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Covariant representations of subproduct
systems: Invariant subspaces and

curvature

Jaydeb Sarkar, Harsh Trivedi
and Shankar Veerabathiran

Abstract. Let X = (X(n))n∈Z+ be a standard subproduct system of
C∗-correspondences over a C∗-algebra M. Let T = (Tn)n∈Z+ be a pure
completely contractive, covariant representation of X on a Hilbert space
H. If S is a closed subspace of H, then S is invariant for T if and only
if there exist a Hilbert space D, a representation π of M on D, and a
partial isometry Π : FX

⊗
π D → H such that

Π(Sn(ζ)⊗ ID) = Tn(ζ)Π (ζ ∈ X(n), n ∈ Z+),

and S = ran Π, or equivalently, PS = ΠΠ∗. This result leads us to a list
of consequences including Beurling–Lax–Halmos type theorem and other
general observations on wandering subspaces. We extend the notion
of curvature for completely contractive, covariant representations and
analyze it in terms of the above results.
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1. Introduction

Initiated by Gelu Popescu in [18], noncommutative Poisson transforms,
and subsequently the explicit and analytic construction of isometric dila-
tions, have been proved to be an extremely powerful tools in studying the
structure of commuting and noncommuting tuples of bounded linear opera-
tors on Hilbert spaces. This is also important in noncommutative domains
(and subsequently, noncommutative varieties) classification problems in the
operator algebras (see [20], [21], [22] and references therein).

In [2] Arveson used similar techniques to generalize Sz.-Nagy and Foias
dilation theory for commuting tuple of row contractions. These techniques
have also led to further recent development [7, 11, 13, 14, 15, 19, 26, 27]
on the structure of bounded linear operators in more general settings. In
particular, in [15] Muhly and Solel introduced Poisson kernel for completely
contractive, covariant representations over W ∗-correspondences. The notion
of Poisson kernel for completely contractive, covariant representations over
a subproduct system of W ∗-correspondences was introduced and studied by
Shalit and Solel in [26]. This approach was further investigated by Viselter
[27] for the extension problem of completely contractive, covariant represen-
tations of subproduct systems to C∗-representations of Toeplitz algebras.

Covariant representations on subproduct systems are important since it
is one of the refined theories in operator theory and operator algebras that
provides a unified approach to study commuting as well as noncommuting
tuples of operators on Hilbert spaces.

The main purpose of this paper is to investigate a Beurling–Lax–Halmos
type invariant subspace theorem in the sense of [24, 25], and the notion of
curvature in the sense of Arveson [3], Popescu [19] and Muhly and Solel [13]
for completely contractive, covariant representations of standard subproduct
systems.

The plan of the paper is the following. In Section 2, we recall several ba-
sic results from [27] including the intertwining property of Poisson kernels.
In Section 3 we obtain an invariant subspace theorem for pure completely
contractive, covariant representations of standard subproduct systems. As
an immediate application we derive a Beurling–Lax–Halmos type theorem.
Our objective in Section 4 is to extend, several results on curvature of a
contractive tuple by Popescu [19, 20], for completely contractive, covari-
ant representations of subproduct systems. We first define the curvature
for completely contractive, covariant representations of standard subprod-
uct systems. This approach is based on the definition of curvature for a
completely contractive, covariant representation over a W ∗-correspondence
due to Muhly and Solel [13]. Section 5 is composed of several results on
wandering subspaces which are motivated from our invariant subspace the-
orem. This section generalizes [5, Section 5] on wandering subspaces for
commuting tuple of bounded operators on Hilbert spaces.
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2. Notations and prerequisites

In this section, we recall some definitions and properties about C∗-corre-
spondences and subproduct systems (see [16], [10], [11], [26]).

Let M be a C∗-algebra and let E be a Hilbert M-module. Let L(E) be
the C∗-algebra of all adjointable operators on E. The module E is said to
be a C∗-correspondence over M if it has a leftM-module structure induced
by a nonzero ∗-homomorphism φ :M→ L(E) in the following sense

aξ := φ(a)ξ (a ∈M, ξ ∈ E).

All such ∗-homomorphisms considered in this article are nondegenerate,
which means, the closed linear span of φ(M)E equals E. If F is another C∗-
correspondence over M, then we get the notion of tensor product F

⊗
φE

(cf. [10]) which satisfy the following properties:

(ζ1a)⊗ ξ1 = ζ1 ⊗ φ(a)ξ1,

〈ζ1 ⊗ ξ1, ζ2 ⊗ ξ2〉 = 〈ξ1, φ(〈ζ1, ζ2〉)ξ2〉
for all ζ1, ζ2 ∈ F ; ξ1, ξ2 ∈ E and a ∈M.

Assume M to be a W ∗-algebra and E is a Hilbert M-module. If E
is self-dual, then E is called a Hilbert W ∗-module over M. In this case,
L(E) becomes a W ∗-algebra (cf. [16]). A C∗-correspondence over M is
called a W ∗-correspondence if E is self-dual, and if the ∗-homomorphism
φ : M → L(E) is normal. When E and F are W ∗-correspondences, then
their tensor product F

⊗
φE is the self-dual extension of the above tensor

product construction.

Definition 2.1. LetM be a C∗-algebra, H be a Hilbert space, and E be a
C∗-correspondence over M. Assume σ :M→ B(H) to be a representation
and T : E → B(H) to be a linear map. The tuple (T, σ) is called a covariant
representation of E on H if

T (aξa′) = σ(a)T (ξ)σ(a′) (ξ ∈ E, a, a′ ∈M).

In the W ∗-set up, we additionally assume that σ is normal and that T is
continuous with respect to the σ-topology of E (cf. [4]) and ultra weak
topology on B(H). The covariant representation is called completely con-
tractive if T is completely contractive. The covariant representation (T, σ)
is called isometric if

T (ξ)∗T (ζ) = σ(〈ξ, ζ〉) (ξ, ζ ∈ E).

The following important lemma is due to Muhly and Solel [11, Lemma
3.5]:

Lemma 2.2. The map (T, σ) 7→ T̃ provides a bijection between the collection
of all completely contractive, covariant representations (T, σ) of E on H and

the collection of all contractive linear maps T̃ : E
⊗

σH → H defined by

T̃ (ξ ⊗ h) := T (ξ)h (ξ ∈ E, h ∈ H),
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and such that T̃ (φ(a) ⊗ IH) = σ(a)T̃ , a ∈ M. Moreover, T̃ is isometry if
and only if (T, σ) is isometric.

Example 2.3. Assume E to be a Hilbert space with an orthonormal basis
{ei}ni=1. Any contractive tuple (T1, . . . , Tn) on a Hilbert space H can be
realized as a completely contractive, covariant representation (T, σ) of E on
H where T (ei) := Ti for each 1 ≤ i ≤ n, and when the representation σ
maps every complex number λ to the multiplication operator by λ.

Now we recall several definitions and results from [27] which are essential
for our objective. We will use A∗-algebra, to denote either C∗-algebra or
W ∗-algebra, to avoid repetitions in statements. Similarly we also use A∗-
module and A∗-correspondence.

Definition 2.4. Let M to be an A∗-algebra and X = (X(n))n∈Z+ be a
sequence of A∗-correspondences over M. Then X is said to be a subprod-
uct system over M if X(0) = M, and for each n,m ∈ Z+ there exist a
coisometric, adjointable bimodule function

Un,m : X(n)
⊗
X(m)→ X(n+m),

such that:

(a) The maps Un,0 and U0,n are the right and the left actions of M on
X(n), respectively, that is,

Un,0(ζ ⊗ a) := ζa, U0,n(a⊗ ζ) := aζ (ζ ∈ X(n), a ∈M, n ∈ Z+).

(b) The following associativity property holds for all n,m, l ∈ Z+:

Un+m,l(Un,m ⊗ IX(l)) = Un,m+l(IX(n) ⊗ Um,l).
If each coisometric maps are unitaries, then we say the family X is
a product system.

Definition 2.5. Let M be an A∗-algebra and let X = (X(n))n∈Z+ be a
subproduct system over M. Assume T = (Tn)n∈Z+ to be a family of linear
transformations Tn : X(n)→ B(H), and define σ := T0. Then the family T
is called a completely contractive, covariant representation of X on H if:

(i) For every n ∈ Z+, the pair (Tn, σ) is a completely contractive, co-
variant representation of the A∗-correspondence X(n) on H.

(ii) For every n,m ∈ Z+, ζ ∈ X(n) and η ∈ X(m),

(2.1) Tn+m(Un,m(ζ ⊗ η)) = Tn(ζ)Tm(η).

For n ∈ Z+ define the contractive linear map T̃n : X(n)
⊗

σH → H as
(see [11])

(2.2) T̃n(ζ ⊗ h) := Tn(ζ)h (ζ ∈ X(n), h ∈ H).

Thus we can replace (2.1) by

T̃n+m(Un,m ⊗ IH) = T̃n(IX(n) ⊗ T̃m).
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Example 2.6. The Fock space FX :=
⊕

n∈Z+
X(n) of a subproduct system

X = (X(n))n∈Z+ is an A∗-correspondence over M. For each n ∈ Z+, we

define a linear map SXn : X(n)→ L(FX) by

SXn (ζ)η := Un,m(ζ ⊗ η)

for every m ∈ Z+, ζ ∈ X(n) and η ∈ X(m). When n 6= 0 we call each
operator SXn a creation operator of FX , and the family SX := (SXn )n∈Z+

is called an X-shift. It is easy to verify that the family SX is indeed a
completely contractive, covariant representation of FX . From Definition 2.4
it is easy to see that, for each a ∈M, the map SX0 (a) = φ∞(a) : FX → FX
maps (b, ζ1, ζ2, . . .) 7→ (ab, aζ1, aζ2, . . .).

Let M to be an A∗-algebra, and let X = (X(n))n∈Z+ be an A∗-corre-
spondences over M. Then X is said to be a standard subproduct system if
X(0) =M, and for any n,m ∈ Z+ the bimodule X(n+m) is an orthogonally
complementable sub-module of X(n)

⊗
X(m).

Let X = (X(n))n∈Z+ be a standard subproduct system and E := X(1).
Then for each n, the bi-module X(n) is an orthogonally complementable
sub-module of E⊗n (here E⊗0 =M), and hence there exists an orthogonal
projection pn ∈ L(E⊗n) of E⊗n onto X(n). We denote the orthogonal
projection

⊕
n∈Z+

pn of FE , the Fock space of the product system E =

(E⊗n)n∈Z+ with trivial unitaries, onto FX by P .
Note also that here the projections (pn)n∈Z+ are bimodule maps and

pn+m = pn+m(IE⊗n ⊗ pm) = pn+m(pn ⊗ IE⊗m),

for all n,m ∈ Z+. This implies that if we define each Un,m to be the pro-
jection pn+m restricted to X(n)

⊗
X(m), then every standard subproduct

system becomes a subproduct system over M. In this case (2.1) reduces to

Tn+m(pn+m(ζ ⊗ η)) = Tn(ζ)Tm(η) for all ζ ∈ E⊗n and η ∈ E⊗m,
and (2.2) becomes

(2.3) T̃n+m(pn+m ⊗ IH)|X(n)
⊗
X(m)

⊗
σH = T̃n(IX(n) ⊗ T̃m).

Taking adjoints on both the sides we obtain

(2.4) T̃ ∗n+m = (IX(n) ⊗ T̃ ∗m)T̃ ∗n (n,m ∈ Z+).

Note that for the sake of convenience we ignored the embedding of

X(n+m)
⊗
σ

H into X(n)
⊗

X(m)
⊗
σ

H

in the previous formula. We further deduce that

(2.5) T̃ ∗n+1 = (IE ⊗ T̃ ∗n)T̃ ∗1 = (IX(n) ⊗ T̃ ∗1 )T̃ ∗n ,

and
T̃ ∗n = (IX(n−1) ⊗ T̃ ∗1 )(IX(n−2) ⊗ T̃ ∗1 ) . . . (IE ⊗ T̃ ∗1 )T̃ ∗1 ,

for all n ∈ Z+.
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Example 2.7. If X(n) is the n-fold symmetric tensor product of the Hilbert
space X(1), then X = (X(n))n∈Z+ becomes a standard subproduct system
of Hilbert spaces (cf. [26, Example 1.3]). Moreover, let {e1, . . . , ed} be an
orthonormal basis of X(1). Then

T ↔ (T1(e1), T1(e2), . . . , T1(ed))

induces a bijection between the set of all completely contractive covariant
representations T of X on a Hilbert space H onto the collection of all com-
muting row contractions (T1, . . . , Td) on H (cf. [26, Example 5.6]).

Before proceeding to the notion of Poisson kernels, we make a few com-
ments:

(1) We use the symbol sot-lim for the limit with respect to the strong

operator topology. From Equation 2.5 we infer that {T̃nT̃ ∗n}n∈Z+ is
a decreasing sequence of positive contractions, and thus

Q := sot- lim
n→∞

T̃nT̃
∗
n

exists. If Q = 0, then we say that the covariant representation T is

pure. Note that T is pure if and only if sot- lim
n→∞

T̃ ∗n = 0.

(2) Let ψ be a representation of M on a Hilbert space E . Then the
induced covariant representation S ⊗ IE := (Sn(·)⊗ IE)n∈Z+ is pure,
where each Sn(·)⊗ IE is an operator from X(n) into B(FX

⊗
ψ E).

(3) It is proved in [26, Lemma 6.1] that every subproduct system is
isomorphic to a standard subproduct system. Therefore it is enough
to consider standard subproduct systems.

Let T = (Tn)n∈Z+ be a completely contractive, covariant representation
of a standard subproduct system X = (X(n))n∈Z+ . We denote the positive

operator (IH − T̃1T̃
∗
1 )1/2 ∈ B(H) by 4∗(T ) and the defect space Im 4∗(T )

by D. It is proved in [27, Proposition 2.9] that 4∗(T ) ∈ σ(M)′. Therefore
D reduces σ(a) for each a ∈ M. Thus using the reduced representation σ′

we can form the tensor product of the Hilbert space D with X(n) for each
n ∈ Z+, and hence with FX . For simplicity we write σ instead of σ′. The
Poisson kernel of T is the operator K(T ) : H → FX

⊗
σ D defined by

K(T )h :=
∑
n∈Z+

(IX(n) ⊗4∗(T ))T̃ ∗nh (h ∈ H).

In the next proposition we recall the properties of the Poisson kernel from
[27]:

Proposition 2.8. Let T = (Tn)n∈Z+ be a completely contractive, covariant
representation of a standard subproduct system X = (X(n))n∈Z+ over an
A∗-algebra M. Then K(T ) is a contraction and

K(T )∗(Sn(ζ)⊗ ID) = Tn(ζ)K(T )∗ (n ∈ Z+, ζ ∈ X(n)).

Moreover, K(T ) is an isometry if and only if T is pure.
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Proof. For each h ∈ H, from (2.5) and (2.3) it follows that∑
n∈Z+

‖(IX(n) ⊗4∗(T ))T̃ ∗nh‖2 =
∑
n∈Z+

〈T̃n(IX(n) ⊗4∗(T )2)T̃ ∗nh, h〉

=
∑
n∈Z+

〈T̃n(IX(n) ⊗ (IH − T̃1T̃
∗
1 ))T̃ ∗nh, h〉

=
∑
n∈Z+

〈T̃nT̃ ∗n − T̃n+1T̃
∗
n+1h, h〉

= 〈h, h〉 − limn→∞〈T̃nT̃ ∗nh, h〉.

Here we also used T̃0T̃
∗
0 = IH. So K(T ) is a well-defined contraction, and it

is an isometry if T is pure. Now for each n ∈ Z+ and zn ∈ X(n)
⊗

σ D we
have

K(T )∗

∑
n∈Z+

zn

 =
∑
n∈Z+

T̃n(IX(n) ⊗4∗(T ))zn.

Therefore for every m ∈ Z+, η ∈ X(m) and h ∈ D, (2.5) gives

K(T )∗(Sn(ζ)⊗ ID)(η ⊗ h) = K(T )∗(pn+m(ζ ⊗ η)⊗ h)

= T̃n+m(pn+m(ζ ⊗ η)⊗4∗(T )h)

= T̃n(ζ ⊗ T̃m(η ⊗4∗(T )h))

= Tn(ζ)K(T )∗(η ⊗ h). �

3. Invariant subspaces of covariant representations

In this section we first introduce the notion of invariant subspaces for
completely contractive, covariant representations and then in Theorem 3.1
we obtain a far reaching generalization of [24, Theorem 2.2].

Let T = (Tn)n∈Z+ be a completely contractive, covariant representation
of a standard subproduct system X = (X(n))n∈Z+ over an A∗-algebra M.
A closed subspace S of H is called invariant for the covariant representation
T if S is invariant for σ(M) and if S is left invariant by each operator in
the set {Tn(ζ) : ζ ∈ X(n), n ∈ N}.

Theorem 3.1. Let T = (Tn)n∈Z+ be a pure completely contractive, covari-
ant representation of a standard subproduct system X = (X(n))n∈Z+ over
an A∗-algebra M, and let S be a nontrivial closed subspace of H. Then S
is invariant for T if and only if there exist a Hilbert space D, a represen-
tation π of M on D, and a partial isometry Π : FX

⊗
π D → H such that

S = ran Π and

Π(Sn(ζ)⊗ ID) = Tn(ζ)Π (ζ ∈ X(n), n ∈ Z+).

Proof. Since S is invariant for T = (Tn)n∈Z+ , we get a covariant representa-
tion (Vn := Tn|S)n∈Z+ of the standard subproduct system X = (X(n))n∈Z+
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on S. We denote V0 by π. Now for each n ∈ N, s ∈ S, and ζ ∈ X(n),

〈ζ ⊗ s, ζ ⊗ s〉 = 〈s, π(〈ζ, ζ〉)s〉 = 〈s, σ(〈ζ, ζ〉)s〉 = 〈ζ ⊗ s, ζ ⊗ s〉,

yields an embedding jn from X(n)
⊗

π S into X(n)
⊗

σH. Thus for each
n ∈ N, jnj∗n is an orthogonal projection.

For each n ∈ N, from the definition of the map Ṽn : X(n)
⊗

π S → S it
follows that

Ṽn(ζ ⊗ s) = Vn(ζ)s = Tn(ζ)s = T̃n ◦ jn(ζ ⊗ s),

for all ζ ∈ X(n) and s ∈ S. It also follows that

〈ṼnṼ ∗n s, s〉 = 〈T̃njnj∗nT̃ ∗ns, s〉 ≤ 〈T̃nT̃ ∗ns, s〉,

for all n ∈ N and s ∈ S. Hence the covariant representation V is pure as
well as completely contractive.

Since the defect space D = Im 4∗(V ) of the representation V is reducing
for π, it follows from Proposition 2.8 that the Poisson kernel

K(V ) : S → FX
⊗
π

D,

defined by

K(V )(s) =
∑
n∈Z+

(IX(n) ⊗4∗(V ))Ṽ ∗n s (s ∈ S),

is an isometry and

K(V )∗(Sn(ζ)⊗ ID) = Vn(ζ)K(V )∗,

for all n ∈ Z+, and ζ ∈ X(n). Let iS : S → H be the inclusion map. Clearly
iS is an isometry and

iSTn(·)|S = Tn(·)iS .
Therefore we get a map Π : FX

⊗
π D → H defined by Π := iSK(V )∗. Then

ΠΠ∗ = iSK(V )∗(iSK(V )∗)∗ = iSi
∗
S = PS ,

the projection on S. Hence Π is a partial isometry and the range of Π is S.
From iSVn = iSTn|S = TniS and the intertwining property of the Poisson
kernel we deduce that

Π(Sn(ζ)⊗ ID) = iSK(V )∗(Sn(ζ)⊗ ID) = iSVn(ζ)K(V )∗ = Tn(ζ)Π.

Conversely, suppose that there exists a partial isometry Π : FX
⊗

π D → H.
Then ran Π is a closed subspace of H and the intertwining relation for Π
implies that ran Π is a T = (Tn)n∈Z+ invariant subspace of H. �

Corollary 3.2. Let T = (Tn)n∈Z+ be a pure completely contractive, covari-
ant representation of a standard subproduct system X = (X(n))n∈Z+ over
an A∗-algebra M, and S be a nontrivial closed subspace of H. Then S is
invariant for T if and only if there exist a Hilbert space D, a representation
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π of M on D, and a bounded linear operator Π : FX
⊗

π D → H such that
PS = ΠΠ∗, and

Π(Sn(ζ)⊗ ID) = Tn(ζ)Π (ζ ∈ X(n), n ∈ Z+).

Definition 3.3. Let X = (X(n))n∈Z+ be a standard subproduct system
over an A∗-algebra M. Assume ψ and π to be representations of M on
Hilbert spaces E and E ′, respectively. A bounded operator

Π : FX
⊗
π

E ′ → FX
⊗
ψ

E

is called multi-analytic if it satisfies the following condition

Π(Sn(ζ)⊗ IE ′) = (Sn(ζ)⊗ IE)Π whenever ζ ∈ X(n), n ∈ Z+.

Further we call it inner if it is a partial isometry.

As an application, we have the following Beurling–Lax–Halmos type the-
orem (cf. [20, Theorem 3.2]) which extends [17, Theorem 2.4] and [25,
Corollary 4.5]:

Theorem 3.4. Assume X = (X(n))n∈Z+ to be a standard subproduct sys-
tem over an A∗-algebra M and assume ψ to be a representation of M on
a Hilbert space E. Let S be a nontrivial closed subspace of the Hilbert space
FX

⊗
ψ E . Then S is invariant for S ⊗ IE if and only if there exist a Hilbert

space E ′, a representation π of M on E ′, and an inner multi-analytic oper-
ator Π : FX

⊗
π E ′ → FX

⊗
ψ E such that S is the range of Π.

Proof. Let S be an invariant subspace for S⊗IE . By Theorem 3.1 we know
that there exist a Hilbert space E ′, a representation π of M on E ′, and a
partial isometry Π : FX

⊗
π E ′ → FX

⊗
ψ E such that S = ran Π and

Π(Sn(ζ)⊗ IE ′) = (Sn(ζ)⊗ IE)Π (ζ ∈ X(n), n ∈ Z+).

For the reverse direction, if we start with a partial isometry

Π : FX
⊗
π

E ′ → FX
⊗
ψ

E ,

then ran Π is a closed subspace of FX
⊗

ψ E and the intertwining relation
for Π implies that ran Π = S is invariant for S ⊗ IE . �

For Beurling type classification in the tensor algebras setting see also
Muhly and Solel [12, Theorem 4.7].

4. Curvature

The notion of a curvature for commuting tuples of row contractions was
introduced by Arveson [3]. This numerical invariant is an analogue of the
Gauss–Bonnet–Chern formula from Riemannian geometry, and closely re-
lated to rank of Hilbert modules over polynomial algebras. It has since been
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further analyzed by Popescu [19] (see also [23] for recent results on a gen-
eral class), Kribs [9] in the setting of noncommuting tuples of operatos, and
by Muhly and Solel [13] in the setting of completely positive maps on C∗

algebras of bounded linear operators.
The purpose of this section is to study curvature for a more general frame-

work, namely, for completely contractive, covariant representations of sub-
product systems.

We begin by recalling the definition of left dimension [8] for a W ∗-cor-
respondences E over a semifinite factor M (see Muhly and Solel, Defini-
tion 2.5, [13]).

Let M be a semifinite factor and τ be a faithful normal semifinite trace,
and let L2(M) be the GNS construction for τ . Note that for each a ∈ M
there exists a left multiplication operator, denoted by λ(a), and a right
multiplication operator, denoted by ρ(a), on L2(M). Each unital, normal,
∗-representation σ :M→ B(H) defines a left M-module H. This yields an
M-linear isometry V : H → L2(M)

⊗
l2. Here M-linear means

V σ(a) = (λ(a)⊗ Il2)V (a ∈M).

Moreover

V σ(M)′V ∗ = p(λ(M)⊗ Il2)′p ⊆ (λ(M)⊗ Il2)′,

where

p := V V ∗ ∈ (λ(M)⊗ Il2)′,

is a projection. One can observe that (λ(M) ⊗ Il2)′ equals the semifinite
factor ρ(M)

⊗
B(l2) whose elements can be written as matrices of the form

(ρ(aij)). For each positive element x ∈ σ(M)′, we express V xV ∗ in the form
(ρ(aij)), and define

trσ(M)′(x) :=
∑

τ(aii).

Note that trσ(M)′ is a faithful normal semifinite trace on σ(M)′. The left
dimension of H is defined by

diml(H) := trσ(M)′(p).

For each W ∗-correspondence E, the Hilbert space E
⊗

σ L
2(M) has a nat-

ural left M-module structure. The left dimension of E
⊗

σ L
2(M) will be

denoted by diml(E).
Now let X = (X(n))n∈Z+ be a standard subproduct system of W ∗-

correspondences over a semifinite factor M. Let T = (Tn)n∈Z+ be a com-
pletely contractive, covariant representation of X on a Hilbert space H.
Define a contractive, normal and completely positive map

ΘT : σ(M)′ → σ(M)′

by

ΘT (a) := T̃1(IE ⊗ a)T̃ ∗1 ,
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for all a ∈ σ(M)′. It follows from (2.3), (2.4) and (2.5) that

Θ2
T (a) = ΘT (ΘT (a)) = T̃1(IE ⊗ (T̃1(IE ⊗ a)T̃ ∗1 ))T̃ ∗1

= T̃1(IE ⊗ T̃1)(IE⊗2 ⊗ a)(IE ⊗ T̃ ∗1 )T̃ ∗1

= T̃2(p2 ⊗ IH)(IE⊗2 ⊗ a)(p∗2 ⊗ IH)T̃ ∗2

= T̃2(IX(2) ⊗ a)T̃ ∗2 ,

for all a ∈ σ(M)′. Inductively, we get

Θn
T (a) = ΘT (Θn−1

T (a)) = T̃1(IE ⊗ (T̃n−1(IX(n−1) ⊗ a)T̃ ∗n−1))T̃ ∗1

= T̃1(IE ⊗ T̃n−1)(IE ⊗ IX(n−1) ⊗ a)(IE ⊗ T̃ ∗n−1)T̃ ∗1

= T̃n(pn ⊗ IH)(IE ⊗ IX(n−1) ⊗ a)(p∗n ⊗ IH)T̃ ∗n

= T̃n(IX(n) ⊗ a)T̃ ∗n ,

for all a ∈ σ(M)′ and n ≥ 2.
The following is a reformulation of Muhly and Solel’s result in our setting

[13, Proposition 2.12]:

Proposition 4.1. Let X = (X(n))n∈Z+ be a standard subproduct system of
left-finite W ∗-correspondences over a finite factor M. If T = (Tn)n∈Z+ is a
completely contractive, covariant representation of X on H then

trσ(M)′(Θ
n
T (x)) ≤ ‖T̃n‖2 diml(X(n))trσ(M)′(x),

for all x ∈ σ(M)′+.

Let X = (X(n))n∈Z+ be a standard subproduct system of left-finite W ∗-
correspondences over a semifinite factor M. The curvature of a completely
contractive, covariant representation T = (Tn)n∈Z+ of X on a Hilbert space
H is defined by

Curv(T ) = lim
k→∞

trσ(M)′(I −Θk
T (I))∑k−1

j=0 diml(X(j))
,(4.1)

if the limit exists.
The following result is well known (cf. Popescu [19, p.280]).

Lemma 4.2. Let {aj}∞j=0 and {bj}∞j=0 be two real sequences, and let aj ≥ 0

and bj > 0 for all j ≥ 0. Consider the partial sums Ak :=
∑k−1

j=0 aj and

Bk :=
∑k−1

j=0 bj, and suppose that Bk →∞ as k →∞. Then

lim
k→∞

Ak
Bk

= L,

whenever L := limj→∞
aj
bj

exists.
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Coming back to our definition of curvatures, we note that

trσ(M)′(I −Θk
T (I)) =

k−1∑
j=0

trσ(M)′Θ
j
T (I −ΘT (I))

=
k−1∑
j=0

trσ(M)′Θ
j
T (4∗(T )2).

From this, and our previous lemma, it follows that Curv(T ) is well defined
whenever the following two conditions are satisfied:

(1) limj→∞
trσ(M)′Θ

j
T (4∗(T )2)

diml(X(j)) exists.

(2) limk→∞
∑k−1

j=0 diml(X(j)) =∞.

The next result concerns the existence of curvatures in the setting of
completely contractive, covariant representations on product systems (cf.
[26, Example 1.2]). This is an analogue of the result by Muhly and Solel
[13, Theorem 3.3]. The curvature for completely contractive, covariant rep-
resentation of the standard subproduct system (see Example 2.7) will be
discussed at the end of this section.

Theorem 4.3. Let X = (X(n))n∈Z+ be a product system of W ∗-correspon-
dences over a finite factor M, that is, X(n) = E⊗n where E := X(1)
is a left-finite W ∗-correspondence. Set d := diml(E). If T = (Tn)n∈Z+

is a completely contractive, covariant representation of X on H, then the
following holds:

(1) The limit in the definition of Curv(T ) exists, either as a positive
number or +∞.

(2) Curv(T ) =∞ if and only if trσ(M)′(I −ΘT (I)) =∞.
(3) If trσ(M)′(I − ΘT (I)) < ∞, then Curv(T ) < ∞. Moreover, in this

case we have the following:
(a) For d ≥ 1 we have

Curv(T ) = lim
k→∞

trσ(M)′(Θ
k
T (I)−Θk+1

T (I))

dk
,

in particular if d > 1, then we further get

Curv(T ) = (d− 1) lim
k→∞

trσ(M)′(I −Θk
T (I))

dk
.

(b) For d < 1, limk→∞ trσ(M)′(I −Θk
T (I)) <∞, and

Curv(T ) = (1− d)

(
lim
k→∞

trσ(M)′(I −Θk
T (I))

)
.

Proof. From [13, Theorem 3.3] it follows that diml(X(j)) = dj . Let

ak = trσ(M)′(Θ
k
T (I)−Θk+1

T (I))
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for k ≥ 0. Then Proposition 4.1 yields

ak+1 = trσ(M)′(ΘT (Θk
T (I)−Θk+1

T (I)))

≤ ‖T̃1‖2 diml(E)trσ(M)′(Θ
k
T (I)−Θk+1

T (I))

≤ dak,

for all k ≥ 0. If a0 = ∞, then the fact that {T̃nT̃ ∗n}n∈Z+ is a decreasing
sequence of positive contractions implies that

trσ(M)′(I −Θk
T (I)) =∞ (k ≥ 0).

If a0 <∞, then {aj
dj
}∞j=0 is a nonincreasing sequence of nonnegative numbers.

Then 0 ≤ L ≤ a0 where L := lim
aj
dj

.
Let d ≥ 1. Since

trσ(M)′(I −Θk
T (I)) =

k−1∑
j=0

aj ,

by Lemma 4.2 (for bj = dj) the limit defining Curv(T ) exists and Curv(T ) =
L.
Now let d > 1. Then

∑k−1
j=0 d

j = dk−1
d−1 and limk→∞

dk−1
dk

= 1 yields

Curv(T ) = lim
k→∞

trσ(M)′(I −Θk
T (I))

dk−1
d−1

= (d− 1) lim
k→∞

trσ(M)′(I −Θk
T (I))

dk − 1
lim
k→∞

dk − 1

dk

= (d− 1) lim
k→∞

trσ(M)′(I −Θk
T (I))

dk
.

This proves statement (3a).
Finally, let d < 1 so that

∑∞
j=0 d

j = 1/(1 − d). Since aj ≤ dja0 for all

j ≥ 0, limk→∞ trσ(M)′(I − Θk
T (I)) exists and is finite. This completes the

proof of (3b). The proof of statements (1) and (2) follows by noting that
whenever a0 is finite, the limit defining Curv(T ) exists and is finite. �

Recall that
ΘT (x) = T̃1(IE ⊗ x)T̃1

∗
,

for all x ∈ σ(M)′, and

Q = lim
n→∞

T̃nT̃
∗
n = lim

n→∞
Θn
T (IH).

Using the intertwining property of the Poisson kernel

K(T )∗(Sn(ζ)⊗ ID) = Tn(ζ)K(T )∗,

we have

T̃n(IX(n) ⊗K(T )∗)(ζ ⊗ k) = T̃n(ζ ⊗K(T )∗k)

= Tn(ζ)K(T )∗k
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= K(T )∗(Sn(ζ)⊗ ID)k,

for all ζ ∈ X(n), k ∈ FX
⊗

σ D, n ∈ Z+. Then

T̃n(IX(n) ⊗K(T )∗) = K(T )∗ ˜(Sn(·)⊗ ID),

and hence Θn
T (Q) = Q and

K(T )∗K(T ) = IH −Q,

yields

K(T )∗(IFX
⊗
σ D −Θn

S⊗ID(IFX
⊗
σ D))K(T )

= K(T )∗K(T )−K(T )∗( ˜Sn(·)⊗ ID)( ˜Sn(·)⊗ ID)∗K(T )

= K(T )∗K(T )− T̃n(IX(n) ⊗K(T )∗)( ˜Sn(·)⊗ ID)∗K(T )

= IH −Q− T̃n(IX(n) ⊗K(T )∗)(IX(n) ⊗K(T ))T̃ ∗n

= IH −Q− T̃n(IX(n) ⊗K(T )∗K(T ))T̃ ∗n

= IH −Q− T̃n(IX(n) ⊗ (IH −Q))T̃ ∗n

= IH −Q−Θn
T (IH −Q)

= IH −Θn
T (IH).

Therefore one can compute the curvature, in terms of Poisson kernel, in
the following sense:

Proposition 4.4. Let X = (X(n))n∈Z+ be a standard subproduct system of
left-finite W ∗-correspondences over a finite factor M. If T = (Tn)n∈Z+ is a
completely contractive, covariant representation of X on a Hilbert space H,
then the curvature of T is given by

Curv(T )(4.2)

= lim
k→∞

trσ(M)′(K(T )∗(IFX
⊗
σ D −Θk

S⊗ID(IFX
⊗
σ D))K(T ))∑k−1

j=0 diml(X(j))
,

if the limit exists.

The following theorem generalizes [19, Theorem 2.1].

Theorem 4.5. Let T = (Tn)n∈Z+ to be a completely contractive, covariant
representation of a standard subproduct system X = (X(n))n∈Z+ of A∗-
correspondences over an A∗-algebra M. Then there exist a Hilbert space
E , a representation ψ of M on E , and an inner multi-analytic operator
Π : FX

⊗
ψ E → FX

⊗
σ D such that

IFX
⊗
σ D −K(T )K(T )∗ = ΠΠ∗.
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Proof. Proposition 2.8 implies that (ranK(T ))⊥ is invariant for the covari-
ant representation S ⊗ ID. Now we use Theorem 3.4 and obtain a Hilbert
space E , a representation ψ of M on E , and a partial isometry

Π : FX
⊗
ψ

E → FX
⊗
σ

D

such that (ranK(T ))⊥ is the range of Π, and

Π(Sn(ζ)⊗ IE) = (Sn(ζ)⊗ ID)Π,

for all ζ ∈ X(n) and n ∈ Z+. Finally, using the fact that Π is a partial
isometry and

(ranK(T ))⊥ = ran(IFX
⊗
σ D −K(T )K(T )∗),

we get the desired formula. �

The following is an analogue of [20, Theorem 3.32] in our context in terms
of multi-analytic operators.

Theorem 4.6. Let X = (X(n))n∈Z+ be a standard subproduct system of
left-finite W ∗-correspondences over a finite factor M. If T = (Tn)n∈Z+ is a
completely contractive, covariant representation of X on a Hilbert space H,
and

tr(φ∞(M)⊗ID)′(IFX
⊗
σ D −Θk

S⊗ID(IFX
⊗
σ D)) <∞,(4.3)

for all k ≥ 1, then there exist a Hilbert space E , a representation ψ of M
on E , and an inner multi-analytic operator Π : FX

⊗
ψ E → FX

⊗
σ D such

that

Curv(T )

= lim
k→∞

tr(φ∞(M)⊗ID)′((IFX
⊗
σ D −ΠΠ∗)(IFX

⊗
σ D −Θk

S⊗ID(IFX
⊗
σ D)))∑k−1

j=0 diml(X(j))
.

Proof. For simplicity of notation we use I for IFX
⊗
σ D and also use Θ for

ΘS⊗ID . Define a representation ρ of M on H
⊕

(FX
⊗

σ D) by

ρ(a) =

(
σ(a) 0

0 φ∞(a)⊗ ID

)
,

for all a ∈M. Then

trσ(M)′(K(T )∗(I −Θk(I))K(T ))(4.4)

= trρ(M)′

(
K(T )∗(I −Θk(I))K(T ) 0

0 0

)
= trρ(M)′

((
0 K(T )∗(I −Θk(I))

1
2 )

0 0

)(
0 0

(I −Θk(I))
1
2K(T ) 0

))
= trρ(M)′

((
0 0

(I −Θk(I))
1
2K(T ) 0

)(
0 K(T )∗(I −Θk(I))

1
2 )

0 0

))
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= trρ(M)′

(
0 0

0 (I −Θk(I))
1
2K(T )K(T )∗(I −Θk(I))

1
2

)
= tr(φ∞(M)⊗ID)′((I −Θk(I))

1
2K(T )K(T )∗(I −Θk(I))

1
2 ).

Now by Theorem 4.5, there exist a Hilbert space E , a representation ψ of
M on E , and an inner multi-analytic operator Π : FX

⊗
ψ E → FX

⊗
σ D

such that

Curv(T )

= lim
k→∞

tr(φ∞(M)⊗ID)′((IFX
⊗
σ D −ΠΠ∗)(IFX

⊗
σ D −Θk

S⊗ID(IFX
⊗
σ D)))∑k−1

j=0 diml(X(j))
.

Then equation (4.4) and Proposition 4.4 yields

Curv(T ) = lim
k→∞

trσ(M)′(K(T )∗(I −Θk(I))K(T ))∑k−1
j=0 diml(X(j))

= lim
k→∞

tr(φ∞(M)⊗ID)′((I −Θk(I))
1
2K(T )K(T )∗(I −Θk(I))

1
2 )∑k−1

j=0 diml(X(j))

= lim
k→∞

tr(φ∞(M)⊗ID)′((I −Θk(I))
1
2 (I −ΠΠ∗)(I −Θk(I))

1
2 )∑k−1

j=0 diml(X(j))

= lim
k→∞

tr(φ∞(M)⊗ID)′((I −ΠΠ∗)(I −Θk(I)))∑k−1
j=0 diml(X(j))

.

The third equality follows from the observation that: since

tr(φ∞(M)⊗ID)′(I −Θk(I))

is finite, (I −Θk(I))
1
2 belongs to the ideal

{x : tr(φ∞(M)⊗ID)′(x
∗x) <∞},

and hence tr(φ∞(M)⊗ID)′(I −Θk(I))
1
2 <∞, for all k. �

Remark 4.7. Consider the standard subproduct system of Example 2.7,
and let dim X(1) = d <∞. It is easy to verify that

diml(X(j)) =

(
j + d− 1

j

)
,

for all j ≥ 1. By induction it follows that

k−1∑
j=0

diml(X(j)) =
k(k + 1) . . . (k + d− 1)

d!
∼ kd

d!
(k ≥ 1).

Therefore, in this case, our curvature defined in (4.1) coincides with the
Arveson’s curvature for the row contraction

(T1(e1), T1(e2), . . . , T1(ed))
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(under the finite rank assumption, that is, rank(IH−
∑d

i=1 T1(ei)T1(ei)
∗) <

∞) on the Hilbert space H (cf. [3, Theorem C]). One can also compare
the curvature obtained in (4.2) with Popescu’s curvature (cf. [19, Equation
2.11]). Furthermore, observe that the condition (4.3) is automatic for finite
rank row contractions.

5. Wandering subspaces

The notion of wandering subspaces of bounded linear operators on Hilbert
spaces was introduced by Halmos [6]. With this as a motivation we extend
the notion of wandering subspace (cf. [7, p. 561]) for covariant representa-
tions of standard subproduct systems, as follows: Let T = (Tn)n∈Z+ be a
covariant representation of a standard subproduct system X = (X(n))n∈Z+

over an A∗-algebra M. A closed subspace S of H is called wandering for
the covariant representation T if it is σ(M)-invariant, and if for each n ∈ N
the subspace S is orthogonal to

Ln(S, T ) :=
∨
{Tn(pn(ζ))s : ζ ∈ E⊗n, s ∈ S}.

When there is no confusion we use the notation Ln(S) for Ln(S, T ), and
also use L(S) for L1(S). A wandering subspaceW for T is called generating
if H = span{Ln(W) : n ∈ Z+}.

In the following proposition we prove that the wandering subspaces are
naturally associated with invariant subspaces of covariant representations of
standard subproduct systems.

Proposition 5.1. Let T = (Tn)n∈Z+ be a covariant representation of a
standard subproduct system X = (X(n))n∈Z+ over an A∗-algebra M. If S
is a closed T -invariant subspace of H, then S	L(S) is a wandering subspace
for T |S := (Tn|S)n∈Z+ .

Proof. Let n ≥ 1 and η = ξ1 ⊗ ξn−1 ∈ E⊗n for some ξ1 ∈ E and ξn−1 ∈
E⊗n−1. Let x, s ∈ S 	 L(S) so that y = Tn(pn(η))s ∈ Ln(S 	 L(S)). Then

〈x, y〉 = 〈x, Tn(pn(η))s〉
= 〈x, Tn(pn(ξ1 ⊗ ξn−1))s〉
= 〈x, T1+(n−1)(p1+(n−1)(ξ1 ⊗ ξn−1))s〉
= 〈x, T1(ξ1)Tn−1(ξn−1)s〉
= 0,

since S in invariant under Tn−1(ξn−1). Therefore S 	 L(S) is orthogonal
to Ln(S 	 L(S)), n ≥ 1 and hence S 	 L(S) is a wandering subspace for
T |S = (Tn|S)n∈Z+ . �
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Let T = (Tn)n∈Z+ be a covariant representation of a standard subproduct
system X = (X(n))n∈Z+ . Suppose W is a wandering subspace for T. Set

GT,W :=
∨
n∈Z+

Ln(W).

Note that

L

 ∨
n∈Z+

Ln(W)


= span{T1(p1(ζ))Tn(pn(η))w : ζ ∈ E, η ∈ E⊗n, w ∈ W, n ∈ Z+}
= span{Tn+1(pn+1(p1(ζ)⊗ pn(η))w : ζ ∈ E, η ∈ E⊗n, w ∈ W, n ∈ Z+}

⊂
∨
n∈N

Ln(W).

In the other direction, we have∨
n∈N

Ln(W)

= span{Tn(pn(p1(ζ)⊗ pn−1(η))w : ζ ∈ E, η ∈ E⊗n−1, w ∈ W, n ∈ N}
= span{T1(p1(ζ))Tn−1(pn−1(η))w : ζ ∈ E, η ∈ E⊗n−1, w ∈ W, n ∈ N}

⊂ L

 ∨
n∈Z+

Ln(W)

 .

Thus these sets are equal, and it follows that

GT,W 	 L(GT,W) =
∨
n∈Z+

Ln(W)	 L

 ∨
n∈Z+

Ln(W)

 =W.

Hence we have the following uniqueness result:

Proposition 5.2. Let T = (Tn)n∈Z+ be a covariant representation of a
standard subproduct system X = (X(n))n∈Z+ over an A∗-algebra M. If W
is a wandering subspace for T, then

W = GT,W 	 L(GT,W).

Moreover, if W is also generating, then W = H	 L(H).

In Theorem 3.1 we observed that each nontrivial closed subspace S ⊂ H,
which is invariant under a pure completely contractive, covariant represen-
tation T = (Tn)n∈Z+ of a standard subproduct system X = (X(n))n∈Z+ ,
can be written as S = Π(FX

⊗
π D). In the following theorem we study

wandering subspaces in a general situation when T is not necessarily pure.
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Theorem 5.3. Let X = (X(n))n∈Z+ be a standard subproduct system over
an A∗-algebra M. Let π : M → B(E) be a representation on a Hilbert
space E and T = (Tn)n∈Z+ be the covariant representation of X. Let
Π : FX

⊗
π E → H be a partial isometry such that Π(Sn(ζ)⊗ IE) = Tn(ζ)Π

for every ζ ∈ X(n), n ∈ Z+. Then S := Π(FX
⊗

π E) is a closed T -
invariant subspace, W := S 	 L(S) is a wandering subspace for T |S , and
W = Π((kerΠ)⊥

⋂
M
⊗

π E).

Proof. Define F = (kerΠ)⊥
⋂
M
⊗

π E . Since S is the range of Π, it is a
closed T -invariant subspace. Therefore by Proposition 5.1, the subspace W
is a wandering subspace for T |S .

L(S, T )

= L

(
Π

(
FX

⊗
π

E

)
, T

)

=
∨{

T1(ζ)k : k ∈ Π

(
FX

⊗
π

E

)
, ζ ∈ X(1)

}

=
∨{

T1(ζ)Π(l) : l ∈ FX
⊗
π

E , ζ ∈ X(1)

}

=
∨{

Π(S1(ζ)⊗ IE)(lm ⊗ e) : lm ⊗ e ∈ X(m)
⊗
π

E , ζ ∈ X(1),m ∈ Z+

}
.

For x ∈ (kerΠ)⊥
⋂
M
⊗

π E and lm ⊗ e ∈ X(m)
⊗

π E we have

〈Πx,Π(S1(ζ)⊗ IE)(lm ⊗ e)〉 = 〈Π∗Πx, (S1(ζ)⊗ IE)(lm ⊗ e)〉
= 〈x, (S1(ζ)⊗ IE)(lm ⊗ e)〉
= 〈x, P1+m(ζ ⊗ lm)⊗ e〉
= 0,

and hence Π((kerΠ)⊥
⋂
M
⊗

π E) ⊂ W.
For the converse direction, let x ∈ S 	L(S, T ) =W, and Π(y) = x for some
y ∈ (kerΠ)⊥. Therefore for any ζ ∈ X(1), η ⊗ e ∈ FX

⊗
π E we have

(5.1) 〈y, (S1(ζ)⊗ IE)(η ⊗ e)〉 = 〈Πy,Π(S1(ζ)⊗ IE)(η ⊗ e)〉 = 0.

Recall that by definition we have

L(FX
⊗

π E , S ⊗ IE)

=
∨
{(S1(ζ)⊗ IE)(η ⊗ e) : η ∈ X(m), ζ ∈ X(1), e ∈ E ,m ∈ Z+}.

Since M
⊗

π E is a generating wandering subspace for the covariant repre-
sentation S ⊗ IE , it follows from Proposition 5.2 that(

FX
⊗
π

E

)
	 L

(
FX

⊗
π

E , S ⊗ IE

)
=M

⊗
π

E ,
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and hence (5.1) implies that y ∈M
⊗

π E . Hence we get

Π

(
(kerΠ)⊥

⋂
M
⊗
π

E

)
=W. �

Since each commuting tuple of operators defines a covariant representa-
tion, the previous theorem is a generalization of [5, Theorem 5.2]. Indeed,
we get the following corollary:

Corollary 5.4. With the same notation of Theorem 5.3 we have

∨
n∈Z+

Ln(W, T ) = Π

 ∨
n∈Z+

Ln(F, S ⊗ IE)


where F = (kerΠ)⊥

⋂
M
⊗

πE. Moreover, F is wandering subspace for the
representation S ⊗ IE , that is, F⊥Ln(F, S ⊗ IE) for each n ∈ N.

Proof. For each f, f ′ ∈ F we have

〈f, (Sn(ζ)⊗ IE)f ′〉 = 〈Π∗Πf, (Sn(ζ)⊗ IE)f ′〉 = 〈Πf,Π(Sn(ζ)⊗ IE)f ′〉
= 0.

Therefore F is wandering subspace for the representation S⊗ IE . Moreover,
since W = ΠF , we have that∨

{Ln(W, T ) : n ∈ Z+}

=
∨
{(Tn(ζ)Π(F ) : ζ ∈ X(n), n ∈ Z+}

=
∨
{Π(Sn(ζ)⊗ IE)(F ) : ζ ∈ X(n), n ∈ Z+}

= Π
(∨
{(Sn(ζ)⊗ IE)(F ) : ζ ∈ X(n), n ∈ Z+}

)
= Π

(∨
{Ln(F, S ⊗ IE) : n ∈ Z+}

)
. �
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