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A dyadic Gehring inequality in spaces of
homogeneous type and applications

Theresa C. Anderson and David E. Weirich

Abstract. We state a version of Gehring’s self improvement Theorem
for reverse Hölder weights which is valid for dyadic cubes over spaces of
homogeneous type and explore some of the consequences and applica-
tions.
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1. Introduction

Gehring’s Theorem is a classical result in harmonic analysis due to F.
W. Gehring in [Geh73] which gives a remarkable partial reversal of the
decreasing nature of the reverse Holder weight classes. Precisely, for 1 <
p < ∞, we say that a weight (nonnegative locally integrable function) w

Received June 13, 2017.
2010 Mathematics Subject Classification. 42B35.
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belongs to the Reverse Hölder p class if there exists a constant C so that for
all cubes Q,

(1.1)

(
1

|Q|

ˆ
Q
w(x)p dx

)1/p

≤ C 1

|Q|

ˆ
Q
w(x) dx.

It is a trivial consequence of Hölder’s inequality that if w satisfies (1.1)
for some p, then it likewise satisfies (1.1) for any 1 < q < p. Surprisingly
though, one can show that there exists ε > 0 so that w satisfies (1.1) for p+ε
as well. This is the well known Gehring Theorem, first proved in [Geh73],
and we say it is a self improvement result because we have slightly improved
the exponent. This theorem has many applications such as to the theory of
quasi-conformal mappings. We refer the reader to the references [AsIM09]
and [IM01] for a deeper discussion of the connection between Gehring’s
inequality, elliptic PDE and quasiconformal mappings.

Recent work has gone into proving an analogue to Gehring’s Theorem
in the more abstract setting of spaces of homogeneous type — quasi-metric
spaces equipped with a doubling measure. In [Maa06], Maasalo showed that
the theorem is true in metric spaces with doubling measures provided the
measure satisfies a radial decay property. Then in [AnHT14], Anderson,
Hytönen, and Tapiola showed that the theorem is true for weak Reverse
Hölder classes in general spaces of homogeneous type. What characterizes
these classes as weak is that the domain of integration is enlarged on the
right hand side of the inequality. One would hope that the “strong” result
would soon follow, however in the same paper the authors constructed an
explicit counterexample: a weight over a specific space which satisfies a
inequality analogous to (1.1) for p ≤ p0 but not for p > p0.

In [KatP99], Katz and Pereyra used a decaying stopping time argument
to prove Gehring’s Theorem for weights over the real line. In the current
paper we adapt this method to show that, in spite of the aforementioned
counterexample, a dyadic version of the strong Gehring Theorem does indeed
hold.

Theorem 1.1 (Dyadic Gehring’s Theorem in spaces of homogeneous type).
Let 1 < p < ∞ and w a weight over a space of homogeneous type. If
w ∈ RHd

p then w ∈ RHd
p+ε where RHd

p denotes the class of weights which
satisfy a dyadic reverse Hölder p inequality.

We close this article by expanding on the counterexample and presenting a
simple proof of a sufficient condition for Gehring’s Theorem to hold on spaces
of homogeneous type. This may have been known, but to our knowledge this
is the first time that this sufficient condition has appeared in the literature.
For a different proof under slightly different conditions, see [KoM09]. This
leads to a few more corollaries.

In Section 2 we give the necessary definitions and background. In Sec-
tion 3 we state the main result of this paper, and give the idea of the stopping
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time. In Section 4 we give the proof and in Section 5 we explore some differ-
ences between the reverse Hölder classes in Rn and Spaces of Homogeneous
Type and expand on the counterexample given in [AnHT14], leading to some
new results.
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AMS Spring Sectional Meeting at Michigan State University. The authors
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2. Definitions

In this section we introduce the basic definitions used in this paper. Read-
ers already familiar with these definitions may desire to skip to the next
section.

2.1. Spaces of homogeneous type. Here we introduce the so-called spaces
of homogeneous type, first defined by Coiffman and Weiss in [CoW71].

Definition 2.1 (Quasi-metric space). Let X be a set, and let

ρ : X ×X → R+ ∪ {0}
be a function which satisfies all the axioms of a metric except the triangle
inequality. Instead, there exists a constant κ0 > 0 such that for all x, y, z ∈
X,

(2.1) ρ(x, y) ≤ κ0(ρ(x, z) + ρ(z, y)).

A function ρ satisfying (2.1) is called a quasi-metric and (X, ρ) is called a
quasi-metric space.

As usual, we denote by B(x, r) := {y ∈ X : ρ(x, y) < r} the open ball
centred at x ∈ X of radius r > 0 with respect to ρ.

Definition 2.2 (Geometrically doubling). Let (X, ρ) be a quasi-metric
space. If there exists a constant M ≥ 1 such that for any ball B of ra-
dius r, it is possible to cover B by no more than M balls of radius r/2, we
say that (X, ρ) is geometrically doubling.

Definition 2.3 (Space of homogeneous type). Let (X, ρ) be a quasi-metric
space and let µ be a measure on X which satisfies that:

• The σ-algebra of µ-measurable sets contains both the Borel σ-algebra
as well as all open ρ-balls.
• There exists a constant κ1 > 0 such that for all balls B(x, r) ⊂ X,

(2.2) µ(B(x, 2r)) ≤ κ1 · µ(B(x, r)).

• 0 < µ(B(x, r)) <∞ for every x ∈ X and every r > 0.
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A measure satisfying (2.2) is said to be a doubling measure on X and the
tuple (X, ρ, µ) is called a space of homogeneous type.

Remark 2.4. Remember, “geometric doubling” is a property of the metric,
while “doubling” is a property of the measure. These two similar terms do
not mean the same thing.

Lemma 2.5 (Spaces of homogeneous type are geometrically doubling). Let
(X, ρ, µ) be a space of homogeneous type with µ a nontrivial measure, i.e.,
µ 6≡ 0 and µ 6≡ ∞. Then (X, ρ) is a geometrically doubling metric space.
Moreover the geometric doubling constant M from Definition 2.2 depends
only on κ0 and κ1.

This lemma is due to Coifman and Weiss ([CoW71], pg. 68).

Remark 2.6. The converse of the above lemma is not true. In other words,
one can equip a geometrically doubling quasi-metric space with a measure
which is non-doubling. For example: R with the usual metric and the Gauss-
ian probability measure.

For more on the basic properties of spaces of homogeneous type, see
[HK12], [MacS79], [CoW71].

2.2. Existence of dyadic cubes. Of interest in this paper is the analogue
to the traditional dyadic cubes we are familiar with in Rn that were first
described by Christ in [Chr00] (see also [SW92]). Here we recall the modern
construction due to Hytönen and Kairema, found in [HK12]. Notice that
this construction is independent of measure, i.e., it depends only on the
properties of the quasi-metric. We paraphrase the main result of this paper
below, omitting details which are not necessary for the result of the present
paper.

Theorem 2.7 (Dyadic cubes). Let (X, ρ) be a quasi-metric space which is
geometrically doubling. Then there exists a system (or “lattice”) of dyadic
cubes D = {Qkα : k ∈ Z, α ∈ Ak} where Ak is an indexing set no larger than
countably infinite. These cubes satisfy the following properties:

(1) Cubes are organized into generations. For each k ∈ Z we can de-
fine the kth generation Dk := {Qkα : α ∈ Ak}. Furthermore, each
generation forms a partition of X, i.e.,

X =
⋃

Q∈Dk

Q.

(2) Cubes are mutually nested. If k ≥ ` then for any Q ∈ Dk and
Q′ ∈ D`, either Q ⊆ Q′ or Q∩Q′ = ∅. In the case where Q ⊆ Q′ we
say that Q is a descendant of Q′.

(3) Cubes are comparable to balls. There exist constants 0 < r0 ≤ R0 <
∞ and 0 < δ < 1 independent of Q so that for every Q ∈ Dk there
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is a point z ∈ Q where

B(z, r0δ
k) ⊆ Q ⊆ B(z,R0δ

k).

Remark 2.8. The dyadic lattice D may not be unique, and in general will
not be (with the exception of contrived examples, such as X = {x0}, a single
point). Theorem 2.7 simply gives one such system of cubes. The proof is
constructive, but it is sometimes useful in specific examples to bypass this
construction when a more convenient one is readily available. For example,
if X = R with the usual metric then the standard collection of dyadic
intervals are a dyadic structure, even though the proof may have constructed
a different collection.

It is a simple consequence of properties (1)–(3) of Theorem 2.7 that cubes,
like balls, will satisfy a doubling property with respect to a doubling mea-
sure.

Corollary 2.9 (Parent cubes). Let D be a dyadic lattice for (X, ρ) a ge-
ometrically doubling quasi-metric space. For every Q ∈ Dk, there exists a

unique cube Q̂ ∈ Dk−1 so that Q ⊆ Q̂. We refer to Q̂ as Q’s parent. Fur-
thermore, if (X, ρ, µ) is a space of homogeneous type, there exists a constant
D independant of Q so that

(2.3) µ(Q̂) ≤ D · µ(Q).

for all Q ∈ D.

The proof of Corollary 2.9 follows from a straightforward application of
the properties of dyadic cubes and of the doubling measure and can be found
in the Appendix.

Remark 2.10. We will use the notation D(Q) := {Q′ ∈ D : Q′ ⊆ Q} to
refer to the set of all dyadic cubes which are descendants of Q.

2.3. Weights. We use weights (nonnegative locally integrable functions)
that belong to both the Ap classes and reverse Holder classes.

Notation 2.11. For an integrable function f : X → R and a µ-measurable
set S ⊆ X with µ(S) <∞ we denote by 〈f〉S the mean of f over S, i.e.,

〈f〉S :=
1

µ(S)

ˆ
S
f(x) dµ(x).

Definition 2.12 (Reverse Hölder class). Let (X,µ) be a measure space.
Let 1 < p < ∞, let w be a weight, and let S be a family of subsets of X.
Suppose there exists a constant C such that for all S ∈ S

(2.4) 〈wp〉1/pS ≤ C · 〈w〉S .
Then we say that w belongs to the reverse Hölder p class with respect to S,
written w ∈ RHq(S) and we denote the smallest such C as [w]RHp(S), called
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the reverse Hölder p characteristic of w. In particular, if ρ is a quasi-metric
on X and S is the collection of all open balls, we say w belongs to the
continuous reverse Hölder p class and write w ∈ RHp. Moreover, if (X, ρ, µ)
has a dyadic structure D and S = D then we say w belongs to the dyadic
reverse Hölder p class and write w ∈ RHd

p .

Notice that Definition 2.12 is meaningful whether µ is a doubling measure
or not.

Definition 2.13. We say that w belongs to the class Ap if

[w]Ap := sup
B

 
B
wdµ

( 
B
w1−p′dµ

)p−1
<∞.

There are many different definitions of A∞, some of which are not equiv-
alent in SHT. We cite the following, used quite often in recent work due to
Fujii and Wilson [Fuj78], [Wil87].

Definition 2.14. We say a weight w is in the class A∞ if

(2.5) [w]A∞ = sup
B

1

w(B)

ˆ
B
M(1Bw) dµ <∞,

Here B is the family of balls.
In the Ap definition, one can switch between balls and dyadic cubes easily

by using the sandwich property (3) of the dyadic system of the SHT. How-
ever, with the A∞ and reverse Hölder conditions, this cannot be done! The
fact that a dyadic Gehring inequality (using dyadic cubes) is true, but the
continuous Gehring (using balls) is not crucially displays the problem from
carelessly switching between balls and dyadic cubes.

We have that the reverse Hölder classes decrease in SHT, i.e., RHs ⊂ RHr

for r < s. This can be seen using Hölder’s inequality.
Also, by following the proof in Rn from [Gra09], we have that in SHT if

w ∈ A∞ then w is doubling.
However, the fact in Rn that w ∈ RHp implies that w is doubling is no

longer true and will be crucially alluded to below.

3. Main Result

In this section we give our main result and begin to build up the frame-
work to support the proof. This proof could potentially be reworked in the
terminology of sparse cubes. We chose an approach similar to [KatP99] us-
ing the notation of stopping times. Readers familiar with this terminology
can skip to Section 3.4.

3.1. Gehring’s Theorem. The main theorem of this paper is that Gehr-
ing’s Theorem holds in the dyadic setting for spaces of homogeneous type.
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Theorem 3.1 (Main Result). Let (X, ρ, µ) be a space of homogeneous type
with dyadic lattice D where the Lebesgue Differentiation Theorem holds with
respect to cubes in D. Let 1 < p < ∞ and let w ∈ RHd

p . Then there exists

ε depending only on p, w, κ0 and κ1 such that w ∈ RHd
p+ε.

Remark 3.2. We assume in the above theorem the Lebesgue Differentiation
Theorem (LDT) for SHT holds. A proof of this is claimed in the reference
[Tol04], but the validity of the argument there has recently been called into
question. The issue of LDT in SHT is an intricate one, so as to avoid un-
necessary complications, we assume this as a hypothesis. We briefly address
this comment again at the of the section.

3.2. Decaying stopping time. The proof of Theorem 3.1, which can be
found in Section 4, relies on a decaying stopping time argument. We intro-
duce the idea here. Throughout this section (X, ρ, µ) is assumed to be a
space of homogeneous type, with dyadic structure D.

Let P denote some property about cubes as sets. This property may
depend on any number of parameters including other cubes. For a fixed
cube Q ∈ D, we denote by J (Q) ( D(Q) a collection of subcubes which are
maximal with respect to P. By maximality, we mean that if Q′ ⊆ Q has P,
then no descendant of Q′ will be included in J (Q), regardless of whether it
has P or not. Formally,
(3.1)
J (Q) := {Q′ ∈ D(Q) : Q′ has P and Q′′ does not have P ∀Q′′ ) Q′}.

Primarily, for the purposes of stopping times, we are interested in prop-
erties which relate one cube to another.

Definition 3.3 (Admissible property). Suppose that P is a property about
cubes with respect to another cube. Then we say P is admissible if for all
Q ∈ D, Q does not have P with respect to itself (as a set).

For an admissible property set J0(Q) := {Q}. We now define the collec-
tions Jn(Q) inductively. Let n > 0. Define

Jn(Q) :=
⋃

Q′∈Jn−1(Q)

J (Q′).

The family of collections {Jn(Q)}n≥0 is called the stopping time J for Q.

Definition 3.4 (Decaying stopping time). Let (X, ρ, µ) be a quasi-metric
space equipped with a measure which has dyadic structure D and let J be
a stopping time. We say that J is a decaying stopping time if and only if
there exists 0 < c < 1 such that for every Q ∈ D,

(3.2)
∑

Q′∈J1(Q)

µ(Q′) ≤ cµ(Q).
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Remark 3.5. Iterating 3.2 gives that

(3.3)
∑

Q′∈Jn(Q)

µ(Q′) ≤ cnµ(Q)

provided J is decaying.

3.3. The stopping time Jw. Let us now describe a particular stopping
time. Suppose that w ∈ RHd

p for some 1 < p < ∞. If Q is a cube, we say
that another cube Q′ ⊂ D(Q) has property Pw with respect to Q if either
〈w〉Q′ ≥ λ〈w〉Q or 〈w〉Q′ ≤ λ−1〈w〉Q where λ > 1 is a fixed parameter.
While this property depends on a weight w, a parameter λ and a cube Q,

we only write Pw (as opposed to, say, Pw,λQ , in order to avoid over-cluttered
notation.

Clearly the following lemma is true.

Lemma 3.6. Property Pw is admissible.

Proof. For any cube Q, since λ > 1, 〈w〉Q < λ〈w〉Q and 〈w〉Q > λ−1〈w〉Q.
Thus no cube will ever have property Pw with respect to itself, which implies
admissability. �

We define the stopping time J w for Q as the stopping time generated by
Pw with respect to Q.

3.4. Lemmas. To prove Theorem 3.1 we show the following two lemmas:

Lemma 3.7. If the stopping J w described above is decaying then Theo-
rem 3.1 holds.

Lemma 3.8. The stopping time J w is decaying provided the parameter λ
is chosen large enough.

It is thus sufficient to prove Lemmas 3.7 and 3.8. The following fact will
be useful for both proofs.

Lemma 3.9. Let Q′ ∈ J w(Q). Then 〈w〉Q′ ≤ Dλ〈w〉Q where D is the
constant from Corollary 2.9.

Proof. By the maximality condition for stopping times, since Q′ ∈ J w(Q),

its parent Q̂′ 6∈ J w(Q). This means that λ−1〈w〉Q < 〈w〉Q̂′ < λ〈w〉Q. Thus,

〈w〉Q′ =
1

µ(Q′)

ˆ
Q′
w dµ ≤ 1

µ(Q′)

ˆ
Q̂′
w dµ

≤ D

µ(Q̂′)

ˆ
Q̂′
w dµ = D〈w〉

Q̂′
< Dλ〈w〉Q. �

Corollary 3.10. Suppose Q′ ∈ J wn (Q). Then 〈w〉Q′ ≤ (Dλ)n〈w〉Q.
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Proof. Let Q0 := Q′ ∈ J wn (Q). By definition, there exists Q1 ∈ J wn−1 so

that Q0 ∈ J w(Q1). Continuing on in this fashion, for all 1 ≤ i ≤ n there
exists Qi ∈ J wn−i so that Qi−1 ∈ J w(Qi). With this notation, Qn = Q.
Iterating the result of Lemma 3.9 n times gives that

〈w〉Q′ = 〈w〉Q0 ≤ Dλ〈w〉Q1 ≤ (Dλ)2〈w〉Q2

≤ · · · ≤ (Dλ)n〈w〉Qn = (Dλ)n〈w〉Q. �

The following will also be useful.

Lemma 3.11. For almost every x ∈ X (with respect to the measure µ),
λ−1〈w〉Q ≤ w(x) ≤ λ〈w〉Q for x 6∈ ∪Q′∈Jw(Q)Q

′.

Proof. Let x ∈ Q such that x 6∈ Q′ for all Q′ ∈ J w(Q). Let k0 be Q’s
generation, i.e., Q ∈ Dk0 and define Qkx as the cube belonging to generation
Dk with x ∈ Qkx for k ≥ k0. So Qkx 6∈ J w(Q) for all k ≥ k0, thus by definition
of property Pw,

λ−1〈w〉Q ≤ 〈w〉Qkx ≤ λ〈w〉Q.

By the Lebesgue Differentiation Theorem, the limit as k →∞ of the center
expression goes to w(x) a.e. with respect to the measure µ. �

In the previous proof we used the Lebesgue Differentiation Theorem (a
dyadic version is all that we need to use). A dyadic version is asserted
in [H08]. However, this issue is a bit delicate. We refer to [AlM15] for a
discussion of these matters. To avoid these issues we simply include the
theorem as a hypothesis of Theorem 3.1.

4. Proofs

In this section we present the proofs of Lemmas 3.7 and 3.8, thus estab-
lishing Theorem 3.1.

Proof of Lemma 3.7. Fix λ large, precisely how large to be determined
later. For now it suffices to enforce that λ > 3. For a cube Q ∈ D let J w
be the stopping time for Q. Since the property Pw with respect to Q has
two mutually exclusive stopping conditions, we can split J w(Q) into two
disjoint parts:

J w(Q) = {Q′ ∈ D(Q) : 〈w〉Q′ ≥ λ〈w〉Q} t {Q′ ∈ D(Q) : 〈w〉Q′ ≤ λ−1〈w〉Q}

where by t we mean the disjoint union, i.e., the union of two disjoint sets.

We let {Qλi }i be an enumeration of the subcubes in the first part and {Q1/λ
i }i

be an enumeration of the subcubes in the second part. We then write Q as
the disjoint union of the three subsets

(4.1) Q = Bλ tB1/λ tG
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with “bad parts” Bλ := ∪iQλi and B1/λ := ∪iQ1/λ
i (so called since the

mean is either too large or too small on these parts) and “good part” G :=

Q \ (Bλ ∪B1/λ). It follows from Lemma 3.11 that

λ−1〈w〉Q ≤ w(x) ≤ λ〈w〉Q a.e. x ∈ G.

Suppose that the desired lemma is false, that is, suppose that J w is not
decaying. This would imply that for each 0 < c < 1 we can find a cube
Q ∈ D such that ∑

Q′∈Jw(Q)

µ(Q′) = µ(Q \G) > c · µ(Q)

implying that

(1− c) > µ(G)

µ(Q)
.

In other words, the ratio of the measure of the good part to the measure of
the whole cube can be made arbitrarily small.

Choose Q ∈ D such that µ(G) ≤ µ(Q)/(3λ). Then
ˆ
G
w dµ ≤

ˆ
G
λ〈w〉Q dµ = µ(G) · λ〈w〉Q(4.2)

= µ(G) · λ

µ(Q)

ˆ
Q
w dµ ≤ 1

3

ˆ
Q
w dµ

and
ˆ
B1/λ

w dµ ≤ µ(B1/λ) · λ−1〈w〉Q ≤ λ−1
µ(B1/λ)

µ(Q)

ˆ
Q
w dµ(4.3)

≤ λ−1
ˆ
Q
w dµ <

1

3

ˆ
Q
w dµ.

Inequalities (4.2) and (4.3) together imply that
ˆ
Bλ
w dµ =

ˆ
Q\(G∪B1/λ)

w dµ =

ˆ
Q
w dµ−

ˆ
G
w dµ−

ˆ
B1/λ

w dµ(4.4)

>

ˆ
Q
w dµ− 1

3

ˆ
Q
w dµ− 1

3

ˆ
Q
w dµ =

1

3

ˆ
Q
w dµ.

We can also see that

〈w〉Bλ =
1

µ(Bλ)

∑
i

ˆ
Qλi

w dµ =
1

µ(Bλ)

∑
i

µ(Qλi )〈w〉Qλi(4.5)

≤ 1

µ(Bλ)

∑
i

µ(Qλi )Dλ〈w〉Q = Dλ〈w〉Q
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where in (4.5) we used Lemma 3.9. We use (4.5) and (4.4) to get a lower
bound on the measure of Bλ:

µ(Bλ) =
1

〈w〉Bλ

ˆ
Bλ
w dµ ≥ 1

3〈w〉Bλ

ˆ
Q
w dµ(4.6)

≥ 1

3D〈w〉Q

ˆ
Q
w dµ =

1

3Dλ
µ(Q)

We will now use this lower bound to establish a contradiction. Observe
that ˆ

Q
wp dµ ≥

ˆ
Bλ
wp dµ =

∑
i

ˆ
Qλi

wp dµ

≥
∑
i

1

µ(Qλi )p−1

(ˆ
Qλi

w dµ

)p
(4.7)

=
∑
i

µ(Qλi )〈w〉p
Qλi
≥ λp

∑
i

µ(Qλi )〈w〉pQ(4.8)

= λpµ(Bλ)〈w〉pQ ≥
1

3D
λp−1µ(Q)〈w〉pQ(4.9)

where (4.7) follows from the Hölder inequality, (4.8) by the definition of Bλ,
and (4.9) from (4.6). Dividing both sides by µ(Q) and taking the 1/p power
gives that

(4.10) 〈wp〉1/pQ ≥
(

1

3D
λp−1

)1/p

〈w〉Q.

We thus contradict that w ∈ RHd
p , provided that λ is chosen large enough

so that λ > (3D[w]p
RHd

p
)1/(p−1). �

Remark 4.1. The preceding proof was a proof by contradiction. While we
demonstrated that the decaying constant c does exists, we have no guarantee
on the size of this constant.

Proof of Lemma 3.8. Let Q ∈ D be any cube. We define the nth “good”
and “bad” sets as

Bn(Q) :=
⋃

Q′∈Jwn (Q)

Q′ ; n ≥ 0,

Gn(Q) := Bn−1(Q) \Bn(Q) ; n > 0.

Notice that B0(Q) = Q = tnGn(Q). By the Lemma 3.7, we can choose
λ > 1 sufficiently large to ensure that J w is decaying. So there exists
0 < c < 1 so that

µ(Bn(Q)) ≤ cnµ(Q) ; ∀Q ∈ D.
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Our first goal will be to establish that

(4.11)

ˆ
Gn(Q)

wp dµ ≤ an−1
ˆ
Q
wp dµ

for a constant 0 < a < 1 depending only on p, c, [w]RHd
p
, κ0 and κ1. First,

we consider some properties of G1(Q). We know by Lemma 3.11 that

λ−1〈w〉Q ≤ w(x) a.e. x ∈ G1(Q),

and that

µ(G1(Q)) ≥ (1− c)µ(Q).

Using these two facts, we conclude that
ˆ
G1(Q)

wp dµ ≥
ˆ
G1(Q)

1

λp
〈w〉pQ dµ =

µ(G1(Q))

λp
〈w〉pQ(4.12)

≥ (1− c)µ(Q)

λp
〈w〉pQ ≥

(1− c)µ(Q)

λp[w]RHd
p

〈wp〉Q

=
(1− c)
λp[w]RHd

p

ˆ
Q
wp dµ.

Notice that the domain of integration for the far right hand side of inequality
(4.12) is a subset of the domain of integration of the far left hand side. In
fact, µ(G1(Q)) < µ(Q). Set

(1− a) :=
(1− c)
λp[w]RHd

p

∈ (0, 1).

We observe that this constant a depends only on p, c, [w]RHd
p
, κ0 and κ1.

In particular, we observe that a is independent of Q. We now iterate this
result. We observe (in order to abuse) that

Gn(Q) =
⊔

Q′∈Jwn−1(Q)

G1(Q
′).

This allows us to easily see that
ˆ
Gn(Q)

wp dµ =
∑

Q′∈Jwn−1(Q)

ˆ
G1(Q′)

wp dµ

≥
∑

Q′∈Jwn−1(Q)

(1− a)

ˆ
Q′
wp dµ

= (1− a)

ˆ
Bn−1(Q)

wp dµ.
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With this, we now have thatˆ
Bn(Q)

wp dµ =

ˆ
Bn−1(Q)

wp dµ−
ˆ
Gn(Q)

wp dµ(4.13)

≤
ˆ
Bn−1(Q)

wp dµ− (1− a)

ˆ
Bn−1(Q)

wp dµ

= a

ˆ
Bn−1(Q)

wp dµ.

Since Gn(Q) ⊆ Bn−1(Q), iterating (4.13) n− 1 times gives (4.11).
Fix ε > 0 (determined later). Using what was shown above,

ˆ
Q
wp+ε dµ =

∞∑
n=1

ˆ
Gn(Q)

wp+ε dµ

≤ 〈w〉εQ
∞∑
n=1

(Dλ)nε
ˆ
Gn(Q)

wp dµ(4.14)

≤ 〈w〉εQ
∞∑
n=1

(Dλ)nεan−1
ˆ
Q
wp dµ(4.15)

where in line (4.14) we used Corollary 3.10. From here, we choose ε small
enough so that (Dλ)ε < a−1, which is possible since 0 < a < 1. Then the
sum

∞∑
n=1

(Dλ)nεan−1 =: A <∞.

Therefore, dividing both sides by µ(Q) gives that

〈wp+ε〉Q ≤ A〈w〉εQ〈wp〉Q
≤ A[w]p

RHd
p
〈w〉p+εQ .

Since the constant A depended only on p, w, κ0 and κ1 we can conclude
that w ∈ RHd

p+ε. �

Remark 4.2. By examining the constants in the proof, we can actually see
that ε < 1

[w]
RHdp+ε

−1 .

It is worth noting that the only time the doubling condition on the mea-
sure µ was used was in Lemma 3.9. With this in mind we can state the
following corollary.

Corollary 4.3. Let (X, ρ, µ) be a quasi-metric measure space with µ a mea-
sure which may or may not be doubling and some dyadic structure D. Let
1 < p < ∞ and let w ∈ RHd

p be a weight such that there exists constants
C1 > D so that for all cubes Q ∈ D:

(4.16) 〈w〉Q ≤ C1〈w〉Q̂
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Then there exists ε > 0 such that w ∈ RHd
p+ε. (Recall Q̂ denotes the unique

parent cube of Q.)

Remark 4.4. It is easy to confuse a doubling weight with a doubling mea-
sure. However, these are not the same thing. there exist weights which
are not doubling over measures which are, and non-doubling measures can
support doubling weights. In light of this, it is important to take care when
using this terminology.

5. Consequences and applications

We have shown that in any space of homogeneous type a dyadic strong
Gehring does hold, but from the counterexample in [AnHT14], a strong
continuous Gehring using the metric balls does not hold. It turns out that
the key property that this counterexample lacks is doubling of the measure
w. Recall that the weight w is doubling if

w(2B) ≤ Cw(B)

for all balls, and that w is dyadic doubling if

w(Q̂) ≤ Cw(Q)

for all cubes Q ∈ D. We use the notation Db to indicate the class of doubling
weights.

In [KaiLPW15], the authors prove that

(5.1) RHp ∩Db =

J0⋂
j=1

(
RHp(D(j)) ∩Db(D(j))

)
.

where they use J0 distinct dyadic systems in an SHT. In other words, for
doubling weights, the continuous reverse Hölder class is equal to the inter-
section of finitely many dyadic reverse Hölder classes that are also dyadic
doubling. In Rn note that RHp implies doubling (continuous), but dyadic
RHp does not necessarily imply dyadic doubling. This is no longer true in
an SHT. Even though we have shown that dyadic Gehring does hold in any
SHT, this does not imply that continuous Gehring does.

The counterexample to strong continuous Gehring in [AnHT14] is in fact
not doubling. Since the counterexample is RHp for certain values of p, we
must no longer have that RHp implies doubling, as is true in Rn. This is an
important distinction between Rn and SHT.

We will now show directly that the counterexample is not doubling. We
briefly recall the details below but refer the reader to [AnHT14] as well.

Theorem 5.1. The counterexample in [AnHT14] is not doubling. Explicitly,
we show that there exists a sequence of balls Bj such that w(2Bj) ≥ 4 for
all j but that w(Bj)→ 0 as j →∞.
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Proof. We first recall some details from the counterexample. Define a met-
ric space (X, d) as follows. Take R2 with the l∞ metric so the balls are
actually squares. Let our space X be the “haircomb space” defined as
X = A ∪

⋃
j∈NWj with

A = {(u, 0) : u ∈ R}, U =

{(
u,

1

2
u

)
: u ∈ (0, 1]

}
,

V =

{
(1, v) : v ∈

[
1

2
, 1

]}
,

and Wj := U ∪ V + (10j, 0) = Uj ∪ Vj .

· · ·

· · ·

Figure 1. The haircomb counterexample. Above: Zoomed
in. Below: Zoomed out to show repetition.

We use the l∞ metric and the arc-length measure. The weight fh is
defined as

f(x) =


1, if x ∈ A
εj , if x ∈ Vj

min{1, εjg(u)}, if x = (10j + u, 12u) ∈ Uj
.

where εj → 0+, εj ≤ 1, h(t) := t−α log−1(e/t) for some 0 < α < 1 and
g(t) = max{h(t), 1}. Note fh ≤ 1 everywhere.

Recall that the authors of [AnHT14] showed that this weight was in RHp

if and only if p ≤ 1/α, which implies the failure of the strong Gehring
inequality.

Now we construct the sequence of balls Bj . The idea is to have Bj pick
up mass only on one of the comb teeth, but to have 2Bj pick up a sizable
mass of the line A which is more heavily weighted. Since the measure of the
comb teeth depends on εj which heads to 0, the measure of each subsequent
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Bj will decrease. Let Bj be the ball centered at (10j + 1, 1/2) with radius
1/2. Now

fh(2Bj) =

ˆ
2Bj

fh(x)dµ =

ˆ
A∩Bj

fh(x)dx+

ˆ
Uj

fh(x)du+

ˆ
Vj

fh(x)dv

≥ 4 + εj · 1/2 ≥ 4.

Finally, we show that fh(Bj)→ 0 as j →∞.

fh(Bj) =

ˆ
Bj

fh(x)dµ =

ˆ
Uj∩Bj

fh(x)du+

ˆ
Vj

fh(x)dv

≤
ˆ
Uj∩Bj

suph(u), 1du+ εj · 1/2 ≤ Cαεj

since h(u) is integrable (h ∈ L1[0, 1]), so the integral over Uj is bounded by
a constant Cα. Since εj is chosen such that 1 ≥ εj ≥ 0, εj → 0, we have that
fh(Bj)→ 0.

Therefore, fh is not a doubling weight. �

The failure of doubling in the counterexample led to this simple proof of
this apparently new fact that doubling of w is indeed sufficient for Gehring
in SHT.

Theorem 5.2. Gehring’s inequality holds in Spaces of Homogeneous Type
if w is a doubling weight.

Proof. Let w ∈ RHp. Then we have that w ∈ RHσ
p , the weak reverse

Holder class, that is ( 
B
wq
)1/q

≤ [w]σRHq

 
σB

w

for some σ > κ0 [AnHT14]. Therefore w ∈ RHσ
p+ε by the weak Gehring

inequality in [AnHT14], so we have(
1

µ(B)

ˆ
B
wp+ε

)1/p+ε

≤ C 1

µ(B)

ˆ
σB

w ≤ CDw
1

µ(B)

ˆ
B
w

where we have used in the last step that w(σB) ≤ Dww(B) due to the
doubling of w, and the constant Dw depends on σ and the doubling constant
of w. Thus, w ∈ RHp+ε as was to be shown. �

This theorem provides some counterexamples to well-known and frequent-
ly used relationships between the reverse Holder and the Ap weight classes.
For more discussion on these matters, see also [HPR12].

The following were originally in [CrUN95].

Corollary 5.3. In Rn we have that w ∈ Ap if and only if w ∈ RHs for
some s. This is not true in SHT as there exists a w ∈ RHs such w is not
doubling, so therefore w /∈ A∞, so w /∈ Ap for any p.
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Corollary 5.4. In Rn we have that w ∈ A∞ if and only if w ∈ RH1. Again,
referencing the above corollaries, this is not true in SHT.

6. Appendix

For interested readers we give the proof of Corollary 2.9.

Lemma 6.1 (Doubling for general radii). Let (X, ρ, µ) be a space of homo-
geneous type. If x ∈ X and R > r > 0 then

(6.1) µ(B(x,R)) ≤ κlog2dR/re1 · µ(B(x, r)),

Proof. By the doubling property,

µ((B(x,R)) ≤ κ1 · µ(B(x,R/2))(6.2)

≤ κ21 · µ(B(x,R/4))

≤ · · ·
≤ κn1 · µ(B(x,R · 2−n)).

Choose n so that r/2 ≤ R2−n < r. �

Lemma 6.2 (Distant Balls Lemma). Let x, y ∈ X and set R := ρ(x, y).
Then for all r > 0,

(6.3) µ(B(y, r)) ≤ κ
log2

(
κ0(R+r)

r

)
1 · µ(B(x, r)).

Proof. Let x, y ∈ X and r > 0. Set R = ρ(x, y). We wish to cover the ball
B(y, r) with a ball centered at x. To do this, the radius κ0(R + r) suffices.
To see this, suppose that z ∈ B(y, r). Then

ρ(x, z) ≤ κ0(ρ(x, y) + ρ(y, z))

= κ0(R+ r)

which implies that z ∈ B(x, κ0(R+ r)). Thus,

B(y, r) ⊆ B(x, κ0(R+ r))

µ(B(y, r)) ≤ µ(B(x, κ0(R+ r))

≤ κ
log2

(
κ0(R+r)

r

)
1 · µ(B(x, r))

where the last line follows from Lemma 6.1. �

Proof of Corollary 2.9. Let Q ∈ Dk be a cube, with parent cube Q̂ ∈
Dk−1 Then there exists balls

B1 := B(z1, r0δ
k) ⊆ Q and B2 = B(z2, R0δ

k−1) ⊇ Q̂.
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Therefore,

µ(Q̂) ≤ µ(B2)

≤ κlog2dR0/(r0δ)e
1 · µ(B(z2, r0δ

k))(6.4)

≤ κ
log2

(
κ0(R0δ

k−1+r0δ
k)

r0δ
k

)
1 · κlog2dR0/(r0δ)e

1 · µ(B1)(6.5)

≤ κ
log2

(
κ0(R0δ

k−1+r0δ
k)

r0δ
k

)
1 · κlog2dR0/(r0δ)e

1 · µ(Q)

where (6.5) follows from the Distant Balls Lemma, and (6.4) follows from
doubling for general radii. �
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