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t-Reductions and t-integral closure of
ideals in Noetherian domains

S. Kabbaj, A. Kadri and A. Mimouni

Abstract. This paper studies t-reductions and t-integral closure of
ideals in Noetherian domains. The main objective is to establish satis-
factory t-analogues for well-known results in the literature on reductions
and integral closure of ideals in Noetherian rings. Namely, Section 2 in-
vestigates t-reductions of ideals subject to t-invertibility and localization
in Noetherian domains. Section 3 investigates the t-integral closure of
ideals and its correlation with t-reductions in Noetherian domains of
Krull dimension one. Section 4 studies the t-analogue of Hays’ classic
notion of C-ideal and its correlation to the integral closure.
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1. Introduction

Throughout, all rings considered are commutative with identity. Let R be
a ring and I a proper ideal of R. An ideal J ⊆ I is a reduction of I if
JIn = In+1 for some positive integer n. An ideal which has no reduction
other than itself is called a basic ideal [13, 28]. The notion of reduction
was introduced by Northcott and Rees to contribute to the analytic theory
of ideals in Noetherian (local) rings via minimal reductions. In [13, 14],
Hays investigated reductions of ideals in more general settings of commuta-
tive rings (i.e., not necessarily local or Noetherian); particularly, Noetherian
rings and Prüfer domains. He provided several sufficient conditions for an
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ideal to be basic. For instance, in Noetherian rings, an ideal is basic if and
only if it is locally basic. He also introduced and studied the dual notion
of a basic ideal; namely, an ideal is a C-ideal if it is not a reduction of any
larger ideal. Several results about C-ideals are proved; including the fact
that this notion is local for regular ideals in Noetherian rings.

It is well-known that an element x ∈ R is integral over I if and only if I
is a reduction of I + Rx; and if I is finitely generated, then J ⊆ I ⊆ J if
and only if J is a reduction of I, where J denotes the integral closure of J .
This correlation allowed to prove a number of crucial results in the theory
including the fact that the integral closure of an ideal is an ideal. For a full
treatment of this topic, we refer the reader to Huneke and Swanson’s book
“Integral closure of ideals, rings, and modules” [21].

Let R be a domain, K its quotient field, I a nonzero fractional ideal
of R, and I−1 := (R : I) = {x ∈ K | xI ⊆ R}. The v- and t-closures
of I are defined, respectively, by Iv := (I−1)−1 and It := ∪Jv, where J
ranges over the set of finitely generated subideals of I. The ideal I is a
v-ideal (or divisorial) if Iv = I and a t-ideal if It = I. Under the ideal
t-multiplication (I, J) 7→ (IJ)t the set Ft(R) of fractional t-ideals of R is
a semigroup with unit R. Ideal t-multiplication converts notions such as
principal, Dedekind, Bézout, and Prüfer domains to factorial domains, Krull
domains, GCDs, and PvMDs, respectively. We also recall the w-operation:
for a nonzero fractional ideal I of R, Iw =

⋃
(I : J), where the union is taken

over all finitely generated ideals J of R that satisfy Jv = R; equivalently,
Iw =

⋂
IRM , where M ranges over the set of all maximal t-ideals of R. We

always have I ⊆ Iw ⊆ It ⊆ Iv. We shall be using the v-, t-, and w-operations
freely, and for more details, the reader may consult Gilmer’s book [12] and
also [1, 2, 3, 4, 6, 8, 10, 19, 27, 29, 30].

Let I be a nonzero ideal of R. An ideal J ⊆ I is a t-reduction of I if
(JIn)t = (In+1)t for some integer n ≥ 0. An element x ∈ R is t-integral
over I if there is an equation xn+a1x

n−1+...+an−1x+an = 0 with ai ∈ (Ii)t
for i = 1, ..., n. The set of all elements that are t-integral over I is called
the t-integral closure of I. In [22], the authors investigated the t-reductions
and t-integral closure of ideals with the aim of establishing satisfactory t-
analogues of well-known results, in the literature, on the integral closure of
ideals and its correlation with reductions. Two of their main results assert
that “the t-integral closure of an ideal is an integrally closed ideal which
is not t-integrally closed in general” and “ the t-integral closure coincides
with the t-closure in the class of integrally closed domains.” In [17], the au-
thors investigated ?-reductions of ideals in Prüfer v-multiplication domains
(PvMDs). One of their main results asserts that “a domain has the finite
w-basic ideal property (resp., w-basic ideal property) if and only if it is a
PvMD (resp., a PvMD of t-dimension one).” In [23], the authors investi-
gated t-reductions of ideals in pullback constructions, where the main result
established the transfer of the finite t-basic ideal property to pullbacks in
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line with Fontana-Gabelli’s result on PvMDs [9, Theorem 4.1] and Gabelli-
Houston’s result on v-domains [11, Theorem 4.15]. They also solved an open
problem on whether the finite t-basic and v-basic ideal properties are dis-
tinct; they proved indeed that these two notions coincide in any arbitrary
domain.

This paper studies t-reductions and t-integral closure of ideals in Noe-
therian domains. The main objective is to establish satisfactory t-analogues
for well-known results in the literature on reductions and integral closure
of ideals in Noetherian rings. Namely, Section 2 investigates t-reductions
of ideals subject to t-invertibility and localization in Noetherian domains.
Section 3 investigates the t-integral closure of ideals and its correlation with
t-reductions in Noetherian domains of Krull dimension one. Section 4 stud-
ies the t-analogue of Hays’ classic notion of C-ideal and its correlation to
the integral closure.

2. t-reductions subject to t-invertibility and localization

This section investigates t-reductions of ideals subject to t-invertibility and
localization in Noetherian domains. The first objective is to establish a t-
analogue for Hays’ result on the correlation between invertible reductions
and the Krull dimension of a Noetherian domain [13, Theorem 4.4]. The
second objective is to reach a satisfactory t-analogue for Hays’ global-local
result on the basic property in Noetherian rings [13, Theorem 3.6].

Definition 2.1 ([17, 22, 23]). Let R be a domain and I a nonzero ideal of
R.

(1) An ideal J ⊆ I is a t-reduction of I if (JIn)t = (In+1)t for some
integer n ≥ 0. The ideal J is a trivial t-reduction of I if Jt = It.

(2) I is t-basic if it has no t-reduction other than the trivial t-reductions.
(3) R has the t-basic ideal property if every nonzero ideal of R is t-basic.

Clearly, the notion of t-reduction extends naturally to fractional ideals.
Also, notice that a reduction is necessarily a t-reduction; and the converse
is not true, in general. Each of [22, Example 2.2] and [17, Example 1.5]
exhibits a Noetherian domain R with two t-ideals J $ I such that J is a
t-reduction but not a reduction of I.

In 1973, Hays proved the following result:

Theorem 2.2 ([13, Theorem 4.4]). Let R be a Noetherian domain such that
R/M is infinite for every maximal ideal M of R. Then, each nonzero ideal
has an invertible reduction if and only if dim(R) ≤ 1.

Next, we establish a t-analogue for this result. To this end, recall that
the t-dimension of a domain R, denoted t-dim(R), is the supremum of the
lengths of chains of prime t-ideals in R (and, for the purpose of this defini-
tion, (0) is considered as a prime t-ideal although technically it is not); and
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we always have t-dim(R) ≤ dim(R) [16]. Throughout, Maxt(R) will denote
the set of maximal t-ideals of R.

Theorem 2.3. Let R be a Noetherian domain such that the residue field
of each maximal t-ideal of R is infinite. Then, the following statements are
equivalent:

(1) Each t-ideal of R has a t-invertible t-reduction;
(2) Each maximal t-ideal of R has a t-invertible t-reduction;
(3) t-dim(R) ≤ 1.

The following lemma proves the implication (2)⇒ (3) without the infinite
residue field assumption.

Lemma 2.4. Let R be a Noetherian domain. If every maximal t-ideal of R
has a t-invertible t-reduction, then t-dim(R) ≤ 1.

Proof. Assume that every maximal t-ideal has a t-invertible t-reduction.
We may suppose that R is not a field and will prove that t-dim(R) = 1.
Let M ∈ Maxt(R) and let J = Jt be a t-invertible t-reduction of M . Then
(Mn+1)t = (JMn)t for some positive integer n and hence Mn+1 ⊆ J ⊆ M .
Now If D is a Noetherian domain and P is a prime t-ideal of D, then PDP

is a prime t-ideal of DP . This follows from the discussion after Proposition
1.4 of [31]. Thus MRM is a t-ideal of RM . Therefore, JRM is invertible and
hence principal in RM . Moreover, M is minimal over J , and so is MRM over
JRM . Since RM is Noetherian, ht(M) = ht(MRM ) = 1 by the Principal
Ideal Theorem. Consequently, t-dim(R) = 1, as desired. �

The converse of Lemma 2.4 is not true in general. For, let R be an almost
Dedekind domain which is not Dedekind. Then R is a one-dimensional
locally Noetherian Prüfer domain (i.e., the d- and t-operations coincide).
Hence R has the basic ideal property [13, Theorem 6.1]. But R is not
Dedekind, so it posses a non-invertible maximal ideal M which has no re-
duction other than itself.

Proof of Theorem 2.3. (1) ⇒ (2) is trivial, and (2) ⇒ (3) is handled by
Lemma 2.4. It remains to prove (3) ⇒ (1). Suppose that t-dim(R) = 1
and let I be a t-ideal of R. Clearly, ht(I) = 1. Since R is Noetherian,
it is a TV-domain and hence has finite t-character by [19, Theorem 1.3].
Let M1, . . . ,Mn be all the maximal t-ideals of R containing I. Let i ∈{

1, . . . , n
}

. Since RMi is a one-dimensional Noetherian domain, by [13,
Theorem 4.4], IRMi has an invertible (so principal) reduction, say aiRMi .

Clearly,
√
aiRMi =

√
IRMi = MiRMi , and so Mi

rRMi ⊆ aiRMi for some
integer r. Let Ai := aiRMi ∩R. We have

M r
i ⊆Mi

rRMi ∩R ⊆ aiRMi ∩R = Ai ⊆Mi.

Hence Mi is the only maximal t-ideal of R containing Ai. It follows that
AiRM = RM for any M ∈ Maxt(R) \

{
Mi

}
. Let J :=

∏n
i=1Ai. Then, we

claim that J is a t-invertible t-reduction of I. First, we show that J ⊆ I.
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Indeed, one can check that M1, . . . ,Mn are the only maximal t-ideals of R
containing J and let M := Maxt(R) \

{
M1, . . . ,Mn

}
. So

Jw =
⋂
M∈Maxt(R) JRM

=
(⋂

1≤i≤nAiRMi

)
∩
(⋂

M∈MRM
)

=
(⋂

1≤i≤n aiRMi

)
∩
(⋂

M∈MRM
)

⊆
(⋂

1≤i≤n IRMi

)
∩
(⋂

M∈MRM
)

=
⋂
M∈Maxt(R) IRM

= I

and thus J ⊆ I. Second, we show that J is a t-reduction of I. Indeed, let
m be a positive integer such that aiI

mRMi = Im+1RMi for all i = 1, . . . , n.
Notice also that M1, . . . ,Mn are the only maximal t-ideals of R containing
JIm and Im+1. So

(JIm)w =
⋂
M∈Maxt(R)(JI

m)RM

=
(⋂

1≤i≤n aiI
mRMi

)
∩
(⋂

M∈MRM
)

⊆
(⋂

1≤i≤n I
m+1RMi

)
∩
(⋂

M∈MRM
)

=
⋂
M∈Maxt(R) I

m+1RM
= (Im+1)w

and thus (JIm)t = (Im+1)t since t is coarser than w. Finally, we show that
J is t-invertible. Indeed, we have

(JJ−1)w =
⋂
M∈Maxt(R)(JJ

−1)RM

=
(⋂

1≤i≤n(JJ−1)RMi

)
∩
(⋂

M∈MRM
)

=
(⋂

1≤i≤n JRMiJ
−1RMi

)
∩
(⋂

M∈MRM
)

=
(⋂

1≤i≤n JRMi(JRMi)
−1
)
∩
(⋂

M∈MRM
)

=
(⋂

1≤i≤n JRMi(aiRMi)
−1
)
∩
(⋂

M∈MRM
)

=
(⋂

1≤i≤n aiRMia
−1
i RMi

)
∩
(⋂

M∈MRM
)

=
⋂
M∈Maxt(R)RM

= R

and so J is t-invertible, completing the proof of the theorem. �

Next, we examine the global-local transfer of the t-basic ideal property.
Throughout, an ideal I is locally basic (resp., t-locally t-basic) if IRM is
basic (resp., t-basic) for each maximal ideal (resp., maximal t-ideal) M of
R containing I. In 1973, Hays proved the following result:

Theorem 2.5 ([13, Theorem 3.6]). In a Noetherian ring, an ideal is basic
if and only if it is locally basic.

Next, we establish a t-analogue for the “if” assertion of this result.
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Theorem 2.6. In a Noetherian domain, if an ideal is t-locally t-basic, then
it is t-basic.

Proof. Let R be a Noetherian domain and let I be a t-locally t-basic ideal
of R. Let J ⊆ I be a t-reduction of I; that is, (JIn)t = (In+1)t, for some
positive integer n. Next, we prove that Jt = It. Since (JIn)t = (JtI

n)t, we
may assume, without loss of generality, that J is a t-ideal. Let M ∈ Maxt(R)
such that I ⊆ M , and let tM and vM denote the t- and v- operations with
respect to RM , respectively. By [24, Lemma 2.18], we get(

JRMI
nRM

)
tM

=
(
(JIn)tRM

)
tM

=
(
(In+1)tRM

)
tM

=
(
In+1RM

)
tM

and the t-locally t-basic assumption yields

(JRM )−1 = ((JRM )vM )−1

= ((JRM )tM )−1

= ((IRM )tM )−1

= ((IRM )vM )−1

= (IRM )−1.

Moreover, since In+1 ⊆ Jt = J ⊆ I, then a maximal t-ideal contains I if
and only if it contains J . It follows that

J−1RM = (JRM )−1 = (IRM )−1 = I−1RM

for all maximal t-ideals of R. Therefore, we obtain

(J−1)w =
⋂

M∈Maxt(R)

J−1RM

=
⋂

M∈Maxt(R)

I−1RM

= (I−1)w.

Consequently, J−1 = (J−1)v = (I−1)v = I−1 and thus J = Jv = Iv = It, as
desired. �

It is worthwhile noting that, in his proof of the implication “basic ⇒
locally basic” (Theorem 2.5), Hays used two basic facts; the first of which
asserts that (J ∩I)+IM is a reduction of I whenever JRM is a reduction of
IRM in an arbitrary ring R. A t-analogue for this result is proved below in
Proposition 2.7. But, the second fact was Nakayama’s lemma, which ensures
that J ⊆ I ⊆ J + IM in a local Noetherian ring (R,M) forces J = I; and a
t-analogue for this Nakayama property is not true in general. For instance,
consider the local Noetherian ring R := k+M2 ⊆ k[x, y], where M = (x, y)
and (M2)t = (M3)t [17, Example 1.5].
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Proposition 2.7. Let R be a domain, M a maximal t-ideal of R, and I ⊆M
a nonzero ideal of R. If J is an ideal of R such that JRM is a t-reduction
of IRM , then (J ∩ I) + IM is a t-reduction of I.

Proof. Let J be an ideal of R such that JRM is a t-reduction of IRM , say,
(JRMI

nRM )tM = (In+1RM )tM , for some positive integer n and where tM
denotes the t-operation with respect to RM . Let Q ∈ Maxt(R) with Q 6= M .
Then, (J ∩ I + IM)RQ = IRQ yielding (J ∩ I + IM)InRQ = In+1RQ.

Whence,
(
(J ∩ I + IM)In

)−1
RQ =

(
In+1

)−1
RQ. On the other hand, we

have(
(J ∩ I + IM)InRM

)
tM

=
(
(JRM ∩ IRM + IRMMRM )InRM

)
tM

=
(
(JRM + IRMMRM )InRM

)
tM

=
(
JRMI

nRM + In+1RMMRM
)
tM

=
(
In+1RM

)
tM

and thus (
(J ∩ I + IM)In

)−1
RM =

(
In+1

)−1
RM .

Therefore, we obtain(
(In+1)−1

)
w

=
⋂
N∈Maxt(R)(I

n+1)−1RN

=
⋂
N∈Maxt(R)

(
(J ∩ I + IM)In

)−1
RN

=
((

(J ∩ I + IM)In
)−1)

w

Consequently,
(
(J ∩ I + IM)In

)
t

=
(
In+1

)
t
. That is, (J ∩ I) + IM is a

t-reduction of I, completing the proof of the proposition. �

3. t-reductions and t-integral closure in one-dimensional
Noetherian domains

This section investigates the t-integral closure of ideals and its correlation
with t-reductions in Noetherian domains of Krull dimension one. Our ob-
jective is to establish satisfactory t-analogues of well-known results, in the
literature, on the integral closure of ideals and its correlation with reductions
of ideals in Noetherian rings.

From [22, 23], let R be a domain and I a nonzero ideal of R. An element
x ∈ R is t-integral over I if there is an equation

xn + a1x
n−1 + ...+ an−1x+ an = 0 with ai ∈ (Ii)t ∀i = 1, ..., n.

The set of all elements that are t-integral over I is called the t-integral

closure of I, and is denoted by Ĩ. If I = Ĩ, then I is said to be t-integrally

closed. Recall that “Ĩ is an integrally closed ideal which is not t-integrally

closed in general” [22, Theorem 3.2]. Several ideal-theoretic properties of Ĩ
are collected in [22, Remark 3.8], including the basic inclusions

I ⊆ I ⊆ Ĩ ⊆
√
It.
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Next, consider the two sets:

Î
d

:=
{
x ∈ R | I is a reduction of (I, x)

}
Î
t

:=
{
x ∈ R | I is a t-reduction of (I, x)

}
For the trivial operation, it is well-known that the equality I = Î

d
always

holds [21, Corollary 1.2.2]. This is the very fact which was used to show
that I is an ideal [21, Corollary 1.3.1]. However, it is still an open problem

of whether Î
t

is an ideal in general [23, Question 3.5]. We always have

It ⊆ Ĩ ⊆ Î
t

where the second containment is proved in [22, Proposition 3.7] and can

be strict as shown by [22, Example 3.10(a)]. Moreover, “It = Ĩ for each
nonzero ideal I if and only if R is integrally closed” [22, Theorem 3.5], and

“It = Î
t

for each nonzero ideal I if and only if R has the finite t-basic ideal
property” [23, Theorem 3.2].

The class of Prüfer domains is the only known class of domains, so far,
where the two notions of reduction and t-reduction coincide (since the t- and
trivial operations coincide). The next result shows that such coincidence
also occurs in one-dimensional Noetherian domains (where the t- and trivial
operations are not necessarily the same).

Theorem 3.1. In a one-dimensional Noetherian domain, the notions of

reduction and t-reduction coincide. Moreover, I = Ĩ = Î
t

for any nonzero
ideal I.

The proof draws on the following lemma, which is of independent interest.
Recall from [4], an extension of domains R ⊆ T is t-compatible if ItT ⊆

(IT )t1 for every nonzero ideal I of R, where t1 denotes the t-operation with
respect to T . Throughout, for a domain R, we will denote by R the integral
closure of R in its quotient field.

Lemma 3.2. Let R be a domain such that R ⊆ R is t-compatible, R has the

t-basic ideal property, and JR = J̃R for any nonzero ideal J of R. Then,
the notions of reduction and t-reduction coincide in R.

Proof. Let J ⊆ I be nonzero ideals of R such that J is a t-reduction of I;
say, (JIn)t = (In+1)t, for some positive integer n. We need to show that J
is a reduction of I. Indeed, by t-compatibility, we have

In+1R ⊆ (In+1)tR = (JIn)tR ⊆ (JInR)t1

yielding (In+1R)t1 ⊆ (JInR)t1 . The reverse inclusion is obvious. So, JR is
a t-reduction of IR. Hence, by hypothesis, (JR)t1 = (IR)t1 . Therefore, we
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obtain

I ⊆ (IR)t1 ∩R
= (JR)t1 ∩R
= J̃R ∩R (by [22, Theorem 3.5])

= JR ∩R (by hypothesis)
= J (by [21, Proposition 1.6.1]).

It follows that J is a reduction of I by [21, Corollary 1.2.5], as desired. �

Proof of Theorem 3.1. In order to prove the first statement of the theo-
rem, it suffices to show that R satisfies the three assumptions in Lemma 3.2.
Indeed, R ⊆ R is t-compatible by [4, Lemma 2.3]. By Mori-Nagata integral
closure theorem, R is Krull. Therefore, R has the t-basic ideal property
by [17, Figure 2]. Moreover, since dim(R) = dim(R) = 1 by [21, Theorem
2.2.5], then R is Dedekind by [26, Theorem 12.5]. Hence, the t- and trivial

operations coincide in R. Whence, JR = J̃R for any nonzero ideal J of R,
as desired.

Now, let I be any nonzero ideal I of R. The fact that the two notions of
reduction and t-reduction coincide in R combined with [21, Corollary 1.2.2]
yields

I ⊆ Ĩ ⊆ Î
t

= Î
d

= I

completing the proof of the theorem. �

As illustrative examples for Theorem 3.1, we consider one-dimensional
Noetherian domains which are not divisorial (i.e., t-operation is not trivial),
as shown below.

Example 3.3. Let Q be the field of rational numbers and X an indeter-
minate over Q. Consider the pseudo-valuation domain (PVD, for short)
R := Q + XQ(

√
2,
√

3)[[X]]. Then, R, as pullback issued from the DVR
Q(
√

2,
√

3)[[X]], is a one-dimensional Noetherian domain. Further, R is
not a divisorial domain since, otherwise, V would be a two-generated R-
module by [15, Theorem 3.5] or [18, Theorem 2.4], which is absurd since
[V/M : R/M ] = [Q(

√
2,
√

3) : Q] = 4.

One wonders whether there exist Noetherian domains of dimension > 1
where the notions of reduction and t-reduction coincide. Next, we show this
cannot happen in a large class of Noetherian domains.

Proposition 3.4. Let R be a Noetherian domain with (R : R) 6= 0. Then,
the notions of reduction and t-reduction coincide in R if and only if R has
dimension 1.

Proof. In view of Theorem 3.1, we only need to prove the “only if” assertion.
Assume that the notions of reduction and t-reduction coincide in R. Since
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R is Noetherian, R is a Krull domain (Mori-Nagata theorem). Set A := (R :
R) 6= 0. Clearly, we have

R = (A : A) = ((R : R) : A) = (R : RA) = (R : A) = A−1.

Suppose, for contradiction, that dim(R) = dim(R) ≥ 2 and let N be a
maximal ideal of R with ht(N) ≥ 2. Since (R : R) 6= 0, R is a finitely
generated fractional ideal of R, and hence a Noetherian ring. So, by [20,
Theorem 3.0 & Proposition 2.3], we have

(R : N) = (N : N) = R

and then

(R : AN) = ((R : A) : N) = (R : N) = R = A−1.

Hence

(AN)t = (AN)v = Av = A.

That is, AN is a t-reduction and hence, by hypothesis, a reduction of
(AN)t = A. So An+1N = (AN)An = An+1, for some positive integer
n. By [25, Theorem 76], An+1 = 0, the desired contradiction. �

4. t-C-ideals

This section studies the t-analogue of Hays’ classic notion of C-ideal. In a
ring, an ideal I is called a C-ideal if it is not a reduction of any larger ideal;
i.e., if I ⊆ K with IKn = Kn+1 for some positive integer n, then I = K
[13, 14]. Our aim is to establish satisfactory t-analogues of Hays’ results on
C-ideals in Noetherian rings.

Definition 4.1. In a domain, a nonzero ideal I is called a t-C-ideal if
it is not a non-trivial t-reduction of any larger ideal; i.e., if I ⊆ K with
(IKn)t = (Kn+1)t for some positive integer n, then It = Kt.

Notice that a nonzero ideal I is a t-C-ideal if and only if It is a t-C-ideal.
This fact will be used in the sequel without explicit mention.

Next, we collect some ideal-theoretic properties of t-C-ideals in an arbi-
trary domain (i.e, not necessarily Noetherian), as t-analogues of their re-
spective classic counterparts [13, Section 5].

Proposition 4.2. In a domain R, the following assertions hold:

(1) Every prime t-ideal is a t-C-ideal.
(2) Any intersection of t-C-ideals is a t-C-ideal (cf. [13, Lemma 5.2]).
(3) If I and J are t-comaximal t-C-ideals, then IJ is a t-C-ideal (cf.

[13, Theorem 5.6]).
(4) Let I be a nonzero ideal and let J be a t-invertible t-C-ideal. Then,

IJ is a t-C-ideal if and only if I is a t-C-ideal (cf. [13, Theorem
5.7]).
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Proof. (1) Let P be a prime t-ideal of R. Suppose P ⊆ K with (PKn)t =
(Kn+1)t for some ideal K of R and positive integer n. Then

(Kt)
n+1 ⊆ (Kn+1)t = (PKn)t ⊆ P

which yields Kt ⊆ P and hence P = K. So, P is a t-C-ideal.
(2) Let

{
Aλ
}

be a set of t-C-ideals of R and let B := ∩λAλ. Suppose

B ⊆ K with (BKn)t = (Kn+1)t for some ideal K of R and positive integer
n. Then, for each λ, we have

(Kn+1)t = (Kn(∩λAλ))t ⊆ (KnAλ)t

yielding

((K +Aλ)n+1)t = (Aλ(K +Aλ)n)t.

It follows that Kt ⊆ (K +Aλ)t = (Aλ)t and thus Bt = Kt, as desired.
(3) Let I and J be two t-C-ideals ofR and assume IJ ⊆ K with (IJKn)t =

(Kn+1)t for some ideal K of R and positive integer n. If (I + J)t = R, then
by [7, Lemma 16], (IJ)t = (I ∩J)t. It follows that ((I ∩J)tK

n
t )t = (Kn+1

t )t.
Hence (I ∩ J)t = Kt since I ∩ J is a t-C-ideal by (2). That is, (IJ)t = Kt.

(4) Let I be a nonzero ideal and J a t-invertible t-C-ideal of R. Suppose
IJ is a t-C-ideal and I ⊆ K with (IKn)t = (Kn+1)t for some ideal K of R
and positive integer n. Composing by Jn+1 and taking the t-closure, we get

(IJ(KJ)n)t = ((KJ)n+1)t.

Hence, (IJ)t = (KJ)t. As J is t-invertible, we get It = Kt. That is, I is a
t-C-ideal.

Conversely, suppose I is a t-C-ideal and IJ ⊆ K with (IJKn)t = (Kn+1)t
for some ideal K of R and positive integer n. Therefore, we have

(Kn+1)t ⊆ (JKn)t and (Kn+1)t ⊆ (IKn)t.

So, one can easily check that

((J +K)n+1)t = (Kn+1 + J(K + I)n)t = (J(K + I)n)t.

It follows that Kt ⊆ Jt as J is a t-C-ideal by hypothesis. Next, let F :=
KJ−1. Clearly,

I ⊆ F ⊆ KtJ
−1 ⊆ (JJ−1)t = R.

Further, we have

(IJ(FJ)n)t = ((FJ)n+1)t.

The fact that J is t-invertible yields

(IFn)t = (Fn+1)t.

Consequently, Ft = It as I is a t-C-ideal by hypothesis. That is, Kt =
(IJ)t. �

The next theorem completes Hays’ result [13, Theorem 5.11] on C-ideals
in the context of integrally closed Noetherian domains.
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Theorem 4.3. Let R be a Noetherian domain. The following assertions are
equivalent:

(1) R is integrally closed;
(2) Each invertible ideal is a C-ideal;
(3) Each principal ideal is a C-ideal;
(4) Each nonzero ideal is a t-C-ideal;
(5) Each t-invertible t-ideal is a t-C-ideal;
(6) Each principal ideal is a t-C-ideal;
(7) I ⊆ It for each nonzero ideal I of R;

(8) Ĩ = It for each nonzero ideal I of R;

(9) Î
t

= It for each nonzero ideal I of R;
(10) R has the t-basic ideal property.

The proof of this result draws on the following elementary lemmas.

Lemma 4.4. A domain D has the t-basic ideal property if and only if every
nonzero ideal of D is a t-C-ideal.

Proof. Straightforward. �

Lemma 4.5. In a Noetherian domain, every nonzero ideal is a reduction
(resp., t-reduction) of its integral closure (resp., t-integral closure).

Proof. Combine [21, Corollary 1.2.5] and [22, Proposition 3.7(b)] with the
assumption that every ideal is finitely generated (and so is the t-integral
closure of any nonzero ideal). �

Proof of Theorem 4.3. (1)⇔ (2)⇔ (3) is [13, Theorem 5.11]. Moreover,
(1) ⇔ (7) ⇔ (8), (9) ⇔ (10), and (10) ⇔ (4) hold in any arbitrary domain
(i.e., not necessarily Noetherian) by [22, Theorem 3.5], [23, Theorem 3.2],
and Lemma 4.4, respectively. Also, (4)⇒ (5)⇒ (6) are trivial.

(1) ⇒ (10) Assume R is integrally closed. Then, R is Krull and hence it
has the t-basic ideal property by [17, Figure 2], as desired.

(6) ⇒ (1) By [12, Lemma 24.6], it suffices to show that every principal
ideal is integrally closed. Let (a) be a principal ideal of R and let

b ∈ (a) ⊆ (̃a) ⊆ (̂a)
t
.

So, (a) is a t-reduction of (a, b). Since (a) is a t-C-ideal, (a) = (a, b)t; that
is, b ∈ (a). Thus, (a) is integrally closed. �

Recall that a Krull domain has the t-basic ideal property and the converse
is not true in general [17, Example 3.3]. However, the two notions coincide
in Noetherian domains as shown by Theorem 4.3, which also provides a t-
analogue for Hays’ result that “a Noetherian domain is Dedekind if and only
if it has the basic ideal property” [13, Corollary 6.6]:

Corollary 4.6. A Noetherian domain is Krull if and only if it has the t-
basic ideal property.
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In [13], Hays proved that the notion of regular C-ideal is local in Noe-
therian rings (cf. [13, Theorem 5.8 & Theorem 5.9 & Corollary 5.10]). We
close this section by establishing a satisfactory t-analogue for this result.

Proposition 4.7. In a Noetherian domain, if an ideal is t-locally a t-C-
ideal, then it is a t-C-ideal.

Proof. Let I be a nonzero ideal of R which is t-locally a t-C-ideal. Suppose
I ⊆ K with (IKn)t = (Kn+1)t for some ideal K of R and positive integer
n. Localizing at M ∈ Maxt(R), we get

((IKn)tRM )tM = ((Kn+1)tRM )tM

where tM denotes the t- operation in RM . By [24, Lemma 2.18], we have

(IRMKRM
n)tM = (KRM

n+1)tM .

Since I is t-locally a t-C-ideal, (IRM )tM = (KRM )tM . Consequently, as all
ideals are finitely generated, I−1RM = K−1RM , ∀M ∈ Maxt(R). It follows
that

(I−1)w =
⋂

M∈Maxt(R)

(I−1)RM =
⋂

M∈Maxt(R)

(K−1)RM = (K−1)w.

Thus, It = Kt; that is, I is a t-C-ideal. �

The converse of the above result is still elusively open.
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