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Curvature decompositions on Einstein
four-manifolds

Peng Wu

Abstract. For Einstein four-manifolds with positive scalar curvature,
we investigate relations among various positivity conditions on the cur-
vature tensor, some of which are of great importance in the study of the
Ricci flow. These relations suggest possible new ideas to study the well-
known rigidity conjecture for positively curved Einstein four-manifolds.

Contents

1. Introduction 1739

2. Proof of results 1742

References 1748

1. Introduction

A Riemannian metric is called an Einstein metric if Ric = λg for some
λ ∈ R. A central problem in differential geometry is to study the exis-
tence, rigidity, and moduli space of Einstein metrics. In dimension four, a
well-known conjecture states that Einstein four-manifolds with positive sec-
tional curvature are isometric to (S4, g0) or (CP 2, gFS). Many authors have
made important progress on this conjecture, cf. Berger [Berg61], Derdzinski
[Der83], Hitchin [Bes87], Gursky and LeBrun [GL99], Yang [Yang00], and
Costa [Cos04]. Curvature decompositions are basic tools to understand the
structure of the curvature tensor. The three curvature decompositions on
Einstein four-manifolds: the standard curvature decomposition [Bes87], the
duality curvature decomposition [Bes87], and the Berger curvature decom-
position [Berg61], are essential in these works.

The positivity of the curvature operator is of great importance in the
study of the Ricci flow. Recall that a curvature operator R is k-positive
(k-nonnegative), if the sum of its k smallest eigenvalues is positive (non-
negative). In a pioneering work, Hamilton [Ham86] proved that the space
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of positive curvature operator is preserved along the Ricci flow, and com-
pact four-manifolds with positive curvature operator are diffeomorphic to
spherical space forms. Chen [Chen91] later relaxed Hamilton’s condition to
2-positive curvature operator. In a recent breakthrough, Böhm and Wilk-
ing [BW08] proved that compact n-dimensional manifolds with 2-positive
curvature operator are diffeomorphic to spherical space forms.

Unfortunately, as Böhm and Wilking [BW08] pointed out, the space of 3-
positive curvature operator is not preserved along the Ricci flow. However as
the curvature operator of (CP 2, gFS) is 3-positive and the curvature operator
of (S2×S2, g0⊕g0) is 5-positive, it is natural to study the rigidity of Einstein
four-manifolds with 3-positive or 4-positive curvature operator. As the first
step, we investigate the relationship among k-positive curvature operator,
positive sectional curvature, and positive isotropic curvature (see Section 2
for the definition).

Theorem 1.1. Let (M4, g) be an Einstein four-manifold with Ric = λg,
λ > 0. Then we have:

(1) R is 2-positive if and only if the isotropic curvature is positive.
(2) If K > λ

12 , then R is 3-positive; if R is 3-positive, then K > λ
30 .

(3) R is 4-positive if and only if K < λ, and it implies K > (4−
√

17)λ.

Remark 1.2. Costa [Cos04] proved that Einstein four-manifolds with K ≥
λ

3(2+
√
2)

are isometric to (S4, g0) or (CP 2, gFS).

Remark 1.3. If moreover the metric is Hermitian, then 4-positive curvature
operator is equivalent to positive orthogonal bisectional curvature.

The rigidity of Einstein manifolds with positive curvature operator and
positive isotropic curvature have been studied by Tachibana [Tach74] and
Brendle [Bre10]. Tachibana [Tach74] proved that Einstein manifolds with
positive curvature operator are isometric to spherical space forms. Brendle
[Bre10] proved that Einstein manifolds with positive isotropic curvature are
isometric to spherical space forms.

The basic idea of the proof, motivated by the work of Brendle [Bre10],
is to apply the maximum principle to an equation of the curvature tensor,
and reduce the problem to constrained optimizations. The new ingredient
in the proof is to combine an analog of Brendle’s argument [Bre10] and the
Berger curvature decomposition [Berg61].

Notice that K > λ
12 implies K < 5λ

6 . Using the same argument as in
Theorem 1.1, we can show that a slightly smaller upper bound also implies
3-positive curvature operator:

Proposition 1.4. Let (M, g) be an Einstein four-manifold with Ric = λg,

λ > 0. If K < 14−
√
19

12 λ ≈ (56 −
3

100)λ, then R is 3-positive.

The proof of Theorem 1.1 shows that on Einstein four-manifolds, the
upper bound and lower bound of the sectional curvature are asymmetric. For
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simplicity, we assume λ = 1. On one hand, K ≥ δ implies K ≤ 1− 2δ. For
example δ = 1

6 for (CP 2, gFS). On the other hand, K ≤ δ (naively) implies
K ≥ 1 − 2δ. However by our argument, the lower bound can be made
much larger than 1 − 2δ. For example, 4-nonnegative curvature operator
(equivalently K ≤ 1) implies K ≥ −1, but from Theorem 1.1 we can make
K ≥ 4 −

√
17. This suggests that K < 1 may be equivalent to K > 0.

Half Weyl curvature and half curvature operator have a similar asymmetric
property. We denote eigenvalues of W+ by λ1 ≤ λ2 ≤ λ3. Notice that
−2λ3 ≤ λ1 ≤ −1

2λ3 since W+ is traceless.

Proposition 1.5. Let (M, g) be an Einstein four-manifold with Ric = g.
Suppose the minimum of λ1 is achieved at p. Then

λ1(p) ≥
1

2

(
2λ3 + 1−

√
12λ23 + 4λ3 + 1

)
(p) > (1−

√
3 )λ3(p).

The proof of Theorem 1.1 also provides an alternative proof of the Weitz-
enböck formula for Einstein metrics on four-manifolds by Derdzinski [Der83].
Moreover the alternative proof directly extends from Einstein metrics on
four-manifolds to “Einstein metrics” on four-dimensional smooth metric
measure spaces, including gradient Ricci solitons, quasi-Einstein metrics,
etc (see [Wu13, Wu17] for details).

For readers’ convenience, we now provide the following table of curvature
conditions for Einstein metrics on four-manifolds:

R positive ⇒ 2-positive ⇒ K > 1
12 ⇒ 3-positive ⇒K > 1

30 ⇒ K > 0
m ⇓

PIC 4-positive
⇓ m

half 2-positive⇔ half PIC K < 1
⇓ ⇓

conf. half PIC R > 0⇔ 6-positive

Table 1. Curvature table for Einstein four-manifolds.

Here R is the scalar curvature; PIC denotes positive isotropic curvature;
half PIC means PIC for orthonormal four-frame of a fixed orientation; and
conformally half PIC means that there is a metric with half PIC in the
conformal class of the Einstein metric; half 2-positive curvature operator
means R± = R

12g +W± is 2-positive.
From above relations, it is natural to ask the following questions for Ein-

stein four-manifolds.

(1) If the curvature operator is 3-positive, is (M, g) isometric to (S4, g0)
or (CP 2, gFS)?

(2) If the sectional curvature is positive, is the curvature operator 3-
positive?
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(3) If the curvature operator is 4-positive, is the sectional curvature
positive?

Question (1) is answered in a sequel [Wu13] to the author’s thesis, yet the
other two remain open.

Acknowledgement. This paper is based on a part of the author’s Ph.D.
thesis at University of California, Santa Barbara in 2012. The author thanks
his advisors Professors Xianzhe Dai and Guofang Wei for their guidance,
encouragement, and constant support. He thanks Professors Jeffrey Case
and Jingrun Chen for helpful discussions. The author thanks the anonymous
referee for many helpful suggestions.

2. Proof of results

We first summarize the three curvature decompositions on Einstein four-
manifolds: the standard curvature decomposition, the duality curvature de-
composition, and the Berger curvature decomposition.

On a Riemannian manifold (Mn, g), the irreducible decomposition of the
representations of the orthogonal group induces the standard curvature de-
composition of the curvature tensor [Bes87]

Rm =W +
1

n− 2
Ric� g − R

2(n− 1)(n− 2)
g � g

=W +
1

n− 2

◦
Ric� g +

R

2n(n− 1)
g � g.

On an oriented four-manifold (M4, g), the Hodge star operator

? : ∧2TM → ∧2TM
induces a natural decomposition of the vector bundle of 2-forms ∧2TM ,

∧2TM = ∧+M ⊕ ∧−M,

where ∧±M are eigenspaces of ±1 respectively, sections of which are called
self-dual, anti-self-dual 2-forms. It further induces a decomposition for the
curvature operator R : ∧2TM → ∧2TM [Bes87]

R =

 R
12g +W+

◦
Ric

◦
Ric R

12g +W−

 ,

where
◦

Ric is the traceless Ricci curvature, R is the scalar curvature. In
particular if (M4, g) is an Einstein manifold, then

R =

(
R
12g +W+ 0

0 R
12g +W−

)
,

(
R+ 0
0 R−

)
.

In [Berg61], Berger discovered another curvature decomposition for Ein-
stein four-manifolds (see also Singer and Thorpe [ST69]):
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Proposition 2.1. Let (M, g) be an Einstein four-manifold with Ric = λg.
For any p ∈ M , there exists an orthonormal basis {ei}1≤i≤4 of TpM , such
that relative to the corresponding basis {ei ∧ ej}1≤i<j≤4 of ∧2TpM , R takes
the form

R =

(
A B
B A

)
,

where A = diag{a1, a2, a3}, B = diag{b1, b2, b3}, and they satisfy the follow-
ing properties,

(1) a1 = K(e1, e2) = K(e3, e4) = min{K(σ)},
a3 = K(e1, e4) = K(e2, e3) = max{K(σ)},
a2 = K(e1, e3) = K(e2, e4), and a1 + a2 + a3 = λ.

(2) b1 = R1234, b2 = R1342, b3 = R1423.
(3) |bi − bj | ≤ |ai − aj |, 1 ≤ i, j ≤ 3.

The Berger curvature decomposition corresponds to a special duality cur-
vature decomposition, because eigenvectors of ai± bi are self-dual and anti-
self-dual 2-forms, respectively.

By diagonalizing the matrix in the Berger curvature decomposition, we
get eigenvalues of the curvature operator R and half curvature operators
R± in the following order,

(2.1)

{
a1 + b1 ≤ a2 + b2 ≤ a3 + b3,

a1 − b1 ≤ a2 − b2 ≤ a3 − b3.

Therefore on an Einstein four-manifold, we have:

(1) Positive sectional curvature is equivalent to (a1 + b1)+(a1− b1) > 0,
that is, the sum of the smallest eigenvalues of R+ and R− is positive.

(2) 2-positive curvature operator is equivalent to (a1+a2)±(b1+b2) > 0
and a1 > 0.

(3) Positive isotropic curvature implies (a1 + a2)± (b1 + b2) > 0.
(4) 3-positive curvature operator is equivalent to 2a1 + a2 ± b2 > 0.
(5) 4-positive curvature operator is equivalent to

a1 + a2 > 0 and λ+ (a1 ± b1) > 0.

Recall that (M, g) is said to have positive isotropic curvature [MM88], if
for any orthonormal four-frame {ei, ej , ek, el}, the curvature tensor satisfies

Rikik +Rilil +Rjkjk +Rjljl > 2Rijkl.

Proof of Theorem 1.1. Without loss of generality we assume λ = 1. We
start with some simple observations. It is well known that 2-positive cur-
vature operator implies positive isotropic curvature. By property (3) in the
Berger curvature decomposition, we have

a1 − a2 ≤ b2 − b1 ≤ a2 − a1,
a2 − a3 ≤ b2 − b3 ≤ a3 − a2.
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Taking the sum we get |b2| ≤ 1
3(a3 − a1). If a1 >

1
12 , then

2a1 + a2 − |b2| ≥ 2a1 + a2 −
1

3
(a3 − a1) ≥ 4a1 −

1

3
> 0,

therefore R is 3-positive. If R is 4-positive, it is obvious that a1 + a2 > 0,
therefore K < 1.

Recall that for Einstein manifolds (see Hamilton [Ham82]),

(2.2) ∆R(ei, ej , ek, el) + 2(Bijkl −Bijlk +Bikjl −Biljk) = 2Rijkl,

where Bijkl = gmngpqRimjpRknlq. Applying the Berger curvature decompo-
sition, we get

∆R(e1, e2, e1, e2) + 2(a21 + b21 + 2a2a3 + 2b2b3) = 2a1,

∆R(e1, e3, e1, e3) + 2(a22 + b22 + 2a1a3 + 2b1b3) = 2a2,

∆R(e1, e4, e1, e4) + 2(a23 + b23 + 2a1a2 + 2b1b2) = 2a3.

Suppose that the minimum of the sectional curvature is attained at p by
the tangent plane spanned by {e1, e2}. Recall that

2 minK = 2a1(p) = (a1 + b1)(p) + (a1 − b1)(p)
= min
‖ω‖=1

(R+(ω, ω) + R−(ω, ω)),

so the minimum of the sum of eigenvalues of R+ and R− is attained at
p. For any v ∈ TpM and the geodesic γ(t) with γ(0) = p, γ′(0) = v, let
{e1, e2, e3, e4} be a parallel orthornormal frame along γ(t), then we have

(D2
v,vR)(e1, e2, e1, e2)(p) = D2

v,v(R(e1, e2, e1, e2))(p) ≥ 0.

Taking the trace we have (∆R)(e1, e2, e1, e2)(p) ≥ 0, therefore at p we get

(2.3) a21 + b21 + 2(a2a3 + b2b3) ≤ a1.

First we prove that 2-positive curvature operator is equivalent to positive
isotropic curvature. It suffices to show that (a1 + a2)± (b1 + b2) > 0 implies
a1 > 0. In fact if (a1 + a2)± (b1 + b2) > 0, then

a2 ± b2 > 0, a3 ± b3 > 0.

Therefore by (2.3), we have

a1(p) ≥a21 + b21 + 2(a2a3 + b2b3)

>a21 + b21 ≥ 0.

Next we prove that 3-positive curvature operator implies positive sectional
curvature. If R is 3-positive, then

a2 ± b2 > −2a1, a3 ± b3 > −2a1.



CURVATURE DECOMPOSITIONS ON EINSTEIN FOUR-MANIFOLDS 1745

Assuming that a1(p) ≤ 0, then a2 ± b2 > 0 and a3 ± b3 > 0, then by (2.3),
we have

a1(p) ≥a21 + b21 + 2(a2a3 + b2b3)

>a21 + b21 ≥ 0,

which leads to a contradiction. Therefore a1(p) > 0, i.e., (M, g) has positive
sectional curvature.

Next we derive a lower bound for the sectional curvature when R is 3-
positive. Let a2(p) = ka1(p), k ≥ 1. If b2b3 ≥ 0, then from (2.3) we get,

a1 ≥ a21 + 2a2a3 ≥ a21 + 2a1(1− 2a1) = 2a1 − 3a21,

which implies that a1 = 1
3 .

If b2b3 < 0, without loss of generality, we assume b2 < 0, b3 > 0. On one
hand, by 3-positivity of the curvature operator, |b2| < a2 + 2a1 = (k+ 2)a1,
so we get

b21 + 2b2b3 =b22 + b23 + 4b2b3

=(b3 + 2b2)
2 − 3b22

>− 3(k + 2)2a21.

Plugging into (2.3), we have

a1 ≥ a21 + b21 + 2(a2a3 + b2b3)

> a21 + 2ka1[1− (k + 1)a1]− 3(k + 2)2a21

= 2ka1 − (5k2 + 14k + 11)a21.

Therefore we get

a1 >
2k − 1

5k2 + 14k + 11
.(2.4)

On the other hand, by the Berger curvature decomposition,

|b3 − b2| ≤ a3 − a2 = 1− (2k + 1)a1,

so we have

b21 + 2b2b3 =
3

2
b21 −

1

2
(b3 − b2)2(2.5)

≥− 1

2
(a3 − a2)2 = −1

2
[1− (2k + 1)a1]

2.

Therefore,

a1 ≥ a21 + b21 + 2(a2a3 + b2b3)

≥ a21 + 2ka1[1− (k + 1)a1]−
1

2
[1− (2k + 1)a1]

2

= −
(

4k2 + 4k − 1

2

)
a21 + (4k + 1)a1 −

1

2
,
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which implies

(2.6) a1 ≤
4k −

√
8k2 − 8k + 1

8k2 + 8k − 1
, or a1 ≥

4k +
√

8k2 − 8k + 1

8k2 + 8k − 1
.

If a1 ≥ 4k+
√
8k2−8k+1

8k2+8k−1 , then a1 = 1
3 if k = 1; and if k > 1 direct computa-

tion shows that,

a2 − a3 = (2k + 1)a1 − 1 ≥ (2k + 1)
4k +

√
8k2 − 8k + 1

8k2 + 8k − 1
− 1 > 0,

which contradicts to a2 ≤ a3. Therefore from (2.4) and (2.6), we have either
a1 = 1

3 , or

2k − 1

5k2 + 14k + 11
< a1 ≤

4k −
√

8k2 − 8k + 1

8k2 + 8k − 1
,

which holds only if 1 ≤ k ≤ 4, so we get

a1 > min
1≤k≤4

2k − 1

5k2 + 14k + 11
=

1

30
.

At last we prove that a1 + a2 > 0 implies R is 4-positive. It suffices
to prove that a1 + a2 > 0 implies 1 + (a1 ± b1) > 0. From the Berger
decomposition we have |b1| ≤ 1

3 − a1, so a1 > −1
3 implies 1 + (a1 ± b1) > 0.

We will show that in fact a1 + a2 > 0 implies a1 > 4−
√

17.
Assuming a1(p) = min a1. Plugging (2.5) into (2.3), we have

a1(p) ≥a21 + b21 + 2(a2a3 + b2b3)(2.7)

≥a21 + 2a2a3 −
1

2
(a3 − a2)2.

Since a3 + a2 = 1 − a1, and a2 > −a1, a3 < 1, we have (the minimum is
achieved on the boundary)

2a2a3 −
1

2
(a3 − a2)2 =− 1

2
a22 −

1

2
a23 + 3a2a3(2.8)

>− 1

2
a21 −

1

2
− 3a1.

Plugging (2.8) into (2.7), we get that a1 > 4−
√

17. �

Remark 2.2. In the author’s thesis [Wu12], there was a naive mistake
that “by Berger curvature decomposition a1 + a2 > 0 automatically implies
1 + (a1 ± b1) > 0”. The author caught and corrected this (see the last step
in the proof of Theorem 1.1) in August 2012 when he arrived at Cornell
University as a postdoctoral fellow and prepared for seminar talks on his
thesis and the work of Gursky and LeBrun [GL99] and Yang [Yang00].

Proof of Proposition 1.4. The proof of Proposition 1.4, similar to the
proof of 3-positive curvature operator implying K > λ

30 , contains a two-
step constrained optimization. We omit the details since the argument is
basically the same as the proof of Theorem 1.1. We assume λ = 1.
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Step 1. We show that K < 14−
√
19

12 implies K > 5−
√
19

12 . Recall that at the
minimum point of the sectional curvature, we have

a21 + b21 + 2(a2a3 + b2b3) ≤ a1.

Therefore the constrained optimization is

Minimize a1

subject to a3 <
14−

√
19

12
,

a21 + b21 + 2(a2a3 + b2b3) ≤ a1,
a1 + b1 ≤ a2 + b2 ≤ a3 + b3,

a1 − b1 ≤ a2 − b2 ≤ a3 − b3,
a1 + a2 + a3 = 1, b1 + b2 + b3 = 0.

Step 2. We show that K < 14−
√
19

12 and K > 5−
√
19

12 imply 3-positive cur-
vature operator. To do this, we evaluate Equation (2.2) at eigenvectors of
the curvature operator and plug in the Berger decomposition. We denote
eigenvalues of R+ and R− by λ̄i = ai + bi, µ̄i = ai − bi, and corresponding
orthonormal eigenvectors by ω+

i , ω−i , respectively. We get

(2.9)



∆R(ω+
1 , ω

+
1 ) + λ̄21 + 2λ̄2λ̄3 = λ̄1,

∆R(ω+
2 , ω

+
2 ) + λ̄22 + 2λ̄1λ̄3 = λ̄2,

∆R(ω+
3 , ω

+
3 ) + λ̄23 + 2λ̄1λ̄2 = λ̄3,

∆R(ω−1 , ω
−
1 ) + µ̄21 + 2µ̄2µ̄3 = µ̄1.

∆R(ω−2 , ω
−
2 ) + µ̄22 + 2µ̄1µ̄3 = µ̄2.

∆R(ω−3 , ω
−
3 ) + µ̄23 + 2µ̄1µ̄2 = µ̄3.

Suppose the minimum of the sum of any three eigenvalues is attained at
a point q by λ̄1 + λ̄2 + µ̄1 = 1 − λ̄3 + µ̄1 = min‖ω‖=1(I −R+ + R−)(ω, ω).
Then at q, taking the sum in Equation (2.9) we get

(2.10) µ̄21 + 2µ̄2µ̄3 − λ̄23 − 2λ̄1λ̄2 ≤ µ̄1 − λ̄3.

Therefore the constrained optimization is

Minimize 1 + µ̄1 − λ̄3

subject to λ̄3 + µ̄3 <
14−

√
19

6
,

λ̄1 + µ̄1 >
5−
√

19

6
,

µ̄21 + 2µ̄2µ̄3 − λ̄23 − 2λ̄1λ̄2 ≤ µ̄1 − λ̄3.
λ̄1 ≤ λ̄2 ≤ λ̄3, µ̄1 ≤ µ̄2 ≤ µ̄3,
λ̄1 + λ̄2 + λ̄3 = 1, µ̄1 + µ̄2 + µ̄3 = 1.
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We get (λ̄1 + λ̄2 + µ̄1)(q) > 0. If the minimum is attained by λ̄1 + µ̄1 + µ̄2
at some point, then we get the same conclusion. �

The proof of Proposition 1.5 follows from an observation from Equation
(2.9) that at the minimum point of λ1 = λ̄1 − 1

3 , we have λ̄21 + 2λ̄2λ̄3 ≤ λ̄1,

therefore λ21 + 2λ2λ3 ≤ λ1. �
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[Wu17] Wu, Peng. A Weitzenböck formula for canonical metrics on four-manifolds.
Trans. Amer. Math. Soc. 369 (2017), no. 2, 1079–1096. MR3572265, Zbl
1352.53041, doi: 10.1090/tran/6964.

[Yang00] Yang, DaGang. Rigidity of Einstein 4-manifolds with positive curvature.
Invent. Math. 142 (2000), no. 2, 435–450. MR1794068, Zbl 0981.53025,
doi: 10.1007/PL00005792.

(Peng Wu) Shanghai Center for Mathematical Sciences, Fudan University,
Shanghai 200433, China
wupenguin@fudan.edu.cn

This paper is available via http://nyjm.albany.edu/j/2017/23-78.html.

http://www.ams.org/mathscinet-getitem?mr=3572265
http://zbmath.org/?q=an:1352.53041
http://zbmath.org/?q=an:1352.53041
http://dx.doi.org/10.1090/tran/6964
http://www.ams.org/mathscinet-getitem?mr=1794068
http://zbmath.org/?q=an:0981.53025
http://dx.doi.org/10.1007/PL00005792
mailto:wupenguin@fudan.edu.cn
http://nyjm.albany.edu/j/2017/23-78.html

	1. Introduction
	2. Proof of results
	References

