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Equivalences from tilting theory and
commutative algebra from the adjoint

functor point of view

Olgur Celikbas and Henrik Holm

Abstract. We give a category theoretic approach to several known
equivalences from (classic) tilting theory and commutative algebra. Fur-
thermore, we apply our main results to establish a duality theory for
relative Cohen–Macaulay modules in the sense of Hellus, Schenzel, and
Zargar.
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1. Introduction

In this paper, we consider an adjunction F:A� B : G between abelian
categories. Even though the pair (L`F,R

`G) of ` th (left/right) derived func-
tors is generally not an adjunction A � B, one can obtain an adjunction,
and even an adjoint equivalence, from these functors by restricting them ap-
propriately. More precisely, in Definition 3.7 we introduce two subcategories
Fix`(A), the category of `-fixed objects in A, and coFix`(B), the category of
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`-cofixed objects in B, and show in Theorem 3.8 that one gets an adjoint
equivalence:

(1) Fix`(A)
L`F

//
coFix`(B)

R`G

oo .

When the adjunction (F,G) is suitably nice—more precisely, when it is
a tilting adjunction in the sense of Definition 3.11—the adjoint equivalence
(1) takes the simpler form:

(2) {A ∈ A | LiF(A) = 0 for i 6= `}
L`F

// {B ∈ B | RiG(B) = 0 for i 6= `}
R`G

oo ,

as shown in Theorem 3.14. These equivalences, which are our main results,
are proved in Section 3. In Section 4 we apply them to various situations
and recover a number of known results from tilting theory and commutative
algebra, such as the Brenner–Butler and Happel theorem [5, 17], Waka-
matsu’s duality [34], and Foxby equivalence [4, 11]. Details can be found in
Corollaries 4.2, 4.3, and 4.4.

In Section 5 we investigate the equivalence (1) further in the special case
where ` = 0. Under suitable hypotheses, we show in Theorem 5.8 that for
any X ∈ Fix0(A) and d > 0, (1) restricts to an equivalence:

(3) Fix0(A) ∩ genAd (X)
F
//
coFix0(B) ∩ genBd (FX)

G
oo ,

where genAd (X) is the full subcategory of A consisting of objects that are
finitely built from X in the sense of Definition 5.1. Although (3) looks more
technical than (1) and (2), it too has useful applications, for example, it
contains as a special case Matlis duality [23]:

{Finitely generated R-modules}
HomR(−,ER(k))

// {Artinian R-modules}
HomR(−,ER(k))
oo ,

where R is a commutative noetherian local complete ring; see Corollary 5.9.
Theorem 5.10 is a variant of (3) which yields Sharp’s equivalence [28] for
finitely generated modules of finite projective/injective dimension over Co-
hen–Macaulay rings; see Corollary 5.11.

In Section 6 we apply the equivalence (1) to study relative Cohen–Mac-
aulay modules. To explain what this is about, recall that for a (non-
zero) finitely generated module M over a commutative noetherian local ring
(R,m, k), which we assume is complete, one has

depthRM = min{i |Hi
m(M) 6= 0} and dimRM = max{i |Hi

m(M) 6= 0},

where Hi
m denotes the i th local cohomology module w.r.t. m. Hence M is

Cohen–Macaulay (CM) of dimension t if and only if Hi
m(M) = 0 for i 6= t.
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When R itself is CM, the most important and useful fact about the category
of t-dimensional CM modules is the duality{

M ∈ mod(R)

∣∣∣∣ Hi
m(M) = 0

for all i 6= t

}
Extc−t

R (−,Ω)
//

{
M ∈ mod(R)

∣∣∣∣ Hi
m(M) = 0

for all i 6= t

}
Extc−t

R (−,Ω)

oo ,

where c is the Krull dimension of R and Ω is the dualizing module. The
theory of CM modules over CM rings is an active research area and in recent
papers by, e.g., Hellus and Schenzel [20] and Zargar [35], it was suggested
to investigate this theory relative to an ideal a ⊂ R. That is, in the case
where R is relative CM w.r.t. a, meaning that Hi

a(R) = 0 for i 6= c where
depthR(a,R) = c = cdR(a,R), one wishes to study the category

(4) {M ∈ mod(R) |Hi
a(M) = 0 for all i 6= t} (for any t)

of finitely generated relative CM R-modules of cohomological dimension t
w.r.t. a. Towards a relative CM theory, the first thing one should start
looking for is a duality on the category (4). Unfortunately such a duality
does not exist in general; indeed for a = 0 (the zero ideal) and t = 0 the
category in (4) is the category mod(R) of all finitely generated R-modules,
which is self-dual only in very special cases (if R is Artinian). To fix this
problem, we introduce in Definition 6.7 another category, CMt

a(R), of (not
necessarily finitely generated) R-modules; it is an extension of the category
(4) in the sense that:

CMt
a(R) ∩ mod(R) = {M ∈ mod(R) |Hi

a(M) = 0 for all i 6= t}.

Our main result about this (larger) category is that it is self-dual. We show
in Theorem 6.16 that if R is relative CM w.r.t. a with

depthR(a,R) = c = cdR(a,R),

then there is a duality:

(5) CMt
a(R)

Extc−t
R (−,Ωa)

//
CMt

a(R)
Extc−t

R (−,Ωa)

oo ,

where Ωa is the module from Definition 6.13. It is worth pointing out two
extreme cases of this duality: For a = m a ring is relative CM w.r.t. a if and
only if it is CM in the ordinary sense, and in this case c is the Krull dimension
of R and Ωa = Ω is a dualizing module; see Example 6.14. Thus (5) extends
the classic duality for CM modules of Krull dimension t mentioned above.
For a = 0 any ring is relative CM w.r.t. a, and (5) specializes, in view of
Examples 6.9 and 6.14, to the (well-known and almost trivial) duality:

{Matlis reflexive R-modules}
HomR(−,ER(k))

// {Matlis reflexive R-modules}
HomR(−,ER(k))
oo .
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Hence (5) is a family of dualities, parameterized by ideals a ⊂ R, that
connects the known dualities for (classic) CM modules and Matlis reflexive
modules.

We end this introduction by explaining how our work is related to the
literature:

For ` = 0 the equivalence (1) follows from Frankild and Jørgensen [13,
Thm. (1.1)] as (L0F,R0G) = (F,G) is an adjunction A � B to begin
with. For ` > 0 it requires some more work as the pair (L`F,R

`G) is not
an adjunction. Nevertheless, having made the necessary preparations, the
proof of the adjoint equivalence (1) is completely formal.

The idea of reproving and extending known equivalences/dualities from
commutative algebra via an abstract approach, like we do, is certainly not
new. In fact, this is the main idea in, for example, [13, 14] by Frankild
and Jørgensen, however, these papers focus on the derived category setting,
whereas we are interested in the the abelian category setting.

Concerning our work on relative CM modules in Section 6: The duality
(5) is new but related results, again in the derived category setting, can
be found in [14], Porta, Shaul, and Yekutieli [26, Sect. 7], and Vyas and
Yekutieli [32, Sect. 8] (MGM equivalence).

2. Preliminaries and technical lemmas

For an abelian category A, we write K(A) for its homotopy category.

2.1. A chain map α : X → Y between complexes X and Y in an abelian
category is called a quasi-isomorphism if Hn(α) : Hn(X) → Hn(Y) is an iso-
morphism for every n ∈ Z.

For a complex X and an integer ` we write Σ`X for the ` th translate of X;
this complex is defined by (Σ`X)n = Xn−` and ∂Σ`X

n = (−1)`∂X
n−` for n ∈ Z.

2.2. If A is an abelian category with enough projectives, then we write
P(A) for any projective resolution of A ∈ A. By the unique, up to homo-
topy, lifting property of projective resolutions one gets a well-defined func-
tor P: A → K(A), and we write πA : P(A) → A for the canonical quasi-
isomorphism.

Dually, if B is an abelian category with enough injectives, then we write
I(B) for any injective resolution of B ∈ B. This yields a well-defined functor
I : B → K(B) and we write ιB : B→ I(B) for the canonical quasi-isomorphism.

Definition 2.3. Let A be an abelian category and let ` ∈ Z. A complex X
in A is said to have its homology concentrated in degree ` if one has Hi(X) = 0
for all i 6= `.

Lemma 2.4. Let A be an abelian category with enough projectives and let
` ∈ Z. Let A be an object in A and let X be a complex in A whose homology is
concentrated in degree `. There is an isomorphism of abelian groups, natural
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in both A and X, given by:

HomA(A,H`(X))
u`A,X
∼=
// HomK(A)(P(A),Σ−`X) ,

whose inverse is induced by H0(−). Furthermore, a morphism σ : A→ H`(X)
in A is an isomorphism if and only if u`A,X(σ) : P(A)→ Σ−`X is a quasi-
isomorphism.

Proof. Let D(A) be the derived category of A. As A is a full subcatgory
of D(A), we have HomA(A,H`(X)) ∼= HomD(A)(A,H`(X)). In D(A) one has
natural isomorphisms A ∼= P(A) and H`(X) ∼= Σ−`X, as the homology of X
is concentrated in degree `, and consequently

HomD(A)(A,H`(X)) ∼= HomD(A)(P(A),Σ−`X).

It is well-known that HomD(A)(P(A),Y) ∼= HomK(A)(P(A),Y) for any com-
plex Y in A since P(A) is a bounded below complex of projectives. By
composing these natural isomorphisms, the assertion follows. �

The next lemma is proved similarly.

Lemma 2.5. Let B be an abelian category with enough injectives and let
` ∈ Z. Let B be an object in B and let Y be a complex in B whose homology
is concentrated in degree `. There is an isomorphism of abelian groups,
natural in both B and Y, given by:

HomB(H`(Y), B)
v`Y,B
∼=
// HomK(B)(Σ

−`Y, I(B)) ,

whose inverse is induced by H0(−). Furthermore, a morphism τ : H`(Y)→ B
in B is an isomorphism if and only if v`Y,B(τ) : Σ−`Y → I(B) is a quasi-
isomorphism. �

2.6. As in Mac Lane [22, I§2], a functor means a covariant functor. Let
T: A → B be an additive (covariant) functor between abelian categories.
Recall that if A has enough projectives, then the ith left derived functor of T
is given by LiT(A) = HiT(P) where P is any projective resolution of A ∈ A.
If T is right exact, then L0T = T. Dually, if A has enough injectives, then
the ith right derived functor of T is given by RiT(A) = H−iT(I) where I is
any injective resolution of A ∈ A. And if T is left exact, then R0T = T.

Consider the opposite functor Top : Aop → Bop. The category Aop has
enough projectives (resp. injectives) if and only if A has enough injectives
(resp. projectives), and in this case one has

Li(T
op) = (RiT)op (resp. Ri(Top) = (LiT)op).

If S :A� B : T is an adjunction, where S is the left adjoint of T, with unit
η : IdA → TS and counit ε : ST→ IdB, then the composites S Sη // STS εS // S
and T ηT // TST Tε // T are the identities on S and T; see e.g., [22, IV§1
Thm. 1]. In the proof of Theorem 3.8 we will need the following sligthly
more careful version of this fact.
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Lemma 2.7. Let S:A� B : T be functors (not assumed to be an adjunc-
tion), let A0 and B0 be a full subcategories of A and B, and assume that
there is a natural bijection

HomB(SA, B)
kA,B // HomA(A,TB)

for A ∈ A0 and B ∈ B0. (We do not assume S(A0) ⊆ B0 and T(B0) ⊆ A0,
so it is not given the functors S and T restrict to an adjunction A0 � B0.)

For every A ∈ A0 which satisfies SA ∈ B0 set ηA = kA,SA(1SA) : A→ TSA,
and for every B ∈ B0 which satisfies TB ∈ A0 set

εB = k−1
TB,B(1TB) : STB→ B.

The following hold:

(a) If A ∈ A is an object with A,TSA ∈ A0 and SA ∈ B0, then the

composition SA S(ηA) // STSA εSA // SA is the identity on SA.
(b) If B ∈ B is an object with B,STB ∈ B0 and TB ∈ A0, then the

composition TB ηTB // TSTB T(εB)// TB is the identity on TB.

Proof. Inspect the proof of [22, IV§1 Thm. 1]. �

3. Fixed and cofixed objects

In this section, we prove our main result, Theorem 3.8, which in certain
situations takes the simpler form of Theorem 3.14.

Setup 3.1. Throughout, A is an abelian category with enough projec-
tives and B is an abelian category with enough injectives. Furthermore,
F:A� B : G is an adjunction with F being left adjoint of G. We write
hA,B : HomB(FA, B)→ HomA(A,GB) for the given natural isomorphism and
denote by ηA : A→ GFA and εB : FGB→ B the unit and counit.

The following examples of Setup 3.1 are useful to have in mind.

Example 3.2. Let Γ and Λ be rings and let T = ΓTΛ be a (Γ, Λ)-bimodule.
The functors

Mod(Λ)
F = T⊗Λ−

//
Mod(Γ)

G = HomΓ(T,−)
oo

constitute an adjunction with unit and counit:

ηA : A −→ HomΓ(T,T ⊗Λ A) given by ηA(a)(t) = t ⊗ a and

εB : T ⊗Λ HomΓ(T, B) −→ B given by εB(t ⊗ β) = β(t) .

If Γ and Λ are artin algebras and the modules ΓT and TΛ are finitely gen-
erated, then the above restricts to an adjunction between the subcategories
of finitely generated modules:

mod(Λ)
F = T⊗Λ−

//
mod(Γ)

G = HomΓ(T,−)
oo .



EQUIVALENCES FROM TILTING THEORY 1703

In this case the category mod(Λ) has enough projectives and mod(Γ) has
enough injectives, see e.g., [3, II.3 Cor. 3.4], so the situation satisfies Set-
up 3.1.

Finally, we note that LiF = TorΛi (T,−) and RiG = Exti
Γ(T,−).

For a ring Λ we write Λo for the opposite ring.

Example 3.3. Let Γ and Λ be rings and let T = ΓTΛ be a (Γ, Λ)-bimodule.
The functors

Mod(Γ)
F = HomΓ(−,T)op

//
Mod(Λo)op

G = HomΛo (−,T)
oo

constitute an adjunction whose unit and counit are the so-called biduality
homomorphisms:

ηA : A −→ HomΛo(HomΓ(A,T ),T ) given by ηA(a)(α) = α(a) and

εB : B −→ HomΓ(HomΛo(B,T ),T ) given by εB(b)(β) = β(b) .

(Note that, a priori, the counit is a morphism FGB→ B in Mod(Λo)op, but
that corresponds to the morphism B→ FGB in Mod(Λo) displayed above.)

If Γ is left coherent and Λ is right coherent, then the categories mod(Γ) and
mod(Λo) of finitely presented Γ- and Λo-modules are abelian with enough
projectives (and hence the category mod(Λo)op is abelian with enough injec-
tives). In this case, and if the modules ΓT and TΛ are finitely presented, the
above restricts to an adjunction:

mod(Γ)
F = HomΓ(−,T)op

//
mod(Λo)op

G = HomΛo (−,T)
oo .

Finally, we note that LiF = Exti
Γ(−,T )op and RiG = Exti

Λo(−,T ) by 2.6.

Proposition 3.4. Let ` be an integer. For A ∈ A that satisfies LiF(A) = 0
for all i 6= `, and for B ∈ B that satisfies RiG(B) = 0 for all i 6= `, there is
a natural isomorphism:

HomB(L`F(A), B)
h`A,B
∼=
// HomA(A,R`G(B)) .

Proof. The assumptions mean that the homology of the complex F(P(A))
is concentrated in degree ` and that the homology of G(I(B)) is concen-
trated in degree −`. We now define h`A,B to be the unique homomorphism
(which is forced to be an isomorphism) that makes the following diagram
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commutative:

(6)

HomB(L`F(A), B)
h`A,B

// HomA(A,R`G(B))

HomB(H`F(P(A)), B)

∼=v`
F(P(A)),B

��

HomA(A,H−`G(I(B)))

∼= u−`A,G(I(B))
��

HomK(B)(Σ
−`F(P(A)), I(B))

∼=Σ`(−)
��

HomK(A)(P(A),Σ`G(I(B)))

HomK(B)(F(P(A)),Σ`I(B))
adjunction

∼=
// HomK(A)(P(A),G(Σ`I(B))) .

The vertical isomorphisms come from Lemmas 2.4 and 2.5. The given ad-
junction F:A� B : G induces an adjunction K(A) � K(B) by degreewise
application of the functors F and G; this explains the lower vertical isomor-
phism in the diagram. Finally, we note that all the displayed isomorphisms
are natural in A and B. �

Definition 3.5. Let ` be an integer. If A ∈ A satisfies

LiF(A) = 0 = RiG(L`F(A))

for all i 6= `, then we can apply Proposition 3.4 to B = L`F(A), and thereby
obtain a morphism:

η`A : A −→ R`G(L`F(A)) defined by η`A = h`A,L`F(A)(1L`F(A)).

Similarly, if B ∈ B has RiG(B) = 0 = LiF(R`G(B)) for all i 6= `, then we get
a morphism

ε`B : L`F(R`G(B)) −→ B defined by ε`B = (h`R`G(B),B)−1(1R`G(B)).

Remark 3.6. The proofs of Lemmas 2.4 and 2.5 show how the maps u`A,X
and v`Y,B act, and the diagram (6) shows how h`A,B is a composition of these
maps and the given adjunction. This tells us how h`A,B acts. It can verified
that for ` = 0 the isomorphism h`A,B = h0

A,B coincides with the given natural
isomorphism hA,B from Setup 3.1, and hence η0

A and ε0
B from Definition 3.5

coincide with the unit ηA and the counit εB of the adjunction (F,G).

The following is the key definition in this paper.

Definition 3.7. Let ` be an integer. An object A ∈ A is called `-fixed with
respect to the adjunction (F,G) if it satisfies the following three conditions:

(i) LiF(A) = 0 for all i 6= `.
(ii) RiG(L`F(A)) = 0 for all i 6= `.
(iii) The morphism η`A : A→ R`G(L`F(A)) is an isomorphism.

The full subcategory of A whose objects are the `-fixed ones is denoted by
Fix`(A).

Dually, an object B ∈ B is `-cofixed with respect to (F,G) if it satisfies:
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(i′) RiG(B) = 0 for all i 6= `.
(ii′) LiF(R`G(B)) = 0 for all i 6= `.
(iii′) The morphism ε`B : L`F(R`G(B))→ B is an isomorphism.

The full subcategory of B whose objects are the `-cofixed ones is denoted
coFix`(B).

The categories of `-fixed objects in A and `-cofixed objects in B are, in
fact, equivalent:

Theorem 3.8. In the notation from Setup 3.1 and Definition 3.7 there is
for every integer ` an adjoint equivalence of categories:

Fix`(A)
L`F

//
coFix`(B)

R`G

oo .

Proof. Let A0, respectively, B0, be the full subcategory of A, respectively,
B, whose objects satisfy condition (i), respectively, (i′), in Definition 3.7.
By Proposition 3.4 we may apply Lemma 2.7 to these choices of A0 and B0

and to S = L`F and T = R`G. From part (a) of that lemma (and from
Definition 3.5) we conclude that if A ∈ A satisfies the conditions

(1◦) A ∈ A0, that is, A satisfies 3.7(i),

(2◦) SA ∈ B0, that is, A satisfies 3.7(ii), and

(3◦) TSA ∈ A0, that is, B = L`F(A) satisfies 3.7(ii′),

then one has ε`L`F(A) ◦ L`F(η`A) = 1L`F(A). We now see that the functor L`F
maps Fix`(A) to coFix`(B), indeed, if A belongs to Fix`(A), then B := L`F(A)
satisfies (i′) as A satisfies (ii), and B satisfies (ii′) since A satisfies (iii) and (i).
In particular, conditions (1◦)–(3◦) above hold, and hence ε`B ◦ L`F(η`A) = 1B.
Since η`A is an isomorphism by (iii), it follows that ε`B is an isomorphism as
well, that is, B satisfies condition (iii′).

Similar arguments show that the functor R`G maps coFix`(B) to Fix`(A).
Now Proposition 3.4 and Definition 3.5 show that (L`F,R

`G) gives an ad-
junction between the categories Fix`(A) to coFix`(B) with unit η` and counit
ε`. Finally, conditions 3.7(iii) and (iii′) show that (L`F,R

`G) yields an ad-
joint equivalence between Fix`(A) and coFix`(B). �

Lemma 3.9. The categories Fix`(A) and coFix`(B) are closed under direct
summands and extensions in A and B, respectively.

Proof. Straightforward from the definitions. �

The next lemma (which does not use that G is a right adjoint, but only
that it is left exact) is variant of Hartshorne [19, III§1 Prop. 1.2A]. Recall
that B ∈ B is called G-acyclic if RiG(B) = 0 for all i > 0. Similarly, A ∈ A
is called F-acyclic if LiF(A) = 0 for all i > 0.

Also recall that an additive functor T between abelian categories is said
to have finite homological dimension, respectively, finite cohomological di-
mension, if one has LdT = 0, respectively, RdT = 0, for some integer d > 0.
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Lemma 3.10. Let γ : X → Y be a quasi-isomorphism between complexes in
B that consist of G-acyclic objects. If G has finite cohomological dimension,
then Gγ : GX → GY is a quasi-isomorphism.

Proof. This is left as an exercise to the reader. �

Under suitable assumptions we obtain in Propositions 3.12 and 3.13 below
simplified descriptions of the categories Fix`(A) and coFix`(B).

Definition 3.11. The adjunction (F,G) from Setup 3.1 is called a tilting
adjunction if it satisfies the following four conditions:

(TA1) For every projective object P ∈ A the object F(P) is G-acyclic and
the unit of adjunction ηP : P → GF(P) is an isomorphism. I.e.,
Prj(A) ⊆ Fix0(A).

(TA2) The functor G has finite cohomological dimension.
(TA3) For every injective object I ∈ B the object G(I) is F-acyclic and

the counit of adjunction εI : FG(I) → I is an isomorphism. I.e.,
Inj(B) ⊆ coFix0(B).

(TA4) The functor F has finite homological dimension.

Proposition 3.12. If the adjunction (F,G) satisfies conditions (TA1) and
(TA2) in Definition 3.11, then for every integer ` and every A ∈ A one has:

A ∈ Fix`(A) ⇐⇒ LiF(A) = 0 for all i 6= ` .

In other words, in this case, conditions (ii) and (iii) in Definition 3.7 are
automatic.

Proof. The implication “⇒” holds by Definition 3.7(i). Conversely, assume
that LiF(A) = 0 for all i 6= `. We must argue that conditions (ii) and (iii)
in Definition 3.7 hold as well. Let P be a projective resolution of A and
let I be a injective resolution of L`F(A) = H`F(P). Our assumption means
that the homology of the complex F(P) is concentrated in degree `. With
B = L`F(A) we now consider the following part of the diagram (6):

(7)

HomB(L`F(A),L`F(A))

HomB(H`F(P),L`F(A))

∼=v := v`
F(P),L`F(A)

��

HomK(B)(Σ
−`F(P), I)

∼=Σ`(−)
��

HomK(A)(P,Σ`G(I))

HomK(B)(F(P),Σ`I)
adjunction

∼=
// HomK(A)(P,G(Σ`I)) .

Set γ = v(1L`F(A)) : Σ−`F(P)→ I in K(B) and note that γ is a quasi-isomor-
phism by Lemma 2.5. Under the maps in (7), the identity morphism 1L`F(A)
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is mapped to θ ∈ HomK(A)(P,Σ`G(I)) given by θ = G(Σ`γ) ◦ ηP, that is, θ is
the composite:

(8) P
ηP
// G(F(P))

G(Σ`γ)
// G(Σ`I) = Σ`G(I) .

Here ηP is an isomorphism by assumption (TA1). Since F(P) and Σ`I con-
sist of G-acyclic objects—again by (TA1)—the other assumption (TA2) to-
gether with Lemma 3.10 imply that the quasi-isomorphism Σ`γ : F(P)→ Σ`I
remains to be a quasi-isomorphism after application of G. Consequently,
θ : P → Σ`G(I) is a quasi-isomorphism. As the homology of P is concen-
trated in degree 0 we get

RiG(L`F(A)) = H−iG(I) ∼= H−i(Σ
−`P) = H−i+`(P) = 0 for all i 6= `,

which proves condition 3.7(ii). It now makes sense to consider the remaining
part of the diagram (6) (still with B = L`F(A)), which gives the middle
equality below:

η`A = h`A,L`F(A)(1L`F(A)) = (u−`A,G(I))
−1(θ) = H0(θ).

Here the first equality is by Definition 3.5 and the last equality is by Lem-
ma 2.4. As θ is a quasi-isomorphism, η`A = H0(θ) is an isomorphism, and
hence condition 3.7(iii) holds. �

Proposition 3.13. If the adjunction (F,G) satisfies conditions (TA3) and
(TA4) in Definition 3.11, then for every integer ` and every B ∈ B one has:

B ∈ coFix`(B) ⇐⇒ RiG(B) = 0 for all i 6= ` .

That is, in this case, conditions (ii′) and (iii′) in Definition 3.7 are auto-
matic.

Proof. Similar to the proof of Proposition 3.12. �

Theorem 3.14. If (F,G) is a tilting adjunction then there is an adjoint
equivalence:

{A ∈ A | LiF(A) = 0 for all i 6= `}
L`F

// {B ∈ B | RiG(B) = 0 for all i 6= `}
R`G

oo .

Proof. In view of Propositions 3.12 and 3.13 this is immediate from Theo-
rem 3.8. �

4. Applications to tilting theory and commutative algebra

In this section, we show how some classic equivalences of categories from
tilting theory and commutative algebra are special cases of Theorems 3.8
and 3.14.

Tilting modules of projective dimension 6 1 over artin algebras were
originally considered by Brenner and Butler [5] (although the term “tilting”
first appeared in [18] by Happel and Ringel). Later people, such as Hap-
pel [17, III§3] and Miyashita [25], studied tilting modules of arbitrary finite
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projective dimension over general rings. If Γ is an artin algebra with dual-
ity D: mod(Γ) → mod(Γo), then a finitely generated Γ-module C is called
cotilting if the Γo-module D(C) is tilting.

The so-called Wakamatsu tilting modules constitute a good common gen-
eralization of both tilting and cotilting modules. In [33] Wakamatsu intro-
duced such modules over artin algebras; the following more general definition
can be found in Wakamatsu [34, Sec. 3].

Definition 4.1 (Wakamatsu). Let Γ and Λ be rings. A Wakamatsu tilting
module for the pair (Γ, Λ) is a (Γ, Λ)-bimodule T = ΓTΛ that satisfies the next
conditions:

(W1) ΓT and TΛ admit resolutions by finitely generated projective modules.
(W2) Exti

Γ(T,T ) = 0 and Exti
Λo(T,T ) = 0 for all i > 0.

(W3) The canonical map Λ→ HomΓ(T,T ) is an isomorphism of (Λ, Λ)-bi-
modules, and Γ → HomΛo(T,T ) is an isomorphism of (Γ, Γ)-bimod-
ules.

The original version of the next result is a classic theorem by Brenner and
Butler [5]; it was later improved by Happel [17, III§3] and Miyashita [25,
Thm. 1.16]. All of these results are covered by following corollary of Theo-
rem 3.14.

Corollary 4.2 (Brenner–Butler and Happel). Let Γ and Λ be rings. If
T = ΓTΛ is a Wakamatsu tilting module for which pdΓ(T ) and pdΛo(T ) are
finite, then there is for every ` ∈ Z an adjoint equivalence:{

M ∈ Mod(Λ)

∣∣∣∣ TorΛi (T,M) = 0
for all i 6= `

} TorΛ` (T,−)
//

{
N ∈ Mod(Γ)

∣∣∣∣ Exti
Γ(T,N) = 0

for all i 6= `

}
Ext`Γ(T,−)

oo .

If Γ and Λ are artian algebras and the modules ΓT and TΛ are finitely gen-
erated, then the categories Mod(Λ) and Mod(Γ) may be replaced by mod(Λ)
and mod(Γ).

Proof. Look at the adjunction

T ⊗Λ − : Mod(Λ) // Mod(Γ) : HomΓ(T,−)oo

from Example 3.2. Under the given assumptions on T , it is easy to verify
that this is a tilting adjunction in the sense of Definition 3.11. Now apply
Theorem 3.14. �

The next corollary of Theorem 3.14 recovers [34, Prop. 8.1] by Waka-
matsu.

Corollary 4.3 (Wakamatsu). Assume that Γ is a left coherent ring and
that Λ is right coherent ring. If T = ΓTΛ is a Wakamatsu tilting module for
which idΓ(T ) and idΛo(T ) are finite, then there is for every ` ∈ Z an adjoint
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equivalence:{
M ∈ mod(Γ)

∣∣∣∣ Exti
Γ(M,T ) = 0

for all i 6= `

}Ext`Γ(−,T)op
//

{
N ∈ mod(Λo)

∣∣∣∣ Exti
Λo(N,T ) = 0

for all i 6= `

}op

.
Ext`Λo (−,T)

oo

Proof. Look at HomΓ(−,T )op : mod(Γ) // mod(Λo)op : HomΛo(−,T )oo from
Example 3.3. Under the given assumptions on T , it is easy to verify that
this is a tilting adjunction in the sense of Definition 3.11. Now apply Theo-
rem 3.14. �

Recall that a semidualizing module over a commutative noetherian ring
R is nothing but a (balanced) Wakamatsu tilting module for the pair (R,R).

The following consequence of Theorem 3.8 seems to be new in the case
where ` > 0. For ` = 0 it is a classic result, sometimes called Foxby equiv-
alence, of Foxby [11, Sect. 1]; see also Avramov and Foxby [4, Thm. (3.2)
and Prop. (3.4)] and Christensen [8, Obs. (4.10)].

Corollary 4.4 (Foxby). Let R be a commutative noetherian ring. If C is a
semidualizing R-module, then there is for every ` ∈ Z an adjoint equivalence:

TorR
i (C,M) = 0 for all i 6= `,

M ∈ Mod(R) Exti
R(C,TorR

` (C,M)) = 0 for all i 6= `,

η`M : M → Ext`R(C,TorR
` (C,M)) is an isomorphism


TorR

` (C,−)
��

Ext`R(C,−)

OO


Exti

R(C,N) = 0 for all i 6= `,
N ∈ Mod(R) TorR

i (C,Ext`R(C,N)) = 0 for all i 6= `

ε`N : TorR
` (C,Ext`R(C,N))→ B is an isomorphism

 .

Proof. Apply Theorem 3.8 to Example 3.2 with Γ = R = Λ and T = C. �

Example 4.5. Let (R,m, k) be a commutative noetherian local ring. Recall
that an R-module M is Matlis reflexive if the map

M → HomR(HomR(M, ER(k)), ER(k))

is an isomorphism. By applying Theorem 3.8 with ` = 0 to the adjunction
from Example 3.3 with Γ = R = Λ and T = ER(k), one gets the (trivial)
equivalence:

{Matlis reflexive R-modules}
HomR(−,ER(k))op

// {Matlis reflexive R-modules}op

HomR(−,ER(k))
oo .

5. Derivatives of the main result in the case ` = 0

In this section, we consider the equivalence from Theorem 3.8 with ` =
0 and show that sometimes it restricts to an equivalence between certain
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“finite” objects in Fix0(A) and coFix0(B). The precise statements can be
found in Theorems 5.8 and 5.10.

For an object X in an abelian category C we use the standard notation
addC(X) for the class of objects in C that are direct summands in finite direct
sums of copies of X.

Definition 5.1. Let C be an abelian category, let X ∈ C, and let d ∈ N0.
An object C ∈ C is said to be d-generated by X, respectively, d-cogenerated

by X, if there is an exact sequence Xd → · · · → X0 → C → 0, respectively,
0 → C → X0 → · · · → Xd, where X0, . . . , Xd, respectively, X0, . . . , Xd, belong
to addC(X). The full subcategory of C consisting of all such objects is denoted
by genCd (X), respectively, cogend

C(X).
We say that C ∈ C has an addC(X)-resolution of length d, respectively,

has an addC(X)-coresolution of length d, if there exists an exact sequence
0 → Xd → · · · → X0 → C → 0, respectively, 0 → C → X0 → · · · →
Xd → 0, where X0, . . . , Xd, respectively, X0, . . . , Xd, belong to addC(X). The
full subcategory of C consisting of all such objects is denoted by resCd (X),
respectively, coresd

C(X).

Remark 5.2. Note that as subcategories of Cop one has

genC
op

d (X) = cogend
C(X)op and resC

op

d (X) = coresd
C(X)op.

Also note that resC0(X) = addC(X) = cores0C(X).

Example 5.3. Let (R,m, k) be a commutative noetherian local ring. One
has:

gen
Mod(R)
0 (R) = {Finitely generated R-modules}

cogen0
Mod(R)(ER(k)) = {Artinian R-modules},

where the first one is trivial and the second one is well-known; see [10,
Thm. 3.4.3].

If R is Cohen–Macaulay with dimension d and a dualizing module Ω, then:

res
Mod(R)
d (R) = {Finitely generated R-modules with finite

projective dimension}

res
Mod(R)
d (Ω) = {Finitely generated R-modules with finite

injective dimension}.
Here the first equality is well-known and the second one follows easily from
the existence of maximal Cohen–Macaulay approximations [2, Thm. A]; see
also [7, Exer. 3.3.28].

Lemma 5.4. For ` = 0 the categories from Definition 3.7 have the proper-
ties:

(a) The category Fix0(A) is closed under direct summands, extensions,
and kernels of epimorphisms in A.
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(b) The category coFix0(B) is closed under direct summands, extensions,
and cokernels of monomorphisms in B.

Proof. The closure under direct summands and extensions comes from
Lemma 3.9. The remaining assertions are proved by using similar meth-
ods. �

Lemma 5.5. For ` = 0 the categories from Definition 3.7 have the proper-
ties:

(a) If the kernel of G is trivial, that is, if G(B) = 0 implies B = 0 (for
any B ∈ B), then Fix0(A) is closed under cokernels of monomor-
phisms in A.

(b) If the kernel of F is trivial, that is, if F(A) = 0 implies A = 0 (for
any A ∈ A), then coFix0(B) is closed under kernels of epimorphisms
in B.

Proof. (a) Let 0→ A′ → A→ A′′ → 0 be a short exact sequence in A with
A′, A ∈ Fix0(A). As L1F(A) = 0 we get the exact sequence

0→ L1F(A′′)→ F(A′)→ F(A),

and as G is left exact we get exactness of

0→ G(L1F(A′′))→ GF(A′)→ GF(A).

Since ηA′ and ηA are isomorphisms, the morphism GF(A′) → GF(A) may
be identified with A′ → A, which is mono. It follows that G(L1F(A′′)) = 0,
and consequently L1F(A′′) = 0. Having established this, arguments as in
the proof of Lemma 3.9 show that A′′ ∈ Fix0(A).

(b) Similar to the proof of part (a). �

We give a few examples of adjunctions that satisfy the hypotheses in
Lemma 5.5.

Example 5.6. Let R be a commutative ring and let E be a faithfully in-
jective R-module, that is, the functor HomR(−, E) is faithfully exact. In
this case, the adjunction (F,G) = (HomR(−, E)op,HomR(−, E)) from Exam-
ple 3.3 has the property that either of the conditions F(M) = 0 or G(M) = 0
imply M = 0 (for any R-module M).

Example 5.7. Let R be a commutative noetherian ring and let C be a
finitely generated R-module with SuppRC = Spec R. In this case, the ad-
junction (F,G) = (C⊗R−,HomR(C,−)) from Example 3.2 has the property
that either of the conditions F(M) = 0 or G(M) = 0 imply M = 0 (for
any R-module M). This follows from basic results in commutative algebra;
cf. [21, §3.3].

Theorem 5.8. Assume that F(A) = 0 implies A = 0 (for any A ∈ A). For
any X ∈ Fix0(A) and d > 0 the equivalence from Theorem 3.8 with ` = 0
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restricts to an equivalence:

Fix0(A) ∩ genAd (X)
F
//
coFix0(B) ∩ genBd (FX)

G
oo .

Proof. By Theorem 3.8 it suffices to argue that F maps Fix0(A)∩ genAd (X)

to genBd (FX) and that G maps coFix0(B) ∩ genBd (FX) to genAd (X).

First assume A belongs to Fix0(A) ∩ genAd (X). Since A ∈ genAd (X) there
is an exact sequence Xd → · · · → X0 → A → 0 with X0, . . . , Xd ∈ addA(X).
Since A, X ∈ Fix0(A) one has, in particular, LiF(A) = 0 = LiF(Xn) for all i > 0
and n = 0, . . . , d, so it follows that the sequence FXd → · · · → FX0 → FA→ 0
is exact, and hence FA belongs to genBd (FX).

Next assume that B is in coFix0(B) ∩ genBd (FX) and let

Yd → · · · → Y0 → B→ 0

be an exact sequence in B with Y0, . . . ,Yd ∈ addB(FX). As X ∈ Fix0(A)
we have FX ∈ coFix0(B) and hence Y0, . . . ,Yd ∈ coFix0(B). The assumption
on F and Lemma 5.5(b) imply that coFix0(B) is closed under kernels of
epimorphisms in B, so all kernels

K0 = Ker(Y0 � B), K1 = Ker(Y1 � K0), . . . , Kd = Ker(Yd � Kd−1)

belong to coFix0(B). In particular,

RiG(K0) = RiG(K1) = · · · = RiG(Kd) = 0

for all i > 0, hence GYd → · · · → GY0 → GB → 0 is exact. Since GFX ∼= X
and Y0, . . . ,Yd ∈ addB(FX), it follows that GY0, . . . ,GYd ∈ addA(X), and
thus GB ∈ genAd (X). �

The next corollary of Theorem 5.8 is a classic result of Matlis [23, Cor. 4.3].

Corollary 5.9 (Matlis). Let (R,m, k) be a commutative noetherian local
m-adically complete ring. There is an adjoint equivalence:

{Finitely generated R-modules}
HomR(−,ER(k))op

// {Artinian R-modules}op

HomR(−,ER(k))
oo .

Proof. Consider the situation from Example 4.5. The assumption that R is
m-adically complete yields that R (viewed as an R-module) is Matlis reflexive;
see, e.g., [10, Thm. 3.4.1(8)]. The asserted equivalence now follows directly
from Theorem 5.8 with X = R and d = 0 in view of Example 5.6 and of
Remark 5.2 and Example 5.3 (first half). �

Theorem 5.10. For any X ∈ Fix0(A) and d > 0 the equivalence from
Theorem 3.8 with ` = 0 restricts to an equivalence:

Fix0(A) ∩ resAd (X)
F
//
resBd (FX)

G
oo .
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If G(B) = 0 implies B = 0 (for any B ∈ B), then resAd (X) ⊆ Fix0(A) and

hence the equivalence takes the simpler form resAd (X)� resBd (FX).

Proof. By Lemma 5.4(b) the class coFix0(B) is closed under cokernels of
monomorphisms in B, and therefore resBd (FX) ⊆ coFix0(B). So in view of

Theorem 3.8 we only have to show that F maps Fix0(A)∩resAd (X) to resBd (FX)

and that G maps resBd (FX) to resAd (X). This follows from arguments similar
to the ones found in the proof of Theorem 5.8. The last assertion follows
from Lemma 5.5(a). �

The next corollary of Theorem 5.10 is a classic result of Sharp [28, The-
orem (2.9)].

Corollary 5.11 (Sharp). Let (R,m, k) be a commutative noetherian local
Cohen–Macaulay ring with a dualizing module Ω. There is an adjoint equiv-
alence:{

Finitely generated R-modules
with finite projective dimension

}
Ω⊗R−

//

{
Finitely generated R-modules
with finite injective dimension

}
HomR(Ω,−)
oo

Proof. Immediate from Example 5.7, Theorem 5.10 with X = R, and Ex-
ample 5.3. �

6. Applications to relative Cohen–Macaulay modules

Throughout this section, (R,m, k) is a commutative noetherian local ring
and a ⊂ R is a proper ideal. We apply Theorem 3.8 to study the category
of (not necessarily finitely generated) relative Cohen–Macaulay modules.
Our main result is Theorem 6.16. We begin by recalling a few well-known
defintions and facts about local (co)homology.

6.1. The a-torsion functor and the a-adic completion functor are defined by

Γa = lim−→n∈N HomR(R/an,−) and Λa = lim←−n∈N(R/an ⊗R −).

The ith right derived functor of Γa is written Hi
a and called the ith local

cohomology w.r.t. a. The ith left derived functor of Λa is written Ha
i and

called the ith local homology w.r.t. a.
The functor Λa is not right exact on the category of all R-modules, so

its zeroth left derived functor Ha
0 is, in general, not naturally isomorphic to

Λa. For every R-module M there are canonical maps ψM : M → Ha
0(M) and

ϕM : Ha
0(M)� ΛaM whose composite ϕM ◦ ψM is the a-adic completion map

τM : M → ΛaM; see Simon [29, §5.1]. On the category of finitely generated
R-modules, the functor Λa is exact, as it is naturally isomorphic to −⊗R R̂a;
see [24, Thms. 8.7 and 8.8]. Hence, if M is a finitely generated R-module,
ϕM is an isomorphism, ψM may be identified with τM, and Ha

i (M) = 0 for
i > 0.
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On the derived category D(R) one can consider the total right derived
functor RΓa of Γa. A classic result due to Grothendieck [16, Prop. 1.4.1]1

asserts that RΓa
∼= C(a)⊗L

R −, where C(a) is the Čech complex on any set of
generators of a. Similarly, LΛa ∼= RHomR(C(a),−) by Greenlees and May
[15, Sect. 2] (with corrections by Schenzel [27])2. For any R-module M one
has by definition Hi

a(M) = H−i(RΓaM) and Ha
i (M) = Hi(LΛaM).

6.2. Recall that for any R-module M, its depth (or grade) w.r.t. a is the
number

depthR(a,M) = inf{i | Exti
R(R/a,M) 6= 0} ∈ N0 ∪ {∞}.

If M is finitely generated, then this number is the common length all maximal
M-sequences contained in a; see [7, §1.2]. Strooker [31, Prop. 5.3.15] shows
that for every M one has:

inf{i |Hi
a(M) 6= 0} = depthR(a,M).

Thus, if M is finitely generated, then inf{i |Hi
m(M) 6= 0} = depthRM.

The number sup{i |Hi
a(M) 6= 0} is less well understood; it is often called

the cohomological dimension of M w.r.t. a and denoted by cdR(a,M). If M
is finitely generated, then cdR(m,M) = dimRM by [6, Thms. 6.1.2 and 6.1.4].

From 6.2 one gets the well-known fact that a (non-zero) finitely generated
module M is Cohen–Macaulay with t = depthRM = dimRM if and only if
Hi

m(M) = 0 for i 6= t. In view of this, the next definition due to Zargar [35,
Def. 2.1] is natural.

Definition 6.3 (Zargar). A finitely generated R-module M is said to be
relative Cohen–Macaulay of cohomological dimension t w.r.t. a if Hi

a(M) = 0
for all i 6= t.

The ring R is said to be relative Cohen–Macaulay w.r.t. a if it is so when
viewed as a module over itself, that is, if c(a) := gradeR(a,R) = cdR(a,R).
In the terminology of Hellus and Schenzel [20], this means that a is a coho-
mologically complete intersection ideal.

Example 6.4. Let x1, . . . , xn ∈ R be a sequence of elements. It follows from
[6, Thm. 3.3.1] (and 6.2) that any finitely generated R-module M for which
x1, . . . , xn is an M-sequence is relative Cohen–Macaulay of cohomological
dimension n with respect to a = (x1, . . . , xn). In particular, if x1, . . . , xn
is an R-sequence, then R is relative Cohen–Macaulay with respect to a =
(x1, . . . , xn) and one has c(a) = n.

1 See also Brodmann and Sharp [6, Thm. 5.1.19], Alonso Tarŕıo, Jeremı́as López, and
Lipman [1, Lem. 3.1.1] (with corrections by Schenzel [27]), and Porta, Shaul, and Yekutieli
[26, Prop. 5.8].

2 See also Porta, Shaul, and Yekutieli [26, Cor. 7.13] for a very clear exposition.
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For a ring R that is relative Cohen–Macaulay w.r.t. a we now set out to
study the category

{M ∈ mod(R) |Hi
a(M) = 0 for all i 6= t} (for any t)

of finitely generated relative Cohen–Macaulay of cohomological dimension
t w.r.t. the ideal a. But first we extend the notion of relative Cohen–
Macaulayness to the realm of all modules.

Definition 6.5. An R-module M is said to be a-trivial if Ha
i (M) = 0 for all

i ∈ Z.

Remark 6.6. By Strooker [31, Prop. 5.3.15] and Simon [30, Thm. 2.4 and
Cor. p. 970 part (ii)] a-trivialness of a module M is equivalent to any of the
conditions:

(i) Hi
a(M) = 0 for all i ∈ Z.

(ii) Exti
R(R/a,M) = 0 for all i ∈ Z.

(iii) TorR
i (R/a,M) = 0 for all i ∈ Z.

We denote the Matlis duality functor HomR(−, ER(k)) by (−)v, and for an
R-module M we write δM : M → Mvv for the canonical monomorphism.

Definition 6.7. An R-module M (not necessarily finitely generated) is said
to be relative Cohen–Macaulay of cohomological dimension t w.r.t. a if it
satisfies the conditions:

(CM1) Hi
a(M) = 0 for all i 6= t.

(CM2) The canonical map ψM : M → Ha
0(M) is an isomorphism.

(CM3) The cokernel of δM : M → Mvv is a-trivial.

The category of all such R-modules is denoted CMt
a(R).

Observation 6.8. Assume that R is m-adically complete, and hence also
a-adically complete by [31, Cor. 2.2.6]. In this case, conditions (CM2) and
(CM3) automatically hold for all finitely generated R-modules, see 6.1 and
[10, Thm. 3.4.1(8)], so there is an equality,

CMt
a(R) ∩ mod(R) = {M ∈ mod(R) |Hi

a(M) = 0 for all i 6= t}.
Thus, in this case, a finitely generated module is relative Cohen–Macaulay
w.r.t. a in the sense of Definition 6.7 if and only if it is so in the sense of
Zargar (Definition 6.3).

Example 6.9. For a = 0 we have Γa = IdMod(R) = Λa, and the only a-trivial
module is the zero module. So for a = 0 one has

CM0
a(R) = {Matlis reflexive R-modules}.

Lemma 6.10. Assume that R is relative Cohen–Macaulay w.r.t. a in the
sense of Definition 6.3 and set c = c(a). In this case, the R-module Hc

a(R)
has the following properties:

(a) Hc
a(R) has finite projective dimension.
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(b) Exti
R(Hc

a(R),Hc
a(R)) = 0 for all i > 0.

(c) HomR(Hc
a(R),Hc

a(R)) is isomorphic to the a-adic completion R̂a.
(d) One has RΓa

∼= Σ−c(Hc
a(R)⊗L

R −) and Hi
a
∼= TorR

c−i(H
c
a(R),−).

(e) One has LΛa ∼= ΣcRHomR(Hc
a(R),−) and Ha

i
∼= Extc−i

R (Hc
a(R),−).

Proof. Since Hi
a(R) ∼= H−i(RΓa(R)) ∼= H−i(C(a)) by 6.1, the assumption

that R is relative Cohen–Macaulay w.r.t. a means that the homology of
C(a) is concentrated in degree −c. Thus there are isomorphisms

Hc
a(R) ∼= H−c(C(a)) ∼= ΣcC(a)

in D(R). In view of this, part (a) follows as C(a) has finite projective di-
mension [9, §5.8], parts (b) and (c) follow from [14, Lem. 1.9], and (d) and
(e)) follow from 6.1. �

Definition 6.11. Naturality of ψ from 6.1 shows that for any R-module M
there is an equality

ψMvv ◦ δM = Ha
0(δM) ◦ ψM

of homomorphisms M → Ha
0(Mvv); we write θM for this map.

Lemma 6.12. An R-module M satisfies conditions (CM2) and (CM3) in
Definition 6.7 if and only if it satisfies:

(†) Ha
i (Mvv) = 0 for all i > 0, and

(‡) θM : M → Ha
0(Mvv) is an isomorphism.

Proof. “Only if”: By (CM2) and [29, p. 238, second Lem., part (ii)] we
get isomorphisms Ha

i (M) ∼= Ha
i (Ha

0(M)) = 0 for all i > 0. The short exact
sequence

0→ M → Mvv → CM → 0,

where the map M → Mvv is δM and CM = Coker δM, induces a long exact
sequence of local homology modules w.r.t a, and since CM is a-trivial by
(CM3), we conclude that Ha

i (δM) : Ha
i (M)→ Ha

i (Mvv) is an isomorphism for
all i ∈ Z. Thus (†) follows. As Ha

0(δM) is an isomorphism, so is

θM = Ha
0(δM) ◦ ψM,

that is, (‡) holds.
“If”: As (‡) holds, M has the form M ∼= Ha

0(X) so [29, p. 238, sec-
ond Lem., part (ii)] yields that ψM : M → Ha

0(M) is an isomorphism, i.e.,
(CM2) holds, and Ha

i (M) = 0 for i > 0. As θM = Ha
0(δM) ◦ ψM and ψM

are both isomorphisms, so is Ha
0(δM). By (†) we also have Ha

i (Mvv) = 0 for
all i > 0, so the long exact sequence of local homology modules induced by
0→ M → Mvv → CM → 0 shows that Ha

i (CM) = 0 for all i ∈ Z, i.e., (CM3)
holds. �

We prove in Theorem 6.16 below that the category CMt
a(R) is self-dual.

The duality is realized via the following module which was already intro-
duced by Zargar [36, Def. 2.3].



EQUIVALENCES FROM TILTING THEORY 1717

Definition 6.13 (Zargar). Let R be relative Cohen–Macaulay w.r.t. a in
the sense of Definition 6.3. With c = c(a) we set

Ωa = Hc
a(R)v = HomR(Hc

a(R), ER(k)).

In the extreme cases a = 0 and a = m the module Ωa is well-understood:

Example 6.14. Any ring R is relative Cohen–Macaulay w.r.t. a = 0; in this
case one has c = 0, H0

a(R) = R, and Ωa = ER(k).
Assume that R is Cohen–Macaulay (w.r.t. m) and m-adically complete.

In this case, one has c = depth R = dim R and Hc
m(R) is Artinian by [6,

Thm. 7.1.3]. Thus Ωm = Hc
m(R)v is finitely generated so Proposition 6.15

below shows that Ωm is the dualizing module for R.

Proposition 6.15. If R is m-adically complete and relative Cohen–Macau-
lay w.r.t. the ideal a, then Ωa has finite injective dimension, Exti

R(Ωa,Ωa) =
0 for i > 0, and HomR(Ωa,Ωa) ∼= R. Furthermore, in the derived category
D(R) there is an isomorphism Ωa

∼= Σ−cLΛaER(k).

Proof. It is immediate from Lemma 6.10(a) that Ωa has finite injective
dimension. Part (e) of the same lemma shows that Ωa

∼= Σ−cLΛaER(k) in
D(R), and hence

RHomR(Ωa,Ωa) ∼= RHomR(LΛaER(k),LΛaER(k))

∼= LΛaRHomR(ER(k), ER(k)),

where the last isomorphism comes from [12, (2.6)] and [26, Lem. 7.6]. As R
is m-adically complete, we have RHomR(ER(k), ER(k)) ∼= R, and thus the last
expression above is the same as LΛaR ∼= R̂a. As R is also a-adically complete,
we get RHomR(Ωa,Ωa) ∼= R. �

Theorem 6.16. Assume that R is relative Cohen–Macaulay w.r.t. a in the
sense of Definition 6.3 and set c = c(a). For every integer t there is a
duality:

CMt
a(R)

Extc−t
R (−,Ωa)

//
CMt

a(R)
Extc−t

R (−,Ωa)

oo .

Proof. We consider the adjunction (F,G) from Example 3.3 with Γ = R = Λ
and T = Ωa. From Theorem 3.8 with ` = c − t we get that the functor
Extc−t

R (−,Ωa) yields a duality (a contravariant equivalence) on the category
F := Fixc−t(Mod(R)), whose objects are those R-modules M that satisfy the
following conditions:

(i) Exti
R(M,Ωa) = 0 for all i 6= c− t.

(ii) Exti
R(Extc−t

R (M,Ωa),Ωa) = 0 for all i 6= c− t.
(iii) The canonical map ηc−t

M : M → Extc−t
R (Extc−t

R (M,Ωa),Ωa) is an iso-
morphism.
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We now show F = CMt
a(R), that is, we prove that an R-module M satisfies

(i), (ii), and (iii) if and only if it satisfies (CM1), (CM2), and (CM3) in
Definition 6.7. First note that

Exti
R(M,Ωa) = Exti

R(M,Hc
a(R)v) ∼= TorR

i (Hc
a(R),M)v ∼= Hc−i

a (M)v,

where the last isomorphism is by Lemma 6.10(d). It follows that condition
(i) is equivalent to (CM1). If (i) holds, then

Extc−t
R (M,Ωa) ∼= Σc−tRHomR(M,Ωa)

in D(R), which explains the first isomorphism in the computation below.
The second isomorphism below follows as Ωa

∼= Σ−cLΛaER(k), see Propo-
sition 6.15, and the third isomorphism comes from [12, (2.6)] and [26,
Lem. 7.6]. The last isomorphism is by definition (see 6.1):

Exti
R(Extc−t

R (M,Ωa),Ωa)

∼= H−iRHomR(Σc−tRHomR(M,Ωa),Ωa)

∼= H(c−t)−iRHomR(RHomR(M,LΛaER(k)),LΛaER(k))

∼= H(c−t)−iLΛaRHomR(RHomR(M, ER(k)), ER(k))

∼= Ha
(c−t)−i(Mvv).

Thus, under assumption of (i), condition (ii) is equivalent to

(†) Ha
n(Mvv) = 0 for all n > 0.

Setting i = c− t in the computation above we get an isomorphism,

αM : Extc−t
R (Extc−t

R (M,Ωa),Ωa)
∼=−→ Ha

0(Mvv),

which identifies the map ηc−t
M from condition (iii) above with the map θM

from Definition 6.11, that is, αM ◦ ηc−t
M = θM. So under assumption of (i),

condition (iii) is equivalent to

(‡) θM is an isomorphism.

Now apply Lemma 6.12. �
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