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Absolute retract involutions of Hilbert
cubes: fixed point sets of infinite

codimension

James West

Abstract. Let α : Q→ Q be an involution of a Hilbert cube with fixed
point setQα that has Property Z inQ. The first main result of this paper
is Theorem 3.1: Assume that (Q,α) is an absolute retract in the category
of metric spaces with involutions and equivariant maps. If T ⊆ Q is an
equivariant retract of Q containing Qα that is an inequivariant Z-set
in Q, then for any equivariant retraction r : Q→ T , Q is equivariantly
homeomorphic with the mapping cylinder M(r;T ) of r reduced at T . The
second main result is part of Theorem 3.3: Qα is an equivariant strong
deformation retract of Q if and only if Q is equivariantly homeomorphic
with Qα×Πi≥1Ii equipped with the involution that reflects each interval
coordinate Ii across its mid-point.
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1. Introduction

Let α : Q→ Q be an involution on a space homeomorphic with the Hilbert
cube I∞ = Πi≥1Ii, where Ii = [0, 1]. (These are precisely the compact metric
absolute retracts X with the property that for each n ≥ 0 each two maps
f, g : In → X can be approximated arbitrarily closely by maps with disjoint
images [T, M].) That the fixed point set Qα need not be contractible or even
an absolute neighborhood retract was remarked in [J] in light of an example
in [F]. Another example may be constructed from the suspension of the
complement of a 3-ball in the Poincaré sphere by taking products with I∞

or itself. (Cf. [B], [Bo], page 124.) However, if Q is an absolute retract in the
category C of metric spaces with involutions and equivariant maps, then it
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is easy to see that Qα must be an inequivariant absolute retract. (It is also
a standard result and easily seen in this case that the orbit space Q/α is an
absolute retract, cf. [An]. This follows, for example, from Theorem 3.3 “(2)
implies (1)” here and the inequivariant version of “(1) implies (2),” which
may be found in [Bo].)

R.D. Anderson conjectured in 1966 that all involutions of Q with unique
fixed points are topologically conjugate with the one β : I∞ → I∞ that
reflects each coordinate Ii across its mid-point. Wong [Wo] showed that this
is true if and only if the fixed point has a basis of invariant contractible
neighborhoods. In [WWo], it is shown that Anderson’s Conjecture is true if
and only if Q/α is an absolute retract. (This was obtained independently
by H. Hastings and was observed by R. Geoghegan to be equivalent to Q/α
having the homomotopy type of a CW complex.) An extension to actions
of compact Lie groups on Hilbert cubes is given in [BeW].

It is the purpose of this paper to extend the results of [Wo] and [WWo] to
the context that the Hilbert cube Q with involution α is an absolute retract
in the category C and the fixed point set of α has Property Z in Q. (See
Definition 2.1.) We prove (Theorem 3.3.) that in this case, α is conjugate
to the involution β̄ of Qα × I∞, where β̄ = id× β.

The primary difficulty overcome in [WWo] was to show that if the orbit
space Q/α is an absolute retract, then there is an equivariant strong defor-
mation retraction F : Q × I → Q of Q to the fixed point that is isovariant
on Q × [0, 1). Here, we are assuming that there is an equivariant strong
deformation retraction F : Q× I → Q of Q to the fixed point set. We prove
Theorem 3.1: Q is equivariantly homeomorphic with the relative mapping
cylinder of the retraction f1 = F |Q×{1} : Q→ Qα.

We apply Theorem 3.1 to obtain Theorem 3.2: Let (Q,α) and (L, γ) be
Hilbert cubes with involutions that are absolute retracts for the category C.
If the fixed point sets Qα and Lγ are homeomorphic and are (inequivariant)
Z-sets, then Q and L are equivariantly homeomorphic. Theorem 3.2 is the
new part of Theorem 3.3.

In [W3], we apply Theorem 3.3 to invariant inclusion and growth hyper-
spaces E of Peano continua X to show that if α : X → X is any involu-
tion of X with nowhere dense fixed point set, then the induced involution
α∗ : E → E is conjugate with id×β : Eα∗×I∞ → Eα∗×I∞ and that if E\{X}
is contractible, then α∗ is conjugate with id×β : I∞× I∞ → I∞× I∞. (For
growth hyperspaces, it is necessary to require that X have no open set that
is homeomorphic with the interval (0,1).)

The arguments of this paper all apply with the obvious changes to periodic
homeomorphisms of prime period.
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2. Preliminaries

This section collects definitions, notation, and basic technical results
needed for the proof of the main theorems of the paper in the next sec-
tion. The primary references for inequivariant Hilbert cube manifold theory
are [C], [M], and [T]. The results in these references, particularly [M], often
are stated for compact Hilbert cube manifolds, but extend to the non com-
pact case with due care. (For example, “homotopies” must be replaced by
”proper homotopies”.) For us the most important example is the Z-set Un-
knotting Theorem which we state below as Theorem 2.2 for the convenience
of the reader. It may easily be obtained from the compact version.

If K is a simplicial complex, then Kn is its n-skeleton and for a simplex
σ of K st(σ,K) is the closed star of v, i.e., the union of the closed simplices
containing σ. See [D] for notation and basic results about covers, nerves,
and refinements. The interior and closure of a set A will be denoted by
int(A) and cl(A). Elements (t1, . . . ) of I∞ will be denoted by t̄. The orbit
space of α will be Q/α, and the orbit map will be written as qα. The fixed
point set Qα of α will always be assumed to be an absolute retract and a
Z-set in Q. We use the term isotopy to mean ambient isotopy, that is, a
one-parameter family of (surjective) homeomorphisms.

Definition 2.1. A closed set A in an absolute neighborhood retract X
has Property Z (is a Z-set) in X provided that for each open set U ⊆ X,
the inclusion U \ A ↪→ U induces isomorphisms on all homotopy groups,
or, equivalently, if the identity map of X can be approximated arbitrarily
closely by maps into X \A ([H, M]). A is an equivariant Z-set if the identity
of X may be approximated by equivariant maps into X \ A. Note that the
entire fixed point set of an involution is never an equivariant Z-set unless it
is empty.

Theorem 2.2 (Z-set Unknotting [C, M]). Let A and B be homeomorphic Z-
sets in a Hilbert cube manifold M . Suppose that F : A× I →M is a proper
homotopy between the inclusion of A and a homeomorphism h from A to
B and that for each a ∈ A there is given an open set Ua of M containing
F ({a} × I). Then there is an isotopy G of M such that g0 = id and for all
a ∈ A g1(a) = h(a) and G({a} × I) ⊆ Ua. Moreover, G may be required to
be stationary on the complement of

⋃
{Ua|a ∈ A}.

Lemma 2.3. Let Q be a space homeomorphic with the Hilbert cube, and
let X ⊆ Q be an absolute retract that has Property Z in Q. There is a
homeomorphism h : Q→ X × I∞ such that h(X) = X × {0̄}.
Proof. As X×{0̄} is a Z-set in X×I∞, this is an immediate application of
Toruńczyk’s characterization of the Hilbert cube ([T, M]) and Theorem 2.2.

�

Definition 2.4.

(1) A relative simplicial complex is a metric space Y = L ∪B where
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(a) L = Y \B is a simplicial complex,
(b) the topology induced on L is the same as that given by the

barycentric metric (ρ(Σtivi,Σsivi) =
√

Σ(ti − si)2),
(c) the diameters dia(σ) of simplices go to zero uniformly as σ

approaches B.
(2) A relative Hilbert cube manifold is a locally compact metric space

X = M ∪B where M = X \B is a Hilbert cube manifold and B is
a closed subset of Y .

(3) The variable product Y ×ω I is {(y, ω(y) · t)|(y, t) ∈ Y × I}, where
ω : Y → [0, 1]. The variable product Y ×ω I∞ is⋃

{{y} × ω(y) · I∞|y ∈ Y }.

Here s · I∞ denotes Πi≥1s · Ii.
(4) A triangulation of X relative to B of a relative Hilbert cube manifold

X = M ∪B is a homeomorphism of pairs h : (Y ×ω I∞, B)→ (X,B)
that is the identity on B, where Y = L ∪ B is a relative simplicial
complex, L is locally finite, and ω : Y → [0, 1] is a continuous
mapping with B = ω−1(0).

For a relative simplicial complex Y = L∪B and variable product Y ×ωI∞,
where B = ω−1(0), let p0 : Y ×ωI∞ → Y ×0I

∞ be the map (y, z) 7→ (y, {0̄}).
Lemma 2.5. Let X = M ∪B be a relative Hilbert cube manifold. Then:

(1) There is a relative triangulation h : (Y ×ω I∞, B) → (X,B), where
Y = L ∪ B is a relative simplicial complex, L is locally finite, and
ω−1(0) = B.

(2) If α is an involution of X and B = Xα, then Y may be chosen to
have an involution γ with Y γ = B that acts simplicially on L such
that for each simplex σ of L, γ(σ) ∩ σ = ∅ and

h(γ(x), z) = α(h(x, z)).

(3) If ε : X → [0, 1] is continuous with B = ε−1(0), Y and h may be
chosen so that for each x ∈ X, d(h ◦ p0 ◦ h−1(x), x) ≤ ε(x).

Proof. This follows from the Triangulation Theorem of [C] applied to the
Hilbert cube manifold (Q \ Qα)/α and the variable product technique of
[AS]. �

Lemma 2.6. Let α : Q → Q be an involution of a Hilbert cube with Qα a
Z-set in Q and an absolute retract. Let Y = L ∪ B be a relative simplicial
complex and L locally finite. Let ζ : Y → Y be an involution such that
B = Y ζ and ζ acts simplicially on L such that for each simplex σ of L,
γ(σ) ∩ σ = ∅. If f : Y → Q is an equivariant map and ε : Y → [0,∞)
is a continuous function with ε(B) = 0, then there is an equivariant map
g : Y → Q that agrees with f on ε−1(0), is isovariant on ε−1((0,∞)), and
is equivariantly ε-homotopic to f by a homotopy G that is isovariant on
ε−1((0,∞))× [0, 1).
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Proof. Without loss of generality, we may assume that (Q,Qα) = (I∞, P ),
where P = {0} × Πi≥2Ii as follows. Let ι : (Q,Qα) → (Q × I∞, Qα × I∞)
by x 7→ (x, 0̄). Set ᾱ = α × id : Q× I∞ → Q× I∞. As Qα × I∞ is a Z-set
and a Hilbert cube, there is a homeomorphism

h : (Q× I∞, Qα × I∞)→ (I∞, P ).

Set α1 = h ◦ ᾱ ◦ h−1 and let c : Q× I∞ → Q be projection. Let

f1 = h ◦ ι ◦ f : (Y,B)→ (I∞, P ).

Now let ε1 : Y → [0, 1] be continuous with ε−11 (0) = ε−1(0) such that if
d(f1(y), z) < ε1(y), then d(f(y), c ◦ h−1(z)) < ε(y). If g1 : (Y,B)→ (I∞, P )
satisfies the conclusion of the Lemma with respect to α1, f1, and ε1, then
g = c ◦ h−1 ◦ g1 satisfies the Lemma for f and ε.

We may also assume that ε is invariant, i.e., ε(y) = ε(ζ(y)), and, by
subdivision, that for σ ∈ L, st(σ, L) ∩ ζ(st(σ, L)) = ∅. Let A = ε−1(0)
and C = f−1(P ). Let U = Y \ A and let L1 be a subdivision of U with
dia(st(v, L1)) → 0 uniformly as v → A. For S ⊆ Q, define C1(S) =
conv(α(conv(α(S)))) and Cn+1(S) = C1(Cn(S)), where conv(S) denotes
the closed convex hull of S. Assure by subdivision that for each ver-
tex v of L1, dia(Cd(v)+1(f(st(v, L1)))) < min{ε(y) | y ∈ st(v, L1)}, where
d(v) is the dimension of st(v, L1). Denote the open t-neighborhood of a
set S by Nt(S). Let η : L0

1 → (0, 1) be an invariant function such that

dia(Cd(v)+1(Nη(v)(f(st(v, L1))))) < min{ε(y) | y ∈ st(v, L1)}. Let L2 be the
subcomplex of L1 sent into Q \ P by f and set g|L2 = f |L2 and G(y, t) = y,
if y ∈ L2. Extend g to L1 and G to L1× I as follows by induction on skeleta
using convexity in Q and equivariance. For each vertex v of L1 \ L2, let
g(v) ∈ Nη(v)(f(v)) \ P and g(ζ(v)) = α(g(v)). For one, say v, of the pair
v, ζ(v), define G : {v} × I → [f(v), g(v)] to be the straight line homotopy,
and extend over (L1)

0×I by equivariance. The induction hypothesis is that
G : L1 × {0} ∪ ((L1)

n ∪ L2)× I → Q is given satisfying:

(1) G|L1×0∪L2×I = f ◦ π, where π is projection to L1,
(2) G−1(P ) = f−1(P )× {0}, and
(3) if v ∈ (L1)

0, then G((st(v, L1)× I)∩ (L1×{0}∪ ((L1)
n∪L2)× I)) ⊆

Cn+1(Nη(v)(f(st(v, L1)))).

For each n+1-simplex σ ∈ L1 \L2, choose either σ or ζ(σ), say σ, and let σ̂
denote the barycenter of σ×{1}. Let z ∈ conv(G(∂σ×{1})) and extend G
over σ× I by sending the interval [y, σ̂] linearly to [G(y), z], where y ranges
over σ × {0} ∪ ∂σ × I.

Extending to ζ(σ)× I by equivariance gives G(ζ(σ)× I) ⊆ (α(G(σ))× I).
The resulting G extends over A by G(y, t) = f(y). �

The next theorem collects technical results for reference in the proofs of
Section 3.
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Theorem 2.7. Let α : Q → Q be an involution on a space homeomorphic
to the Hilbert cube such that Qα is an absolute retract with Property Z in
Q. Let Y be a locally compact separable metric space with involution γ, and
let f, g : Y → Q be equivariant maps. For (2)-(6), assume that (Q,α) is an
absolute retract in the category C. Then the following hold:

(1) For every continuous ε : Y → [0, 1] with Y γ ⊆ ε−1(0) there is an
equivariant map θ : Y → Q agreeing with f on ε−1(0) and isovariant
on ε−1((0, 1]) such that d(θ(y), f(y)) ≤ ε(y) for all y ∈ Y .

(2) There is an equivariant homotopy F : Y × I → Q from f to g. For
every open cover U of Q there is an open cover V of Q such that
if for each y ∈ Y , there is a V ∈ V containing f(y) and g(y) then
F may be required to be stationary on {y ∈ Y |f(y) = g(y)} and
have the property that for each y ∈ Y there is a U ∈ U containing
F ({y} × I).

(3) The map θ of (1) may be chosen to be equivariantly homotopic to f
by a homotopy Θ that is:
(a) stationary on ε−1(0),
(b) isovariant on (Y \ ε−1(0))× [0, 1),
(c) satisfies dia (Θ({y} × I)) ≤ ε(y) for each y ∈ Y .

(4) If f and g are isovariant, then the homotopy F of (2) may be required
to be isovariant. If f = g on Y γ and U is an open cover of Q \Qα
then we may choose V to be an open cover of Q \ Qα such that if
for each y ∈ Y there is a V ∈ V containing f(y) and g(y), then the
homotopy F : Y \ Y γ × I → Q obtained by restricting (2) to Y \ Y γ

extends to a homotopy F ′ : Y × I → Q that is stationary on Y γ.
(5) If f and g are isovariant embeddings, then the homotopy F ′ of (4)

may be required to embed Y × {t} for each t. If additionally Y is
compact, then F ′ may be required to embed (Y \ Y γ) × [a, b] as an
equivariant Z-set in Q \Qα for each [a, b] ⊆ (0, 1).

(6) Assume that Y is compact, that f and g are equivariant embeddings,
that f = g on Y γ, and that f(Y \Y γ) and g(Y \Y γ) are equivariant
Z-sets of Q \Qα. Let F be an equivariant homotopy between f and
g that is stationary on Y γ. If U is an open cover of Q \ Qα such
that for each y ∈ Y \ Y γ there is a U ∈ U containing F ({y} × I),
then there is an equivariant isotopy G of Q from the identity to a
homeomorphism g1 such that g1 ◦ f = g. The isotopy G may be
required to be stationary on Qα and on the complement of any open
set containing the image of F and to have the property that for each
y ∈ Y \ Y γ there is a U ∈ U containing F ({y} × I) ∪G({y} × I).

Proof. Without loss of generality, we may assume that ε is invariant. Tri-
angulate the relative Hilbert cube manifold Q/α as K ×ω I∞ ∪Qα, and let

p : K̃ → K denote the universal (2-fold) covering if K. Then K̃ ×τ I∞ ∪Qα
triangulates Q as a relative Hilbert cube manifold, where τ = ω ◦ p, and
α = g× id on Q\Qαα, where g : K̃ → K̃ is the deck transformation. Define
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κ : K × I∞ → K ×ω I∞ and κ̃ : K̃ × I∞ → K̃ ×τ I∞ by (x, t̄) 7→ (x, ω(x) · t̄)
and (x, t̄) 7→ (x, τ(x) · t̄), respectively. Choose an invariant metric d for Q

such that for each x ∈ K̃ × Πn−1
i=1 Ii, the diameter of κ̃({x} × Πi≥nIi) is less

than 21−n.
To prove conclusion (1), first assume that Y γ = ε−1(0). Define

Z ⊆ K̃ ×τ I∞ × [0,∞)

by

Z = K̃ × {0̄} × [0,∞) ∪
⋃
n≥1

κ̃(K̃ × In × {(0, 0, . . . )})× [n,∞).

Let d′ be the metric for Q×R that is the sum of d and the usual distance
in R. Triangulate Z by an invariant simplicial complex, also denoted by
Z, such that:

(a) Each simplex of Z lies in κ̃(σ)× [0,∞) for some simplex σ of K̃.

(b) If z ∈ κ̃(K̃ × In × {(0, 0, . . . )})× [n,∞), then dia(st(z, Z)) < 2−n.

Let ψ : I∞× [0,∞)→ I∞ be given by ψ(q, t) = (q1, . . . , qn−1, s ·qn, 0, 0, . . . ),
where t ∈ [n, n+ 1) and s = t− n, and let

ψ̄ : K̃ × I∞ × [0,∞)→ K̃ × I∞ × [0,∞)

by ψ̄(x, q, t) = (x, ψ(q, t), t). Then ψ̂ = (κ̃ × id) ◦ ψ̄ ◦ (κ̃ × id)−1 carries

K̃ ×τ I∞ × [0,∞) equivariantly into Z, and d′((x, q, t), ψ̂(x, q, t)) ≤ 21−n if

n < t. Let π : Z → K̃ ×τ I∞ be projection. Define h : Y \ f−1(Qα)→ Z by

h(y) = (f(y), λ(y)), where λ(y) = 4− log2(ε(y)). Then d′(ψ̂ ◦ h(y), h(y)) <
ε(y)
4 . Also, if x and ψ̂ ◦ h(y) are in st(z, Z) for some vertex z of Z, then

d(x, ψ̂ ◦ h(y)) < ε(y)
4 .

Let O = {int(st(z, Z)) | z ∈ Z0}. Then α acts on O without fixed points.

Define U = {(ψ̂ ◦ h)−1(O) |O ∈ O}. Then U also inherits an involution
from Z. Let V be a star-finite open refinement of U by pre-compact open
sets of Y \ (f−1(Qα), and let N (U), and N (V) be their nerves with induced
involutions. Let ι : V → U be an equivariant choice function with V ⊆ ι(V ),
and let ι also denote the simplicial map ι : N (V)→ N (U) that this defines
by the vertex map vV 7→ vι(V ). Additionally, let µ : N (U) → Z be the

simplicial map given by vU 7→ zU , where U = (ψ̂ ◦ h)−1(int(st(zU , Z))).
Choose an equivariant partition of unity Φ = {φV |V ∈ V} on Y \ (f−1(Qα)

subordinate to V with φ−1V (0, 1]) = V for all V , and let b̂ : Y \ f−1(Qα) →
N (V) be the associated (equivariant) barycentric map. Now if y ∈ V , then

µ ◦ ι ◦ b̂(y) ∈ µ ◦ ι(st(vV ,N (V))) ⊆ µ(st(vι(V ),N (U))) = µ(st(vU ,N (U) =

st(zU , Z), where U = (ψ̂ ◦ h)−1(O) and O= int(st(zU , Z)). On the other

hand, y ∈ V ⊆ U = (ψ̂ ◦ h)−1(O) = (ψ̂ ◦ h)−1(st(zU , Z)), so ψ̂ ◦ h(y) ∈
st(zU , Z). Thus, d(π ◦ µ ◦ ι ◦ b̂(y), f(y)) = d(π ◦ µ ◦ ι ◦ b̂(y), π ◦ h(y)) ≤
d′(µ ◦ ι ◦ b̂(y), ◦h(y)) ≤ d′(µ ◦ ι ◦ b̂(y), ψ̂ ◦ h(y)) + d′(ψ̂ ◦ h(y), h(y)) < ε(y)

2 .
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Let Ŷ = N (V) ∪ f−1(Qα) be the indicated relative simplicial complex,

extend b̂ to Y by the identity, and let ζ : Ŷ → Q be equal to π ◦ µ ◦ ι on
N (V) and to f on f−1(Qα).

Set A = f−1(Qα) \ Y γ . We are now ready to move ζ|A off Qα. Let δ :

Ŷ → [0, 1] be a continuous map satisfying δ◦ζ(y) ≤ ε(y)/2 and δ−1(0) = Y γ .

By Lemma 2.6, there is an equivariant map g : Ŷ → Q agreeing with f on
Y γ that is isovariant on δ−1((0, 1]) and satisfies d(g(x), ζ(x)) < δ(x) for all

x ∈ Ŷ . Set θ = g ◦ b̂.
Now for y ∈ Y \ f−1(Qα),

d(f(y), θ(y)) ≤ d(f(y), ζ(b̂(y))) + d(ζ(b̂(y), g(ζ(b̂(y))

= d(f(y), π ◦ µ ◦ ι ◦ b̂(y)) + d(ζ(b̂(y)), g(y))

<
ε(y)

2
+
ε(y)

2
= ε(y).

For y ∈ A, d(f(y), θ(y)) = d(ζ(y), g(y)) < ε(y)
2 .

If ε−1(0) 6= Y γ , let Y1 = Y \ (ε−1(0) \ Y γ) and apply the previous con-
struction to (Y1, Y

γ) and ε.
Conclusion (2) is proved by following the inequivariant argument. Let d

be an invariant metric for Q, and let h : Q→ E be the embedding of Q in the
Banach space of continuous functions φ : Q → R using the correspondence
x 7→ d(., x). The linear map T (φ) = φ ◦ α makes h equivariant, and the
result follows from an equivariant retraction r : E → h(Q). (Cf. [J], [Bo].)

To prove (3), replace ε in the case Y γ = ε−1(0) in the proof of (1) by
ε1 ≤ ε with Y γ = ε−11 (0) and sufficiently small that there is an equivariant
homotopy F : Y × [0, 1]→ Q from θ to f that is stationary on Y γ and such
that for each y ∈ Y , dia(F ({y} × I) ≤ ε(y)/3. Now let ε2 : Y × I → [0, 1]
be an invariant map with ε−12 (0) = Y γ × [0, 1] ∪ Y × {0, 1} and for each
(y, t) ∈ Y × [0, 1], ε2(y, t) ≤ ε(y)/3. Applying (1) to Y × [0, 1], F , and ε2, we
obtain the desired homotopy Θ from θ to f .

Conclusion (4) is proved by using (2) to get an equivariant homotopy F
from f to g and then applying (3) to F |Y×(0,1) as done in the proof of (3)
to obtain an isovariant map that extends to Y × I. Conclusion (5) may be
obtained using the infinite product structure of I∞ in a relative triangulation
of (Q,Qα).

To prove conclusion (6) we can reduce to the inequivariant case. Let
U1 = {U ∈ U|U ⊇ F ({y} × I) for some y ∈ Y \ Y γ}. By refining U , we
may assume that the union of the elements of U1 lies in any neighborhood of
F (Y \Y γ × I). Given such a U , we may by (1), (5), and Lemma 2.5 replace
F by a homotopy Λ satisfying:

(a) Λ is isovariant.
(b) λi = fi, for i = 0, 1.
(c) Λ embeds (Y \ Y γ)× I as an equivariant Z-set of Q \Qα.
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(d) for each y ∈ Y \ Y γ , Λ({y} × [ i−12 , i2 ]) contains no orbit of α, for
i = 1, 2.

(e) For each y ∈ Y \ Y γ , there is a U(y) ∈ U containing F ({y} × I) ∪
Λ({y} × I).

Now let χ : Y → (0, 1) be an invariant map such that the open χ(y)-
neighborhoods Vi(y) of qα(Λ({y} × [ i−12 , i2 ])) are evenly covered by the re-

striction of qα to Q\Qα, for i = 1, 2. Let Ṽ1(y) be the lift of V1(y) containing

y, and let Ṽ2(y) be the lift of V2(y) containing λ1/2(y) and that for some
U ∈ U , U contains the lift of V1(y) containing y and the lift of V2(y) con-

taining F (y, 12)). Require that U(y) ⊇ F ({y} × I) ∪ Ṽ1(y) ∪ Ṽ2(y).

Passing to (Q \Qα)/α, we may by Theorem 2.2 choose isotopies H1 and
H2 of (Q \Qα)/α such that:

(i) hi0 is the identity, i = 1, 2.
(ii) For each y ∈ Y \ Y γ , h11 ◦ qα ◦ f(y) = qα ◦ λ1/2(y).

(iii) For each y ∈ Y \ Y γ , h21 ◦ qα ◦ λ1/2(y) = qα ◦ λ1(y) = qα ◦ g(y).

(iv) for each y ∈ Y \ Y γ , H i({qα(f(y))} × [ i−12 , i2 ]) ⊆ Vi(y), for i = 1, 2.

(v) If H i is not stationary on x ∈ Q, then for some y ∈ Y \ Y γ ,

H1({x} × I) ∪H2({h11(x)} × I) ⊆ V1(y) ∪ V2(y).

As qα restricted to Q \Qα is a covering map, we may let Gi be the lift of
H i, i = 1, 2, with gi0 the identity of Q \Qα, and set

G(x, t) =

{
g12t(x), if 0 ≤ t ≤ 1

2 ,

g22t−1 ◦ g11(x), if 1
2 ≤ t ≤ 1.

The extension of G to Q that is stationary on Qα satisfies (6). �

Corollary 2.8. If α : Q → Q is an absolute retract in C, then there is an
equivariant strong deformation retraction F : Q× I → Q of Q to Qα that is
isovariant on Q× [0, 1).

Definition 2.9.

(1) A collaring of a closed subset B of a topological space Y is an em-
bedding c : B × I → Y with image a closed neighborhood S of B
such that for b ∈ B c(b, 0) = b and c(B × {1}) is the boundary of S
in Y . The restriction c|B×[0,1) is called an open collaring of B. The
image of a closed (respectively, open) collaring is a closed (respec-
tively, open) collar of B. We always require that the boundary of a
closed collar S be itself collared in Y \ c(B × [0, 1)).

(2) The mapping cylinderM(f) of a map f : Y → Z is the quotient space
(Y × I ∪Z)/ ∼, where (y, 0) ∼ f(y). The inclusion ι : Y →M(f) is
induced by y 7→ (y, 1).

(3) If A ⊆ Y is closed, the relative mapping cylinder of f reduced at A,
M(f ;A), is M(f)/ ∼=, where (a, t) ∼= f(a) for each (a, t) ∈ A× I.
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Lemma 2.10. Let A3 be a Hilbert cube manifold with a fixed point free
involution γ. Let A1 ⊆ A2 ⊆ A3 be invariant sub-Hilbert cube manifolds
with Ai a Z- set in Ai+1, i = 1, 2, and let j : A1 → A2 be the inclusion.

(1) Ai has equivariant closed collars in Aj if i < j.
(2) There are equivariant closed collars Bi of Ai in Ai+1, i = 1, 2, and

B3 of A1 in the interior of B2 such that B3 ∩ A2 = B1 and the
boundary of each is equivariantly collared (on both sides).

(3) If c : A1 × I → A2 is an equivariant closed collar there is a homeo-
morphism f : A2 → M(j) supported in the union of c(A1 × I) and
an equivariant collar of c(A1 × {1}) in A2 \ c(A1 × [0, 1)) such that
for x ∈ A1, f(x) = (x, 1) ∈M(j), f(c(x, 1)) = x ∈ A2, and f moves
points along collar curves in A1 and in M(ι).

(4) Let c1 : A1 × [0, 1] → A2 × [0, 1) be an equivariant closed collar of
A1 × {0} in A2 × I. For a ∈ A1, let a′ denote ι(a) = (a, 1) ∈M(j).
Then there is an equivariant homeomorphism

f : A2 × I \ c1(A1 × [0, 1))→M(j)

with f(c1(a, 1)) = a′ and f(A2×{1}) = A2. The restriction f |A2×{1}
may be required to be as close to the projection as desired.

Proof. (1) Let q : A3 → A3/γ be the orbit mapping. As γ is without fixed
points, q is a covering map, so Ai/γ is a Hilbert cube manifold, and Ai/γ
is a Z-set in Aj/γ. Therefore it is locally collared in Aj/γ as each point of
Ai/γ has a neighborhood U homeomorphic to an open subset of I∞ by a
homeomorphism φ carrying U∩Ai/γ to φ(U)∩P . Now M. Brown’s collaring
theorem [Br], provides an open collar. Lifting to Y gives a collar of Z, and
restricting to Ai × [0, 1/2] provides the closed collar.

(2) Let ci : Ai × I → Ai+1, i = 0, 1, be equivariant closed collarings and
consider c2 : A1 × I × I → A3 given by c2(x, s, t) = c1(c0(x, s), t/2)). Since
A1 × (I × {1} ∪ {1} × I) is an equivariant Z-set in A1 × I × I equivariantly
homeomorphic to A1 × {1} there is an equivariant homeomorphism

f : A1 × I → A1 × I × I

with f(A1×{0}) = A1×{(0, 0)} and f(A1×{1}) = A1× (I×{1}∪{1}×I).
Then c3 ◦ f : A1 × I → A3 is the desired collaring.

(3) Let C be an equivariant collar of c(A1 × {1}) in A2 \ c(A1 × [0, 1)),
and let D denote A2 \ (C ∪ c(A1 × [0, 1))). Then M(j) \D is a collar of the
subset A0 = A1 × {0} of M(j).

(4) Let k denote the inclusion A1 → A1 ×{0} ↪→ A2 × I. By (3), there is
an equivariant homeomorphism g : A2 × I →M(k) such that

g(A2 × I \ c1(A1 × [0, 1))) = A2 × I,

g(A1 × {0}) is the copy of A1 that is the domain end of M(k), and g is the
identity on A2×{1}. Because A1×{0} is a Z-set in A2×{0}, Theorem 2.7(5)
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and (6) provide an equivariant homeomorphism h : A2× I → A2×{0} that
is the identity on A1 × {0} and approximates the projection map

A2 × {1} → A2 × {0}

arbitrarily closely. Now (3) extends h to a homeomorphism h̄ : M(k) →
M(j). Then f = h̄ ◦ g is the desired homeomorphism. �

3. Main theorems

Theorem 3.1. Suppose that α : Q → Q is an involution on a Hilbert cube
that is an absolute retract in C. If T ⊆ Q is an equivariant retract of Q
containing Qα that is an inequivariant Z-set in Q, then for any equivariant
retraction r : Q → T , Q is equivariantly homeomorphic with the mapping
cylinder M(r;T ) of r reduced at T .

Proof. Let τ : Q → [0, 1] be an invariant mapping with τ−1(0) = T . Us-
ing Lemma 2.5 and refactoring I∞ as I∞ × I, we obtain an equivariant
homeomorphism h1 : Q → Q ×τ I that is the identity on T . The map
h2 : M(id;T )→ Q×τ I given by (q, t) 7→ (q, τ(q) · t) is an equivariant home-
omorphism, showing that Q is equivariantly homeomorphic with M(id;T ).
It suffices to show that there is an equivariant map g of M(id;T ) onto itself
that is one-to-one on M(id;T ) \ Q × {0} such that g(q, 0) = r(q). This is
because the quotient maps

q0 : Q× I → Q×τ I
k→M(id;T )

g→M(id;T ),

q1 : Q× I →M(g ◦ ι;T ),

have the same sets of point inverses, where k = h−12 and ι : Q→ Q× {0} is
q 7→ (q, 0).

To simplify notation, let Y = M(id;T ) and A = Q×{0} ⊆M(id;T ). For
y = (q, t) ∈ Y let s · y = (q, s · t). Let s · Y = {s · y|y ∈ Y }.

Let d be an invariant metric for Y such that in Y \T , d(s ·y, t ·y) = |s− t|.
By Theorem 2.7(2), (1), and (5), and using the fact that T \ Qα is an

equivariant Z-set of Q\Qα, there is an equivariant homotopy F : Q×I → Q
from id to r that is stationary on T , is isovariant on Q × [0, 1), embeds
Q \ T × (0, 1), and embeds Q \ T × [a, b] in Q \ T as an equivariant Z-set of
Q \ T when 0 < a < b < 1.

Let F ′ : A × I → A be given by F ′((q, 0), s) = (F (q, s), 0). Select a
sequence 0 < δ(1) < δ(2) < ... < 1, such that for each a ∈ A,

dia(f ′δ(1) ◦ f
′
δ(2) ◦ · · · ◦ f

′
δ(n−1)({a} × [δ(n), 1])) < 2−n.

Let ζ0 : A→ A be the identity, and for n ≥ 1 set ζn = f ′δ(1) ◦f
′
δ(2) ◦· · ·◦f

′
δ(n).

For n ≥ 2, define homotopies Λn : ζn−2(A)× I → ζn−2(A) by

Λn(ζn−1(a), s) =

{
ζn−2 ◦ f ′δ(n−1)+2(1−δ(n−1))s(a), if 0 ≤ s ≤ 1

2 ,

ζn−1 ◦ f ′δ(n)+2(1−δ(n))(1−s)(a), if 1
2 ≤ s ≤ 1.
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Now Λn is stationary on T , λn0 = id, and λn1 ◦ ζn−1 = ζn. Moreover, for each
a ∈ A, dia(Λn(ζn−1(a)× I)) ≤ 21−n + 2−n = 3 · 2−n. Applying Theorem 2.7
and using the fact that T \ Qα is an equivariant Z-set in Q \ Qα, hence in
ζn(A) for each n, we may adjust Λn to an equivariant embedding Φn that
equals Λn on ζn−1(A) × {0, 1} and has the same properties. Theorem 2.7
allows us to extend Φn to an isotopy Ψn : ζn−2(A)× I → ζn−2(A) satisfying
the following:

(1) Ψn is stationary on T .
(2) ψn0 is the identity of ζn−2(A).
(3) ψn1 ◦ ζn−1 = ζn.
(4) dia(Ψn({x} × I)) < 3 · 2−n for each x ∈ ζn−2(A).

Note that for n ≥ 2, ζn = ψn1 ◦ ψ
n−1
1 ◦ · · · ◦ ψ2

1.
Since Ψn is an isotopy of ζn−2(A) that is stationary on Qα and since

ζn−2(A) \ Qα is an equivariant Z-set in Y \ Qα, we may extend the Ψn’s
inductively to isotopies Θn : Y × I → Y satisfying:

(a) dia(Θn({y} × I)) < 3 · 2n for each y ∈ Y .
(b) Θn is stationary on θn−11 ◦ θn−21 ◦ · · · ◦ θ21(Y \ cn · Y ), where cn <

min{cn−1, 2−n} is such that if d(x, y) < cn then

d(θn−1 ◦ · · · ◦ θ21(x), θn−1 ◦ · · · ◦ θ21(y)) < 2−n.

Consider the equivariant homeomorphisms gn of Y given by

gn = θn1 ◦ · · · ◦ θ21.
Then for y ∈ Y , if gn(y) 6= gn−1(y), we have

d(gn(y), gn−1(y)) ≤ d(gn(y), gn(0 · y)) + d(gn(0 · y), gn−1(0 · y))

+ d(gn−1(0 · y), gn−1(y))

≤ d(gn(y), gn(0 · y)) + d(ζn(0 · y), ζn−1(0 · y)) + 2−n

≤ d(gn(y), gn(0 · y)) + 3 · 2−n + 2−n

≤ 3 · 2−n + 3 · 2−n + 2−n

= 7 · 2−n.
Therefore the sequence gn is uniformly Cauchy and converges to a surjec-

tive equivariant mapping g : Y → Y that is injective on Y \ A. On A, we
have

g(x) = lim gn(x) = lim ζn(x) = lim f ′δ(1) ◦f
′
δ(2) ◦ · · · ◦f

′
δ(n)(x) = f ′1(x) = r(x).

Therefore, g is the desired mapping demonstrating that Q is equivariantly
homeomorphic with M(r;T ). �

Theorem 3.2. Let (Q,α) and (L, γ) be Hilbert cubes with involutions that
are absolute retracts for the category C. If the fixed point sets Qα and Lγ

are homeomorphic and are (inequivariant) Z-sets, then Q and L are equiv-
ariantly homeomorphic.
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Proof. This proof proceeds by using infinite (relative) mapping cylinders
to obtain the necessary control at the fixed point sets. First we set up the
notation we shall need. By Theorem 3.1, we may assume that

Q = M(fα;Qα) = A× I/ ∼,

where A is a Hilbert cube with an involution α′ having fixed point set Qα

and fα : A→ Qα is an equivariant retraction to the fixed point set of α′.
Similarly, we may assume that L = M(fγ ;Lγ) = B × I/ ≈, where B

is a Hilbert cube with an involution γ′ and fixed point set Lγ . Denote
A× {s} ⊆ Q by As, B × {s} by Bs, A× [0, s]/ ∼ by Qs, and B × [0, s]/ ≈
by Ls. So A0 = Q0 = Qα and B0 = L0 = Lγ . Let ωQs : Q → Q and
ωLs : L → L by (x, t) 7→ (x, st). To reduce the multiple subscripts, we shall
set A(n) = A2−n , B(n) = B2−n , Q(n) = Q2−n , and L(n) = L2−n .

Now Q(n) \ int Q(n+ 1) is equivariantly homeomorphic with

MQ
n = M

(
ωQ1/2|A(n) : A(n)→ A(n+ 1);Qα

)
,

so Q is equivariantly homeomorphic with the infinite relative mapping cylin-

der MQ
∞ =

⋃
nM

Q
n (with appropriate scaling of the mapping cylinders’ inter-

val coordinates.) Similarly, L(n)\ int (L(n+ 1) is equivariantly homeomor-
phic with ML

n = M(ωL1/2|B(n) : B(n)→ B(n+1);Lγ), and L is equivariantly

homeomorphic with the infinite reduced mapping cylinder ML
∞ =

⋃
nM

L
n .

By applying Theorem 2.7 to an equivariant homotopy equivalence that
restricts to a homeomorphism of Qα onto Lγ , we get an isovariant homotopy
equivalence, h : Q → L that restricts to a homeomorphism of Qα onto Lγ .
Then we may adjust h by sliding along mapping cylinder coordinates in L
so that h(A(n)) ⊆ B(n) and h(Q(n)) \ int(Q(n+ 1)) ⊆ L(n) \ int(L(n+ 1))
for each n. Applying Theorem 2.7, we may further adjust h so that

(1) h is an equivariant embedding, and h(Q\Qα) is an equivariant Z-set
in L \ Lγ ,

(2) A(n) = h−1(B(n)),
(3) h(A(n) \Qα) is an equivariant Z-set in B(n) \ Lγ , and
(4) h(Q(n) \ (int(Q(n + 1)) ∪ Qα)) is an equivariant Z-set in L(n) \

(int(L(n+ 1)) ∪ Lγ).

As (Q,α) is an absolute retract in C, there is an equivariant retraction
ρ : L → h(Q). By Theorem 2.7, we may assume that ρ is isovariant.
By transferring the mapping cylinder structure of Q to h(Q) and sliding
along the maping cylinder coordinates, we may assume that ρ−1(h(A(n))) =
B(n) and that ρ−1(h(Q(n) \Q(n+ 1))) = L(n) \ L(n+ 1). Moreover, ρ is,
by Theorem 2.7 and sliding, isovariantly homotopic to the identity by a
homotopy Ξ that is stationary on h(Q) and such that Ξ(B(n)× I) ⊆ B(n)
and Ξ(L(n) \ int(L(n+ 1))× I) ⊆ L(n) \ int(L(n+ 1)).

By Lemma 2.10, there is an equivariant closed collar neighborhood C =
c((Q \ Qα) × I) of h(Q \ Qα) in L \ Lγ . Theorem 2.7 allows us to require
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that c restrict to closed collar neighborhoods of h(A(n) \Qα) in B(n) \ Lγ
and of h(Q(n) \ (int(Q(n+ 1)) ∪Qα)) in L(n) \ (int(L(n+ 1)) ∪ Lγ).

By shortening the collar lines as n → ∞, we may extend c to the fixed
point sets as an equivariant embedding of the reduced mapping cylinder
M(id : Q→ Q;Qα).

Let D =
⋃
nB(n). Using Theorem 2.7, approximate ρ|D by an isovariant

embedding ζ : D → c(
⋃
n(A(n)\Qα)×[0, 12))∪Lγ that is the identity on each

h(A(n)). Let ιn denote the inclusion c((A(n) \ Qα) × [0, 12)) ∪ Lγ → B(n),
and set ζn = ιn ◦ ζ|B(n).

Define ηn = ζn+1◦ωL1/2|B(n), and let Z∞ denote the infinite mapping cylin-

der
⋃
nM(ηn;Lγ). Next, reduce each of the mapping cylinders M(ηn;Lγ)

at the complement, B′(n), of the collar c((A(n) \Qα)× [0, 1)) in B(n). We

thus obtain the infinite reduced mapping cylinder Ẑ∞ =
⋃
nM(ηn;B′(n)).

We now produce equivariant homeomorphisms

κ : ML
∞ → Z∞, µ : Z∞ → Ẑ∞, and χ : MQ

∞ → Ẑ∞,

completing the proof.
Let E = c(

⋃
n((A(n)\Qα)× I))∪Lγ , and choose an isovariant homotopy

Θ : D×I → E from ρ|D to ζ that is stationary on Lγ . Because B(n+1)\Lγ
is an equivariant Z-set in ML

n+1\Lγ , the homotopy Λ : (D\Lγ)×I → D\Lγ
from the identity to ζ defined by

Λs(x) =

{
ξ1−2s, if 0 ≤ t ≤ 1/2,

θ2s−1, if 1/2 ≤ t ≤ 1,

may by Theorem 2.7 be approximated in
⋃
n(L(n)\int(L3·2−n−2))\Lγ by an

isotopy Φ of with φ0 = id and φ1|D = ζ that is stationary on
⋃
nB3·2−n−2\Lγ

and extends over Lγ to an isotopy stationary on it.
For each n, φ1 defines, by restriction and reparameterization of the in-

terval coordinates, a homeomorphism κn+1 of L3·2−n−2 \ int(L3·2−n−3) onto
1
2 ·M(ηn;Lγ) ∪M(ηn+1;L

γ) \ int(12 ·M(ηn+1;L
γ)). To obtain a formula,

we use (y, s) to denote the mapping cylinder coordinates in L and [y, s]
to denote mapping cylinder coordinates in M(ηn;Lγ) and in M(ηn+1;L

γ).
Thus, for (y, t) ∈ L3·2−n−2 \ (int(L3·2−n−3) ∪ Lγ), if 2−n−1 ≤ t ≤ 3 · 2−n−2,
κn+1(x, t) = [x, 2n+2t − 1] ∈ M(ηn;Lγ), and if 3 · 2−n−3 ≤ t ≤ 2−n−1 and
φ1(x, t) = (y, u), then κn+1(x, t) = [y, 2n+2u− 1] ∈M(ηn+1) . Taking these
simultaneously gives us the equivariant homeomorphism κ : ML

∞ → Z∞.
Now ηn(B(n)) \ Lγ = ζn+1(B(n + 1)) \ Lγ is an equivariant Z-set in

L(n + 1) \ (L3·2−n−3 ∪ Lγ) and thus is collared in it. It is also a subset of
the (relative) interior in B(n + 1) of the collar c((A(n + 1) \ Qα) × [0, 12 ])
of h(A(n + 1) \ Qα). For each n, choose a collar Kn of ζn(B(n) \ Lγ) in
M(ηn;Lγ) that is contained in c((A(n) \ Qα) × [0, 12)) × (0, 1], where (0, 1]
is the mapping cylinder coordinate of M(ηn;Lγ). Now, by sliding down the
mapping cylinder lines of M(ηn;Lγ) and into Kn+1, we obtain a homeo-
morphism µn of M(ηn;Lγ)∪M(ηn+1;L

γ) onto M(ηn;B′(n))∪M(ηn+1;L
γ)
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that is the identity on (c((A(n) \Qα)× [0, 12 ])× I)∪ (M(ηn+1;L
γ) \Kn+1).

Thus, µn+1 is the identity on M(ηn+1;L
γ)∩µn(M(ηn). Then

⋃
n µn defines

an equivariant homeomorphism µ : Z∞ →
⋃
nM(ηn;B′(n)) = Ẑ∞.

Analogously, let ψn : c(A2−n \Qα× I)∪Lγ → c(A2−n−1 \Qα× I)∪Lγ be
the restriction of ηn. Letting

T∞ =
⋃
n

M(ψn;Lγ) and T̂∞ =
⋃
n

M(ψn; c(A2−n \Qα × {1} ∪ Lγ)),

we find that there is an equivariant homeomorphism ν : T∞ → T̂∞, which
equals Ẑ∞.

Next, we observe that as ψn is the restriction of η ◦ ωL1/2, if we set

ψ =
⋃
n

ψn : E → E,

then ψ is isovariantly homotopic to c◦ωQ1/2◦c
−1|E in E. This is because E is

an isovariant retract of D. (To see this, observe that C ∪Lγ is equivariantly
homeomorphic with M(id : Q→ Q;Qγ), which is equivariantly homeomor-
phic with Q, so the same process that produced ρ produces an isovariant
retraction ρ̂ : L→ C ∪ Lγ that restricts to a retraction of D onto E.)

By Theorem 2.7, ψ is equivariantly homotopic to c ◦ ωQ1/2 ◦ c
−1|E in E.

Let

S∞ =
⋃
n

M
(
c ◦ ωQ1/2 ◦ c

−1|c((A(n)\Qα)×I)∪Lγ ;Lγ
)
.

Then by an argument completely analogous to those above, there is an

equivariant homeomorphism σ : S∞ → T∞. Let τ : MQ
∞ → S∞ be an

equivariant homeomorphism, and set χ = ν ◦ σ ◦ τ : MQ
∞ → T̂∞. Now

χ−1 ◦ µ ◦ κ : ML
∞ → MQ

∞, and thus L is equivariantly homeomorphic with
Q. �

Theorem 3.3. Let α be an involution of a Hilbert cube Q with fixed point
set Qα an absolute retract that has Property Z in Q. Then the following are
equivalent:

(1) Qα is an equivariant strong deformation retract of Q.
(2) Q with the involution α is an absolute retract in the category C of

metric spaces with involutions and equivariant maps.
(3) There is an equivariant homeomorphism h : Q→ Qα× I∞, with the

involution β̄ : Qα × I∞ → Qα × I∞ given by

(x, t1, t2, . . . ) 7→ (x, 1− t1, 1− t2, . . . ).

Proof. That (1) implies (2) is a straightforward exercise. It is a special case
of the equivariant version of Lemma (9.9) of Chapter V of [Bo], reformulated
slightly here as follows. ”Let Y be a compact metric space. Suppose that
X ⊆ Y is closed and an absolute retract and that Y \ X is an absolute
neighborhood retract. Then Y is an absolute neighborhood retract provided
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that X is a deformation retract of a neighborhood in Y .” To see that (3)
implies (1), note that I∞ is β-equivariantly contractible to {0̄}, so Qα× I∞
deformation retracts β̄- equivariantly to its fixed point set Qα×{0̄}, and Q
deformation retracts to Qα. Now Theorem 3.2 shows that (2) implies (3),
since Qα× I∞ is a Hilbert cube ([M, T]) and Qα× I∞ is an absolute retract
in C. �
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