting D2 by ∂D2 therefore, we have a map
i′s : S2 → Ω′ × R4. Because Ω′ was assumed to be contractible, Ω′ × R4 is
also contractible, which means there is a map I ′ : D3 → Ω′ ×R4 (where D3

is a standard 3-ball) such that I ′|∂D3 = is. We can assume the image of I ′

is in general position, and since Ω′ × R4 is 7-dimensional, this means the
image I ′(D3) has no self-intersections.

Now consider the inverse image M4 , π−1(I ′(D3)) ⊂ Ω8; this is a 4-
dimensional manifold-with-boundary that is fibered by circles. The map π :
M4 →M ′ ⊂ Ω′×R4 is the projection along fibers, and Ω′ is a differentiable,
contractible 3-dimensional orbifold.

Properties of M4. The boundary ∂M4 = π−1(I ′(∂D3)) = π−1(i′s(S2)) is
a Seifert-fibered 3-manifold. The projection map π : ∂M4 → Ω′×R4 is just
the image of i′s : S2 → Ω′×R4; therefore the base of the Seifert fibered space
∂M3 is S2.

This boundary contains the original fiber O as well as the image of the

original map i : D2 → Ω̃8. Therefore O is contractible within the boundary,
and so we have π1(∂M4) = 0. By the classification of Seifert fibered 3-
manifolds, we have ∂M4 = S3.

Finally we prove that M4 is simply connected. First note that regular
fibers do not carry homology: because all regular fibers in M4 are homotopic
to one another and homotopic to O, we have that all regular fibers are con-
tractible. But it is possible that singular fibers carry torsion, or conceivably
that some other cycle might exist.

Let γ ∈M4 be any simple closed curve in M4. By altering the path by an
arbitrarily small amount if necessary, we can assume that each intersection
of γ with any orbit of M4 occurs in a single point. Then the path γ′ = π◦γ in
M ′ is a simple closed curve and so is the boundary of a 2-disk D′ ⊂M ′. Then
considerN3 = π−1(D′); this is a 3-dimensional Seifert fibered manifold-with-
boundary within M4. By Lemma 2.12, N3 is therefore a solid torus, and so
the path γ ⊂ N3 is either a multiple of an exceptional fiber at the central
of the torus, or else it is contractible. This proves that any path γ in M4 is
either contractible, or is a multiple of some exceptional circle fiber.

Lastly we prove that exceptional fibers are contractible. Multiples of
exceptional fibers are homotopic to multiples of regular fibers, and therefore
we know that if γ is a path along an exceptional fiber and [γ] ∈ π1(M4)
is its class, then [γ]k = 1 for some k ∈ N. The exceptional locus consists
of finitely many totally geodesic 2-dimensional submanifolds, and there is
some smallest k that makes [γ]k = 1 on each component. Therefore π1(M4)

is finite, and the universal cover M̃4 is at most finite-sheeted.

We have that M̃4 still has a quotient along fibers to a base M̃ ′, but

certainly M̃ ′ is a connected covering of M ′, the base of M4. Since M ′ is
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a 3-ball, we must have M̃ ′ = M ′. Now we can apply the reasoning about

the boundary ∂M4 to the boundary ∂M̃4. Specifically, ∂M̃4 is a compact
Seifert fibered 3-manifold with base being S2, and with all regular fibers

still being contractible, meaning π1(∂M̃4) = 0; therefore ∂M̃4 = S3. Since

∂M̃4 → ∂M4 is a covering space and both manifolds are S3, it is a trivial

cover. Therefore M̃4 →M4 is also a trivial cover, so M4 was already simply
connected.

Proof that χ(M4) > 0. Because ∂M ≈ S3, the relative cohomology
sequence for the pair (M,∂M) gives exact sequences

(10) 0 −→ H i(M,∂M) −→ H i(M) −→ 0

for i ∈ {1, 2, 3}. From the Universal Coefficient Theorem, we have

H1(M ;Z) = Hom(H1(M ;Z),Z)

which is zero because π1(M4) = 0. Therefore H1(M) = H1(M,∂M) = 0,
and by Poincare duality also H3(M,∂M) = H3(M) = 0. Letting

bk = dim(Hk(M ;Z))

be the kth Betti number of M4, we have b1 = b3 = b4 = 0, and so

χ(M4) = 1 + b2 ≥ 1.

But χ(M4) = 0 because the N-structure on M4 is represented by a
nowhere zero vector field with compact orbits. This contradiction estab-
lishes the proof. �

Lemma 2.15 (Local triviality of pure N-structures). Assume Ω4 is a simply
connected 4-manifold, possibly with boundary, that is saturated and invariant
with respect to a pure N-structure N. Let Ω′ be the quotient along fibers given
by the map π : Ω4 → Ω′, and assume Ω′ is contractible. Then if N1 ⊆ N
is any rank 1 substructure with the property that all of its orbits are closed
and nowhere zero, the orbits of N1 are unbounded.

Likewise, if U ⊆ N is any substructure with the property that every closed
1-dimensional substructure has no zero orbits, then the orbits of U are copies
of Rk for some k ∈ {1, 2, 3, 4}.

Proof. If N has a rank 1 substructure Ñ1 with closed orbits, then we are
in the situation of Lemma 2.14. But since Ω4 is simply connected, the
conclusion of that Lemma shows it is impossible that any rank 1 substructure
has closed orbits; therefore its orbits are diffeomorphic to copies of R1.

The final statement follows from re-applying the 1-dimensional result as
many times as necessary. �
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3. Proof of Theorem 1.1

For convenience we restate the theorem.

Theorem 3.1 (Main Regularity Estimate). There exist constants ε0, δ0 > 0
so that if

∫
B(p,r) |Rm |2 < ε0, then rR(q) > δ0 min{r, rRC(q)} for all q ∈

B(p, 1
2r).

It would be nice if the “min{r, rRC(p)}” could be replaced simply with
“r”, but there are two reasons why rR must be compared to rRC . The first
is that we must use a Cheeger–Gromoll style splitting theorem to rule out
two-ended blowups; this does not use volume comparison, but essentially an
analytic barrier-style argument. The second is the result from [21] that
a Ricci-flat instanton with a nonvanishing Killing field is flat; this does
use volume comparison in one place: it is needed to establish the Hardy–
Littlewood style “weak-(1,1)” estimate (see lemma 4.1 of [10]).

3.1. Outline of the proof. If rR degenerates at some nearby point p′,
we can re-choose the point p′ so that rR(p′) is “almost” smallest among
all sufficiently nearby p′. Rescaling, we have rR(p′) = 1 and rR is bounded
uniformly from below on a large region Ω. With

∫
|Rm |2 small, Theorem 2.4

forces the existence of an N-structure on Ω.
By passing to the universal cover, we would like the collapsing directions

to “unwrap,” and become unbounded. But this is not immediately clear:
the manifold could resemble a 3-sphere crossed with a line where collapse is
along Hopf fibers; this is simply connected so passage to the universal cover
changes nothing. But in our situation, with Ricci curvature controlled, a
Cheeger–Gromoll style splitting theorem implies that the limit is indeed one-
ended, and then with a simple homology argument, we rule out behavior like
collapse along Hopf fibers. Specifically, we prove that collapsing directions
must carry homology.

Now we may pass to the universal cover Ω̃ → Ω, where we know that
all orbits of the N-structure are unbounded, and the injectivity radius is
bounded from below. Further, Lemma 2.10 now implies that the N-structure

is represented by universally defined Killing fields. The domains Ω̃ then
converge to a complete Ricci-flat manifold with rR = 1 somewhere, and
with at least one nowhere-zero Killing field (coming from the center of the N-
structure; Lemma 2.7). Lemma 2.3 implies that these are flat, contradicting
that rR is finite.

3.2. Point reselection, and properties of the sequence of coun-
terexamples. Proceeding to the formal proof, assume the theorem is false.
Then we can choose a sequence δj → 0 where for any of these δj we have
a sequence of pointed critical manifolds (Mn

i , gi, pi), radii ri (of any size),
and values εi → 0 so that a ball Bi = B(pi, ri) exists with

∫
Bi
|Rm |2 < εi,

but so that a point qi ∈ B(pi,
1
2ri) exists with rR(q) < δj min{r, rRC(q)}.
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The sequence {(δj , εi)}∞i,j=1 is a double sequence; passing to a diagonal sub-
sequence allows us to find a single sequence of such counterexamples with
εi, δi → 0 simultaneously.

Obviously B(qi, δirR(qi)) ⊂ B(pi, ri) and rR(qi) < δirRC(qi). Rescaling
the metric so rR(qi) = 1, we therefore have:

(a)
∫
B(qi, δi−1) |Rm |2 < εi.

(b) |Ric | ≤ δi2 on the ball B(qi, δi
−1).

We wish for, but don’t immediately have, a third property:

(c) |Rm | is uniformly bounded on B(qi, δi
−1).

To obtain this, we improve the choice of qi in order to make rR “almost”
minimal at qi among all nearby points.

For the moment, drop the i from the notation. Assume there is a point
q1 ∈ B(q, 1

2δ
−1) with rR(q1) < 1

2δrR(q). For an inductive procedure, sup-
posing points q1, . . . , qn have been selected, next select a point qn+1 ∈
B(qn,

1
2δ
−1rR(qn)) with rR(qn+1) < 1

2rR(qn), if such a point exists. Af-
ter finitely many steps, this process necessarily terminates with a finite se-
quence of points {q0, . . . , qN}, where the final point qN has the property that
rR >

1
2rR(qN ) on B(qN , δ

−1rR(qN )).
We wish to show that

∫
B(qN ,δ−1rR(qN ))

|Rm |2 < ε.

If we pick any x ∈ B
(
qN ,

1
2δ
−1rR(qN )

)
we have

dist(x, p)(11)

≤ dist(x, qN ) + dist(qN , qN−1) + · · ·+ dist(q1, q) + dist(q, p)

≤ 1

2
δ−1rR(qN ) +

1

2
δ−1rR(qN−1) + · · ·+ 1

2
δ−1rR(q) +

1

2
rR(p)

< δ−1
N∑
j=1

2−jrR(q) +
1

2
r < rR(p) +

1

2
r < r.

Therefore indeed B(qN ,
1
2δ
−1rR(qN )) ⊂ B(p, r), so

∫
B(qN ,

1
2
δ−1rR(qN ))

|Rm |2 < ε,
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and by design we now have |Rm | < 4rR(qN ) on the ball B(qN ,
1
2δ
−1rR(qN )).

Also

dist(x, q) ≤ dist(x, qN ) + dist(qN , qN−1) + · · ·+ dist(q1, q)(12)

≤ 1

2
δ−1rR(qN ) +

1

2
δ−1rR(qN−1) + · · ·+ 1

2
δ−1rR(q)

< δ−1
N∑
j=1

2−jrR(q) < δ−1rR(q)

which means that B(qn,
1
2δ
−1rR(qN )) ⊂ B(q, δ−1), so we retain |Ric | < δ2

on B(qn,
1
2δ
−1rR(qN )).

Now replace the old q with this new qN we have found, and scale the
metric so that rR(qN ) = 1. Reintroducing i in to the notation, we have the
following expanded list of properties:

(a)
∫
B(qi,

1
2
δi−1) |Rm |2 < εi.

(b) |Ric | ≤ δi2 on B(qi,
1
2δi
−1).

(c) |Rm | ≤ 4 on B(qi,
1
2δi
−1).

(d) |Rm | = 1 somewhere on B(qi, 1).

By (a)–(d) and Lemma 2.2, the sequence{
B

(
qi,

1

2
δi
−1

)}
i

of manifolds with boundary collapses with bounded curvature. By Theo-
rem 2.4 and the comment immediately after, we have a polarized, C-regular
N-structure Ni on a saturation of, say, B(qi,

7
16δi

−1). Let the 4 dimensional

manifold-with-boundary N4
i ⊂ B(qi,

1
2δi
−1) be this saturation.

We have the following properties for the pointed manifolds (N4
i , gi, qi):

(i) (N4
i , gi, qi) is a pointed, critical Riemannian manifold with boundary.

(ii) (N4
i , gi) has |Ric | < δi

2.
(iii) (N4

i , gi) has |Rm | ≤ 4.
(iv) (N4

i , gi, qi) has |Rm | = 1 somewhere on B(qi, 1).
(v) (N4

i , gi) is τi-collapsed, where τi → 0.
(vi) N4

i has a pure C-regular N-structure Ni of rank 1, 2, or 3.
(vii) The quotient of N4

i by the orbits of Ni is a Riemannian orbifold Ni
′

of dimension 3, 2, or 1, with injectivity radius bounded from below
and |Rm | bounded from above.

3.3. Properties of the limiting object. By the Gromov theory, the
pointed manifolds (N4

i , gi, qi) collapse with bounded curvature along their
N-structures to a limiting length space (N∞, q∞). By Theorem 2.9 we know
N∞ is an orbifold that has curvature bounded from above and injectivity
radius bounded from below on compact subsets.

In a series of lemmas, we prove that for i sufficiently large, the manifolds-
with-boundary Ni have just a single boundary component, and therefore the
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complete orbifold N∞ has just one end. We also prove that the N4
i have

positive Euler number.

Lemma 3.2. The orbifold N∞ is one-ended, and for all i sufficiently large,
after possibly passing to submanifolds of definite size, the 4-manifolds N4

i
have connected boundary.

Proof. If N∞ is not one-ended, then there exists a line γ∞ in N∞. A result
of Cheeger–Colding (Theorem 6.64 of [5]) says that the limit N∞ must have
the metric structure of R×X∞ for some length space X∞.1 In our situation
we have a sectional curvature bound, and we are able to prove the stronger
conclusion that X∞ is a flat manifold, and that sectional curvature on the
N4
i converges pointwise to 0, which provides the contradiction.
Choose an exhaustion Ωi of N∞, so that Ωi is a domain that satisfies

the following three criteria: Ωi is connected and has at least 2 ends, Ωi

contains B(q∞, 2i), and Ωi contains at least two boundary components that
are separated by a large distance, say at least 2i. Now select manifolds-with-
boundary N ′i ⊂ Ni that are saturated and 2−i-close to Ωi in the Gromov–
Hausdorff sense (this is always possible after passing to a subsequence of
the {N4

i }). We have smooth projections πi : N ′i → N∞ that collapse the N-
structure orbits in N ′i to points in N∞. Now πi is a 2−i Gromov–Hausdorff
approximation, and so by Theorem 2.4 the metric gi on Ni is 2−i-close in the
Ck,α sense to a metric for which πi is a Riemannian submersion. Therefore,
by changing the metric on N ′i by a very small amount, we can assume the
metric is actually invariant.

Since N ′i has (at least) two boundary components separated by a distance
of at least 2i, there is a unit-parametrized geodesic path γi of length at least
2i between them. Further, since we know that N∞ has a line γ∞, we can
choose γi so that πi(γi) actually lies on γ∞. In particular, πi(γi) converges
to γ∞ as i→∞.

Let b∞ : N∞ = R × X∞ → R be the projection onto the line; this is
a Buseman function associated to the line γ∞. By adding a constant, we
may assume b∞(q∞) = 0. Abusing notation, we will also use b∞ to indicate

the pullback functions π∗i (b∞) on Ñi. Now πi is a smooth Riemannian

submersion, so on b∞ has uniform Ck,α control on Ñi. In particular, the
gradient is pinched: ||∇b∞|gi − 1| ≤ 2−i. We cannot immediately obtain
Hessian pinching, as this is essentially the second fundamental forms of the
submersion fibers.

So to obtain the Hessian pinching, we will use Lemma 2.15 locally to create
noncollapsed manifolds with pointwise lower bounds on Ricci curvature.
Associated to γi, we have the usual almost-Buseman functions:

(13) b±i (x) = t±i − dist(x, γi(t
±
i )).

1Results from Cheeger–Colding theory are not strictly necessary in our argument, but
provides the function b∞ which shortens things somewhat.
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We have that that b∞(x) is 2−i-close to b+i and to −b−i (so also |b+i + b−i | ≤
21−i). By the usual Laplacian comparison argument, we have in the barrier
sense that

(14) 4b±i ≥ −3 · 2−2i.

Choose any contractible region U∞ ⊂ N∞. Consider the regions

Ui = π−1(U∞) ⊂ N ′i ,

The region Ui has an N-structure with contractible base, and therefore by

Lemma 2.15 we know that its the universal cover Ũi has just two types of
orbits: those that are copies of Rn for some n, and those orbits which are
closed, but are represented by a Killing field that has a zero somewhere on
Ui. It therefore has no collapsed directions, and the Gromov–Hausdorff limit
Ui → U∞ is a smooth convergence of 4-manifolds.

The almost-Buseman functions b±i lift to Ũi where we retain |b+i + b−i | <
21−i, so in the limit we have 4b±∞ ≥ 0 and b∞ = b+∞ = −b−∞, and therefore
4b∞ = 0 in U∞. From above, we have |∇b∞| = 1, so the fact that |Ric | = 0
on U∞ and usual Böchner–Weitzenbock formula gives 0 = |∇2b∞|2.

Now the limit U∞ has Ric = 0, |∇2b∞| = 0, and |∇b∞| = 1. Thus b∞ is
a metric splitting function on U∞, so U∞ splits locally into a line segment
crossed with a 3-dimensional Ricci-flat manifold, which is therefore a flat
manifold.

Since U∞ ⊂ N∞ was chosen arbitrarily, only under the restriction that is
be contractible, we have that on compact subsets of Ni the uniform pointwise
convergence of |Rm | to zero. This contradicts point (iii) above, which says
that rR(q′i) = 1 which means that |Rm | = 1 at at least one point. Thus
indeed N∞ is one-ended. �

With this lemma, we have in addition to (i)–(vii), now an eighth property:

(viii) The manifolds Ni are one-ended.

Lemma 3.3. Let Ñi be the universal cover of Ni. Then χ(Ñi) ≥ 1.

Proof. First note that Ñi is also one-ended, as Ñi retains properties (i)–(vii)

except possibly for (v). But if (v) does not hold, meaning Ñi is not collapsed,
then the existence of a line in the limit already contradicts |Rm | = 1 as some
point in the limit, so the proof of Lemma 3.2 is much easier. Therefore each

Ñi is one-ended.
By simple connectedness H1(Ñi) = 0 and the Universal Coefficient Theo-

rem gives H1(Ñi) = {0}. Poincare duality gives H3(Ni, ∂Ñi) = {0}. There-

fore the long exact cohomology sequence for the pair (Ñi, ∂Ñi) gives a short
exact sequence

(15) 0→ H3(Ñi)→ H3(∂Ñi)→ H4(Ni, ∂Ñi)→ 0.
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Of course H4(Ñi, ∂Ñi) = Z (generated by the fundamental class). By one-

endedness H3(∂Ñ) = Z. Then exactness forces H3(Ñi) = {0}.
We have shown that the betti numbers b1 and b3 of Ni are zero, and

therefore the Euler number of Ñi is χ(Ñi) = 1 + b2(Ñi) ≥ 1. �

Proof of Theorem 1.1. If the Theorem 1.1 is false, we can construct, as
we have seen, a sequence of pointed manifolds (Ni, pi), each of which has
connected boundary, each of which is saturated with respect to a pure N-
structure Ni, and each of which has |Rm | = 1 at some point within B(pi, 1),
but also with supNi

|Ric | → 0.

Passing to the universal covers Ñi, we retain an N-structure, but Lem-

ma 3.3 says χ(Ñi) = 0, which means Ñi cannot have an N-structure of
positive rank and compact orbits (by proposition 1.5 of [7]). Therefore the

covers Ñi are actually noncollapsed, and so converge, in the C∞ sense, to a

4-manifold Ñ∞ that also has an N-structure of positive rank (but without
compact orbits).

Lemma 2.10 says this N-structure is represented by globally-defined Kill-
ing fields. Since the rank of the N-structure is positive, there is at least one
Killing field without zeros. But now we have a complete, Ricci-flat manifold

Ñ∞ with a nowhere-zero Killing field. By Lemma 2.3 Ñ∞ is flat, contra-
dicting the fact that |Rm | = 1 somewhere. This contradiction establishes
Theorem 1.1. �

4. Proof of Theorem 1.4 and Corollary 1.5

We restate Theorem 1.4 for convenience.

Theorem 4.1. Given k > 0 and µ > 0, there exist numbers ε0 > 0 and
C = C(µ, k) <∞ so that the following holds. If rRC(p) ≥ (1 + µ)rR(p) and

(16)

∫
B(p, (1+µ)rR(p))

|Rm |2 ≤ ε0,

then

(17) rR(p) ≥ C

(
−
∫
B(p,rR(p))

|Rm |k
)− 1

2k

.

Fix µ, k, and assume there is no such C, meaning there is a sequence of
counterexamples so that the quantity

(18) rR(qi)
2k−
∫
B(qi,rR(qi))

|Rm |k

can degenerate to zero, no matter what ε0 was chosen. By Theorem 1.3,
we can choose ε0 small enough that there is a δ0 so that rR ≥ δ0rR(qi) on
B(qi, (1 + µ/2))rR(qi)).

In particular, the exponential map has no conjugate points on some ball
of radius definitely (though very slightly) larger that rR(qi). Namely, there
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is some η > 0 so that if oi ∈ TqiM
4 is the origin in the tangent space

over qi, then expqi : B(oi, (1 + η)rR(qi)) → B(qi, (1 + η)rR(qi)) is a local

homeomorphism, where η is independent of i and qi, and B indicates a ball
in the tangent space. Lifting to the tangent space at qi, we have a ball
B((1 + η)rR(qi)) that is contractible. Finally scale so that rR(qi) = 1.

Now the exponential map expqi : B(oi, 1 + η) → B(qi, 1 + η) does not
evenly cover the target, but since |Rm | ≤ 1, the deviation is not too large,
and can still assume that

(19) rR(oi)
2k−
∫
B(oi,rR(qi))

|Rm |k

degenerates to zero on the ball in the tangent space itself.
Rescaling so rR(pi) = 1, we have contractible balls B(oi, 1+η) with energy

integrals
∫
B(oi,1+η) |Rm |k converging to 0 as i→ 0. We have bounded Ricci

curvature on B(oi, 1 + η) (as long as η is chosen smaller then µ), and so
the metric automatically converges in the C1,α sense there; a bootstrapping
argument shows is converges in the C∞ sense.

So we get convergence to a manifold-with-boundary B(o∞, 1η), and since

the integrals
∫
B(oi,1+η) |Rm |k converge to 0. But rR(oi) = 1 for each i,

meaning |Rm | = 1 at some point in the interior of B(oi, 1 + η). But since
the metric is critical and therefore obeys an elliptic system, the function
|Rm | converges in the C∞ sense to a C∞ function; therefore in the limit
|Rm | = 1 somewhere in B(o∞, 1 + η), whereas also

∫
|Rm |2 = 0, which is

a contradiction. Thus Theorem 1.4 is established.
Corollary 1.5 is proved similarly. Choose l, pick counterexamples

B(pi, rR(pi)),

and scale so rR(pi) = 1. Again passing to the tangent spaces of the pi, we
have convergence of the metrics on the slightly larger, contractible manifolds
B(oi, 1 + η). The limiting metric on B(o∞, 1 + η) has definite bounds on
the quantities |∇lrR| within B(o∞, 1 + 1

2η), so by C∞ convergence, these

bounds must hold on the B(oi, 1 + 1
2η), and so on the original B(pi, rR(pi)).
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