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The topology of local commensurability graphs

Khalid Bou-Rabee and Daniel Studenmund

ABSTRACT. We initiate the study of the p-local commensurability graph of a
group, where p is a prime. This graph has vertices consisting of all finite-index
subgroups of a group, where an edge is drawn between A and B if [A : A∩B]
and [B : A∩B] are both powers of p. We show that any component of the p-local
commensurability graph of a group with all nilpotent finite quotients is complete.
Further, this topological criterion characterizes such groups. In contrast to this
result, we show that for any prime p the p-local commensurability graph of any
large group (e.g. a nonabelian free group or a surface group of genus two or
more or, more generally, any virtually special group) has geodesics of arbitrarily
long length.
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Let G be a group. The commensurability index of two commensurable sub-
groups A,B ≤ G is [A : A∩B][B : A∩B]. For a prime number p, the p-local com-
mensurability graph of G, denoted Γp(G), is the graph with vertices consisting
of finite-index subgroups of G where two subgroups A,B ≤ G are adjacent if and
only if their commensurability index is a power of p. For a warm-up example, see
Figure 1.

The goal of this paper is to draw algebraic information of G from the topology
of Γp(G).

Theorem 1. Let G be a finitely generated group. The following are equivalent:

(1) For any prime p, every component of Γp(G) is complete.
(2) All of the finite quotients of G are nilpotent.
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The proof of Theorem 1 is in §2. The structure theory of solvable groups plays
an important role in our proofs. Theorem 1 applies, for example, to Grigorchuk’s
group [Gri83], which is a 2-group and therefore has only nilpotent finite quotients.

FIGURE 1. Let Sym3 be the symmetric group on 3 elements (note
Sym3 is solvable and not nilpotent). The figure above displays
Γ2(Sym3),Γ3(Sym3), and Γ5(Sym3) in that order. All Γp(Sym3)
for primes p > 3 are discrete spaces.

In contrast to the above theorem, we show that components of the local com-
mensurability graphs of free groups are far from complete:

Theorem 2. Let F be a rank two free group. For any prime p and N > 0, there
exist infinitely many geodesics γ , each in a different component of Γp(F), such that
the length of each γ is greater than N.

We prove Theorem 2 in §3. A result of Robert Guralnick (which uses the classi-
fication of finite simple groups) concerning subgroups of prime power index in a
nonabelian finite simple group is used in an essential way in our proof [Gur83].
Moreover, in our proof we get a clean description of an entire component of the
p-local commensurability graph of many finite alternating groups. See Figure 2,
for example.

Our next result demonstrates that arbitrarily long geodesics in the p-local com-
mensurability graph of a free group cannot possibly all come from a single com-
ponent. We prove this at the end of §1.

Proposition 3. Let G be a finitely generated group. Let Ω be a connected compo-
nent of Γp(G). Then there exists C > 0 such that any two points in Ω are connected
by a path of length less than C. That is, the diameter of Ω is finite. Moreover if any
vertex of Ω is a normal subgroup of G then the diameter of Ω is bounded above by
3.

As a consequence of Theorem 2 and Proposition 3, there exists components of
the p-local commensurability graph of a nonabelian free group with no normal
subgroups as vertices (see Corollary 22 at the end of §3).

Recall that a group is large if it contains a normal finite-index subgroup that
admits a surjective homomorphism onto a non-cyclic free group. Such groups
enjoy the conclusion of Theorem 2. See the end of §3 for the proof.
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Corollary 4. Let G be a large group. For any prime p and N > 0, there exists
infinitely many geodesics γ , each in a different component of Γp(G), such that the
length of each γ is greater than N.

Experiments that led us to the above theorems were done using GAP [GAP15]
and Mathematica [W15].

The results of this paper are motivated by the authors’ interest in studying the
metric properties of the commensurability graph of a finitely generated group G,
denoted Γ(G) and defined to be the complete graph on the set of all finite-index sub-
groups of G with edges weighted by the commensurability indices. The weighted
path metric gives Γ(G) the structure of a metric space. This graph encodes, for
instance, Alex Lubotzky and Dan Segal’s subgroup growth [LS03] as the growth
of balls in the graph-theoretic star of the vertex G in Γ(G). The study of local
commensurability graphs Γp is analogous to studying the local subgroup growth
functions, where one only considers subgroups of index a power of a fixed prime
p. In a forthcoming paper we will investigate the full geometry of commensu-
rability graphs and explore connections between local and global aspects. Note,
however, that in this paper we consider a local commensurability graph as a metric
space with the standard path metric as an abstract graph; in particular, a ‘geodesic’
is a path which minimizes the edge lengths of paths between its vertices.

This paper sits in the broader program of studying infinite groups through their
residual properties, which is an area of much activity (see, for instance, [KT16],
[BRK12], [BRM11], [GK17], [BRHP15], [BRS16], [KM11], [Riv12], [Pat13],
[LS03]). Specifically, a similar object is studied in [AAH+15]. There a graph is
constructed with vertices consisting of subgroups of finite index, and an edge is
drawn between two vertices if one is a prime-index subgroup (the prime is not
fixed) of the other. They show that for every group G, their graph is bipartite with
girth contained in the set {4,∞} and if G is a finite solvable group, then their graph
is connected.
Acknowledgements. We are grateful to Ben McReynolds and Sean Cleary for useful
and stimulating conversations. An anonymous referee provided the simple proof
of Lemma 14 that appears here. Another anonymous referee provided several clar-
ifications and corrections to the exposition, including the proof of Lemma 5.

1. Preliminaries and basic facts
In this section we record some basic facts that will be used throughout. We start

with a couple of elementary results.

Lemma 5. Let N ≤ G be a normal subgroup and π : G→ G/N the quotient map.
For subgroups K ≤ H ≤ G we have

[H : K] = [π(H) : π(K)][H ∩N : K∩N].

Proof. Consider the action of H ∩N on the coset space H/K by left translation.
Let Z be the kernel of this action, and note that Z ≤ K∩N. This action has number
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of orbits equal to [π(H) : π(K)], so Burnside’s lemma gives

|(H ∩N)/Z| · [π(H) : π(K)] = ∑
g∈(H∩N)/Z

|(H/K)g| .

On the one hand, we clearly have

|(H ∩N)/Z|= [H ∩N : K∩N] · |(K∩N)/Z| .

On the other hand, a coset hK ∈ H/K is fixed precisely by the conjugate h((K ∩
N)/Z)h−1 under the action of (H ∩N)/Z, so we have

∑
g∈(H∩N)/Z

|(H/K)g|= ∑
hK∈H/K

|{g ∈ (H ∩N)/Z | ghK = hK}|

= |H/K| |(K∩N)/Z| .

The desired result follows. �

Lemma 6. Let N be a normal subgroup of G and p a prime. If A and N are both
subgroups of index a power of p in G, then [G : A∩N] is also a power of p.

Proof. Let π : G→G/N be the quotient map. Then [A : A∩N] = |π(A)|. Because
G/N is a p-group, it follows that [A : A∩N] is a power of p. Therefore [G : A∩N] =
[G : A][A : A∩N] is a power of p. �

Our next couple of lemmas give control of local commensurability graphs under
some maps.

Lemma 7. If G is a group, π : G→ Q is a surjection, and γ a path in Γp(G), then
π(γ) is a path in Γq(Q) with length bounded above by the length of γ .

Proof. If K ≤ H ≤ G then [π(H) : π(K)] divides [H : K] by Lemma 5. Therefore
adjacent vertices in γ map to adjacent vertices in π(γ), or are possibly identified in
Γp(Q). �

Lemma 8. Suppose G is a group and p is prime.

(1) If N is a normal subgroup of G, then the quotient map π : G→ G/N in-
duces an isometric graph embedding Γp(G/N)→ Γp(G) as an induced
subgraph.

(2) If H is a finite-index subgroup of G, then the inclusion i : H → G induces
a graph embedding Γp(H)→ Γp(G) as an induced subgraph.

(3) If N is a finite-index normal subgroup of G, then the inclusion i : N →
G induces an isometric graph embedding Γp(N)→ Γp(G) as an induced
subgraph.

Proof. For 1, if π : G→G/N is a quotient map, then the assignment K 7→ π−1(K)
defines a graph embedding Γp(G/N)→ Γp(G) whose image is an induced sub-
graph. This embedding is isometric by Lemma 7.

For 2, if H ≤ G has finite index, then the assignment K 7→ i(K) defines a graph
embedding Γp(H)→ Γp(G) whose image is an induced subgraph.
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For 3, let NCG be a finite-index subgroup, with assignment φ : K 7→ i(K) de-
fined over all subgroups K in N. Let H1,H2 ∈ φ(Γp(N)) and let H1 = J1, . . . ,Jn =
H2 be a path in Γp(G) from H1 to H2. Then for each i = 1, . . . ,n−1, we have that

[Ji : Ji∩ Ji+1][Ji+1 : Ji∩ Ji+1]

is a power of p. By Lemma 7, π(J1), . . . ,π(Jn) is a path in Γp(G/N). Because
J1 ≤ N, this is a path of p-subgroups of G/N. Therefore [Ji : Ji∩N] is a power of
p for all i = 1, . . . ,n. Thus, by Lemma 6 applied to Ji∩N and Ji+1∩Ji, we have for
i = 1, . . . ,n−1,

[Ji : (Ji∩N)∩ (Ji∩ Ji+1)][Ji+1 : (Ji+1∩N)∩ (Ji∩ Ji+1)],

is a power of p. Hence, for i = 1, . . . ,n−1,

[Ji : N∩ Ji][N∩ Ji : N∩ Ji∩ Ji+1] = [Ji : N∩ Ji∩ Ji+1]

is a power of p giving that [N ∩ Ji : N ∩ Ji ∩ Ji+1] is a power of p, since above
we showed that [Ji : N ∩ Ji] is a power of p. By a similar argument, we get that
[N ∩ Ji+1 : N ∩ Ji∩ Ji+1] is a power of p, and thus N ∩ Ji and N ∩ Ji+1 are adjacent
in Γp(G). It follows that the path J1, . . . ,Jn can be replaced by the path (which
possibly has repeated vertices) J1 = J1∩N,J2∩N, . . . ,Jn−1∩N,Jn∩N = Jn, which
is entirely contained in Γp(N). It follows that Γp(N) is a geodesic metric space in
the path metric induced from Γp(G), as desired. �

Note that the hypothesis of normality in 3 cannot be removed. For example, sup-
pose S and T are disjoint sets with |S| = |T | = 5 and consider the non-normal
subgroup AltS×AltT ≤ AltS∪T . It can be shown using Lemma 18 below that AltS
and AltT are in the same component of Γ5(AltS∪T ) but in different components of
Γ5(AltS×AltT ).

Our next lemma will lead to our first result concerning free groups.

Lemma 9. Let A,B be vertices in Γp(G). Suppose B shares an edge with A. If qk

divides [G : A] for some prime q 6= p then qk divides [G : B].

Proof. In this case, we have

[G : A∩B] = [G : A][A : A∩B] = [G : B][B : A∩B].

Hence, if qk divides [G : A], then qk must divide [G : B] because [B : A∩B] is a
power of p. �

Proposition 10. The p-commensurability graph of a free group has infinitely many
components.

Proof. Any free group has subgroups {N1,N2,N3, . . .} with distinct prime indices
{q1,q2,q3, . . .}. By the previous lemma, any vertex that is in the connected com-
ponent of Ni has index divisible by qi. Thus, no path exists between Ni and N j for
distinct i, j. �

We finish this section by proving a general result: for any group G, any compo-
nent of Γp(G) has finite diameter.
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Proof of Proposition 3. Let G be any group and Ω a component of Γp(G). Take
any vertex A in Ω and let N be the normal core of A. Let π : G→ G/N be the
quotient map. Let D = {BN : B ∈Ω}. We claim that the diameter of Γp(G) is less
than |D|+2.

Let B be a subgroup in Ω. Let V1, . . . ,Vm be a path in Γp(G) connecting A to
B. Then by Lemma 5, π(V1), . . . ,π(Vm) is a path in Γp(G/N) connecting π(A) to
π(B). Hence

V1N, · · · ,VmN

is a path connecting A to BN, and so BN is an element of Ω. Further, if [G : B] =
npr where gcd(n, pr) = 1, then [G : BN] = npe by Lemma 9. Since B ≤ BN and
[G : BN][BN : B] = [G : B], we get

npe[BN : B] = npk

and therefore [BN : B] = pk−e. Hence BN and B are adjacent in Γp(G). It follows
that there is an edge from any element in Ω to one in D, and so the diameter of Ω

is bounded above by the diameter of the subgraph induced by D plus 2. This gives
the desired bound |D|+2.

If Ω contains a normal subgroup as a vertex then we can pick A = N in the above
argument. Therefore D is the set of p-subgroups of G/N. Any two such subgroups
are connected by an edge, so the diameter of Ω is bounded above by 3. �

2. Nilpotent groups: The Proof of Theorem 1
We will prove Theorem 1 in two steps, as Propositions 12 and 15 below. For

a finite nilpotent group G let Sp(G) denote the unique Sylow p-subgroup of G.
Recall that G is the direct product of its Sylow subgroups.

Lemma 11. Suppose G = Sp1(G)× ·· · × Spk(G) for primes p1, · · · , pk. Let πi :
G→ Spi(G) be the quotient map for each i. Then any subgroup H ≤ G has the
form H = π1(H)×·· ·×πk(H).

Proof. Choose `1, . . . , `k so that gp`ii = 1 for all g ∈ Spi(G). Choose N so that

N p`1
1 · · · p

`k−1
k−1 ≡ 1 (mod p`k

k ).

Take any h ∈ H and write h = (h1, . . . ,hk) for hi ∈ Spi(G) for all i. Then

hN p`11 ···p
`k−1
k−1 = (1, . . . ,1,hk).

Therefore (1, . . . ,1,hk) ∈ H, and so we may identify πk(H) with a subgroup of H.
Applying this argument to each other factor, the result follows. �

Proposition 12. If G is a finitely generated group such that every finite quotient of
G is nilpotent, then every component of Γp(G) is complete for all p.

Proof. Suppose A and B are subgroups of G in the same component of Γp(G) for
some prime p and take any path A = P0,P1, . . . ,Pn = B from A to B. Let N be
a normal, finite-index subgroup of G contained in Pi for every i. Then G/N is a
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nilpotent group and π(P0),π(P1), . . . ,π(Pn) is a path in Γp(G/N), where π : G→
G/N is the quotient map.

Let P be a finite set of primes so that G/N = ∏q∈P Sq(G/N). By Lemma 11 we
have decompositions π(Pi) = ∏q∈P Sq(π(Pi)) for each i. It is straightforward to see
that

π(Pi)∩π(Pi+1) = ∏
q∈P

Sq(π(Pi))∩Sq(π(Pi+1))

for any i, and so for j = i or j = i+1 we have

[π(Pj) : π(Pi)∩π(Pi+1)] = ∏
q∈P

[Sq(π(Pj)) : Sq(π(Pi))∩Sq(π(Pi+1))].

Since π(Pi) and π(Pi+1) are adjacent in the p-local commensurability graph of
G/N, it follows that Sq(π(Pi)) = Sq(π(Pi+1)) for all i and all q 6= p. Therefore
Sq(π(A))= Sq(π(B)) for all q 6= p, and so [π(A) : π(A)∩π(B)][π(B) : π(A)∩π(B)]
is a power of p. Because [K : L] = [π(K) : π(L)] for any subgroups L ≤ K ≤ G
containing N, this shows that A and B are adjacent in Γp(G). �

Lemma 13. If Q is a finite solvable group that is not nilpotent then there is some
prime p so that a connected component of Γp(Q) is not complete.

Proof. Let Π be the set of prime divisors of the order of the finite solvable group
Q. For any prime q ∈Π there is a Hall subgroup Hq so that [Q : Hq] = qk for some
k and q does not divide the order of Hq. Because Q is not nilpotent, there is some
prime p and a Hall subgroup Hp so that g−1Hpg 6= Hp for some g ∈ Q. Then both
Hp and g−1Hpg are adjacent to Q in Γp(Q), but there is no edge between Hp and
g−1Hpg in Γp(Q). �

Lemma 14. If Q is a non-nilpotent finite group then Q contains a non-nilpotent
solvable subgroup.

Proof. Suppose every solvable subgroup of Q were nilpotent. Take any prime p
and let S be a p-Sylow subgroup of Q. Let T ≤ S be any nontrivial subgroup. Then
NQ(T )/CQ(T ) is a p-group. If it were not, then there would be an element x ∈
NQ(T )−CQ(T ) and a prime number q 6= p so that xq ∈CQ(T ). Then the subgroup
H ≤Q generated by x and S would have order with only two prime divisors, hence
be solvable and therefore nilpotent. Since x is in a q-Sylow subgroup of H, this
would mean x ∈CQ(T ).

By Frobenius’ normal p-complement theorem, there is a normal subgroup N ≤
Q of order prime to p so that Q = SN. Because this argument holds for any p, Q is
solvable by Hall’s theorem. This is a contradiction. �

Proposition 15. Suppose G is a finitely generated group with a finite-index, nor-
mal subgroup N such that G/N is not nilpotent. Then there is some p so that a
component of Γp(G) is not complete.

Proof. Take G and N as above, let Q=G/N and let π : G→Q be the quotient map.
If Q is solvable, then by Lemma 13 there is a prime p and subgroups A,B ≤ Q in
the same component of Γp(Q) that are not adjacent. Then π−1(A) and π−1(B) are
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non-adjacent vertices in the same component of Γp(G) by Lemma 8, so Γp(G) is
not complete.

Now consider the case that Q is not solvable. By Lemma 14 there is a non-
nilpotent solvable subgroup S ≤ Q. By Lemma 13 there is some prime p with a
component Ω of Γp(S) that is not complete. By Lemma 8 the component Ω fully
embeds in a component of Γp(G), which is therefore not complete. �

3. Free groups: The Proof of Theorem 2
Let F be the free group of rank two. Let p be a prime and N ∈ N be given.

By Lemma 8, to prove Theorem 2 it suffices to find a finite quotient Q of F with
subgroups A,B≤ Q such that the length of any geodesic in Γp(Q) connecting A to
B is greater than N. Our candidate for Q is AltX , the alternating group on a set X of
more than pk > N elements, and our candidates for A and B are conjugates of AltS
for a subset S⊆ X with pk elements.

We first need a couple technical group theoretic results. First, we give a descrip-
tion of a connected component in Γp(AltX). This requires a simple lemma.

Lemma 16. If |T1∩T2| ≥ 2 and |T1|, |T2| ≥ 4, then 〈AltT1 ,AltT2〉= AltT1∪T2 .

Proof. We prove this by induction on |T1∪T2|. The case that T1 = T2 is clear, so
suppose T1 6= T2. The base case, when |T1|= |T2|= 4 and |T1∩T2| ∈ {2,3}, follows
by computation (we did this in [GAP15]). For the inductive step, suppose without
loss of generality that x ∈ T1 \ T2. By inductive hypothesis

〈
AltT1\{x},AltT2

〉
=

AltT1∪T2\{x}. Arguing similarly if T2 \T1 is nonempty, we reduce to the case when
T1∪T2 \T1∩T2 consists of at most two points. To finish, we claim that any 3-cycle
on points in T1∪T2 is in 〈AltT1 ,AltT2〉. Let v1,v2,v3 be distinct points in T1∪T2. If
{v1,v2,v3}⊆ T1 or {v1,v2,v3}⊆ T2, then we are done. Thus, by suitably relabeling,
we may assume v1,v2 ∈ T1 and v3 ∈ T2. Further, since T1∪T2 \T1∩T2 consists of at
most two points, then by relabeling again, we may assume v2 ∈ T2. Select w1,w2 ∈
T1 ∩ T2 that are distinct from v1, v2, and v3. Then, by the base case applied to
Alt{v1,v2,v3,w1} ≤ AltT1 and Alt{v1,v2,v3,w2} ≤ AltT2 , we obtain that Alt{v1,v2,v3,w1,w3} is
contained in 〈AltT1 ,AltT2〉, and hence the desired 3-cycle is found. This completes
the proof. �

For any subset S ⊆ X , we denote the symmetric group on S by SymS and the
alternating group on S by AltS. For a subgroup P≤ SymS we define the support to
be the complement of the fixed point set of the action of P on S.

Lemma 17. Let p be a prime number and k an integer so that pk > 4. Let X be
a finite set, S ⊆ X, and P ≤ SymX a p-group with support disjoint from S. Let E
be an index p j subgroup of AltS×P. If |S| = pk or |S| = pk−1, then we have the
decomposition E = AltT ×P′ for some P′ ≤ P and some T ⊆ S with |T | = pk or
|T |= pk−1.

Proof. Let π : AltS×P→ AltS be the projection map. By Lemma 5 we have

[AltS×P : E] = [AltS : π(E)][1×P : E ∩ (1×P)].
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The left hand side of this equation is a power of p, so [AltS : π(E)] is a power
of p. Because |S| = pk or |S| = pk− 1 by assumption, Theorem 1(a) in [Gur83]
immediately implies that either π(E) = AltS or |S| = pk and π(E) = AltS\{v} for
some v ∈ S. Let T denote the set such that π(E) = AltT . Let q be 3 if p 6= 3 and
q be 2 if p = 3. For the case p 6= 3, recall that AltT is generated by 3-cycles by
elementary properties of alternating groups. In the case p = 3, note that pk > 6.
Because Alt6 is generated by an element of order 2 and one of order 4, Lemma 16
implies that AltT is generated by elements of order 2 or 4 in this case. Therefore in
either case it follows that AltT is generated by elements g1, . . . ,gk each with order
dividing a power of q. Since π maps onto AltT , we have that for each i = 1, . . . ,k,
there exists vi ∈ P such that (gi,vi) ∈ E. Since vi ∈ P, we have that the order of vi
is coprime with gi, hence as q 6= p, there exists ` such that

(gi,vi)
` = (gi,1).

It follows then that E contains all of AltT × 1, and hence E = AltT ×P′ where
P′ ≤ P, as desired. �

Let ΩS,X be the component of Γp(AltX) containing AltS, and let BS,X denote the
set of subgroups in ΩS,X isomorphic to AltT for some |T | ∈ {pk, pk−1}. For odd
primes p, we get the following description:

Lemma 18. Let S ⊆ X be a set of cardinality pk for some odd prime p such that
pk > 4. Vertices of the component ΩS,X in Γp(AltX) consist of two classes of sub-
groups:

Type 1. subgroups of the form 〈AltT ,P〉, where |T |= pk and P≤ AltX , and
Type 2. subgroups of the form 〈AltT ,P〉, where |T |= pk−1 and P≤ AltX .

In either case, the subgroup is AltT ×P, where P is a p-group with support in T c.
Moreover, for all primes p, if V is a vertex of Type 1 or Type 2, the set T is uniquely
determined by V .

Proof. We first show uniqueness of T . This implies that Type 1 and Type 2 are
disjoint classes. Let V be a vertex with distinct decompositions AltTi × Pi with
|Ti|> 3 and p-group Pi with support in T c

i for i = 1,2 such that T1 6= T2. If T1∩T2
is empty, then

[V : AltT1×AltT2×1][AltT1×AltT2×1 : AltT1×1] = [V : AltT1×1] = |P1|,
and thus [AltT1 ×AltT2 × 1 : AltT1 × 1] = |AltT2 | must be a power of p. But this is
impossible as |AltT2 | is either (pk)!/2 or (pk− 1)!/2 for pk > 4. Thus, T1 and T2
overlap. If T1 6= T2 then AltT1 ×1 cannot be normal in V because AltT2 acts transi-
tively on T2. But AltT1×1 is clearly normal in AltT1×P1, so this is a contradiction.
Therefore T1 = T2.

Since elements in BS,X are of Type 1 or 2 and AltS itself lies in BS,X , it suffices
to show that any E that is adjacent to an element of Type 1 or 2 must itself be of
Type 1 or 2.

Let E be adjacent to V = AltT ×P where P is a p-group with support in T c and
|T | = pk or |T | = pk−1. Then E ∩V is a subgroup of AltT ×P of index a power
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of p. By Lemma 17, E ∩V = AltT ×P′ or E ∩V = AltT\{v}×P′ where P′ ≤ P
and v ∈ T . We will therefore assume without loss of generality that E contains
AltT ×1 = AltT as a subgroup of p power index.

Suppose that E does not leave T invariant. Let T1,T2, · · · ,Tk be the orbit of E
acting on T and note that E contains AltTi for each i. Suppose Ti∩Ti+1 has fewer
than two elements for some i. The group AltTi contains AltTi\Ti∩Ti+1 , which includes
a permutation of order 2 since |Ti| > 4. Hence E contains AltTi ×Z/2Z ≥ AltTi .
This is impossible, as AltTi is of index pk in E for an odd prime p. We therefore
know that Ti ∩ Ti+1 has more than two elements for every i. Then by applying
Lemma 16 we conclude that E contains AltT1∪T2∪···∪Tk . Since E contains AltT as a
subgroup of prime power index and T1∪·· ·∪Tk 6= T1, it follows that |T1∪·· ·∪Tk|=
pk and in fact E contains AltT1∪···∪Tk as a subgroup of index p` for some `.

We may therefore assume, after replacing T with T1∪ ·· ·∪Tk if necessary, that
E leaves T invariant. Then E ≤ SymT ×Q where Q is a group with support disjoint
from T . Let π : SymT ×Q→ SymT be the projection onto the first coordinate. By
Lemma 5, [π(E) : AltT ] divides [E : AltT ] and hence is a power of p. It follows that
π(E) = AltT , as AltT is a maximal subgroup of SymT of index two. Further, since
AltT is normal, we apply Lemma 5 to the map ψ : AltT ×Q→Q to see that |ψ(E)|
is a power of p. Applying Lemma 17 we obtain the desired conclusion. �

The prime p = 2 requires relaxing the conclusion of Lemma 18, since any sym-
metric group on three or more elements contains an alternating group of index 2.

Lemma 19. Let S ⊆ X be a set of cardinality 2k such that k > 2. Vertices of the
component ΩS,X in Γ2(AltX) consist of at least one of two types:

Type 1’. subgroups V such that AltT ×1≤V ≤ SymT ×P, where |T |= 2k

and P≤ AltX , and
Type 2’. subgroups V such that AltT × 1 ≤ V ≤ SymT ×P, where |T | =
2k−1 and P≤ AltX .

In either case, P is a 2-group with support in T c.

Proof. Since elements in BS,X are of Type 1’ or 2’, it suffices to show that any E
that is adjacent to an element of one of the types must itself be of one of the types.

Let E be adjacent to some V with AltT × 1 ≤ V ≤ SymT ×P where P is a 2-
group. Because V has index a power of 2 in SymT ×P, we know that E ∩V also
has index a power of 2 in SymT × P. Since AltT × P is a normal subgroup of
SymT ×P, we have by Lemma 6 that (AltT ×P)∩E ∩V has index a power of 2 in
SymT ×P, and hence in AltT ×P. By Lemma 17, E ∩V ∩ (AltT ×P) = AltT ×P′

or E ∩V ∩ (AltT ×P) = AltT\{v}×P′ where P′ ≤ P and v ∈ T . We conclude that
AltT ×1 or AltT\{v}×1 has index a power of 2 in E∩V ∩(AltT ×P), and hence has
index a power of 2 in E. We will therefore assume without loss of generality that
E contains AltT ×1 = AltT as a subgroup with index a power of 2, where |T |= 2k

or |T |= 2k−1.
Suppose that E does not leave T invariant. Let T1,T2, · · · ,Tk be the orbit of E

acting on T and note that E contains AltTi for each i. Suppose Ti∩Ti+1 has fewer
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FIGURE 2. ΩS,X with |S|= 5 and |X |= 7. The coloring gives the
types and the numbers give the valence of each vertex. This figure
was generated using GAP [GAP15] and Mathematica [W15]

than two elements for some i. The group AltTi contains AltTi\Ti∩Ti+1 , which includes
a permutation of order 3 because |Ti|> 3. Hence E contains AltTi×Z/3Z≥ AltTi .
This is impossible, as AltTi is of 2 power index in E. We therefore know that
Ti∩Ti+1 has more than two elements for every i. Then by applying Lemma 16 we
conclude that E contains AltT1∪T2∪···∪Tk . Since E contains AltT as a subgroup of
prime power index and T1∪ ·· ·∪Tk 6= T1, it follows that |T1∪ ·· ·∪Tk|= 2k and in
fact E contains AltT1∪···∪Tk as a subgroup of index 2` for some `.

We may therefore assume, after replacing T with T1∪ ·· ·∪Tk if necessary, that
E leaves T invariant. Then AltT × 1 ≤ E ≤ SymT ×Q where Q is a 2-group with
support disjoint from T , as desired. �

Note that groups of Type 1 and Type 2 are of Type 1’ and Type 2’ respectively.
The next result allows us to restrict attention to geodesics in BS,X when computing
distances there.
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Lemma 20. Let S⊆ X be a set of cardinality pk > 4 for some prime p and integer
k. Then BS,X is a geodesic metric space in the path metric induced from ΩS,X .

Proof. We first need a local fact. Let V1,V2 be two adjacent vertices in ΩS,X . If p
is odd, then by Lemma 18 we have Vi = AltTi×Pi, where |Ti|= pk or |Ti|= pk−1
and the support of Pi is disjoint from Ti for i = 1,2. If p = 2, then by Lemma 19,
AltTi × 1 ≤ Vi ≤ SymTi

×Pi, where |Ti| = pk or |Ti| = pk− 1 and the support of Pi
is disjoint from Ti for i = 1,2. We claim that in either case, AltT1 and AltT2 are
connected by an edge in Γp(AltX).

Since V1 and V2 are adjacent, we have that

[V1 : V1∩V2][V2 : V1∩V2]

is a power of p. Thus, when p is odd, Lemma 17 applied twice along with the
uniqueness in Lemma 18 gives that V1∩V2 is AltU ×P where U ⊆ T1∩T2 satisfies
|U | = pk or |U | = pk− 1 and P ≤ P1 ∩P2. Thus it is straightforward to see that
AltT1 is adjacent to AltT2 .

When p = 2, set Hi = AltTi × 1 and Λ = V1∩V2. Then Hi is normal in Vi, thus
Hi∩Λ is normal in Λ. Since [SymTi

×Pi : Hi] is a power of 2 and

[SymTi
×Pi : Vi][Vi : Hi] = [SymTi

×Pi : Hi],

we get [Vi : Hi] is a power of 2. Since Hi is normal in Vi, Lemma 6 implies that
[Vi : Hi∩Λ] is a power of 2. Further, as [Vi : Λ] is a power of 2 and

[Vi : Λ][Λ : Hi∩Λ] = [Vi : Hi∩Λ]

we conclude that [Λ : Hi∩Λ] is a power of 2 for i = 1,2. Thus, applying Lemma 6
to H1∩ΛCΛ and H2∩ΛCΛ, we have that H1∩H2∩Λ has index a power of 2 in
Λ. As

[Vi : Λ][Λ : H1∩H2∩Λ] = [Vi : H1∩H2∩Λ],

it follows that [Vi : H1∩H2∩Λ] is a power of 2. Because [Vi : Hi] is also a power of
2 (shown above) and

[Vi : Hi][Hi : H1∩H2∩Λ] = [Vi : H1∩H2∩Λ]

we have [Hi : H1∩H2∩Λ] is a power of 2 for each i. By applying Theorem 1(a) in
[Gur83] and the uniqueness in Lemma 18, we have H1 ∩H2 ∩Λ is AltS for some
S⊆ T1∩T2 with |S|= pk or |S|= pk−1. Thus, AltT1 is adjacent to AltT2 , as claimed.

Now let γ be a path in ΩS,X that, except for its endpoints, is entirely in the
complement of BS,X . Enumerate the vertices of γ in the order they are traversed,

V1,V2, . . . ,Vm, where AltTi×1≤Vi ≤ SymTi
×Pi for all i = 1, . . . ,m

Then by the previous claim, we may form a new path (after throwing out repeated
vertices)

AltTi1
,AltTi2

, . . . ,AltTin
.

that is entirely contained in BS,X and has the same endpoints as γ . It follows that
BS,X is geodesic in ΩS,X , as desired. �
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Proposition 21. Let S ⊆ X be a set of cardinality pk > 4 for some prime p and
integer k. There exists V,W ∈ BS,X such that any path in ΩS,X connecting V to W
has length at least pk−max{0,2pk−|X |}.

Proof. By Proposition 20, it suffices to show that there exists V,W ∈ BS,X such that
any path in BS,X has length greater than |X |− pk. Let O1,O2 ⊆ X with |O1∩O2| ≤
max{0,2pk−|X |} and either |Oi|= pk or |Oi|= pk−1 for each i. Let E1,E2, . . . ,Em
be distinct vertices in a non-back-tracking path in BS,X connecting AltO1 to AltO2 .
Let T1,T2, . . . ,Tm be subsets of X such that Ei = AltTi for i = 1, . . . ,m. For each
i = 1, . . . ,m, we have one of three cases:

(1) Ei is Type 1 and Ei+1 is Type 1: In this case, |Ti+1∩Ti|= |Ti|−1 = pk−1.
(2) Ei is Type 1 and Ei+1 is Type 2: In this case, Ti+1⊂ Ti and |Ti+1|= |Ti|−1=

pk−1.
(3) Ei is Type 2 and Ei+1 is Type 1: In this case, Ti+1⊃ Ti and |Ti+1|= |Ti|+1=

pk.
(4) Ei is Type 2 and Ei+1 is Type 2: This case never occurs, as [AltT : AltU ] is

not a power of p for any proper subset U ⊂ T with |T |= pk−1.

Thus, we see that for each i, we see that Ti and Ti+1 differ by moving, adding,
or removing at most one element. It follows that m ≥ pk − |O1 ∩O2| ≥ pk −
max{0,2pk−|X |}. �

Proof of Theorem 2. Let F be a rank two free group and p a prime. Given N > 0,
choose k so that pk > N and pk > 4. For any finite set X with |X |> 2pk, let γX be a
path of length pk in Γp(AltX) guaranteed by Proposition 21. Then pulling back γX

over any surjection π : F→AltX produces a path of length pk in Γp(F) by Lemma
8. By Lemma 9, sets X1 and X2 with relatively prime cardinalities will produce
geodesics in different components of Γp(F). �

Proof of Corollary 4. Let G be a large group, p a prime, and N > 0. Since a finite-
index subgroup of a nonabelian free group is nonabelian, there exists a normal
finite-index subgroup H ≤ G that surjects onto F , the free group of rank 2. By
Lemma 7 and Theorem 2, there exists vertices V,W ∈ Γp(H) such that any path
connecting them in Γp(G) has length greater than N. The result now follows from
Lemma 8, as Γp(H) isometrically embeds into Γp(G). �

Corollary 22. Let G be a large group and p be a prime. There exists a connected
component of Γp(G) that does not contain any normal subgroup.

Proof. By Proposition 3, any component of Γp(G) containing a normal subgroup
as a vertex has diameter at most 3. By Corollary 4, there are components of G with
arbitrarily long geodesics. �
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