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A2 colored polynomials of
rigid vertex graphs

Wataru Yuasa

Abstract. The Kauffman–Vogel polynomials are three variable poly-
nomial invariants of 4-valent rigid vertex graphs. A one-variable spe-
cialization of the Kauffman–Vogel polynomials for unoriented 4-valent
rigid vertex graphs was given by using the Kauffman bracket and the
Jones-Wenzl idempotent with the color 2. Bataineh, Elhamdadi and
Hajij generalized it to any color with even positive integers. We give
another generalization of the one-variable Kauffman–Vogel polynomial
for oriented and unoriented 4-valent rigid vertex graphs by using the A2

bracket and the A2 clasps. These polynomial invariants are considered
as the sl3 colored Jones polynomials for singular knots and links.

Contents

1. Introduction 355

2. Rigid vertex graphs 356

3. The A2 bracket and some formulas 358

4. The A2 colored Kauffman–Vogel polynomial 363

4.1. Invariants of oriented 4-valent rigid vertex graphs 363

4.2. Invariant of unoriented 4-valent rigid vertex graphs 367

5. Computing the A2 colored Kauffman–Vogel polynomials 369

A computation of [ST(k, l)](m)
m 370

A computation of
[
S̄T(1, 2l)

]
(n,n)

371

References 373

1. Introduction

Kauffman considered an isotopy for embeddings of graphs in the 3-space
in [Kau89]. It is called the vertex isotopy and he proved that the vertex
isotopy for a 4-valent graph is generated by a generalization of the Rei-
demeister moves. Kauffman and Vogel defined polynomial invariants for
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regular vertex isotopy classes of 4-valent graphs in [KauV92]. These poly-
nomial invariants are three-variable generalizations of polynomial invariants
of knots: the Homfly polynomials for oriented knots and the Kauffman
polynomials [Kau90] for unoriented knots. A one-variable specialization of
the Kauffman–Vogel polynomial of a regular vertex isotopy class of an un-
oriented 4-valent graph was given by using the Kauffman bracket and the
Jones-Wenzl idempotents (see, for example, Sect. 4.4 in [KauL94]). For an
unoriented 4-valent graph G, this polynomial is defined by the value of the
Kauffman bracket of a skein element obtained by coloring each edge of G
with 2 and replacing 4-valent vertices by a certain type of skein element.
In [BEH16], Bataineh, Elhamdadi and Hajij generalized the one-variable
Kauffman–Vogel polynomials by changing the coloring from 2 to any even
positive integer 2n. There are many invariants of vertex isotopy classes
of graphs, for example, Kauffman and Mishra [KauM13], Juyumaya and
Lambropoulou [JL09] as an invariant of singular knots, Yamada [Yam89]
as an invariant of spatial graphs, and so on. In [Wu12], Wu showed a re-
lationship between the Kauffman–Vogel polynomial and the MOY graph
polynomial [MOY98]. By using linear skein theory, some invariants of topo-
logical graphs were constructed, for example, in Yokota [Yok96] and Kawa-
goe [Kaw16].

In this paper, we will define one-variable polynomial invariants of the
regular vertex isotopy classes of oriented and unoriented 4-valent graphs.
These polynomial invariants are a skein theoretical generalization of the
one-variable Kauffman–Vogel polynomials. We will construct the A2 col-
ored polynomials using the A2 bracket and the A2 clasps instead of the
Kauffman bracket and the Jones-Wenzl idempotents. These invariants are
generalizations of the colored sl3 Jones polynomials. In fact, the rigid ver-
tex isotopy class of an oriented (resp. unoriented) 4-valent graph G with
no 4-valent vertices is an oriented (resp. unoriented) framed link. In this
case, the A2 colored polynomials of G is the sl3 colored Jones polynomial
of the oriented (resp. unoriented) framed link colored with one-row Young
diagrams of even length (resp. two-row Young diagrams of the same length).

This paper is organized as follows. We introduce the definition of a 4-
valent rigid vertex graph by diagrams on S2 and the generalized Reidemeis-
ter moves in Sect. 2. Next, we define the A2 bracket, the A2 clasps and show
some useful formulas in Sect. 3. In Sect. 4, we define the polynomial invari-
ants of oriented and unoriented 4-valent rigid vertex graphs. In Sect. 5, we
compute these invariants for some 4-valent rigid vertex graphs.

2. Rigid vertex graphs

We will treat diagrammatically regular vertex isotopy classes of embed-
dings of oriented and unoriented 4-valent graphs in S3 through an equiva-
lence class of 4-valent graph diagrams on S2. We briefly explain the geomet-
ric definition of the rigid vertex graphs (see Kauffman [Kau89] for details.)
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(RI): ,

(RII): ,

(RIII): ,

(RIV): , ,

(RV): , .

Figure 1. The Reidemeister moves for 4-valent graph diagrams

The rigid vertex means that the half-edges attaching to the vertex have a
cyclic ordering. An embedding of a 4-valent rigid vertex graphs into S3 is
an embedding of the underlying 4-valent graph into S3 with the following
condition. Each embedded vertex v can be replaced by a small disk Dv in
S3 and the half-edges at v are attached to ∂Dv such that the cyclic ordering
coincides with the orientation of ∂Dv.

We deal with the regular isotopy classes of the above graphs in S3 as dia-
grams on S2 with an equivalence relation generated by Reidemeister moves
(RI) – (RV).

Definition 2.1.

• A 4-valent graph diagram on S2 is an immersion of 4-valent graph
into S2 whose intersection points are only transverse double points
of edges. At each intersection point, two edges are equipped with

crossing data .

• Two 4-valent graph diagrams G and G′ are equivalent if G is related
to G′ by a finite sequence of Reidemeister moves (RI) – (RV) as in
Fig. 2. This equivalence relation is called regular vertex isotopy in
[Kau89].
• An oriented 4-valent graph diagram (see, for example [KauV92]) is

a 4-valent graph diagram whose edges are oriented as one of the
following:

and .

We call equivalence classes of 4-valent graph diagrams 4-valent rigid vertex
graphs.
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3. The A2 bracket and some formulas

We will construct invariants of oriented and unoriented 4-valent rigid
vertex graphs using the linear skein theory corresponding to the quantum
A2 representation. In this section, we introduce the A2 web spaces, the A2

bracket, and the A2 clasps defined by Kuperberg [Kup94, Kup96]. Special
skein elements called the A2 clasps play an important role in construction
of the colored A2 polynomials for 4-valent rigid vertex graphs.

Let ε = (ε1, ε2, . . . , εm) be an m-tuple of signs + or −. Let Dε denote the
unit disk with signed marked points {exp(2π

√
−1/m)j−1 | j = 1, 2, . . . ,m}

on its boundary. The sign of exp(2π
√
−1/m)j−1 is given by εj for j =

1, 2, . . . ,m. A bipartite uni-trivalent graph G is a directed graph such that
each vertex is either trivalent or univalent and the vertices are divided into
the sinks and the sources. A sink (resp. source) is a vertex such that all
edges adjoining to the vertex point into (resp. away from) it. A bipartite
trivalent graph G in Dε is an embedding of a uni-trivalent graph into Dε

such that any vertex v has the following neighborhoods:

v
or +

v
if v is a sink,

v
or − v

if v is a source.

An A2 basis web is the boundary-fixing isotopy class of a bipartite trivalent
graph G in Dε, where any internal face of Dε \G has at least six sides. Let
us denote Bε the set of A2 basis webs in Dε. For example, B(+,−,+,−,+,−)
has the following A2 basis webs:

+

−+

−
+ − ,

+

−+

−
+ − ,

+

−+

−
+ − ,

+

−+

−
+ − ,

+

−+

−
+ − ,

+

−+

−
+ − .

The A2 web space Wε is the Q(q
1
6 )-vector space spanned by Bε. A tangled

trivalent graph diagram in Dε is an immersed bipartite uni-trivalent graph
in Dε whose intersection points are only transverse double points of edges

with crossing data or . Tangled trivalent graph diagrams G

and G′ are regularly isotopic if G is obtained from G′ by a finite sequence of
boundary-fixing isotopies and Reidemeister moves, see Figure 2, with some
direction of edges.

Tangled trivalent graphs in Dε are regular isotopy classes of tangled triva-
lent graph diagrams in Dε. We denote Tε the set of tangled trivalent graphs
in Dε.

Definition 3.1 (The A2 bracket [Kup96]). We define a Q(q
1
6 )-linear map

〈 · 〉3 : Q(q
1
6 )Tε →Wε by the following.

•
〈 〉

3
= q

1
3

〈 〉
3
− q−

1
6

〈 〉
3
,

•
〈 〉

3
= q−

1
3

〈 〉
3
− q

1
6

〈 〉
3
,
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(R1’): ,

(R2): ,

(R3): ,

(R4): , .

Figure 2. The Reidemeister moves for tangled trivalent
graph diagrams

•
〈 〉

3
=
〈 〉

3
+
〈 〉

3
,

•
〈 〉

3
= [2]

〈 〉
3
,

•
〈
G t

〉
3

= [3] 〈G〉3,

where [n] = q
n
2 −q−

n
2

q
1
2−q−

1
2

is a quantum integer.

We remark that this map is invariant under the Reidemeister moves for
tangled trivalent graphs.

We next consider the A2 web space Wn++n− = W(+,+,...,+,−,−,...,−). The
n marked points with sign + lie in the right side and the n marked points

with sign − in left side. We define A2 clasps
n ∈ Wn++n− inductively

by the following.

Definition 3.2. (The A2 clasps)

1
=

1 ∈W1++1−

n
=

〈
n−1
1

〉
3

− [n− 1]

[n]

〈
n−1 n−1n−2

1 11

1 1

〉
3

∈Wn++n−(1)

A strand decorated by a nonnegative integer n means n parallelization

of the strand. For example,
n

= ···

}
n ,

n
= n

{

··· , and

kl
=

···

···

···

···
···

kl {{
.

A2 clasps have the following properties.

Lemma 3.3 (Properties of A2 clasps). For any positive integer n,
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•
〈

n n
〉
3

=
n

,

•
〈

1
n−k−2
k

〉
3

= 0 (k = 0, 1, . . . , n− 2).

We also define the A2 clasp of type (n,m) according to Ohtsuki and
Yamada [OY97].

Definition 3.4 (the A2 clasp of type (n,m)).

〈
mm

nn 〉
3

=

min{m,n}∑
k=0

(−1)k
[
n
k

][
m
k

][
n+m+1

k

]〈
mm

nn n−k

m−k

k k

〉
3

where [
n

k

]
=

[n]!

[k]! [n− k]!
=

{n}!
{k}!{n− k}!

for k ≤ n.

Lemma 3.5 (Property of A2 clasps of type (m,n)).〈
1
n−1
m−1

〉
3

= 0.

We use the following graphical notations to represent certain A2 webs.

Definition 3.6. For positive integers n and m,

n n
m

m

∈Wn++m++n−+m−

is defined as follows:
n n

= ··· ······ ∈ Wn++1++n−+1− for m = 1,

n n
m

m

=
n

m−1

m−1

n n
form > 1. We also define

n n
m

m

∈Wn++m−+n−+m+

in the same way.

Definition 3.7. For a positive integer n,

nn

n

∈Wn++n++n+

is defined as follows: for n = 1,
nn

n

= n−1 n−1

n−1

11

for

n > 1. We also define
nn

n

∈Wn−+n−+n− in the same way.
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We sometimes omit orientations of A2 webs when the orientations obvi-
ously turn out from the previous A2 webs.

We review some formulas for the A2 bracket.

Lemma 3.8 ([Yua17]).

(1) n
n

n

m1

m1

m2

m2

= n n

m1+m2

m1+m2

,

(2) n

n

= n n

n

n

,

(3)
m

n
m

=
m

n
m

,

(4)
〈

n

1 〉
3

= n
1 +

∑n−1
i=0

n−i−1
1
i ,

(5)

〈
n+m

m

n
m

〉
3

=

〈
n+m

m

n
m

〉
3

,

(6)

〈
n n

n

〉
3

=

〈
n n

n

〉
3

.

The above equations also hold for the opposite orientations.

Lemma 3.9. For k = 0, 1, . . . , n,

(1)
〈

n k

n−k

〉
3

= q
k(n−k)

3

〈
n
〉
3

and
〈

n k

n−k

〉
3

= q−
k(n−k)

3

〈
n
〉
3
,

(2)
〈 n

n−k

k

〉
3

= [n+1][n+2]
[n−k+1][n−k+2]

〈 n−k 〉
3
,

(3)
〈

n

〉
3

= q
n2+3n

3

〈 n 〉
3
,
〈

n

〉
3

= q−
n2+3n

3

〈 n 〉
3
.

Proof. It is easy to prove (1)–(3). See, for example, [OY97]. �

Lemma 3.10.

(1)
〈 n

n

n

n

〉
3

= (−1)nq−
n2

6

〈 n

n

n

n

〉
3

and
〈 n

n

n

n

〉
3

= (−1)nq
n2

6

〈 n

n

n

n

〉
3
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(2)
〈

n

n

n

〉
3

= (−1)nq−
n2+3n

6

〈
n

n

n

〉
3

and
〈

n

n

n

〉
3

= (−1)nq
n2+3n

6

〈
n

n

n

〉
3
.

The above equations also hold for the opposite orientations.

Proof. (1) is derived by Lemma 3.5 and the colored A2 skein relation in
[Yua17] (see Theorem 5.1 in Sect. 5). We only prove the first equation of
(2) by induction. It is proven by straightforward calculation for n = 1. Set

Cn = (−1)nq−
n2+3n

6 ,

〈
n

n

n

〉
3

=
〈

n

n−1

n−1

〉
3

= C1

〈
n

n−1

n−1

〉
3

= C1q
− 2

3
(n−1)

〈
n

n−1

n−1

〉
3

= C1q
− 2

3
(n−1)(−q

1
6 )n−1

〈
n

n−1

n−1

〉
3

= C1q
− 2

3
(n−1)(−q

1
6 )n−1Cn−1

〈
n

n−1

n−1

〉
3

= C1q
− 2

3
(n−1)(−q

1
6 )n−1Cn−1(−q

1
6 )n−1

〈
n

n−1

n−1

〉
3

The last equation is easily derived by using the A2 skein relation n−1 times
at the crossing. We applied the following calculation to the second line of
the above equation.

〈 n−1

n−1

〉
3

=
〈 n−1

n−2

〉
3

= q−
1
3

〈 n−1

n−2

〉
3
− q

1
6

〈 n−1

n−2

〉
3

= −q
1
6

〈 n−1

n−2

1

1

〉
3

= · · · = (−q
1
6 )n−2

〈 n−1

n−2
〉
3
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= (−q
1
6 )n−1

〈
n−1
1

〉
3

+ ((−q
1
6 )n−2q−

1
3 [2] + (−q

1
6 )n−1)

〈
n−2

1 1

〉
3

= (−q
1
6 )n−1

〈
n−1
1

〉
3
− (−q

1
6 )n−1(q−1)

〈
n−2

1 1

〉
3
.

We can confirm that the coefficient turns out to be Cn = (−1)nq−
n2+3n

6

and the A2 web in the last term is the same to
〈

n

n

n

〉
3

by definition.

�

4. The A2 colored Kauffman–Vogel polynomial

In this section, we will give the definitions of invariants of oriented and
unoriented 4-valent rigid vertex graphs using clasped A2 webs. These in-
variants are a generalization of Kauffman–Vogel polynomials. Kauffman and
Vogel defined three variables polynomial invariants of 4-valent rigid vertex
graphs. A one-variable specialization of the Kauffman–Vogel polynomial
was given by using the Kauffman bracket and the Jones-Wenzl idempotents
(see Chapter 4.3 in [KauL94]). The one variable Kauffman–Vogel polyno-
mial was generalized by Elhamdadi and Hajij [EH17b]. This polynomial is
colored by positive even integers. Our invariants, the A2 colored Kauffman–
Vogel polynomials, for oriented and unoriented 4-valent rigid vertex graphs
are an A2 version of the colored one-variable Kauffman–Vogel polynomials.
The colored one-variable Kauffman–Vogel polynomial of a framed link with
an even color 2n coincides with the colored Jones polynomial of it with the
color 2n. The A2 colored Kauffman–Vogel polynomial of an oriented (resp.
unoriented) framed link with color 2n (resp. (n, n)) coincides with the col-
ored sl3 Jones polynomials of it colored with a Young diagram (2n, 0) (resp.
(n, n)).

4.1. Invariants of oriented 4-valent rigid vertex graphs. Let G be
an oriented 4-valent rigid vertex graph diagram.

Definition 4.1. We define [G]2n by the following rules:

(1) [ ]2n =
〈

2n
〉
3
,

(2)

[ ]
2n

=

〈
2n2n

2n2n
〉
3

and

[ ]
2n

=

〈
2n2n

2n2n
〉
3

,

(3)

[ ]
2n

=

〈
2n2n

2n2n

n n

nn

nn

〉
3

and

[ ]
2n

=

〈
2n2n

2n2n
n

n

n n

〉
3

.
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Theorem 4.2. [G]2n is invariant under the Reidemeister moves (RI) –
(RV).

Lemma 4.3.

•

〈 n

n

n

n

〉
3

= (−1)nq
n2+3n

6

〈
n

n

n

n

〉
3

=

〈 n

n

n

n

〉
3

•

〈 n

n

n

n

〉
3

= (−1)nq−
n2+3n

6

〈
n

n

n

n

〉
3

=

〈 n

n

n

n

〉
3

Proof. By using the Reidemeister moves for tangled trivalent graph dia-
grams and Lemma 3.10 (2),

〈
n

n

n

n

〉
3

=

〈
n n

n n

〉
3

=

〈 〉
3

= (−1)nq−
n2+3n

6

〈 〉
3

= (−1)nq−
n2+3n

6

〈 n

n

n

n

〉
3

.

The other identities are also proven in the same way. �

Proof of Theorem 4.2. The invariance under (RI) – (RIV) is guaranteed
by the invariance of A2 webs under the Reidemeister moves (R1) – (R4) for
tangled trivalent graph diagrams. Thus we show the invariance under the
first move of (RV):[ ]

2n
=

[ ]
2n

,
[ ]

2n
=

[ ]
2n

, and
[ ]

2n
=

[ ]
2n

.

Other cases can be obtained by changing the orientation of the edges or the
over/under information at the crossing points in the above diagrams. These
cases can be proven in the same way as the proof of the above equations.
Therefore, we only show the above three equations. Let us denote the first

equation of (2) in Lemma 3.10 by Cn = (−1)nq−
n2+3n

6 .

[ ]
2n

=

〈
2n2n

2n2n

n n

〉
3

=

〈
n n

〉
3

=

〈
n n

〉
3
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= (q
n2

3 )2(q−
n2

3 )2

〈
n n

〉
3

=

〈
n n

〉
3

= CnC
−1
n

〈
n n

〉
3

=
[ ]

2n
.

We used Lemma 3.9 (1) substituting n for 2n and k for n in the second line
of the above identities.

[ ]
2n

=

〈
2n2n

2n2n

n n

n n

〉
3

=

〈
n n

n n

〉
3

= q
n2+3n

3 q−
n2+3n

3

〈
n n

n n

〉
3

= (q
n2

3 )2(q−
n2

3 )2

〈
n n

n n

〉
3

=

〈
n n

n n

〉
3

=

〈
2n2n

2n2n

n n

n n

〉
3

=
[ ]

2n
.

We used Lemma 3.9 (1), (3) and Lemma 4.3 in the second line.

[ ]
2n

=

〈
2n2n

2n2n

n nn
n

〉
3

=

〈
n nn

n

〉
3

= q
n2+3n

3 q−
n2+3n

3

〈
n n

〉
3

=

〈
n n

〉
3

= (q
n2

3 )2(q−
n2

3 )2

〈
n n

n

n

〉
3

=
[ ]

2n
.

�

Proposition 4.4.

• We can also define [G]
(k)
2n by replacing Definition 4.1 (3) with
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(3-k)

[ ](k)
2n

=

〈
2n2n

2n2n

2n−k 2n−k

kk

kk

〉
3

and

[ ](k)
2n

=

〈
2n2n

2n2n
n

n

n n

〉
3

,

for k = 0, 1, . . . , 2n. We note that the definition (3-n) agrees with
Definition 4.1 (3).

• If G is a singular link, that is, all 4-valent vertices of G are ,

then there is no need to define the bracket for . In this case, we

can define the invariant for any positive integer m and 0 ≤ k ≤ m
by replacing Definition 4.1 (3) by

(3-k)’

[ ](k)
m

=

〈
mm

mm

m−k m−k

kk

kk

〉
3

.

We denote this invariant for a singular link G by also [G](k)m . This
invariant is considered the sl3 colored Jones polynomials for singular
links.

Proof. We only have to show[ ](k)
m

=

[ ](k)
m

,
[ ](k)

m
=

[ ](k)
m

.

It is proved in a similar way to the proof of Theorem 4.2 as follows.

[ ](k)
m

=

〈
mm

mm

m−k m−k

〉
3

=

〈
m−k m−k

〉
3

= (q
k(m−k)

3 )2(q−
k(m−k)

3 )2

〈
m−k m−k

〉
3

=

〈
m−k m−k

〉
3

= CkC
−1
k

〈
m−k m−k

〉
3

=
[ ](k)

m
.

[ ](k)
m

=

〈
mm

mm

k k

k k

〉
3

=

〈
k k

k k

〉
3
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= q
(m−k)2+3(m−k)

3 q−
(m−k)2+3(m−k)

3

〈
k k

k k

〉
3

= (q
k(m−k)

3 )2(q−
k(m−k)

3 )2

〈
k k

k k

〉
3

=

〈
mm

mm

k k

k k

〉
3

=
[ ](k)

m
.

We used Lemma 3.9 (1), (3) and Lemma 4.3 in the second line. �

4.2. Invariant of unoriented 4-valent rigid vertex graphs. For un-
oriented 4-valent rigid vertex graph, we will define the invariant using the
colored trivalent graphs. Firstly, we represent two types of clasped A2 web
using colored trivalent graphs with white and black vertices. In general, a
diagrammatic expression of a colored trivalent graph for a A2 web is given
by Kim [Kim06].

We denote
nn

nn
by

n
and

nn

nn
by

n
.

Definition 4.5. Let n be a nonnegative integer. For 0 ≤ i ≤ n, we define
two types of trivalent vertices as follows.

n

n

i
is defined by

n

n
n−i

i

i

,

n

n

i
by

n

n
n−i

i

i

and
n

n

i
is defined by

n

n
n−i

i

i

,

n

n

i
by

n

n
n−i

i

i

Let Ḡ be an unoriented 4-valent rigid vertex graph diagram.

Definition 4.6. We define a polynomial
[
Ḡ
]
(n,n)

by the following rules:

(1) [ ](n,n) =
〈

n
〉
3
,

(2)

[ ]
(n,n)

=

〈
nn

nn 〉
3

,

(3)

[ ]
(n,n)

=

〈
nn

nn n

n

nn

〉
3

+

〈
nn

nn n

n

nn

〉
3

.

Theorem 4.7.
[
Ḡ
]
(n,n)

is invariant under the Reidemeister moves (RI) –

(RV).
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Proof. We show the invariance under the Reidemeister move (RV).

〈
nn

nn n

n

nn

〉
3

=

〈
n nn

n

〉
3

=

〈
n nn

n

〉
3

=

〈
n n

〉
3

= ((−1)nq
n2

6 )2((−1)nq−
n2

6 )2

〈
n n

n

n

〉
3

=

〈
nn

nn n

n

nn

〉
3

The above calculation is similar to the final calculation of the proof of The-
orem 4.2. We used Lemma 3.10 (1) in the second line. In the same way, we
can show

〈
nn

nn n

n

nn

〉
3

=

〈
nn

nn n

n

nn

〉
3

.

These two identities imply

〈
nn

nn n

n

nn

〉
3

=

〈
nn

nn n

n

nn

〉
3

and

〈
nn

nn n

n

nn

〉
3

=

〈
nn

nn n

n

nn

〉
3

.

Consequently,[ ]
(n,n)

=

〈
nn

nn n

n

nn

〉
3

+

〈
nn

nn n

n

nn

〉
3

is invariant under the Reidemeister move (RV). �
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5. Computing the A2 colored Kauffman–Vogel polynomials

We define the oriented 4-valent rigid vertex graph ST(k, l) and the unori-
ented 4-valent rigid vertex graph S̄T(k, l) as follows:

ST(k, l) = · · ·

k vertices

· · ·

l crossings

,

S̄T(k, l) = · · ·

k vertices

· · ·

l crossings

,

Elhamdadi and Hajij computed the one-variable Kauffman–Vogel invari-
ant for the Kauffman bracket of S̄T(k, l) in [EH17a]. We only compute the
one-variable Kauffman–Vogel invariant for the A2 bracket in easy cases.

We use the following formulas to calculate the invariants for some exam-
ples. Let us denote a q-Pochhammer symbol by

(q)k =
k∏

l=1

(1− ql)

and a q-binomial coefficient by(
n

k

)
q

=
(q)n

(q)k(q)n−k

for k ≤ n. We also define a q-multinomial coefficient as(
n

n1, n2, . . . , nm

)
q

=
(q)n

(q)n1(q)n2 · · · (q)nm

,

where n1, n2, . . . , nm are nonnegative integers such that

n1 + n2 + · · ·+ nm = n.

Theorem 5.1 ([Yua17, Theorem 3.11]). Let n be a positive integer.

(1)

〈
nn

nn 〉
3

=
n∑

k=0

(−1)kq
2n2−6nk+3k2

6

(
n

k

)
q

〈
nn

nn

n−k n−k

kk

kk

〉
3

,

(2)

〈
nn

nn 〉
3

=

n∑
k=0

(−1)kq
−2n2+3k2

6

(
n

k

)
q

〈
nn

nn

n−k n−k

kk

kk

〉
3

,

(3)

〈
nn

nn

n

n 〉
3

=
n∑

k=0

〈
nn

nn n−k

n−k

k k

〉
3

,
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(4)
〈 n

n

n n
〉
3

= [n+ 1]
〈

n
〉
3
,

(5)
〈

n
〉
3

=
[n+ 1] [n+ 2]

[2]
∅.

Theorem 5.2 ([Yua17, Theorem 3.17]).〈
n

n

· · ·
l full twists n

n 〉
3

= q−
2l
3
(n2+3n)

∑
0≤kl≤···≤k1≤n

qn−klq
∑l

i=1(k
2
i+2ki)

× (q)n
(q)kl

(
n

k′1, k
′
2, . . . , k

′
l, kl

)
q

〈
nn

nn
kl

kl

n−kl n−kl

〉
3

,

where ki, k
′
i are integers such that

k0 = n, k′i+1 = ki − ki+1 for i = 0, 1, . . . , l − 1.

Theorem 5.3. [Yua17, Theorem 4.2]

〈
m−lm−k

n−ln−k

k l

m

n 〉
3

=
∑min{k+l,n,m}

t=max{k,l}
[nt][

m
t ][tk][

t
l][

n+m−t+2
n+m−k−l+2]

[nk][
m
k ][nl ][

m
l ]

〈
m−lm−k

n−ln−k
t−k t−l

m−t

n−t 〉
3

These formulas work for computations of the one-variable Kauffman–

Vogel polynomials for A2. As easy examples, we compute [ST(k, l)](m)
m (see

Proposition 4.4) and
[
S̄T(1, 2l)

]
(n,n)

.

A computation of [ST(k, l)](m)
m . From Theorem 5.1(4) and Lemma 3.8(6),[ ](m)

m

=

〈 mm

mm

mm

mm

〉
3

=

〈 mm

mm

mm

mm

〉
3

= [m+ 1]

〈 mm

mm

〉
3

= [m+ 1]

[ ](m)

m

.

We obtain [ST(k, l)](m)
m = [m+ 1]k−1 [ST(1, l)](m)

m . By using Lemma 3.10(2)

and Lemma 3.8(6), [ST(1, l)](m)
m = (−1)lmq−

l(m2+3m)
6 [m+ 1]. Therefore,

[ST(k, l)](m)
m = (−1)lmq−

l(m2+3m)
6 [m+ 1]k .
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A computation of
[
S̄T(1, 2l)

]
(n,n)

. We prepare an easy lemma for col-

ored trivalent graphs.

Lemma 5.4. For 0 ≤ i ≤ n,〈 n

n

n

n
i

〉
3

=

〈 n

n

n

n
i

〉
3

and

〈 n

n

n

n
i

〉
3

=

〈 n

n

n

n
i

〉
3

.

Proof. Thus Lemma follows from〈
ii

ii

ii

ii

〉
3

=

〈
ii

ii

ii

ii
〉
3

=

〈
ii

ii

〉
3

.

The first equation is obtained by applying Theorem 5.1 (1) and (2) to the
center tangle. We expand the clasp of type (i, i) in the center tangle by
using Definition 3.4 and use Lemme 3.9 (1) and (3). Thus, we obtain the
second equation. �

As in the same computation to the proof of Theorem 4.7, we can see〈
n

nn

n

n

〉
3

= q−
2n2+3n

3

〈
n

nn

n

n

〉
3

and 〈
n

nn

n

n

〉
3

= q−
2n2+3n

3

〈
n

nn

n

n

〉
3

The above equations and Theorem 5.2 derives:〈
. . .

2l crossings
n

n

n

n n

n

nn

〉
3

= q−
2l
3
(2n2+3n)

〈
. . .

2l crossings

n

n

nn

n

n

〉
3

= q−2l(n
2+2n)

∑
0≤kl≤···≤k1≤n

qn−klq
∑l

i=1(k
2
i+2ki)

× (q)n
(q)kl

(
n

k′1, k
′
2, . . . , k

′
l, kl

)
q

〈
n

n

nn

n

n

kl

kl

〉
3

.
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In the same way, we obtain

〈
. . .

2l crossings
n

n

n

n n

n

nn

〉
3

= q−2l(n
2+2n)

∑
0≤kl≤···≤k1≤n

qn−klq
∑l

i=1(k
2
i+2ki)

× (q)n
(q)kl

(
n

k′1, k
′
2, . . . , k

′
l, kl

)
q

〈
n

n

nn

n

n

kl

kl

〉
3

.

The closure of A2 webs appearing on the right-hand side of the above two
equations are the same planar web with the opposite orientation each other
by Lemma 5.4. Therefore, these webs have the same value. We compute the
value of the closure. For 0 ≤ kl ≤ n,

〈
n

n

nn

n

n

kl

kl

〉
3

=

〈
n

n

n n

n

n
n−kl
n−kl

kl

kl

〉
3

=

〈
n nkl kl

〉
3

=
n∑

s=0

(−1)s
[
n
s

]2[
2n+1

s

]〈
n−s
n−s

n nkl kl

〉
3

=
n∑

s=0

(−1)s
[
n
s

]2[
2n+1

s

]
min{n−s+kl,n}∑

t=max{n−s,kl}

[
n
t

]2[ t
kl

][
t

n−s
][

2n−t+2
kl+n−s−t

][
n
kl

]2[ n
n−s
]2

〈 t

n n
t

〉
3


=

∑
n−kl≤n−s≤n

(−1)s

[
n
s

][
n+2
kl−s

][
2n+1

s

][
n
kl

]〈 n

n 〉
3
.



A2 COLORED POLYNOMIALS OF RIGID VERTEX GRAPHS 373

We used Definition 3.4 in the third equation, Theorem 5.3 in the fourth
equation, and Lemma 3.5 in the last equation. We remark that

〈
n

n 〉
3

=
[n+ 1]2 [2n+ 2]

[2]

(see, for example, Lemma 5.6 in [OY97]). Consequently,[
S̄T(1, 2l)

]
(n,n)

= 2q−2l(n
2+2n)

∑
0≤kl≤···≤k1≤n

qn−klq
∑l

i=1(k
2
i+2ki)

(q)n
(q)kl

(
n

k′1, k
′
2, . . . , k

′
l, kl

)
q

×

 ∑
0≤s≤kl

(−1)s

[
n
s

][
n+2
kl−s

][
2n+1

s

][
n
kl

]〈 n

n 〉
3


= 2q−2l(n

2+2n)
∑

0≤s≤kl≤···≤k1≤n
(−1)sqn−klq

∑l
i=1(k

2
i+2ki)qs(n−kl)−klq

s2+3s
2

× (q)n
(q)kl

(
n

k′1, k
′
2, . . . , k

′
l, kl

)
q

(
n
s

)
q

(
n+2
kl−s

)
q(

2n+1
s

)
q

(
n
kl

)
q

〈
n

n 〉
3
.

Acknowledgment. The author would like to express his gratitude to his
adviser, Hisaaki Endo, for his encouragement.

References

[BEH16] Bataineh, Khaled; Elhamdadi, Mohamed; Hajij, Mustafa. The colored
Jones polynomial of singular knots. New York J. Math. 22 (2016), 1439–1456.
MR3603072, Zbl 1357.57029, arXiv:1602.08628.

[EH17a] Elhamdadi, Mohamed; Hajij, Mustafa. Foundations of the colored Jones
polynomial of singular knots. Preprint, 2017. arXiv:1705.02446.

[EH17b] Elhamdadi, Mohamed; Hajij, Mustafa. Pretzel knots and q-series. Os-
aka J. Math. 54 (2017), no. 2, 363–381. MR3657236, Zbl 1373.57030,
arXiv:1512.00129.
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