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Automorphisms acting on the
left-orderings of a bi-orderable group

Adam Clay and Sina Zabanfahm

Abstract. We generalize a result of Koberda, 2011, by showing that
the natural action of the automorphism group on the space of left-
orderings is faithful for all nonabelian bi-orderable groups G, as well as
for a certain class of left-orderable groups that includes the braid groups
and mapping class groups of orientable surfaces with a single boundary
component. As a corollary we show that the action of Aut(G) on ∂G
is faithful whenever G is bi-orderable and hyperbolic, following the ap-
proach of Koberda. We also analyze the action of the commensurator
of G on its space of virtual left-orderings.
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1. Introduction

Let G be a group. We call a strict total ordering < of the elements of G
a left-ordering if g < h implies fg < fh for all f, g, h ∈ G. If G admits a
left-ordering < that is also right-invariant, in the sense that g < h implies
gf < hf for all f, g, h ∈ G, then < is a bi-ordering of G.

Each of these concepts can equivalently be defined in terms of positive
cones. That is, given a left-ordering < of G, we can identify < with its
positive cone

P = {g ∈ G | g > 1}
which is a subset of G satisfying:

(1) P · P ⊂ P
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(2) P t P−1 t {1} = G.

Conversely, given a subset P ⊂ G satisfying (1) and (2), it determines a
positive cone according to the prescription g < h if and only if g−1h ∈ P for
all g, h ∈ G. Bi-orderings may be similarly defined in terms of positive cones,
but the positive cone of any bi-ordering must also satisfy a third condition,
namely gPg−1 ⊂ P for all g ∈ G.

We write LO(G) for the set of all positive cones P ⊂ G satisfying (1) and
(2) above, and, thinking of it as a subset of 2G (equipped with the product
topology) we endow LO(G) with the subspace topology. Thus the open sets
of LO(G) are finite intersections of sets of the form

Ug = {P ∈ LO(G) | g ∈ P} and U cg = {P ∈ LO(G) | g−1 ∈ P}.

We call LO(G) the space of left-orderings of the group G. We similarly
can define the space of bi-orderings of G, BiO(G), by taking all positive
cones P that satisfy the additional third condition of gPg−1 ⊂ P for all
g ∈ G. Topologizing BiO(G) in the same way, we evidently have BiO(G) ⊂
LO(G). Endowed with these topologies, both LO(G) and BiO(G) are com-
pact spaces.

There is an action of G on LO(G) defined by g(P ) = gPg−1. More
generally, there is an action of Aut(G) on LO(G) by observing that φ(P )
is again a positive cone for all P ∈ LO(G) and φ ∈ Aut(G). The action
of Aut(G) on LO(G) is an action by homeomorphisms. Since the positive
cones which are fixed under conjugation correspond to the bi-orderings of
G, there is also an action of Out(G) on BiO(G).

With the topological structure and group actions as above, LO(G) has
found many applications within the study of orderable groups (for exam-
ple, it was used to show that every left-orderable group has finitely many
or uncountably many left-orderings [Lin11], and was used to demonstrate
a connection between orderability and amenability [Mor06]), though appli-
cations beyond the realm of orderability are few. In recent work Koberda
provided an example of such an application, by showing that whenever G
is a residually torsion-free nilpotent hyperbolic group, the natural action of
Aut(G) on ∂G is faithful [Kob11]. This application relies on the following
theorem, which was also extended in [Mor12] by replacing Aut(G) with the
commensurator of G:

Theorem 1.1 ([Kob11, Theorem 1.1]). If G is a finitely generated residually
torsion-free nilpotent group, then the natural action of Aut(G) on LO(G) is
faithful.

In this paper, we characterize the action of Aut(G) on LO(G) when G
is a bi-orderable group. Recall that finitely-generated residually torsion-
free nilpotent groups are bi-orderable, though the converse is not true. For
example, Thompson’s group F is bi-orderable, but not residually nilpotent
since [F, F ] is a simple group [DNR14, Section 1.2.4].
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Note that for some bi-orderable groups, like Qk for all k > 0, we should
not expect the action of Aut(G) on LO(G) to be faithful. For if G = Qk then
multiplication by a positive rational p/q in each coordinate of Qk can easily
be seen to preserve all orderings of Qk. However, it turns out that these
automorphisms of abelian groups are the only nontrivial automorphisms of
bi-orderable groups which act trivially on the space of left-orderings. For
an abelian group G and a fixed p/q ∈ Q, we denote by τp/q : G → G the
automorphism satisfying τp/q(g

q) = gp for all g ∈ G, when it exists. We
prove:

Theorem 1.2. Let G be a bi-orderable group.

(1) If G is nonabelian then Aut(G) acts faithfully on LO(G).
(2) If G is abelian then the kernel of the action of Aut(G) on LO(G) con-

tains precisely the automorphisms τp/q, if any such automorphisms
exist.

Note that part (2) of Theorem 1.2 already appears as [Mor12, Proposition
4.3(2)]. We are also able to analyze the behaviour of the action of Aut(G)
on LO(G) with respect to certain kinds of extensions.

Theorem 1.3. Suppose that G is left-orderable and that

1→ K → G→ Z→ 1

is a short exact sequence of groups. Suppose that Aut(K) acts faithfully on
LO(K). If conjugation by a generator of Z preserves a left-ordering of K,
then Aut(G) acts faithfully on LO(G).

Since bi-orderability is not preserved under extensions (even under ex-
tensions such as those in the statement of the theorem above), this allows
us to create non-bi-orderable groups G for which Aut(G) acts faithfully on
LO(G). See also Proposition 3.1.

As a corollary of Theorem 1.2 we can extend Koberda’s result concerning
the action of Aut(G) on ∂G to all bi-orderable hyperbolic groups.

Corollary 1.4. If G is a bi-orderable hyperbolic group, then Aut(G) acts
faithfully on ∂G.

The proof of Corollary 1.4 is a combination of Theorem 1.2 and Proposi-
tion 4.1.

The paper is organized as follows. In Section 2 we provide additional
background on left-orderings and bi-orderings of groups, and prove Theo-
rem 1.2. In Section 3 we prove Theorem 1.3 and also study the braid groups
Bn. In Section 4 show that the action of Aut(G) on ∂G is faithful when
G is hyperbolic and bi-orderable, and describe the action of Comm(G) on
VLO(G) for all bi-orderable groups.

Acknowledgments. We would like to thank an anonymous referee for
pointing out that Example 3.2 could likely be generalized, which resulted in
the analysis of mapping class groups appearing in Example 3.3.
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2. Automorphisms of bi-orderable groups acting on the
space of orderings

By insisting that the group G be bi-orderable, we allow ourselves some
flexibility in creating new left-orderings of G. The orderings that we will
create arise from considering the action of G on itself by conjugation, which
is an order-preserving action if G is bi-ordered (see Lemma 2.2). With this
line of reasoning we will create sufficiently many left-orderings to show that
whenever φ ∈ Aut(G) and φ(g) 6= g for some g ∈ G, then there exists
P ∈ LO(G) that contains g but not φ(g). It follows that the action of φ on
LO(G) is nontrivial, because the positive cone P satisfies φ(P ) 6= P .

Recall that a subset S ⊂ G is called isolated if gk ∈ S for some k ∈ Z
implies that g ∈ S. The isolator of a subgroup H of G is the set

I(H) = {g ∈ G | there exists k ∈ Z such that gk ∈ H}.
In general, I(H) is not a subgroup. However, when H is abelian and G is
bi-orderable, then I(H) is an abelian subgroup. Essential in proving this
fact is the following property of bi-orderable groups: In a bi-orderable group,
when gk and h` commute for some k, ` ∈ Z, then so do g and h. This fact
will also be used several times in the proofs of this section.

When H is a rank one abelian subgroup of G, so is I(H). If g is a
nonidentity element of a bi-orderable group G, then we will denote the
isolator of the cyclic subgroup 〈g〉 by I(g) for short. Thus I(g) is always a
rank one abelian group. We record the following fact for future use:

Lemma 2.1. Let G be a group. If g, h are distinct elements of G, then
either I(g) = I(h) or I(g) ∩ I(h) = {1}.

Proof. Suppose there exists f ∈ I(h) ∩ I(g) where f 6= 1. Since f ∈ I(g),
there exist n,m ∈ Z such that fn = gm. But now gn ∈ I(h) and since I(h)
is isolated, g is also in I(h) and I(h) = I(g). �

Recall that a subset S in a left-ordered group G is called convex with
respect to a given left-ordering < if g, h ∈ S and g < f < h implies f ∈ S.
Of particular importance is the case when a subgroup C of a left-ordered
group G is convex, as the convex subgroups of a left-ordering determine its
structure in a sense described below. The convex subgroups of a left-ordered
group G are ordered by inclusion. A subgroup is relatively convex if there
exists a left-ordering relative to which it is convex.

Given a subgroup C of a left-ordered group G, the natural quotient order-
ing of the left cosets G/C is well-defined if and only if C is convex, in this
case the natural left-action of G/C preserves the quotient ordering. There-
fore we can think of the ordering of G as lexicographic: it is constructed
via inclusion of the left-ordered subgroup C and via pullback of the natural
ordering on the cosets G/C.

Consequently, if C is a convex subgroup of a left-ordered group, then the
left-ordering of G may be altered by replacing the left-ordering of C with any
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left-ordering that we please. It follows that relative convexity is transitive,
in the sense that if K is relatively convex in H, and H is relatively convex
in G, then K is relatively convex in G. This fact is needed in the proof of
the following lemma.

Lemma 2.2 ([Cla12, Lemma 2.4]). Suppose that G is a bi-orderable group,
and that g ∈ G is not the identity. Then I(g) is relatively convex.

Proof. Let Gi, i = 1, 2 denote two copies of the group G, and equip each
copy with a given bi-ordering <. Create a total ordering of G1∪G2 using <
to order each Gi, and declare the elements of G1 smaller than those of G2.

Now consider the action of G on G1 ∪ G2 defined by conjugation on the
elements ofG1, and by left-multiplication on the elements ofG2. This defines
an effective, order-preserving action of G on the totally ordered set G1∪G2.
Fix a nonidentity element g ∈ G1 and well-order G1∪G2 so that g is smallest.
Then using the action of G on G1 ∪G2 one may create a left-ordering of G
in the standard way, relative to which StabG(g) = CG(g) is convex. Here,
CG(g) denotes the centralizer of g in G (See [Cla12, Proposition 2.3] or
[CR16, Example 1.11 and Problem 2.16] for details of this construction).
Now as CG(g) is bi-orderable, the centre Z(CG(g)) is relatively convex in
CG(g) by [BMR77, Theorem 2.4]. Moreover, I(g) ⊂ Z(CG(g)) since every
element of I(g) has some power which lies in 〈g〉, and thus commutes with
all elements of CG(g). Since I(g) is an isolated subgroup and Z(CG(g)) is
abelian, I(g) is relatively convex in Z(CG(g)). Thus I(g) is relatively convex
in G. �

Proposition 2.3. Suppose that G is a bi-orderable group, and that φ ∈
Aut(G). If there exists g ∈ G such that φ(I(g)) 6= I(g), or if there exists
g ∈ G such that φ(g)n = g−m for some m,n > 0, then the action of φ on
LO(G) is nontrivial.

Proof. Suppose there exists g ∈ G such that φ(g)n = g−m for some m,n >
0. Consider an arbitrary positive cone P ∈ LO(G). We can assume g ∈ P , if
not we replace P by P−1. Then g ∈ P and φ(g) 6∈ P , so we have P 6= φ(P ).

Now suppose there exists g such that I(g) 6= φ(I(g)), and note that
φ(I(g)) = I(φ(g)). By Lemma 2.2 I(g) is convex in some left-ordering of
G with positive cone P ∈ LO(G). Applying φ, one checks that φ(I(g)) =
I(φ(g)) is convex relative to the ordering of G determined by φ(P ).

To show that φ(P ) 6= P , we need only show that I(g) is not convex relative
to the ordering of G determined by φ(P ). If it were, we would have either
I(g) ⊂ I(φ(g)) or I(φ(g)) ⊂ I(g), since convex subgroups are ordered by
inclusion. By Lemma 2.1, either inclusion forces I(g) = I(φ(g)) = φ(I(g)),
a contradiction. �

Therefore, by Proposition 2.3, when G is a bi-orderable group and φ ∈
Aut(G) we know that φ acts nontrivially on LO(G) unless φ satisfies:

(∗) ∀g ∈ domain(φ) ∃n,m > 0 such that φ(g)n = gm.
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We therefore investigate the existence of such automorphisms of bi-orderable
groups.

Our lemmas below are stated in a slightly more general setting than
needed in this section, as we will also be using them in our investigation
of the action of Comm(G) on VLO(G) in Section 4.

Recall that when G is abelian, we denote by τp/q : G → G the automor-
phism satisfying τp/q(g

q) = gp for all g ∈ G, when it exists. More generally,
if H1, H2 are finite index abelian subgroups of a group G, we denote by
τp/q : H1 → H2 the isomorphism satisfying τp/q(g

q) = gp for all g ∈ H1,
when it exists.

Lemma 2.4. Suppose G is a bi-orderable group with finite index torsion-free
abelian subgroups H1, H2, and φ : H1 → H2 is an isomorphism satisfying
(∗). Then there exist p, q > 0 such that φ(g)q = gp for all g ∈ H1, so that
φ = τp/q.

Proof. This lemma is essentially Case 2 of the proof of [Mor12, Proposition
4.3]. Here is an alternative proof. Assume φ : H1 → H2 satisfies (∗) and
that H1 is torsion free abelian. Let g, h ∈ H1 and suppose φ(g)m = gn and
φ(h)` = hk for some k, `,m, n > 0. By uniqueness of roots, we may assume
that gcd(m,n) = gcd(k, `) = 1, we wish to show that m = ` and n = k. If
I(g) = I(h) then the result follows by applying φ to a common power of g
and h which lies in H1, such a common power exists since |G : H1| is finite.
So suppose I(g) 6= I(h), and therefore I(g) ∩ I(h) = {1} by Lemma 2.1.

Considering gmh`, we see that φ(gmh`) = gnhk ∈ I(gmh`), so there exist
relatively prime s, t > 0 such that (gmh`)s = (gnhk)t. Since H1 is abelian
gms−nt = htk−s`, and since both are in I(g) ∩ I(h), both are equal to 1.
Since gcd(m,n) = gcd(s, t) = 1, from ms−nt = 0 we find m = t and s = n.
Similarly from tk − s` we find t = ` and k = s, so we are done. �

Lemma 2.5. Suppose G is a bi-orderable group with finite index subgroups
H1, H2, that φ : H1 → H2 is an isomorphism satisfying (∗), and that φ
is not the identity. Then for every g ∈ H1 there exist p, q > 0 such that
φ(g)q = gp where p 6= q.

Proof. Since φ is not the identity there exists g ∈ H1 with φ(g) 6= g, say
φ(g)s = gt with s 6= t (necessarily s 6= t since G is bi-orderable). Now let
h ∈ G be given. By (∗) there exists n,m > 0 such that φ(h)n = hm. If n = m
then φ(h) = h since G is bi-orderable. But φ(gsh) = gth, so gth ∈ I(gsh).
But then (gth)(h−1g−s) = gt−s ∈ I(gsh). Therefore g ∈ I(gsh), and so
h ∈ I(gsh), and I(g) = I(h). Now since I(g) is abelian we may apply Lem-
ma 2.4 to the restriction isomorphism φ|I(g) : I(g) → I(g) arising from φ.
We conclude that n = s and m = t, contradicting the fact that n = m.
Thus n 6= m. �
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Note that we can improve the conclusion of the previous lemma, by using
uniqueness of roots in a bi-orderable group to show that p, q exist with
gcd(p, q) = 1. However this is not needed for our purposes.

Lemma 2.6. Suppose G is a bi-orderable group with finite index subgroups
H1, H2 and that φ : H1 → H2 is an isomorphism satisfying (∗). Let g, h ∈ H1

be given and suppose that φ(g)m = gn and φ(h)` = hk. Then

gn−mhgm−n ∈ I(h) and hk−`gh`−k ∈ I(g).

Proof. By symmetry, it suffices to show only gn−mhgm−n ∈ I(h). First,
notice that φ(f) ∈ I(f) for all f ∈ H1 by (∗). Therefore

φ(gmh`g−m) = gnhkg−n ∈ I(gmhg−m),

and since I(gmhg−m) is isolated we conclude gnhg−n ∈ I(gmhg−m). Next,
notice that if x ∈ I(h) then gixg−i ∈ I(gihg−i) for all i ∈ Z, and thus
gn−mhgm−n ∈ I(h). �

Lemma 2.7. Suppose G is a bi-orderable group with finite index subgroups
H1, H2, that φ : H1 → H2 is an isomorphism satisfying (∗), and that φ is
not the identity. Then H1 is abelian.

Proof. Let g, h ∈ H1 be given. If I(g) = I(h) then g and h commute. Thus
we assume I(g) 6= I(h). By Lemma 2.5 there exist m,n > 0 and k, ` > 0
with m 6= n and k 6= ` such that φ(g)m = gn and φ(h)` = hk. Consider
hk−`gn−mh`−kgm−n. On one hand, we have

hk−`gn−mh`−kgm−n = (hk−`gn−mh`−k) · gm−n ∈ I(g),

since it is a product of elements of I(g) (here we use Lemma 2.6). On the
other hand, hk−` · (gn−mh`−kgm−n) ∈ I(h) by similar reasoning. By Lem-
ma 2.1 I(g)∩ I(h) = {1} and so hk−`gn−mh`−kgm−n=1. But this means the
nontrivial powers hk−` and gn−m commute, so h and g commute since G is
bi-orderable. Thus H1 is abelian. �

Proof of Theorem 1.2. Let G be a bi-orderable group and let φ ∈ Aut(G)
be nontrivial. If G is nonabelian, then by Lemma 2.7 φ cannot satisfy (∗).
By Proposition 2.3 φ acts nontrivially on LO(G), so the action of Aut(G)
on LO(G) is faithful.

If G is abelian, and if φ does not satisfy (∗), then Proposition 2.3 tells us
that φ acts nontrivially on LO(G). If φ does satisfy (∗), then Lemma 2.4
tells us that φ = τp/q for some p/q ∈ Q. It is easy to see that in this case, φ
acts trivially on LO(G). Thus the kernel of the action of Aut(G) on LO(G)
consists exactly of the automorphisms τp/q. �

3. Non-bi-orderable groups

For certain classes of left-orderable groups, it is sometimes sufficient to
examine the action of Aut(G) on a small subset of LO(G) (perhaps even a
finite subset) in order to determine that the action is faithful.
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Recall that a left-ordering of G is discrete if there is a smallest positive
element. If φ : G→ G is an automorphism, and if P is the positive cone of a
discrete left-ordering with smallest positive element g ∈ G, then φ(P ) is the
positive cone of a discrete left-ordering whose smallest positive element is
φ(g). Thus if g 6= φ(g), then P 6= φ(P ). We apply this idea in the following
proposition.

Proposition 3.1. Suppose that G is a left-orderable group with generators
{gi}i∈I , and that for each i ∈ I there exists Pi ∈ LO(G) which is the positive
cone of a discrete left-ordering with gi as smallest positive element. Then
Aut(G) acts faithfully on LO(G).

Proof. If φ : G → G is a nontrivial automorphism, then there exists a
generator gi such that φ(gi) 6= gi. But then φ(Pi) 6= Pi, so that φ acts
nontrivially on LO(G). �

Example 3.2. Recall the Artin presentation of braid group Bn is given by

Bn =

〈
σ1, . . . , σn−1

σiσj = σjσi if |i− j| > 1
σiσjσi = σjσiσj if |i− j| = 1

〉
.

By Dehornoy, the braid groups Bn are left orderable for all n, as is the braid
group B∞ [Deh94]. The Dehornoy ordering of Bn is a left-ordering that is
defined in terms of representative words of braids as follows: A word w in
the generators σ1, . . . , σn−1 is called i-positive (respectively i-negative) if w
contains at least one occurence σi, no occurence of σ1, . . . , σi−1, and every oc-
curence of σi has positive (respectively negative) exponent. A braid β ∈ Bn
is called i-positive (respectively i-negative) if it admits a representative word
w in the generators σ1, . . . , σn−1 that is i-positive (respectively i-negative).
The Dehornoy ordering of the braid group Bn is the ordering whose posi-
tive cone PD is the set of all braids β ∈ Bn that are i-positive for some i.
Using shn−j : Bj → Bn to denote the shift homomorphism sending σi to
σi+j , the convex subgroups of Bn are shn−j(Bj) = 〈σn−j+1, . . . , σn−1〉 ⊂ Bn
[DDRW08], in particular the Dehornoy ordering is discrete with smallest
positive element σn−1.

We can also define a related left-ordering as follows: a word w in gen-
erators σ1, . . . , σn−1 is called i-reverse positive, if it has no occurence of
σi+1, . . . , σn−1, and every occurence of σi has positive exponent. Now simi-
lar to Dehornoy ordering, define an ordering <′D on Bn, whose positive cone
P ′D is consists of all braids β ∈ Bn that are i-reverse positive for some i.

It is straightforward to check that <′D is a also a discrete ordering of Bn,
with σ1 as its least positive element. Moreover, the convex subgroups of Bn
with respect to <′D are exactly the subgroups Bj = 〈σ1, . . . , σj−1〉 ⊂ Bn for
1 ≤ j ≤ n.

Now given any i where 1 ≤ i ≤ n− 1, we can construct a left ordering <i
on Bn with σi as its least positive element. First, we left-order Bn with <′D.
Since Bi+1 is convex with respect to P ′D, we can replace the left ordering
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<′D on Bi+1 with the left ordering of <D. Denote the resulting ordering of
Bn by <i. By construction, <i is a discrete ordering with σi as its least
positive element. Based on this construction and Proposition 3.1, Aut(Bn)
acts faithfully on LO(Bn).

This same construction can also be used to produce a left-ordering of
B∞ with σi as smallest positive element for all i ≥ 1. Thus Aut(B∞) acts
faithfully on LO(B∞) as well. �

More generally, it is possible to make an analysis of some mapping class
groups using similar techniques.

Example 3.3. First, we sketch how to construct left-orderings of mapping
class groups of punctured surfaces with boundary, following [RW00]. Fix a
compact surface S with nonempty boundary and denote the set of punctures
by P. Define an ideal arc to be the image of a map

(I, ∂I, int(I))→ (S, ∂S ∪ P, S \ (∂S ∪ P))

which is injective on int(I), here I is the unit interval. Two ideal arcs are
isotopic if there is an isotopy deforming one into the other, fixing P and ∂S.
A curve diagram is a collection Γ of nonisotopic ideal arcs satisfying: All
ideal arcs are embedded and disjoint, the endpoints of the arcs lie in ∂S,
and S \ Γ is a disk (possibly with a single puncture).

Having fixed a curve diagram Γ, we choose an enumeration γ1, . . . , γn of
the ideal arcs of the curve diagram, and orient the curves {γi}ni=1 and the
boundary components of S however we please. Now given φ, ψ ∈ Mod(S),
define φ < ψ whenever the following situation occurs: Suppose that the
curve diagrams φ(Γ) and ψ(Γ) are reduced with respect to one another (see
[RW00] for a description of reduced curve diagrams). Suppose that φ(γi)
and ψ(γi) coincide for i = 1, . . . , k − 1, but that φ(γk) and ψ(γk) do not
coincide for some k ≤ n. Declare φ < ψ if φ(γk) first branches off ψ(γk) to
the left, where “to the left” means in the direction of the chosen orientation
of the component of ∂S containing the common initial endpoint of φ(γk)
and ψ(γk).

For i = 1, . . . , n set

Ci = {φ ∈ Mod(S) | φ(γj) and γj coincide for j = 1, . . . , i}.
It is not hard to check that {1} = Cn ⊂ Cn−1 ⊂ . . . ⊂ C1 ⊂ Mod(S) are
convex subgroups of the left-ordering defined in the previous paragraph (cf.
[SW00, Lemma 4.5] and [NW11, Theorem 3.1]).

Now we restrict to the case where S is orientable of genus g ≥ 2, has
no punctures and a single boundary component. We fix a generating set of
Mod(S), in our case it is easiest to use the Humphries generators [Hum79],
which are Dehn twists about the red curves indicated in Figure 1. For ease
of exposition we identify each curve with the corresponding generator, that
is, ai, bi and c will simultaneously be used to denote the curves appearing
in Figure 1 as well as the corresponding generators of Mod(S).
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a1 a2 a3 ag

b1 b2 bg

c

Figure 1. The Humphries generators in red, and our chosen
curve diagram Γ in light grey.

Fix a curve diagram Γ consisting of the light grey curves appearing in
Figure 1, orient the curves and the boundary component of S in any way.
From this curve diagram it is possible to create, for each Humphries gen-
erator, a left-ordering of Mod(S) having the given generator as smallest
positive element as follows: Given a generator bi, enumerate the grey ideal
arcs γ1, . . . , γ2g so that the arc intersecting bi transversely is γ2g. In this case
the convex subgroup C2g−1 consists of φ ∈ Mod(S) for which φ(γj) = γj
(up to isotopy) for j = 1, . . . , 2g− 1, and thus the support of any φ ∈ C2g−1
is an annulus A = S \ {γ1, . . . , γ2g−1} whose central curve is bi. Thus
C2g−1 = Mod(A) ∼= Z, generated by a Dehn twist about bi. In any left-

ordering where C2g−1 = 〈bi〉 is convex, b±1i will be the smallest positive
element; we may choose the ordering of 〈bi〉 so that it is bi. The same
approach yields left-orderings of Mod(S) for which a1 and c are smallest
positive elements, as the curve diagram Γ intersects each of a1 and c exactly
once.

For ai ∈ {a2, . . . , ag}, enumerate the ideal arcs γ1, . . . , γ2g so that the
two arcs intersecting ai are γ2g−1 and γ2g. In this case the convex sub-
group C2g−2 consists of φ ∈ Mod(S) with support a “pair of pants” P =
S \ {γ1, . . . , γ2g−2} with ai parallel to one of the boundary components
of P . As such, one can create a left ordering of the convex subgroup
C2g−2 = Mod(P ) ∼= Z3 having ai as a smallest positive element, and thus
a left-ordering of Mod(S) with ai as smallest positive element. We can
now apply Proposition 3.1 to conclude that Aut(Mod(S)) acts faithfully on
LO(Mod(S)).

It may also be possible to apply similar techniques to nonorientable sur-
faces, punctured surfaces, or surfaces with more than one boundary compo-
nent. However, owing to the increased complexity of the generating sets in
these cases, an analysis as above does not directly yield all of the required
left-orderings and so is left to future work. �
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If K and H are bi-orderable groups and

1→ K → G→ H → 1

is a short exact sequence, then G can be lexicographically bi-ordered if and
only if there exists a bi-ordering of K whose positive cone is invariant under
the conjugation action of H. By relaxing this condition, we are able to
create groups which are not bi-orderable, but for which the automorphism
group acts faithfully on the space of left-orderings.

Theorem 3.4. Suppose that G is left-orderable and that

1→ K → G→ Z→ 1

is a short exact sequence of groups. Suppose that Aut(K) acts faithfully on
LO(K). If conjugation by the generator of Z preserves a left-ordering of K,
then Aut(G) acts faithfully on LO(G).

Proof. Suppose that φ : G → G is a nontrivial automorphism. If φ(K) 6=
K, choose g ∈ K with φ(g) /∈ K. Then by choosing signs appropriately, we
may use the given short exact sequence to construct a positive cone P ⊂ G
for which g ∈ P while φ(g) /∈ P . Thus φ(P ) 6= P .

On the other hand, suppose that φ(K) = K. If there exists k ∈ K for
which φ(k) 6= k, then we know there is a positive cone PK ∈ LO(K) for
which φ(PK) 6= PK since Aut(K) acts faithfully on LO(K). Using the given
short exact sequence we may extend PK to a positive cone P ⊂ G satisfying
φ(P ) 6= P .

Last, suppose that φ(k) = k for all k ∈ K, and choose t ∈ G which maps
to the generator of Z. Equip K with a positive cone PK that is preserved
by conjugation by t, and proceed as in [LRR09, Lemma 3.4]. Note that
every g ∈ G can be written uniquely as ktn for some n ∈ Z and k ∈ K,
and since φ is nontrivial and satisfies φ(k) = k for all k ∈ K it follows
that φ(t) 6= t. Construct a positive cone P ⊂ G as follows: an element
ktn is in P if k ∈ PK or k = 1 and n > 0. Then P clearly satisfies
P ∪ P−1 = G \ {1} and P ∩ P−1 = ∅. Moreover if ktn and k′tm are both
in P , then so is ktnk′tm = k(tnk′t−n)tm+n since conjugation by t preserves
PK . One can easily verify that the subgroup 〈t〉 is convex relative to the
ordering of G determined by P , so that P determines a discrete ordering of
G with t as smallest positive element. The positive cone φ(P ) will determine
a left-ordering of G with φ(t) as smallest positive element. As φ(t) 6= t, we
conclude that φ(P ) 6= P . �

If K is a bi-orderable group, automorphisms φ : K → K which preserve a
left-ordering of K but not a bi-ordering are likely quite common. However,
there is little in the literature dealing with automorphism-invariant left-
orderings, as the focus has primarily been on automorphism-invariant bi-
orderings [PR03, PR06, LRR08].



78 ADAM CLAY AND SINA ZABANFAHM

Here is an example of how an automorphism-invariant left-ordering (which
is not a bi-ordering) may arise, which we use to illustrate an application of
Theorem 3.4.

Example 3.5. Set K = Q2 o Z where the conjugation action of Z on Q2

is by the matrix A = ( 1 2
1 1 ). Then K is bi-orderable, since the action of

A preserves the bi-ordering of Z2 defined by (a, b) > (0, 0) if and only if

(a, b) · (
√

2, 1) = b+
√

2a > 0. In fact, since the eigenvectors of A are
(√

2
1

)
and

(
−
√
2

1

)
with positive and negative eigenvalues respectively, the ordering

described above (and its opposite) are the only orderings of Q2 preserved
by A. Thus K is bi-orderable and nonabelian, so by Theorem 1.2 Aut(K)
acts faithfully on LO(K).

Now we define G = K o Z where the action of the generator of Z on
an element of K is ((a, b), c) 7→ (−A(a, b)T , c). The action of −A on the
subgroup Q2 ⊂ K, having the same eigenvectors as A but with eigenvalues
of opposite sign, preserves only the ordering defined by (a, b) > (0, 0) if and
only if (a, b) · (−

√
2, 1) = b−

√
2a > 0, and its opposite. Using this ordering

on Q2, and lexicographically ordering K using the short exact sequence
1 → Q2 → K → Z → 1, we arrive at a left-ordering of K preserved by the
action of the generator of Z.

We conclude Aut(G) will act faithfully on LO(G) by Theorem 3.4.
Note that G is left-orderable by a straightforward short exact sequence

argument, but is not bi-orderable since the actions of A and −A on Q2 ⊂
K do not preserve a common ordering, so Theorem 1.2 does not apply.
Proposition 3.1 also cannot apply to G since any generator of Q2 ⊂ G
cannot be the smallest positive element of a left-ordering of G. �

Despite these extensions and examples, one cannot hope to replace “bi-
orderable” in Theorem 1.2 with either the weaker condition of local indica-
bility or the condition that G admit an ordering that is recurrent for every
cyclic subgroup (See [Mor06] for more information on recurrent orderings).
Koberda points out that for the Klein bottle group, K = 〈x, y | xyx−1 =
y−1〉, the action of Aut(K) on LO(K) is not faithful. Yet K is both locally
indicable and admits recurrent orderings, as it only has four left-orderings.

4. Applications and generalizations

The action of Aut(G) on LO(G) is connected to the action of Aut(G)
on ∂G by the following theorem. Though not stated in full generality in
[Kob11], the proof below appears there as part of the proof of [Kob11,
Theorem 1.2]. As it is relatively short, we repeat it here for the reader’s
convenience. For background and futher information on hyperbolic groups,
see [Kob11, Gro87, KB02].

Proposition 4.1. If G is a left-orderable hyperbolic group and Aut(G) acts
faithfully on LO(G), then it acts faithfully on ∂G.
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Proof. Recall that for each element g ∈ G, there are two distinct points
in the boundary ∂G defined by xg = limn→∞ g

n and yg = limn→∞ g
−n.

Moreover, given g, h ∈ G if 〈g, h〉 is not a virtually cyclic group, then g and
h determine distinct points on the boundary.

Choose a nontrivial automorphism φ ∈ Aut(G), g ∈ G and P ∈ LO(G)
such that g ∈ P and φ(g) /∈ P (and thus φ(P ) 6= P ). Since we cannot have
gk = φ(g)` for some k, ` > 0, there are two cases. Recall we defined I(g) in
Section 2 to be the isolator of the cyclic subgroup 〈g〉.
Case 1. φ(g) ∈ I(g) and there exists k, ` > 0 such that g−k = φ(g)`. In
this case, observe that xg = limn→∞(g`)n, so that

φ(xg) = lim
n→∞

φ(g`)n = lim
n→∞

(g−k)n = yg,

so that φ acts nontrivially on ∂G.

Case 2. φ(g) /∈ I(g). Then φ(g) and g do not generate a virtually cyclic
subgroup, so xg and φ(xg) = xφ(g) are distinct. Thus φ acts nontrivially on
∂G. �

Consequently, by applying Theorem 1.2, we arrive at Corollary 1.4. If G
is hyperbolic and satisfies the hypotheses of Theorem 3.4 or Proposition 3.1,
then Aut(G) acts faithfully on ∂G, too. However it seems difficult to con-
struct a hyperbolic group G satisfying the hypotheses of either result.

There are also two natural generalizations one may consider, both devel-
oped by Witte Morris in [Mor12]. First, one may replace the automorphism
group with the commensurator group Comm(G) of G. Recall that a com-
mensuration of a group G is an isomorphism φ : H1 → H2 of finite index
subgroups Hi ⊂ G. Two commensurations φ : H1 → H2 and φ′ : H ′1 → H ′2
are equivalent if there exists a finite index subgroup H ⊂ H1∩H ′1 such that
φ|H = φ′|H . The set of equivalence classes of commensurations forms the
commensurator group Comm(G) of G.

Witte Morris points out that for torsion free locally nilpotent groups,
Comm(G) acts naturally on LO(G). This follows from an application of
Koberda’s theorem (Theorem 1.1), and the fact that for every subgroup H
of a torsion-free locally nilpotent group G, the restriction map r : LO(G)→
LO(H) is surjective. When G is a bi-orderable group, the restriction r :
LO(G) → LO(H) is not a surjective map in general, so this generalization
is not possible in our setting.

However, using the restriction map r : LO(G) → LO(H) for each finite
index subgroup H ⊂ G, one can define the space of virtual left-orderings of
G as the limit

VLO(G) = lim−→LO(H),

where the limit is over all finite-index subgroups H of G [Mor12]. When
P ∈ LO(H) and H is a finite index subgroup of G, we will denote the
corresponding element of VLO(G) by [P ]. Then Comm(G) naturally acts
on VLO(G): for each commensuration φ : H1 → H2 and each positive cone
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P ∈ LO(H), set φ([P ]) = [φ(P ∩ H1)]. It is straightforward to check that
this definition respects the necessary equivalence relations.

Lemma 4.2. Let G be a left-orderable group and φ : H1 → H2 a commen-
suration of G where H1 is abelian. If φ = τp/q for some p/q ∈ Q then the
element of Comm(G) represented by φ acts trivially on VLO(G).

Proof. Suppose that H is a finite index subgroup and P ⊂ H is the positive
cone of a left-ordering. Consider P ∩ H1 and φ(P ∩ H1). The first is the
positive cone of a left-ordering of H ∩H1, the second is the positive cone of
a left-ordering of H ∩H2. Using the fact that φ satisfies (∗), one can show
that these orderings agree on the finite index subgroup H ∩H1 ∩H2 so that
[P ] = [φ(P ∩H1)], and thus φ acts trivially on VLO(G). �

Theorem 4.3. Let G be a bi-orderable group.

(1) If G is not virtually abelian, Comm(G) acts faithfully on VLO(G).
(2) If G is virtually abelian then the kernel of the action of Comm(G)

on VLO(G) contains precisely the elements represented by commen-
surations τp/q : H1 → H2, if any such commensurations exist.

Proof. First suppose that G is not virtually abelian, and let φ : H1 → H2

be a nontrivial commensuration of G. By Lemma 2.7, φ cannot satisfy (∗)
since H1 is not abelian. Thus there exists g ∈ H1 such that φ(g) 6= g and
either φ(g)n = g−m for some m,n > 0 or I(g) 6= I(φ(g)). In either case
we can construct a left-ordering of G with positive cone P satisfying g ∈ P
and φ(g) /∈ P using arguments identical to those in the proof of Lemma 2.3.
Then [P ] 6= [φ(P ∩H1)], so (the class of) φ : H1 → H2 acts nontrivially on
VLO(G).

On the other hand, suppose G is virtually abelian, and let φ : H1 → H2

be a nontrivial commensuration of G. If φ does not satisfy (∗), then an
argument identical to the previous paragraph shows that the class of φ acts
nontrivially on VLO(G). On the other hand, if φ does satisfy (∗), then
φ = τp/q for some p/q ∈ Q by Lemma 2.4. In this case, φ = τp/q acts
trivially on VLO(G) by Lemma 4.2. �
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