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Finite volume hyperbolic complements of 2-tori
and Klein bottles in closed smooth simply

connected 4-manifolds

Hemanth Saratchandran

Abstract. We give necessary conditions, for a closed smooth simply connected 4-
manifold X, to contain a collection of surfaces L such that X − L admits a complete
finite volume hyperbolic structure. We then show that examples of non-compact hyper-
bolic 4-manifolds constructed by Ivanšić, and Ivanšić, Ratcliffe and Tschantz, give rise
to examples of such link complements in #2kS

2 × S2.
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1. Introduction.

The aim of this article is to understand when the homeomorphism type of a closed
smooth simply connected 4-manifold can contain a link of surfaces, whose complement
admits a finite volume complete hyperbolic structure. The finite volume condition forces
the surfaces to be either a 2-torus or a Klein bottle.

Our main approach to this problem is to use the work of S. Donaldson and M. Freedman,
which provides us with a very nice classification theorem, on the possible homeomorphism
types of a closed smooth simply connected 4-manifold. It can be expressed in the following
simple form (see [9]).

Theorem 1.1. Every closed smooth simply connected 4-manifold is homeomorphic to
either

S4 or #nCP2#mCP2
or #±mME8#nS

2 × S2

HereME8 denotes the non-smoothable topological 4-manifold with the E8 intersection
form.

Using this classification theorem we are able to prove the following theorem, which gives
necessary conditions on the homeomorphism type, for a closed smooth simply connected
4-manifold, to contain a collection of surfaces, whose complement admits a finite volume
hyperbolic structure.
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Theorem 1.2. Let X be a closed smooth simply connected 4-manifold and L be a collection
of 2-tori and Klein bottles embedded in X. Suppose that the complement X − L admits a
finite volume complete hyperbolic structure. Then the homeomorphism type of X falls into
one of the following three categories:

• S4

• #k(S2 × S2), k > 0.

• #kCP2#kCP2, k > 0.

We prove this theorem by showing that any such closed smooth 4-manifold must have
vanishing signature, see Proposition 2.6.

This result motivates the question as to whether all the homeomorphism types, appear-
ing in Theorem 1.2, actually do contain such a link of surfaces L.

The first piece of work that was done in investigating this sort of question was carried
out by D. Ivanšić in [4]. In that paper, Ivanšić showed that there exists a closed smooth
simply connected 4-manifold, homeomorphic to S4, with a collection of five embedded 2-
tori, such that the complement of these 2-tori admits a finite volume complete hyperbolic
structure. Soon after Ivanšić, Ratcliffe, and Tschantz constructed several more examples
of such hyperbolic link complements in 4-manifolds that were homeomorphic to S4 (see
[5]).

In the same paper [4], Ivanšić showed the existence of closed smooth simply connected
4-manifolds, with Euler characteristic 2n for n > 0, each containing a collection of 2-tori,
whose complement admitted a finite volume complete hyperbolic structure. However, he
did not determine the homeomorphism type of these manifolds. Using Theorem 1.2 and
some analysis to do with spin structures, we are able to show that, in the case n = 2k+1, his
examples are homeomorphic to #2kS

2×S2. This establishes the existence of a hyperbolic
link complement in #2kS

2 × S2.

Theorem 1.3. For k ≥ 1 there exists a collection of 8k + 5 2-tori, embedded in a smooth
4-manifold Xk, such that Xk is homeomorphic to #2k(S2×S2) and Xk−L admits a finite
volume hyperbolic structure.

The author thanks Andras Juhasz, Marc Lackenby, and John Parker for their valuable
comments on an earlier version of this work. A thanks must also be given to Igor Bele-
gradek for providing a useful reference on eta invariants. Finally, the author wishes to
thank the referees for their comments and corrections to the paper.

2. Hyperbolic link complements in closed smooth simply connected
4-manifolds.

In this section we will show how to prove Theorem 1.2. As mentioned in the introduction,
the key point is to show that a closed smooth simply connected 4-manifold, containing a
collection of embedded 2-tori and Klein bottles, whose complement admits a finite volume
complete hyperbolic structure, must have vanishing signature.

We will need the following theorem of D. Long and A. Reid (see [7] Theorem 2.1, p.
173-174).

Theorem 2.1. Let M be a non-compact orientable finite volume hyperbolic 4-manifold.
Then σ(M) = η(∂M), where σ denotes the signature and η is the eta invariant.

In the above theorem, M is a manifold with boundary. By σ(M) we mean the signature
of the nondegenerate symmetric form on the image of H2(M,∂M ;Z) in H2(M ;Z), induced
via the cup product. As we are restricting to the image of H2(M,∂M ;Z) in H2(M ;Z),
Poincare-Lefshetz duality tells us that this is nondegenerate. Also, note that ∂M could
have more than one component. In such a situation, η(∂M) is to be understood as the
sum of η on each component.
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The importance of this theorem is that it translates the computation of the signature
into the computation of the eta invariant of the cusp cross-sections of the manifold. The
cusp cross-sections of a non-compact orientable finite volume hyperbolic 4-manifold are
always compact flat 3-manifolds. There are six isometry classes of orientable closed flat
3-manifolds. We denote these six classes by A, B, C, D, E, F, as in [3] (these are also
denoted by G1, G2, G3, G4, G5, G6 in Wolf’s book [11]). Therefore, in order to understand
the signature of a non-compact orientable finite volume hyperbolic 4-manifold, one needs
to understand what the eta invariant of the above six classes of flat 3-manifolds are.

The computation of the eta invariant for these six classes of flat 3-manifolds can be
found in [10], example 1, p. 128. The following proposition gives the values of the eta
invariant for these six classes.

Proposition 2.2.
η(A) = 0
η(B) = 0
η(C) = −2

3
η(D) = −1
η(E) = −4

3
η(F) = 0

From the classification theorem of closed flat 3-manifolds (see [11] Thm. 3.5.5, p. 117),
it is known that only A and B are S1-fibre bundles over a compact surface, with A
being a 3-torus fibering over a 2-torus and B fibering over a Klein bottle. Recall that
we are focusing on simply connected 4-manifolds, that contain a collection of 2-tori or
Klein bottles, whose complement admits a finite volume complete hyperbolic structure.
Therefore, it follows that the complement, which is a non-compact hyperbolic 4-manifold,
must have cusp cross-section, a compact 3-manifold, an S1 fibre bundle over a 2-torus or
Klein bottle. We thus see that the cusp cross-sections must be of type A or B.

Using the above proposition we have the following corollary.

Corollary 2.3. Let M be an orientable non-compact finite volume hyperbolic 4-manifold,
with cusp cross-sections of type A or B. Then σ(M) = 0, where σ is the signature invari-
ant.

The flat 3-manifolds A and B, being circles bundles, have associated disc bundles, which
we denote by A and B respectively. We are going to need to know the signature of these
disc bundles.

Lemma 2.4. σ(A) = 0 and σ(B) = 0.

Proof. The manifold A is a disc bundle with boundary A. We remind the reader that, by
definition, the signature of A is defined as the signature of the nondegenerate symmetric
form, on the image of H2(A,A;Z) in H2(A;Z), induced via the cup product. As A has
zero Euler number it follows that its signature must vanish.

A similar proof proves the vanishing of σ(B). �

From now on we suppose that X is a closed smooth simply connected 4-manifold, that
contains a collection L of 2-tori and Klein bottles, such that X −L admits a finite volume
complete hyperbolic structure. We denote X − L by M .

If we take each cusp of M , and chop it off, we produce a 4-manifold M with boundary
given by the flat 3-manifolds A and B. For each surface in L we can take a normal
neighbourhood and construct the associated disk bundle. We choose the disc fibre small
enough so that each such disc bundle is disjoint from any other one. If T ∈ L is a 2-torus,
then the disc bundle will be homeomorphic to S1 × S1 ×D2. If K ∈ L is a Klein bottle,
then the disc bundle is just a copy of B. Let V denote the union of all these disc bundles.
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Each element in V is a disc bundle, and it has an associated circle bundle, which is either
a copy of A or B. The circle fibre of this disc bundle will be called a meridian. It is then
easy to see that X − int(V ) ∼= M .

This viewpoint of X, as being obtained by gluing in disc bundles to the boundary of
M , allows one to compute the signature of X using the following theorem of Novikov (see
[6] Thm. 5.3, p. 27).

Theorem 2.5. Given two oriented 4n-dimensional manifolds M and N such that ∂M =
∂N . Then σ(M ∪∂ N) = σ(M) + σ(N), where M ∪∂ N denotes M glued to N along the
common boundary.

A nice application of Novikov’s theorem and the theorem of Long and Reid is the
following proposition.

Proposition 2.6. Let N be an orientable closed smooth 4-manifold. Let T be a collection
of embedded 2-tori and Klein bottles in N . Suppose that the complement N − T admits a
hyperbolic structure. Then σ(N) = 0, where σ denotes the signature.

Proof. Denote the hyperbolic manifold N − T by N0. We have that the cusp cross
sections of N0 are all of type A or B. Furthermore, we have that N is obtained from
N0 by gluing in disc bundles associated to A and B. By Corollary 2.3 we have that
σ(N0) = 0. Furthermore, by Lemma 2.4 we have that the signature of these disc bundles
vanishes. Applying Theorem 2.5 finishes the proof. �

Remark. Note that in the above proposition there is no restriction on the fundamental
group of N . In particular, it need not be simply connected.

We can now give the proof of Theorem 1.2.

Proof of Theorem 1.2. From Corollary 2.3, Proposition 2.4, and Theorem 2.5 we have
that σ(X) = 0. Appealing to the classification theorem 1.1 finishes the proof. �

3. Hyperbolic link complements in #2k(S
2 × S2).

3.1. Preliminaries on Ivanšić’s work. In [4] Ivanšić shows that the manifold numbered
1011 in the Ratcliffe-Tschantz census (see p. 123 in [8]) has an orientable double cover that
is contained in a smooth manifold homeomorphic to S4. More precisely, he shows that
there exists a closed smooth 4-manifold W1, homeomorphic to S4, and a collection of five
2-tori L in W1 such that the complement W1 − L is precisely the orientable double cover
of the hyperbolic manifold numbered 1011 in the Ratcliffe-Tschantz census (see Theorem.
4.3, p. 18 in [4]).

In the same paper Ivanšić constructs certain degree n cyclic covers of the manifold
numbered 1011 in the Ratcliffe-Tschantz census, and shows that they are complements of
2-tori in closed smooth simply connected 4-manifolds with Euler characteristic 2n. Let
M denote the orientable double cover of the manifold numbered 1011 in the Ratcliffe-
Tschantz census. This is a finite volume complete hyperbolic 4-manifold with five cusps,
each cusp cross-section a 3-torus. His theorem can be expressed in the following way (see
Theorem 4.3, p. 18 in [4]).

Theorem 3.1. The hyperbolic 4-manifold M admits degree n cyclic covers Mn that are
complements of 4n + 1 2-tori in some closed smooth simply connected 4-manifolds Wn,
with Euler characteristic 2n. In the case that n = 1, we have that W1 is homeomorphic to
S4.

Our goal is to classify the homeomorphism type of these closed smooth 4-manifolds, in
the case that the covering degree is odd (and greater than one). Note that Proposition
2.6 implies that each of the Wn must have vanishing signature. Then Theorem 1.2 implies
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that the manifolds Wn must be homeomorphic to #n−1S
2 × S2 or #n−1(CP2#CP2

), for
n ≥ 2. This is because these are the only two groups that have vanishing signature and
Euler characteristic greater than two. One key difference between these two groups of
manifolds is that those in the first group all admit a spin structure, while those in the
second group do not. It is this extra structure that will allow us to show that, in the case
that we have an odd covering degree, of degree 2n + 1 for n ≥ 1, the manifolds W2n+1

must be homeomorphic to #2nS
2 × S2.

As we will see, the key idea of the argument for proving that the Ivanšić manifolds
are spin is that every branched covering over S4, above any collection of 3-tori, with odd
degree is spin.

3.2. Spin structures on Ivanšić’s cyclic covers and the proof of Theorem 1.3.
We start by setting up some of the notation we will be using throughout. As in the
previous section we let M denote the orientable double cover of the manifold numbered
1011 in the Ratcliffe-Tschantz census. Let M denote the manifold obtained by removing
each cusp of M . M is a compact 4-manifold with five boundary components, each one
given by a 3-torus. We denote these 3-tori boundary components by T 3

i , 1 ≤ i ≤ 5.
Ivanšić proves the second part of Theorem 3.1 by making a choice of meridian in each
boundary component T 3

i . He then glues a solid 3-torus, S1×S1×D2, by a diffeomorphism
fi : S1×S1×∂D2 → T 3

i , that sends {pt}×{pt}×∂D2 to his choice of meridian in T 3
i . The

result produces a closed smooth simply connected 4-manifold, W1, which he then proves
is homeomorphic to S4 (for the details we recommend the reader consult [4]). As we are
going to need these meridians, we will denote them by mi.

Using the notation of Ivanšić, see p. 18 in [4], we have that the meridians mi correspond
to certain parabolic generators in the fundamental group of M , which Ivanšić denotes by
a, k, i, e−1g, c. The notation for our meridians will correspond to these parabolic generators
in the following way, m1 = a, m2 = k, m3 = i, m4 = e−1g, m5 = c.

Also, as in the previous section, we let Mn denote the cyclic cover of M , constructed by
Ivanšić. We then define Mn, as we did for M , so that Mn is an n-fold cover of M . From
Ivanšić’s work (see p. 18 in [4]) we know that four of the boundary components in M each
lift to n boundary components in Mn, and one boundary component lifts to one boundary
3-torus in Mn. We will order the boundary components of M so that the first four T 3

i ,
for 1 ≤ i ≤ 4, lift to n boundary components, which we denote by T 3

ij for 1 ≤ j ≤ n. The

fifth boundary component, T 3
5 , will be the one that lifts to one boundary component in

Mn, which we denote by T 3
5n.

Ivanšić also tells us how the meridians lift (see p. 18 in [4]). For 1 ≤ i ≤ 4, the meridian
mi in T 3

i lifts to a meridian mij in each T 3
ij for 1 ≤ j ≤ n. For the case of T 3

5 , the meridian

m5 lifts to one meridian m5n in T 3
5n. Viewing T 3

5n as a copy of S1 × S1 × S1, with the
meridian m5n corresponding to the last S1 factor, and similarly viewing T 3

5 as S1×S1×S1,
with the meridian m5 corresponding to the last S1 factor. Ivanšić shows that the induced
covering T 3

51 → T 3
5 is simply the covering S1 × S1 × S1 → S1 × S1 × S1 induced by the

standard degree n covering S1 → S1 on the last S1 factor. In this way we see that the
induced covering T 3

5n → T 3
5 is such that the meridian m5n is a degree n cover of m5.

We also point out to the reader that the manifolds Wn, for n ≥ 2, are obtained from
Mn by gluing in solid 3-tori, using the meridians mij and m5n, in exactly the same way

W1 was obtained from M .
We are going to analyse spins structures on the manifolds Mn, and their associated

boundary components. By a spin structure, we mean a spin structure on the tangent
bundle. We say that a spin manifold Xn spin bounds a spin manifold (of one dimension
higher) Y n+1, if X bounds Y , and the spin structure induced on X, via the spin structure
on Y (from being a boundary of Y ), is the original spin structure on X. We will also need
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to know about spin structures on S1. We remind the reader that S1 has two distinct spin
structures. One of them coming from viewing S1 as a Lie group, and the other coming
from viewing S1 as the boundary of a disc. The reader who is unfamiliar with this material
can consult the book [6].

Lemma 3.2. There exists a unique spin structure on W1. This spin structure induces a
spin structure on M and on the boundary components T 3

i , 1 ≤ i ≤ 5. Furthermore, this
induced spin structure on the boundary T 3

i is the one that spin bounds a solid 3-torus. In
fact, the induced spin structure on each T 3

i is such that the meridian factor mi is given
the spin structure that spin bounds a disc.

Proof. We saw above that the manifold W1 is obtained from M by gluing in a solid 3-
torus to each boundary component, using the meridians mi, 1 ≤ i ≤ 5. Therefore, inside
W1 each T 3

i bounds a solid 3-torus, which we denote by DT 3
i , so that the meridian mi

bounds a disc Di in DT 3
i .

From Theorem 3.1, we know that W1 is a smooth manifold homeomorphic to S4. There-
fore, it has vanishing second cohomology group. This then implies the second Stiefel-
Whitney class of W1 must vanish. As the set of distinct spin structures is parametrised
by H1(W1,Z2), which vanishes, it follows that W1 admits a unique spin structure.

As M sits inside W1, it follows that the unique spin structure on W1 induces a spin
structure on M . Furthermore, the unique spin structure on W1 also induces a spin struc-
ture on each boundary T 3

i and each solid 3-torus DT 3
i . As each T 3

i bounds DT 3
i , in W1,

it follows that the induced spin structure on T 3
i is one that spin bounds the induced spin

structure on DT 3
i . In fact, since the meridians mi bound the discs Di in DT 3

i , we find that
the induced spin structure on each of the mi is the one that spin bounds a disc (viewing
each mi as a copy of S1). �

The spin structure induced on M , via the unique spin structure on W1, lifts to a spin
structure on the cover Mn. This spin structure on Mn then induces a spin structure on
each of its boundary 3-tori T 3

ij for 1 ≤ i ≤ 4, 1 ≤ j ≤ n, and T 3
5n. The following lemma

examines these induced spin structures on the boundary 3-tori.
In the lemma to follow, by spin structure on Mn we mean the one lifted from M , which

in turn will always be the one induced from the unique spin structure on W1. We will also
need to know how spin structures on S1 lift under the usual degree n covering maps of S1

onto itself.
Let ρn : S1 → S1 be the standard degree n covering map. If we give the base S1 the

Lie group spin structure, then the lifted spin structure on the total space S1 will also be
the Lie group spin structure. On the other hand, if we give the base S1 the spin structure
that spin bounds a disc. We find that the lifted spin structure on the total space S1 will
be the one that spins bounds a disc if n is odd, and will be the Lie group one if n is even.
We will use this fact in the following lemma.

Lemma 3.3. The spin structure on Mn, for n ≥ 2, induces a spin structure on each T 3
ij,

for 1 ≤ i ≤ 4 and 1 ≤ j ≤ n, that spin bounds a solid 3-torus. In the case that n = 2k+ 1
is odd, the spin structure induced on T5n is also the one that spin bounds a solid 3-torus.

In particular, the induced spin structure on the meridians mij of T 3
ij, for 1 ≤ i ≤ 4 and

1 ≤ j ≤ n, are all the ones that spin bound a disc. Furthermore, when n = 2k + 1 the
induced spin structure on the meridian m5n is also the one that spin bounds a disc. When
n = 2k, the induced spin structure on the meridian m5n is the Lie group spin structure.

Proof. Each boundary component T 3
i of M , for 1 ≤ i ≤ 4, lifts to n distinct boundary

components T 3
ij , 1 ≤ j ≤ n, in Mn. It is therefore clear that since the spin structure

on each T 3
i is the one that spin bounds a solid 3-torus (see lemma 3.2), the induced spin

structure on each T 3
ij is the one that also spin bounds a solid 3-torus. In particular, since
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each meridian mi of T 3
i , for 1 ≤ i ≤ 4, has the spin structure that spin bounds a disc (see

lemma 3.2), and each of these meridians lifts to n meridians mij , each a meridian of T 3
ij ,

1 ≤ j ≤ n, it follows that the lifted meridians mij must also inherit the spin structure that
spin bounds a disc.

For the analysis of the last boundary component, we know that the induced covering
T 3
5n → T 3

5 is given by the degree n covering of the meridian m5n to m5. We also know,
from Lemma 3.2, that the spin structure on m5 is the one that spin bounds a disc. It
follows, from the discussion before the lemma, that for n = 2k + 1 the spin structure on
m5n spin bounds a disc. Hence, the spin structure on T 3

5n is the one that spin bounds a
solid 3-torus. On the other hand, in the case that n = 2k it follows that the spin structure
on m5n will be the Lie group spin structure. �

Remark. When the degree of the covering is even, n = 2k, the above lemma shows us
that the induced spin structure on the meridian m5n, in the boundary component T 3

5n of
Mn, must be the Lie group spin structure. Therefore, it is natural to ask if the induced
spin structure on the whole of T 3

5n is the Lie group spin structure? I.e. viewing T 3
5n as

S1 × S1 × S1, with the last S1 factor corresponding to the meridian m5n, does it follow
that the first two S1 factors also have the Lie group spin structure? The answer is no, at
least one of the first two S1 factors must have the spin structure that spin bounds a disc.

The following proposition gives details of the above remark, and may be of independent
interest.

Proposition 3.4. Let (X, s) be a non-compact finite volume hyperbolic 4-manifold with
a fixed spin structure s. Assume the cusp cross sections of M are all 3-tori. Then the
number of cusp cross sections with the induced Lie group spin structure from s must be
even.

Proof. By removing each cusp, we produce a manifold with boundary X, each boundary
component being a 3-torus. X deformation retracts onto X, so we can view the spin
structure s on X. Now, the induced spin structures on the boundary 3-tori are either
one of the seven spin structures that spin bounds a solid 3- torus, or the Lie group spin
structure.

By Corollary 2.3 we know that X has vanishing signature. Also, by Corollary 2.4, we
have that a solid 3-torus has vanishing signature. We now take those boundary components
of X that have the induced spin structure that spin bounds a solid 3-torus. Then glue
in a solid 3-torus to each of these components. We then have a spin manifold X0 whose
boundary components are all 3-tori, and such that the induced spin structure on these
boundary components is the Lie group spin structure. Furthermore, by Novikov’s theorem
2.5, X0 has vanishing signature.

Let us suppose that the number of boundary components with the induced Lie group
spin structure is odd. In other words, X0 has an odd number of boundary components.
Let Y denote the manifold obtained by cutting out the interior of a tubular neighbourhood

of a generic fibre of the elliptic surface CP2#9CP
2
. It is known that Y is a spin manifold,

with one boundary component a 3-torus, such that the induced spin structure on this
boundary 3-torus is the Lie group one. Furthermore, it is known that Y has signature 8
(see [9], chap. V).

We then glue a copy of Y to each component of X0. This produces a closed smooth
spin 4-manifold Z with signature an odd multiple of 8. However, no such manifold can
exist by Rokhlin’s theorem (see [6], chap. III). �

Using Lemma 3.3 we can detect the homeomorphism type of the manifolds W2k+1, for
k > 0, leading to a proof of Theorem 1.3.
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Proof of Theorem 1.3. By Proposition 2.6, we know that each W2k+1 has vanishing
signature. Therefore, by Theorem 1.2, we have that the homeomorphism type of W2k+1

must be #2kS
2×S2 or #2k(CP2#CP

2
), as these are the only ones with vanishing signature.

By Lemma 3.3, we know that the manifolds M2k+1 are spin, and they admit a spin
structure that induces the spin structure on the boundary 3-tori, which spin bounds a
solid 3-torus. We also know that the meridians of each boundary 3-torus has the spin
structure that spin bounds a disc.

When we glue in a solid 3-torus, S1 × S1 ×D2, we are using the diffeomorphism that
identifies {pt} × {pt} × ∂D2 with the meridian of the boundary 3-torus. Taking the spin
structure on S1 × S1 ×D2 that agrees with the spin structure on the boundary 3-torus of
M2k+1, we see that the spin structure on M2k+1 extends to each glued-in solid 3-torus.
This implies that W2k+1 admits a spin structure. It then follows that W2k+1 must be
homeomorphic to #2kS

2 × S2 for k ≥ 1, as these are the only ones in Theorem 1.1 that
have vanishing signature and are spin.

Applying this result, with Ivanšić’s theorem 3.1, completes the proof. �

In [5], Ivanšić, Ratcliffe, and Tschantz construct several more examples of hyperbolic
link complements, in closed smooth simply connected 4-manifolds with Euler characteristic
2n, based on the approach of Ivanšić in [4]. Using the same techniques as above, one can
show that, in the case that n is odd, their examples give rise to hyperbolic link complements
in manifolds that are homeomorphic to #n−1S

2 × S2, n > 1.

References

[1] Donaldson, Simon K. An application of gauge theory to four-dimensional topology. J. Differential
Geom. 18 (1983), no. 2, 279–315. MR0710056, Zbl 0507.57010, doi: 10.4310/jdg/1214437665.

[2] Freedman, Michael Hartley. The topology of four-dimensional manifolds. J. Differential Geom.
17 (1982), no. 3, 357–453. MR0679066, Zbl 0528.57011, doi: 10.4310/jdg/1214437136.

[3] Hantzsche, Walter; Wendt, Hilmar. Dreidimensionale euklidische Raumformen. Math. Ann.
110 (1935), no. 1, 593–611. MR1512956, Zbl 0010.18003, doi: 10.1007/BF01448045. 445
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