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On the local residue symbol
in the style of Tate and Beilinson

Oliver Braunling

Abstract. Tate gave a famous construction of the residue symbol on
curves by using some non-commutative operator algebra in the context
of algebraic geometry. We explain Beilinson’s multidimensional gener-
alization, which is not so well-documented in the literature. We provide
a new approach using Hochschild homology.
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Suppose X/k is a smooth proper algebraic curve over a perfect field. One
can define the residue of a rational 1-form ω at a closed point x as

(0.1) resx ω = Trκ(x)/k a−1, where ω =
∑

ait
i dt

in terms of a local coordinate t, i.e. by picking an isomorphism Frac ÔX,x '
κ(x)((t)). This works, but is unwieldy since it depends on the choice of the
isomorphism and one needs to prove that it is well-defined, cf. Serre [Ser97,
Ch. II]. One could ask for a bit more:

Aim: Construct the local residue symbol without ever needing to choose
coordinates.

J. Tate [Tat68] has pioneered an approach which circumvents choices of
coordinates at all times by employing ideas in the style of functional analysis:
The local field

(0.2) K̂X,x := Frac ÔX,x = colim−−−→
s∈OX,x\{0}

lim←−
i

(
1

s
OX,x/mi

x

)
carries a canonical topology, defined by viewing it as an ind-pro limit of
finite-dimensional discrete k-vector spaces. This topology needs no assump-
tions on the base field, e.g. it could be just a finite field. We get a non-
commutative algebra of continuous k-vector space endomorphisms E. Via

multiplication operators x 7→ f · x the functions f ∈ K̂X,x embed into E.
Using the ideal of compact operators, Tate shows that E has a canonical

central extension Ê as a Lie algebra by a formal element c such that

(0.3) [f, g]
Ê

= resx fdg · c.

Tate now uses the left-hand side as an intrinsically coordinate-independent
definition for the residue (R. Hartshorne advertises this as ‘clever’ in his text-
book [Har77, Ch. III, §7]). For an n-dimensional smooth proper algebraic
variety X/k, the global residue

Hn(X,Ωn
X/k) −→ k

is induced from n-dimensional local residue symbols. There is the conven-
tional approach to this using A. Grothendieck’s residue symbol [Har66], how-
ever A. Beilinson [Bĕı80] has shown that one can also describe this map by a
beautiful multidimensional generalization of Tate’s approach. He interprets
the commutators which appear in Tate’s theory as low-degree avatars of the
differential in Lie homology. As such, one can give an explicit formula for
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the higher residue in terms of cascading commutators, roughly generalizing
Equation 0.3.

0.1. Overview. Let us give a little orientation regarding the different view-
points on residues. We begin with the very general perspective of Grothendieck,
[Har66]. If f : X → Y is a proper morphism of varieties, the derived pushfor-
ward Rf∗ has a right adjoint denoted by “Rf !”. As for any such adjunction,
we get a co-unit transformation of functors

Rf∗ ◦Rf ! → id .

There are many different methods establishing this adjunction, with large
variations in generality. We will have nothing to say about such a general
setup, see [Con00], [Har66], [Lip09], [LipH09], [Nee96] for example.

We will only be concerned with the special case that Y = Spec(k) is
a point and f is proper smooth of relative dimension n. Then Rf !OY '
Ωn
X/k[n] and the above co-unit becomes a functorial map

(0.4) Hn(X,Ωn
X/k) −→ k.

The theory of residues essentially aims at making this map explicit using
local data.

How to do this? The approach in Grothendieck and Hartshorne [Har66]
is to express the cohomology group on the left by working with the Cousin
resolution of the sheaf Ωn

X/k:

(0.5) Ωn
X/k '

 ∐
x∈X0

H0
x(X,Ωn

X/k)→ · · · →
∐
x∈Xn

Hn
x (X,Ωn

X/k)


0,n

,

where Xi denotes the set of points of X such that {x} has codimension
i, and H i

x denotes the i-th local cohomology group with support {x}. See
Ch. IV op. cit. for details. Describing the morphism in Equation 0.4 thus
reduces to describing it on the degree n term of this resolution, i.e., to give a
k-valued map on the local cohomology group. This leads to the local residue
in the Grothendieck–Hartshorne approach

(0.6) Hn
x (X,Ωn

X/k)→ k,

which is attached to any closed point x ∈ X. How this local map can be
identified is explained in various places, e.g., [Har66], or by Sastry-Yekutieli
[SaY95]. To be truly explicit, one has to make the local cohomology group
Hn
x (−,−) explicit. We will not go into this matter here.
The approach of Tate and Beilinson differs as follows: We return to Equa-

tion 0.4, but this time we resolve the sheaf Ωn
X/k using the so-called adèle

resolution:
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(0.7) Ωn
X/k '

· · · → subspace of
∏
4
A(4,OX)⊗ Ωn

X/k


0,n

,

where 4 = (η0 > · · · > ηn) runs through chains of scheme points such that

codimX {ηi} = i. Each A(4,OX), whose actual definition we shall discuss
only later, is a finite direct sum of fields, so we deal with a rather concrete
object and no cohomology is left.

Concretely, each of these fields is isomorphic to

k′((t1))((t2)) · · · ((tn))

for k′/k a finite field extension. However, the Tate–Beilinson approach does
not use such isomorphisms since their choice is non-canonical and as we had
explained at the beginning of the introduction, the whole point is to avoid
any unnatural choices. Instead, just like Tate’s 1968 approach studies ideals
of compact operators acting on k′((t)), Beilinson studies a non-commutative
algebra of (certain well-behaved) operators acting on A(4,OX). This leads
to the so-called “cubically decomposed algebra” E4. Beilinson then con-
structs a functional on Lie homology

(0.8) φBeil : Hn+1((E4)Lie, k) −→ k.

We shall discuss how to do this below. But assuming this has been dealt
with, the Lie homology functional φBeil gives rise to the local residue in the
Tate–Beilinson approach

A(4,OX)⊗ Ωn
X/k −→ k

g ⊗ f0df1 ∧ · · · ∧ dfn 7−→ φBeil(g · f0 ∧ f1 ∧ · · · ∧ fn)

and this is the analogue of the map in Equation 0.6 of the Grothendieck
viewpoint. Instead of a closed point, each local residue map is attached to
the choice of a chain 4 here. For n = 1, the functional φBeil defines a Lie
cohomology class in H2, describing a central extension, and this is the one
of Equation 0.3.

This summary leaves two issues open:

(1) How to construct φBeil?
(2) Why Lie homology?

We will discuss (1) below in §0.3. Regarding (2), we propose in this
paper an alternative approach based on Hochschild or cyclic homology, and
carefully study the relation to Lie homology.

Our Hochschild variant will be a map

(0.9) φC : HHn(E4) −→ k

replacing Equation 0.8. Using tools which are specific to Hochschild homol-
ogy and have no true Lie algebra analogue (Wodzicki Excision), we will then
give a construction of this map φC which is completely different from the
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way how φBeil is constructed in [Bĕı80]. This is the principal novelty of this
paper.

0.2. Other methods. One may also use the adèle resolution, but still de-
fine the local residue in a more classical way. We refer to Yekutieli [Yek92]
for a complete treatment along these lines.

0.2.1. Lipman’s method. In the literature one can also find a different
approach to the residue symbol based on Hochschild homology due to Lip-
man [Lip87]. It belongs to the Grothendieck–Hartshorne viewpoint. Let
us briefly explain the connection: Let i : Specκ(x) ↪→ X be the closed
immersion of a closed point x. Then there is a commutative diagram

Specκ(x) �
� i //

g
&&

X

f

��

Spec k,

and the composition g is a finite morphism. Since Rf ! arises from the
adjunction with Rf∗, the composition of morphisms gives rise to a canonical
natural equivalence of functors

(0.10) Comp : Rg! ∼−→ Ri! ◦Rf !.

If h : Z1 → Z2 denotes a finite morphism of schemes, there is the general
formula

Rh! = h∗R HomZ2 (h∗OZ1 ,−) .

Since both g and i are finite morphisms and Rf !OY ' Ωn
X/k[n], one can

make both sides of the map ‘Comp’ explicit. Identifying this map explicitly
is another approach to residue theory.

Let us quickly explain why: Note that the local cohomology for a closed
subscheme Z defined by the ideal sheaf IZ is given by

RΓZ(X,−) = colim−−−→
m≥1

R HomX (OX/ImZ ,−) ,

which except for the colimit is of course essentially Ri! for the nil-thickened
immersions. This way the local cohomology group Hn

x (X,Ωn
X/k) of the

Grothendieck–Hartshorne approach is linked to the right-hand side in Equa-
tion 0.10.

Now, Lipman’s theory, see [Lip87, §0, Introduction], describes the map
‘Comp’ as arising from a pairing of a Hochschild cohomology class with the
Hochschild homology class of a differential form. The reader will see that this
is a quite different method in comparison to our definition in §6. Besides the
homological differences, Lipman uses affine locally the Hochschild homology
of the commutative ring OX(X) of functions, whereas the Tate–Beilinson
method is based on the non-commutative algebra E4 of endomorphisms of
higher local fields.
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0.2.2. Boundary maps in the Hochschild localization sequence. Fi-
nally, in joint work with J. Wolfson [BW], we provide another viewpoint:
We replace the Cousin resolution of Equation 0.5 by its counterpart com-
ing from the coniveau filtration of the Hochschild homology of the scheme
X. The resulting complex, up to some “Hochschild–Kostant–Rosenberg iso-
morphism with supports”, a posteriori turns out to agree with the Cousin
resolution.

However, the boundary maps in this complex by construction stem from
boundary maps in the localization sequence of Hochschild homology. This
can be related to Tate objects and gives yet a different viewpoint. The
appearance of Tate objects is explained by joint work with Groechenig and
Wolfson [BGW16b] which shows that the endomorphism algebras of Tate
objects are essentially the cubically decomposed algebras as they appear in
Beilinson’s work [Bĕı80], and which also play a prominent rôle in the present
paper. This also closes the circle with Yekutieli’s approach to residues, see
[Yek15].

0.3. The results. We still have not explained how to construct the maps
in Equation 0.8 (Lie homology) or Equation 0.9 (Hochschild homology) and
how to get E4.

For E4 and φBeil, we refer to Beilinson’s paper [Bĕı80], or to our review
of his paper in §2 and §3 in the main body of the paper.

We propose a new path which one may follow as an alternative and which
seems quite efficient: Under mild assumptions, we exhibit An := E4 as
an iterated algebra extension of simpler cubically decomposed algebras Ai.
Now define

(0.11) φC : HHn(An)
δΛ−→ HHn−1(An−1)

δΛ−→ · · · δΛ−→ HH0(A0) −→ k,

where Λ : An → An/An−1 is a kind of Toeplitz operator mechanism, and δ
the connecting homomorphism δ : HH∗(A

n/An−1)→ HH∗−1(An−1) coming
from the algebra extension An−1 ↪→ An � An/An−1. Modulo maps relat-
ing Lie with Hochschild homology and identifying differential forms along
Ωn
R/k ' HHn(R), this construction produces the same map as φBeil. The

main idea is to view Beilinson’s use of Lie homology as the Hodge n-part
of Hochschild homology and get rid of relative Lie homology by Hochschild
excision, see §4 for a detailed explanation. Concretely, one can state these
comparisons as the following result, which might appear a little technical at
first.

Theorem (Lie-to-Hochschild Comparison). Suppose A is a unital n-fold
cubically decomposed algebra over a field k which has local units on all levels.
Let g denote its Lie algebra. Then there are canonical maps, making the
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diagram

Hn(g, g)
tt ))

Hn+1(g, k)

φBeil

""

**

HHn(A)

uu

φHH

}}

HCn(A)

φC
��

k

commutative. Here φBeil is Beilinson’s construction in [Bĕı80], and φHH
and φC are constructed in this paper; φC being as in Line 0.11 (the map will
turn out to factor over cyclic homology, Lemma 31).

This is glued from the triangles of Corollary 24 and Corollary 33. Applied
to the concrete task of describing residues, this leads to our Local Formula,
Theorem 26, unravelling all these maps in concrete terms, once local coor-
dinates are chosen. This is our multidimensional generalization of Equation
0.3.

We also give our own interpretation of the Lie homology mechanism in
Beilinson’s [Bĕı80] in §4. No such attempt of an explanation seems to exist
in the literature, and we hope that future readers of [Bĕı80] will find this
helpful.

Moreover, we propose a way to phrase reciprocity-like vanishing theorems
in a new way. We tried to find the correct formulation of such a result on
the level of cubically decomposed algebras. The ‘abstract residue formula’
of Arbarello, de Concini and Kac [ADCK89, §2] may be regarded as its
ancestor.

Theorem (Cube Reciprocity Law). Let A be a unital n-fold cubically de-
composed algebra with local units on all levels. Let P± ∈ A be idempotents
such that

P+ + P− = 1 and P±A ∈ I±1 .

If R ⊆ A is a subalgebra such that P+A (or P−A) is a left R-submodule of
A, then for all r ∈ HHn(R):

φC(r) = 0.

See Theorem 35. It is a possible abstraction and generalization of the
corresponding vanishing theorem in Tate’s paper [Tat68].

We will only see few applications of this result in this text since this
text is about the local situation only. The global situation will be treated
elsewhere.



ON THE RESIDUE SYMBOL 465

1. Tate’s original construction

1.1. Operator ideals and the snake lemma. We shall quickly recall
the classical construction of Tate [Tat68], from a perspective which points
naturally to the multidimensional generalization. Let X/k be a smooth
algebraic curve. For every closed point x ∈ X, the completed stalk of the
structure sheaf is a complete discrete valuation ring with residue field κ(x).
By Cohen’s Structure Theorem there is an isomorphism

(1.1) K̂X,x := Frac ÔX,x ' κ(x)((t)),

however there is no canonical isomorphism.

Without needing to choose such an isomorphism, K̂X,x has a canonical

topology coming from the presentation K̂X,x = lim−→slim←−i
1
sOX,x/m

i
x, where

we regard each OX,x/mi
x as a discrete k-vector space. This turns the inner

pro-limit into a linearly compact k-vector space and the ind-limit over all

finitely generated ÔX,x-submodules of K̂X,x into a linearly locally compact
k-vector space.

We can now regard K̂X,x as a infinite-dimensional topological k-vector
space. The topology differs from the ones conventionally used in functional
analysis over R or C because it is generated from an open neighbourhood
basis of 0 which consists of linear subspaces; they are called lattices:

Definition 1. A lattice in a finite-dimensional K̂X,x-vector space V is a

finitely generated ÔX,x-submodule L ⊆ V so that K̂X,x · L = V .

Using the topology, we get the associative operator algebra of continuous
k-linear endomorphisms

(1.2) E := {φ : K̂X,x → K̂X,x | φ is k-linear and continuous}.

Definition 2. We call an operator φ ∈ E
(1) compact if there is a lattice L with imφ ⊆ L;
(2) discrete if there is a lattice L with L ⊆ kerφ.

These classes of operators form two-sided ideals I+, I− in E. Moreover,
we have I+ + I− = E. Write Itr := I+ ∩ I− for their intersection. Thus, we
get a short exact sequence of E-bimodules,

(1.3) 0 −→ Itr −→ I+ ⊕ I− −→ E −→ 0.

We may formally “exterior tensor” this with another copy of E, giving a
commutative diagram with exact rows:
(1.4)

0 // (I+ ∧ E) ∩ (I− ∧ E) //

[−,−]

��

(I+ ∧ E)⊕ (I− ∧ E) //

[−,−]
��

E ∧ E //

[−,−]

��

0

0 // Itr // I+ ⊕ I− // E // 0
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(for V ⊆ W a subspace of a vector space, V ∧W denotes the subspace of∧2W generated by vectors v ∧ w with v ∈ V,w ∈ W .) The snake lemma
gives us a canonical morphism, call it (∗), and thus

(1.5) φ : K̂X,x ∧ K̂X,x −→ ker(E ∧ E → E)
(∗)−→ coker([. . .]→ Itr)

tr−→ k.

The local rational functions K̂X,x ⊂ E are viewed as the respective multipli-
cation operator x 7→ f · x, which is clearly continuous. Functions commute,
i.e. [f, g] = 0, so the left-hand side arrow indeed exists. On the other
hand, traces satisfy tr([X,Y ]) = 0, so the trace on the right-hand side fac-
tors through the cokernel. Tate now proves that φ(f ∧ g) = resx fdg. See
Lemma 4 for the proof. [Tat68, §2].

Remark 1. Tate’s original paper [Tat68] actually defines I+, I− (called E1, E2

in loc. cit.) slightly differently. He fixes a special open, the ring of integers

ÔX,x ⊂ K̂X,x, and instead of compactness he demands an operator to map
the entire space into this open, up to a finite-dimensional discrepancy. See
also Definition 10. But this comes down to the same as the topological def-
inition we use here. The presentation using a topological language is taken
from [BĕıFM91, §1.2] (I+, I− are called Hom+, Hom− in loc. cit.).

1.2. Finite-potent trace. We have tacitly swept a detail under the rug:
Since E is infinite-dimensional, a general operator in E will not have a well-
defined trace. Clearly finite-rank operators will still have a trace, but in
Tate’s construction the operators in Itr a priori need not be of finite rank.
In functional analysis one would now hope for the ideal of nuclear operators,
but the ind-pro type topologies are not rich enough to give a convergence
condition on the operator spectrum any interesting content. Instead, Tate
uses the philosophy that any nilpotent operator should have trace zero, even
if it is not of finite rank. We briefly summarize Tate’s operator trace [Tat68]
as we will also need it later:

Let F0 be a field and V an F0-vector space. Call an endomorphism g ∈
EndF0 (V ) finite-potent if there is some n ≥ 1 such that the image gnV is
finite-dimensional over F0. An F0-vector subspace Γ ⊆ EndF0 (V ) is called
a finite-potent family if there is some n ≥ 1 such that (g1 ◦ · · · ◦ gn)V is
finite-dimensional for any choice of g1, . . . , gn ∈ Γ.

Proposition 3 ([Tat68]). (Tate) For every F0-vector space V and every
finite-potent g ∈ EndF0 (V ) there is a unique element, denoted trV g ∈ F0

(and called Tate trace), such that the following rules hold:

T1: If V is finite-dimensional, trV g is the usual trace.
T2: If W ⊆ V is any F0-vector subspace and gW ⊆W , we have trV g =

trW g + trV/W g.
T3: If g is nilpotent, trV g = 0.
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T4: Suppose Γ ⊆ EndF0 (V ) is a finite-potent family. Then trV |Γ is
F0-linear, i.e. trV (af + bg) = a trV f + b trV g for all a, b ∈ F0 and
f, g ∈ Γ. (1)

T5: Suppose f : V → V ′ and g : V ′ → V are F0-vector space homo-
morphisms and the composition f ◦ g is finite-potent on V ′. Then
the reverse composition g ◦ f is finite-potent on V and trV ′ (f ◦ g) =
trV (g ◦ f).

Example 1. Consider F0 := k and V := k[t, t−1]. Then f ∈ EndF0(V ) given
by ti 7→ t−i for i ≥ 0 and ti 7→ 0 for i < 0 is a finite-potent morphism
which is not finite-rank, so the usual trace is not applicable. The vector t0

spans a 1-dimensional f -stable subspace and on the vector space quotient
k[t, t−1]/k

〈
t0
〉

the induced operator f is nilpotent, so by T1 and T2 we get
trV f = 1.

Lemma 4 ([Tat68, Theorem 2]). φ(f ∧ g) = resx fdg.

Proof. We just need to follow the snake morphism in Equation 1.4. For
this we need to split the surjection in the top row of Equation 1.4, i.e. pick
idempotents P± on E such that P±E ⊆ I± so that P+ + P− = 1. Then
unwinding the snake morphism yields

(P+f ∧ g)⊕ (−P−f ∧ g) //

��

f ∧ g

[P+f, g] // [P+f, g]⊕−[P−f, g]

and so the composition of maps in Equation 1.5 unwinds to the concrete
formula

(1.6) φ : K̂X,x ∧ K̂X,x → k φ(f ∧ g) = tr[P+f, g]

(or − tr[P−f, g] equivalently). It follows immediately that this formula is
independent of the choice of a particular P+. We may pick any isomorphism

K̂X,x ' κ(x)((t)). Suppose x is a k-rational point, i.e. κ(x) = k. In order
to distinguish between ti as a multiplication operator or as a topological

basis element of K̂X,x, let us write ti for the latter. Then take for example
P+(ti) := δi≥0t

i. This clearly lies in I+, P− := 1 − P+ lies in I− and we
compute

[P+ti, tj ]tλ = δλ+i+j≥0t
λ+i+j − δλ+i≥0t

λ+i+j = δ−j≤λ+i<0t
λ+i+j .

(1.7)
t
-1

t
0

t
1

t
2

t
3

t
-1

t
0

t
1

t
2

t
3

t
0

t
1

1Mysteriously, in general the linearity axiom T4 fails. A concrete counter-example is
given by Pablos Romo in [PabR07]. See also [AST07], [RGPR14] for a more thorough
discussion. However, this need not concern us; the non-linearity will never show up in the
applications of the above proposition in this paper.
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Suppose j = 1, then [P+ti, t]tλ = δ−1≤λ+i<0t
λ+i+1. This has a non-trivial

invariant subspace iff i = −1, so φ(ti ∧ t) = 0 for i 6= −1. For i = −1 we get
[P+t−1, t]tλ = δ−1≤λ−1<0t

λ, so k
〈
t0
〉

is a 1-dimensional invariant subspace

and therefore φ(t−1 ∧ t) = 1: Just like res tidt = δi=−1. If x is an arbitrary
closed point, κ(x)/k is a finite field extension. The above computation still
applies if we work with κ(x)-vector spaces. Writing κ(x) itself as a [κ(x) : k]-
dimensional k-vector space yields the formula res tidt = [κ(x) : k]δi=−1. �

The map φ : K̂X,x ∧ K̂X,x → k induces a functional

H2((K̂X,x)Lie, k)∗ ∼= H2((K̂X,x)Lie, k)

and the resulting Lie central extension is the one arising from pushing out
Equation 1.3 by Tate’s trace,

0 // Itr //

��

I+ ⊕ I− //

��

E //

��

0

0 // k // Ê // E // 0

Definition 5. The central extension Ê in the lower row is Tate’s central
extension.

2. Adèles

2.1. For curves. Let X/k be an integral smooth proper algebraic curve.
Tate [Tat68] uses the language of adèles of the curve − a technique borrowed

from number theory. We write
∏
x∈U1 ÔX,x as a shorthand for the OX -

module sheaf

U 7→
∏
x∈U1 ÔX,x for U any Zariski open set,

where ÔX,x is the mx-adically completed local ring and Up denotes the set
of codimension p points in U . The restriction map to smaller opens is the
factorwise identity so that the sheaf is flasque. There is an exact sequence
of OX -module sheaves

(2.1) 0 −→ OX
diag−→ k(X)⊕

∏
x∈U1 ÔX,x

diff−→
∏′
x∈U1 K̂X,x −→ 0,

where OX is the structure sheaf, k (X) the locally constant sheaf of rational

functions, K̂X,x := Frac ÔX,x, and the prime superscript in the rightmost
sheaf abbreviates the condition that for all but finitely many x ∈ U1 we

demand sections to lie in the subspace ÔX,x ⊂ K̂X,x. It is clear that the
sequence is exact and that it is actually a flasque resolution ofOX . Moreover,
the global sections of the sheaves are classically known as

sheaf side adèle side
H0(X, k(X)) k(X) function field of the curve

H0(X,
∏
x∈U1 ÔX,x) A0

X integral adèle ring

H0(X,
∏′
x∈U1 K̂X,x) AX adèle ring
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The adèle approach to the theory of curves is due to Weil, we refer to [Ser97],
[Tat68] for a presentation of this formalism. The same technique works for
arbitrary quasi-coherent sheaves by tensoring. As a result of the resolution
in Equation 2.1 we obtain for example

H0(X,OX) = A0
X ∩ k(X) H1(X,OX) = AX/(A

0
X + k(X)).

In particular, in order to describe the global residue map

H1(X,Ω1
X/k) −→ k

we can employ such an adèle resolution of the sheaf Ω1
X/k to give elements

of the left-hand side a concrete representation, see Tate [Tat68].

2.2. In general. Parshin generalized this method to surfaces by introduc-
ing two-dimensional adèles [Par76], [ParF99]. Beilinson’s paper [Bĕı80] pro-
vides the multidimensional technology. We need to recall this for later use:

We mostly follow the notation in [Bĕı80]. Let X be a Noetherian scheme.

For points η0, η1 ∈ X we write η0 > η1 if {η0} 3 η1, η1 6= η0. Denote by
S (X)n := {(η0 > · · · > ηn), ηi ∈ X} the set of chains of length n + 1. The
elements of these sets are also known as flags. Let Kn ⊆ S (X)n be an
arbitrary subset. For any point η ∈ X define ηK := {(η1 > · · · > ηn) s.t.
(η > η1 > · · · > ηn) ∈ Kn}, a subset of S (X)n−1. Let F be a coherent sheaf
on X. For n = 0 and n ≥ 1 we define inductively

A(K0,F) :=
∏

η∈K0

lim←−iF ⊗OX
OX,η/mi

η(2.2)

A(Kn,F) :=
∏

η∈X
lim←−iA(ηKn ,F ⊗OX

OX,η/mi
η).

The sheaves F ⊗OX
OX,η/mi

η are usually only quasi-coherent, so we com-
plement this partial definition as follows: For a quasi-coherent sheaf F we
define A(Kn,F) := colim−−−→FjA(Kn,Fj), where Fj runs through all coher-

ent subsheaves of F (and hereby reducing to Equation 2.2). As it is built
successively from ind-limits and Mittag-Leffler pro-limits, A(Kn,−) is a co-
variant exact functor from quasi-coherent sheaves to abelian groups. Next,
we observe that S(X)• carries a natural structure of a simplicial set (omit-
ting the i-th entry in a flag yields faces; duplicating the i-th entry in a flag
degeneracies). This turns

A•(U,F) := A(S(U)•,F) (for U Zariski open)

into a sheaf of cosimplicial abelian groups (actually even cosimplicial OX -
module sheaves) and via the unreduced Dold-Kan correspondence into a
complex of sheaves, which we may denote by Ai

F .

Theorem 6 ([Bĕı80, §2]). (Beilinson) For a Noetherian scheme X and a
quasi-coherent sheaf F on X, the Ai(−,F) are flasque sheaves and

0 −→ F −→ A0
F −→ A1

F −→ · · ·
is a flasque resolution.
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See Huber [Hub91a], [Hub91b] for a detailed proof.

Remark 2. There are also discussions circling around this construction in
Hübl-Yekutieli [HY96], Osipov [Osi07], Parshin [Par83]. A very interesting
perspective on the relation of the Grothendieck residue complex and adèles
can be found in Yekutieli [Yek03]. Beilinson actually defines S(X)n so that
also degenerate flags with ηi = ηi+1 are allowed, but one can check that this
yields a slightly larger, but quasi-isomorphic complex [Hub91b, §5.1].

Example 2. Suppose X is an integral smooth proper curve. We may read
the set Xp of codimension p points as length one flags. One computes

A(X0,OX) = k(X) A(X1,OX) =
∏
x∈X1 ÔX,x

A(S (X)1 ,OX) =
∏′
x∈X1 K̂X,x

so that Theorem 6 reduces to the Equation 2.1.

It is also instructive to have a detailed look at a computation in dimension
two:

Example 3 (generic behaviour). For a commutative and unital ring R and a
prime P ⊂ R, colim−−−→f /∈PR[f−1] denotes the localization RP . For any such f ,

we define R[f−1] = colim−−−→iR
〈
f−i
〉

for i → ∞, where
〈
f−i
〉

denotes the R-

submodule generated by f−i inside R[f−1]. Combining both colimits writes
RP as a colimit of finitely generated R-modules. We shall abbreviate this
colimit by writing colim−−−→f /∈PR 〈f−∞〉. Now suppose X := Spec k[s, t] and

4 := {(0) > (s) > (s, t)} ∈ S (X)2 is a singleton set. Then

A(4,OX) = A( (0)4 , k(s, t)) = colim−−−→
f /∈(0)

A( (0)4 , k[s, t]
〈
f−∞

〉
)

= colim−−−→
f /∈(0)

lim←−
i

A( (s)(0)4 , k[s, t]
〈
f−∞

〉
⊗ k[s, t](s)/(s

i))

= colim−−−→
f /∈(0)

lim←−
i

colim−−−→
g/∈(s)

A( (s)(0)4 , k[s, t]
〈
f−∞

〉 〈
g−∞

〉
/(si))

= colim−−−→
f /∈(0)

lim←−
i

colim−−−→
g/∈(s)

lim←−
j

k[s, t](s,t)
〈
f−∞

〉 〈
g−∞

〉
/(si)/(s, t)j .

and this yields

= colim−−−→
f /∈(0)

lim←−
i

colim−−−→
g/∈(s)

k[[s, t]]
〈
f−∞

〉 〈
g−∞

〉
/(si)

= colim−−−→
f /∈(0)

lim←−
i

k[[s, t]][(k[s, t]− (s))−1]
〈
f−∞

〉
/(si)

= colim−−−→
f /∈(0)

k((t))[[s]]
〈
f−∞

〉
= k((t))((s)).



ON THE RESIDUE SYMBOL 471

Note that this computation has not provided us with a canonical isomor-
phism to k((t))((s)). Already writing A2

k as Spec k[s, t] involved the choice
of coordinates s, t.

We hope that the structural similarities to the discussion in §1 have be-
come clear. Again, we get an isomorphism ' k((t))((s)) making it tempting
to define a two-dimensional residue as

rest ress fds ∧ dt = a−1,−1 where f =
∑

s,tak,ls
ktl.

While this would work (cf. [Par76], [ParF99], but beware of the topological
pitfalls explained by Yekutieli [Yek92]) it is a priori again entirely unclear
whether this construction is independent of the choice of the isomorphism.

Example 4 (exceptional behaviour). An example where A(4,OX) has two
summands arises at singularities. Note that for char k 6= 2 the prime ideal
(s3 + s2 − t2) in k[s, t] does not remain prime under the adelic completion

because the new element
√

1 + s =
∑

k≥0

(1/2
k

)
sk enables a factorization.

Instead, we get two irreducible components.

For the flag 4 := {(0) > (s, t)} we obtain

A(4,OX) = A( (0)4 , k(s)[t]/(s3 + s2 − t2))

= colim−−−→
f /∈(0)

A( (0)4 , k[s, t]/(s3 + s2 − t2)
〈
f−∞

〉
)

= colim−−−→
f /∈(0)

lim←−
i

colim−−−→
g/∈(s,t)

k[s, t]/(ti, si, s3 + s2 − t2)
〈
f−∞

〉 〈
g−∞

〉
= colim−−−→

f /∈(0)

k[[s, t]]/(s
√

1 + s+ t)(s
√

1 + s− t)
〈
f−∞

〉
= k((s))⊕ k((s)),

so that the image of t is (−s
√

1 + s,+s
√

1 + s). For the last step in the
computation note that the colimit is an Artinian ring, so it is isomorphic to
the product over the localizations at its maximal ideals.

A detailed description of the behaviour of adèles especially for flags along
singular subvarieties can be found in [Par83], [ParF99]. One can give a
precise dictionary between direct summand decompositions in adèles and
fibers of singularities under normalization. We recommend Yekutieli [Yek92,
§3.3] for a thorough discussion.

Definition 7 (see [FK00]). For n ≥ 1 an n-local field with last residue field
k is a complete discrete valuation field whose residue field is an (n−1)-local
field with last residue field k. Moreover, we call k itself the only 0-local field
with last residue field k.
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In the formulation of the following proposition, we write AY (−,−) to
refer to the adèles belonging to the scheme Y .

Proposition 8 (Structure theorem, [Bĕı80, p. 2, 2nd paragr.]). Suppose X
is a finite type reduced scheme of pure dimension n over a field k and 4 a
finite subset of

{(η0 > · · · > ηn) such that codimX ηi = i} ⊆ S(X)n.

Define

4′ := {(η1 > · · · > ηn) such that (η0 > · · · > ηn) ∈ 4 for some η0}.

(1) Then A(4,OX) is a finite direct product of n-local fields
∏
Ki such

that each last residue field is a finite field extension of k. Moreover,

(2.3) A(4′,OX)
(∗)
⊆
∏
Oi ⊆

∏
Ki = A(4,OX),

where Oi denotes the ring of integers of Ki and (∗) is a finite ring ex-
tension. Each Ki is non-canonically isomorphic to k′((t1)) · · · ((tn))
for k′/k finite.

(2) If we instead regard 4′ as a flag in the closed subscheme {η1} the
decomposition as in Equation 2.3 also exists for A{η1}(4

′,O{η1}).
Its field factors equal the residue fields of the Oi in Equation 2.3. In
particular, up to the finite extensions (∗), the n-local field structure
of the Ki in AX(4,OX) is induced from

A{η0}(4,OX)

A{η0}(4
′,OX)

OO

// A{η1}(4
′,OX)

A{η1}(4
′′,OX)

OO

// A{η2}(4
′′,OX)

...

OO

(3) For a coherent sheaf F , A(4,F) ∼= F ⊗OX
A(4,OX).

Beware: Even if 4 consists only of one flag, the products in Equation 2.3
may have several factors. See Example 4.

The first published proof (of a mild variation) of the above result was
given by Yekutieli [Yek92, Theorem 3.3.2]. A different proof can be found
in [BGW16a]. We now have described the multidimensional generalization

of the infinite-dimensional k-vector space K̂X,x appearing in §1.
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Next, we need to describe the higher analogues of the operator ideals
I+, I−. Since these might seem quite involved, let us axiomatize the precise
input datum which the following constructions require:

Definition 9 ([Bĕı80]). Let k be a field. An (n-fold) cubically decomposed
algebra2 over k is the datum (A, (I±i ), τ):

• an associative k-algebra A;
• two-sided ideals I+

i , I
−
i such that I+

i + I−i = A for i = 1, . . . , n;

• writing I0
i := I+

i ∩ I
−
i and Itr := I0

1 ∩ · · · ∩ I0
n, a k-linear map (called

trace)

τ : Itr/[Itr, A]→ k.

The essence of Beilinson’s residue construction uses nothing but the above
datum. The reader should therefore not be discouraged by the involved
actual construction of it:

Below Homk(−,−) refers to plain k-vector space homomorphisms without
any further conditions.

Definition 10 ([Bĕı80]). Suppose X/k is a finite type reduced scheme of
pure dimension n.

(1) Let 4 = {(η0 > · · · > ηn)} be given and M a finitely generated
Oη0-module. Then a lattice in M is a finitely generated Oη1-module
L ⊆M such that Oη0 · L = M .

(2) For any quasi-coherent sheaf M on X define M4 := A(4,M).
(3) Write 4′ := η04 = {(η1 > · · · > ηn)}. Suppose M1,M2 are finitely

generated Oη0-modules. Let Hom4(M1,M2) be the k-submodule of
those f ∈ Homk(M14,M24) such that for all lattices L1 ⊂M1, L2 ⊂
M2, there exist lattices L′1 ⊂M1, L

′
2 ⊂M2 such that

(2.4) L′1 ⊆ L1, L2 ⊆ L′2, f(L′14′) ⊆ L24′ , f(L14′) ⊆ L′24′

and for all such L1, L
′
1, L2, L

′
2 the induced k-linear map

(2.5) f : (L1/L
′
1)4′ → (L′2/L2)4′

lies in Hom4′(L1/L
′
1, L

′
2/L2). Define Hom∅(−,−) as Homk(−,−).

(4) Define I+
14(M1,M2) to consist of those f ∈ Hom4(M1,M2) such

that there exists a lattice L ⊂M2 with f(M14) ⊆ L4′. Respectively,

I−14(M1,M2) consists of those such that there exists a lattice L ⊂
M1 with f(L4′) = 0. Next, for i = 2, . . . , n and both +/− define

I±i4(M1,M2) as those f ∈ Hom4(M1,M2) such that for all lattices

L1, L
′
1, L2, L

′
2 as in Equation 2.4 we have

(2.6) f ∈ I±(i−1)4′(L1/L
′
1, L

′
2/L2).

2This definition is slightly more general than in [Bra14, Definition 6] because we do
not demand that A is unital.
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A discussion around this type of structure can be found in Osipov [Osi07].
It can be related to topologizations of n-local fields [Cám13], [Yek92]. We
refer the reader especially to Yekutieli’s work in the context of topological
higher local fields [Yek15]. Note the similarity to Definitions 1 and 2. The
above definition leads us to the central object of study:

Definition 11 ([Bĕı80]). In the context of the previous definition, let

E4 := Hom4(Oη0 ,Oη0) ⊆ Endk(OX4,OX4).

Write I±i4 ⊆ E4 for I±i4(Oη0 ,Oη0) and i = 1, . . . , n.

Example 5 (toy example [Bra14]). The above definition can easily be confus-
ing. It is helpful to look at the structurally simpler, but essentially equivalent
case of infinite matrix algebras first: For any associative algebra R define

(2.7) E(R) := {φ = (φij)i,j∈Z, φij ∈ R | ∃Kφ : |i− j| > Kφ ⇒ φij = 0}
and equip it with the usual matrix multiplication. Then

I+(R) :={φ ∈ E(R) | ∃Bφ : i < Bφ ⇒ φij = 0}
I−(R) :={φ ∈ E(R) | ∃Bφ : j > Bφ ⇒ φij = 0}

define two-sided ideals in E(R) with I+(R) + I−(R) = E(R). We may
iterate this construction so that I±i := (EE · · · I± · · ·E)(R) (with I± in the
i-th place) defines a two-sided ideal of En(R) = E · · ·E(R). One checks that
(EnR, {I±i }, tr) is an n-fold cubically decomposed algebra [Bra14, §1.1].

The top row displays typical matrices from E(R), I+(R), I−(R) respec-
tively. The lower row illustrates double infinite matrix constructions, namely
E(I−(R)), E(E(R)) and I−(I−(R)) respectively. Although defined in a
more complicated way, the ideals of Definition 10 have the same structural
properties as these infinite matrix ideals. Note that En(R) has a natural
R-linear action on the Laurent polynomial ring R[t±1 , . . . , t

±
n ], see [Bra14,

§1.1].

Proposition 12 ([Bĕı80, Theorem (a)]). Suppose X/k is a finite type re-
duced scheme of pure dimension n. Suppose 4 = {(η0 > · · · > ηn)} is a

single-element set such that codimX {ηi} = i.
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(1) Then (E4, (I
±
i4), trItr) is a unital cubically decomposed algebra over

k, where trItr refers to Tate’s operator trace (cf. Proposition 3).
(2) For every f ∈ Itr there exists a finite-dimensional f -stable k-vector

subspace W ⊆ E4 such that trItr f = trW f .

Proof. One easily sees that the I±i are two-sided ideals. For I+
i + I−i = E4

pick any lattice on the suitable level of the inductive definition and any
vector space idempotent projecting on it, call it P+. Then P− := 1 − P+

contains the lattice in the kernel. Clearly, 1 = P+ + P− and P± ∈ I±i .
It remains to check that Tate’s trace is defined on Itr = I0

1 ∩ · · · ∩ I0
n, i.e.

that all operators in this ideal are finite-potent, one can argue by induction:
Suppose f ∈ Itr(V, V ) for some V . In particular f ∈ I0

n(V, V ), i.e. there
exists a lattice L ⊂ V such that fL = 0 and a lattice L′ ⊂ V such that
fV ⊆ L′. We observe that f◦3

n
: V → V factors as

(2.8) f◦3
n

: V
f◦3

n−1

−→ L′
quot−→ L′

L ∩ L′
f
◦3n−1

−→ L′

L ∩ L′
f◦3

n−1

−→ L′
incl−→ V .

As L,L′ are lattices, L∩L′ is a lattice, so we may take L′1 = L2 := L∩L′ and
L1 = L′2 := L′ as choices in Equation 2.4. As we also have f ∈ I0

n−1, this

yields that f ∈ I0
n−1(L′/(L∩L′), L′/(L∩L′)). Thus, using V := L′/(L∩L′)

the middle term f
◦3n−1

in Equation 2.8 again satisfies the assumptions for
the induction step, just replace n with n − 1. Proceed down to n = 1,

where the middle term f
◦1

is a morphism of finite-dimensional k-vector
spaces. Combining all induction steps, this shows that for every f ∈ Itr,
f◦3

n
factors through a finite-dimensional k-vector space W , so a power of f

indeed has finite-dimensional image over k, i.e. f is finite-potent. Similarly,
the computation of the trace can be reduced to a classical trace: Again, we
use induction. Assume f ∈ I0

n. As the lattices L,L′ (chosen as above) are
f -stable, using axiom T2 twice yields

trV f = trL′ f + trV/L′ f = (trL∩L′ f + trL′/L∩L′ f) + trV/L′ f .

As f ≡ 0 in the quotient V/L′ as well as f |L= 0 when restricted to L (and
thus L ∩ L′), axiom T3 reduces the above to trL′/L∩L′ f . Hence, we have

reduced to f : L′/(L ∩ L′) → L′/(L ∩ L′). As before it follows that if we
also have f ∈ I0

n−1(V, V ), then f ∈ I0
n−1(L′/(L∩L′), L′/(L∩L′)) and using

V := L′/(L ∩ L′) we again satisfy our initial assumptions for the induction
step. If f ∈ Itr, this inductively yields

trV f = · · · = trW f ,

where W is a finite-dimensional k-vector space. Hence, by T1 the last trace
trW f is the ordinary trace of an endomorphism. For f ∈ [Itr, A] use T5 to
see that trV f = 0. �
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3. Beilinson’s construction

In this section we try to be brief. A motivated explanation can be found
in §4.

3.1. Beilinson’s functional. Let us recall Beilinson’s construction of the
cocycle [Bĕı80]. We begin with some general considerations:

Definition 13. For V a vector space and V ′ ⊆ V a subspace, we define

V ′ ∧
∧r−1V =

{
subspace of

∧rV generated by
v′ ∧ v1 ∧ · · · ∧ vr−1 with v′ ∈ V ′, vi ∈ V

}
Beware: Note that V ′ ∧ (−) is by no means an exact functor in any

possible sense. It behaves quite differently from V ′ ⊗ (−).
Let g := ALie be the Lie algebra of an associative algebra A and M a

g-module. Then one has the Chevalley-Eilenberg complex CLie
i (g,M) :=

M ⊗
∧ig, see [Lod92, §10.1.3] for details. Its homology is ordinary Lie

homology. We abbreviate CLie
i (g) := CLie

i (g, k) for trivial coefficients. Let
j ⊆ g be a Lie ideal. Then the vector spaces

(3.1) CE(j)r := j ∧
∧r−1g

for r ≥ 1 and CE(j)0 := k define a subcomplex of CLie
r (g, k) via the identi-

fication

j ∧ f1 ∧ · · · ∧ fr−1 ≈ 1⊗ j ∧ f1 ∧ · · · ∧ fr−1.

The differential turns into the nice expression (cf. [Bĕı80, first equation])

(3.2) δ(f0∧f1∧. . .∧fr) :=
∑

0≤i<j≤r(−1)i+j [fi, fj ]∧f0∧. . . f̂i . . . f̂j . . .∧fr.

Beware: Due to the difference between j ∧ (−) and j ⊗ (−) the homology
of CE(j)• does not agree with the Lie homology Hn(g, j) with j seen as a
g-module. It is better viewed as relative Lie homology, as explained in §4.

Now suppose A is given the extra structure of a cubically decomposed
algebra (cf. Definition 9), i.e.

• two-sided ideals I+
i , I

−
i such that I+

i + I−i = A for i = 1, . . . , n;

• writing I0
i := I+

i ∩ I
−
i and Itr := I0

1 ∩ · · · ∩ I0
n, a k-linear map

τ : Itr/[Itr, A]→ k.

For any elements s1, . . . , sn ∈ {+,−, 0} we define the degree deg(s1, . . . , sn) :=
1 + #{i | si = 0}.

Notation. Below, we shall frequently encounter indices s1, . . . , sn and when
they appear in a subscript or superscript, we often shorten this to writing
“s1 . . . sn” instead. Moreover, for exponents s ∈ {+,−} we write

(−1)+ := +1 and (−1)− := −1

and −s denotes the opposite sign. Read (−1)s1+···+sn as (−1)s1 · · · (−1)sn .
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Given the above datum, Beilinson constructs a very interesting family of
complexes:

Definition 14 ([Bĕı80]). Define

(3.3) ∧T p• :=
⊕

s1...sn∈{±,0}
deg(s1...sn)=p

n⋂
i=1

 CE(I+
i )• for si = +

CE(I−i )• for si = −
CE(I+

i )• ∩ CE(I−i )• for si = 0

and ∧T 0
• := CE(g)•. View them as complexes in the subscript index (−)•.

Each CE(I±i )• is a complex and all their differentials are defined by the
same formula, namely Equation 3.2. Thus, the intersection of these com-
plexes has a well-defined differential and is a complex itself. Next, Beilinson
shows that

(3.4) 0 −→ ∧Tn+1
• −→ · · · −→ ∧T 1

• −→ ∧T 0
• −→ 0

is an exact sequence (now indexed by the superscript) with respect to a
suitably defined differential coming from a structure as a cubical object (see
[Bĕı80, §1] or [Bra14, Lemma 18]). Thus, we obtain a bicomplex

(3.5)

→ · · · → ∧T 0
2 → 0

etc. ↓ ↓
0→ ∧Tn+1

1 → ∧Tn1 → · · · → ∧T 0
1 → 0

↓ ↓ ↓
0→ ∧Tn+1

0 → ∧Tn0 → · · · → ∧T 0
0 → 0.

Its support is horizontally bounded in degrees [n+ 1, 0], vertically (+∞, 0].
As a result, the associated two bicomplex spectral sequences are convergent.
Since the rows are exact, the one with E0-page differential in direction ‘→’
vanishes already on the E1-page. Thus, this (and therefore both) spectral
sequences converge to zero. Now focus on the second spectral sequence, the
one with E0-page differential in direction ‘↓’. Since En+2

•,• = 0 by horizontal

concentration in [n+1, 0], the differential d : En+1
n+1,1 → En+1

0,n+1 on the (n+ 1)-
st page must be an isomorphism. Upon composing its inverse with suitable
edge maps, Beilinson gets a morphism
(3.6)

φBeil : Hn+1(g, k)
∼−→ Hn+1(CE(g))

edge−→ En+1
0,n+1

∼−→
d−1

En+1
n+1,1

edge−→ H1(∧Tn+1
• )

τ→ k.

For the left-hand side isomorphism note that Hn+1(g, k) ∼= Hn+1(CE(g))
just by definition of Lie homology (Beware: this is true for CE(j) if and
only if j = g), and ∧T 0

• := CE(g)• by definition. For the right-hand side
map τ observe that

(3.7) H1(∧Tn+1
• ) = H1(

⋂n
i=1

⋂
s={+,−}CE(Isi )•) =

j

[j, g]
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for j :=
⋂n
i=1

⋂
s={+,−}I

s
i = Itr. Using the Universal Coefficient Theorem in

Lie algebra homology, this is the same as giving an element in Hn+1(g, k) ∼=
Hn+1(g, k)∗. This is the proof for Beilinson’s result [Bĕı80, Lemma 1 (a)].
We summarize:

Proposition 15. (Beilinson) For every cubically decomposed algebra (A, (I±i ), τ)
and g := ALie there is a canonical morphism

φBeil : Hn+1(g, k) −→ k,

or equivalently a canonical Lie cohomology class in Hn+1(g, k). It is func-
torial in morphisms of cubically decomposed algebras.

Thus, if a commutative k-algebra K embeds as K ↪→ A, we get a mor-
phism

res : Ωn
K/k

(�)−→ Hn+1(g, k)
φBeil−→ k

f0df1 ∧ · · · ∧ dfn 7−→ f0 ∧ f1 ∧ · · · ∧ fn 7−→ φBeil(f0 ∧ · · · ∧ fn)

It turns out to be the residue. This is essentially [Bĕı80, Lemma 1 (b) and
Theorem (a)]. For a very explicit proof of this see [Bra14, Theorem 4 and
Theorem 5]. Note that (�) is not really a morphism; it does not respect the
relation d(xy) = xdy + ydx. This washes out after composing with φBeil.

Remark 3 (reduces to Tate’s theory). It is a general fact from homologi-
cal algebra that the connecting morphism coming from the snake lemma
agrees with the inverse of the suitable differential in the bicomplex spec-
tral sequence applied to the two-row bicomplex which one feeds into the
snake lemma. If we apply this remark to Equation 1.4, we readily see
how Equation 3.6 transforms into Equation 1.5. This also justifies why
d−1 : En+1

0,n+1 → En+1
n+1,1 is a natural choice to consider.

4. Etiology

I will try to explain how one could read Tate’s original article and natu-
rally be led to Beilinson’s generalization. Clearly, I am just writing down a
possible interpretation here and quite likely it has no connection whatsoever
with the actual development of the ideas. Since the original papers [Tat68],
[Bĕı80] say very little about the underlying creative process, this might be
of some use. Of course, logically, this section is superfluous.

I would have liked to begin by explaining Cartier’s idea. Tate writes “I
arrived at this treatment of residues by considering the special features of
the one-dimensional case, after discussing with Mumford an approach of
Cartier to Grothendieck’s higher dimensional residue symbol” [Tat68, p. 1].
Pierre Cartier told me that he has never published his approach, it was only
disseminated in seminar talks by Adrien Douady, whom we sadly cannot
ask anymore. It seems possible that the original formulation of Cartier’s
method has fallen into oblivion. Similarly, John Tate told me that he does
not remember more about the history than what is documented in his article.



ON THE RESIDUE SYMBOL 479

So allow me to take Tate’s method for granted and proceed to Beilinson’s
generalization.

Firstly, let us reformulate Tate’s original construction. As explained in
§1, it begins with an exact sequence of Lie modules

(4.1) 0 −→ I0 −→ I+ ⊕ I− −→ E −→ 0.

We may read I+ ⊕ I− as a Lie algebra itself and hope for I0 being a Lie
ideal in there, so that we could view the sequence as an extension of Lie
algebras. However, this fails (e.g. [x⊕x, a⊕ b] = [x, a]⊕ [x, b] has no reason
to be diagonal). There is an easy remedy, we quotient out

(4.2) 0 −→ I0 −→ I+ ⊕ I− −→
(
I+ ⊕ I−

)
/I0 −→ 0

by I− and push the sequence out along the quotient map, giving

(4.3) 0 −→ I0 i−→ I+ j−→ I+/I0 −→ 0.

Now I0 is indeed a Lie ideal in I+ so that this is an extension of Lie alge-
bras. We may take the homology of Lie algebras with trivial coefficients, i.e.
Hi(−) := Hi(−, k). If CLie

i (−) denotes the underlying Chevalley-Eilenberg
complex, we get an obvious induced morphism j∗ : CLie

i (I+)→ CLie
i (I+/I0),

which we would like to fit into a long exact sequence. To this end, define
relative Lie homology Hi(I

+ rel I0) simply as the co-cone of this morphism
j∗, so that we get a long exact sequence

(4.4) · · · → Hi+1(I+/I0)
d→ Hi(I

+ rel I0)→ Hi(I
+)→ Hi(I

+/I0)
d→ · · · .

Remark 4. This is not to be confused with the long exact sequence in Lie
homology Hi(E,−) coming from viewing Equation 4.3 as a short exact se-
quence of coefficient modules. In Equation 4.4 we change the Lie algebra,
not the coefficients.

It would be nice to have a more explicit description of the relative ho-
mology groups. Instead of just defining them as an abstract co-cone of
complexes, define it (quasi-isomorphically) as the kernel of the map j∗ of
Chevalley-Eilenberg complexes. Explicitly,

(4.5) 0→ CLie
i (I+ rel I0)→

∧i
I+ →

∧i
(I+/I0)→ 0.

We see that CLie
i (I+ rel I0) = I0 ∧

∧i−1 I+, the subspace spanned by those
exterior tensors with at least one slot lying in I0; see Definition 13. Next,
let us address the question to compute the connecting homomorphism d in
Equation 4.4. Recall that it is constructed by spelling out the underlying

complexes and applying the snake lemma. In the homological degree H2
d→
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H1, this unravels as the snake map of

(4.6) 0 // I0 ∧ I+ //

[−,−]
��

I+ ∧ I+ //

[−,−]
��

(I+/I0) ∧ (I+/I0) //

[−,−]
��

0

0 // I0 // I+ // I+/I0 // 0

and by comparison with Diagram 1.4 we find that the connecting homomor-
phism

(4.7) H2(I+/I0) −→ H1(I+ rel I0)

agrees (after precomposing with E ∼= (I+ ⊕ I−) /I0 � I+/I0) with the
snake map used in Tate’s construction, see Equation 1.5. We leave it to the
reader to spell this out in detail. In summary: Tate’s residue can be read as
a connecting homomorphism in relative Lie homology.

In the one-dimensional theory we have the notion of a lattice as in Defi-
nition 1, e.g. these are the

tik[[t]] ⊂ k((t))

for any i ∈ Z − here we temporarily allow ourselves to use explicit coor-
dinates for the sake of exposition. As we proceed to the two-dimensional
theory, the analogue of k((t)) will look like k((s))((t)) and we get a more
complicated pattern of lattices: First of all, there are the “t-lattices” like
tik((s))[[t]] and the quotient of any two such t-lattices, say of the pair

tik((s))[[t]] ⊂ tjk((s))[[t]] with j ≤ i,
is a finite-dimensional k((s))-vector space; in this example it is the span

' k((s))
〈
tj , tj+1, . . . , ti−1

〉
.

In any such space we now get a notion of an “s-lattice”, namely just in the
previous sense, e.g. if i = j + 1 the quotient is just the span ' k((s))

〈
tj
〉

and the s-lattices would be of the shape sik[[s]]
〈
tj
〉
⊂ k((s))

〈
tj
〉

for any
i ∈ Z. Two things are important to keep in mind here:
Firstly, for the sake of presentation we have described this in explicit coor-
dinates here. Of course we need to replace the vague notion of “t-lattices”
and “s-lattices” by something which makes no reference to coordinates. See
Definition 10 for Beilinson’s beautiful solution.
Secondly, there is a true asymmetry between t and s. Note that for a field
k((s))((t)) the roles of s and t are not interchangeable, unlike for k[[s]][[t]].
For example,

∑
i≥0 s

−iti lies in this field, but
∑

i≥0 t
−isi does not describe an

actual element of k((s))((t)). This is why we chose to speak of “s-lattices”
in a quotient of t-lattices, rather than trying to deal with something like
sik[[s]]((t)). Note for example that

⋃
i∈Z s

ik[[s]]((t)) $ k((s))((t)). To avoid
all pitfalls, it would be best to work in appropriate categories of ind-pro
limits right from the start, as in [BGW16c], but this is of course an anachro-
nism.
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Based on having two lattice structures instead of just one, in dimension
two Beilinson deals with four ideals I±1 , I

±
2 instead of just a single pair as in

Tate’s construction. We may read the exact sequence in Equation 4.1 as a
quasi-isomorphism [

I0 −→ I+ ⊕ I−
]
1,0

∼−→ E

with a two-term complex concentrated in homological degrees [1, 0]. View
these ideals as representing the t-lattices of above (e.g. I+

1 would be endo-
morphisms whose image lies in some t-lattice). Then replicating the analo-
gous structure for s-lattices leads to the bicomplex I0

1 ∩ I0
2 −→ I0

1 ∩ I
+
2 ⊕ I0

1 ∩ I
−
2

↓ ↓
I+

1 ∩ I0
2 ⊕ I

−
1 ∩ I0

2 −→ I+
1 ⊕ I

−
1 ⊕ I

+
2 ⊕ I

−
2

 ∼−→ E.

Accordingly, in the theory for n dimensions one gets a structure of n cas-
cading notions of lattices, and correspondingly 2n ideals I±i . The above gets
replaced by a quasi-isomorphism with an n-hypercube. It is a matter of
taste whether one prefers to work with multi-complexes or with the ordi-
nary total complex. We prefer the latter, giving a complex concentrated in
homological degrees [n+ 1, 0], see Equation 3.4 and Equation 5.7.

In order to construct the residue map in dimension two, it seems natural
to perform the mechanism of dimension one twice, once for each layer of
lattices. Hence, one should study the connecting homomorphism analogous
to the one in Equation 4.7. However, things get a bit more complicated,
because if we try to compose two such connecting homomorphisms, we find
that the input of the second step should be the relative Lie homology group
which is the output of the first step. This leads to bi-relative Lie homology,
defined just as the kernel on the left-hand side in

0→ CLie
i (I+

1 rel I0
1 rel I0

2 )→ CLie
i (I+

1 rel I0
1 )→ CLie

i (I+
1 /I

0
2 rel I0

1/I
0
2 )→ 0.

Here we allow ourselves to write I+
1 /I

0
2 as a shorthand for

I+1
I02∩I

+
1

to improve

legibility. Now we are able to compose the associated connecting homomor-
phism with the one of Equation 4.7, giving something like

H3(I+/I0
1I

0
2 )

d−→ H2(I+/I0
2 rel I0

1 )
d−→ H1(I+ rel I0

1 rel I0
2 ).

We should make the bi-relative Lie homology more explicit: Unwinding
complexes as in Equation 4.5, we see that

0→ CLie
i (I+

1 rel I0
1 rel I0

2 )→ I0
1 ∧

∧i−1
I+

1 → I0
1/I

0
2 ∧

∧i−1
(I+

1 /I
0
2 )→ 0

and therefore

(4.8) CLie
i (I+

1 rel I0
1 rel I0

2 ) =
⋂
i=1,2

(
I0
i ∧

∧i−1
I+

1

)
.

The reader will have no difficulty in checking that i-fold multi-relative Lie
homology can be defined accordingly, and leads to further intersections of
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subcomplexes as in Equation 4.8. This explains the underlying structure
of Beilinson’s complex ∧T p• , see Equation 3.3 (or, this is my interpretation.
There is no mention of relative homology in [Bĕı80]). In fact, ∧T p• is a tiny
bit more complicated because it works with all 2n ideals I±i and E instead
of quotienting out the I−-ideals and working with I+ only, i.e. without the
simplification coming from switching from Equation 4.2 to Equation 4.3.

Let us pause for a second. What happens if we ignore Remark 4 and
phrase Tate’s construction in terms of a long exact sequence, this time with
varying coefficients? The diagram 4.6 turns into

0 // I0 ⊗ E //

[−,−]
��

I+ ⊗ E //

[−,−]
��

(I+/I0)⊗ E //

[−,−]
��

0

0 // I0 // I+ // I+/I0 // 0

and Equation 4.7 gets replaced by

H1(E, I+/I0) −→ H0(E, I0).

Besides the index shift, this map also gives Tate’s residue3. Hence, it is
actually possible to set up the entire theory using Lie homology with co-
efficients instead of relative Lie homology. This is the path taken in the
previous paper [Bra14]; the corresponding variant of Beilinson’s complex
∧T p• is called ⊗T p• in loc. cit. Both variants in general give different maps
(and begin and end in different homology groups), but still they are largely
compatible [Bra14, Lemma 23] and both give the multi-dimensional residue
[Bra14, Theorem 4 and 5].

The coefficient variant is more manageable for explicit computations: The
problem with complexes like I0∧

∧i−1 I+ is that it is difficult to write down
explicit bases for these spaces because the only natural candidate are pure
tensors

f0 ⊗ f1 ⊗ · · · ⊗ fi−1

with f0, . . . , fi−1 ascendingly taken from an ordered basis of I+ so that
f0 ∈ I0. Performing calculations, it quickly becomes very tedious to maintain
elements in this standard ordered shape.

In the next section §5 we propose yet another point of view. First of all,
motivated by the strong relation between the Hodge n-part of Hochschild ho-
mology and Lie homology, we replace Lie homology by (the full) Hochschild
homology. This poses no problem since all the Lie algebras/ideals we have
encountered above are actually coming from associative algebras and ordi-
nary ideals. For example, the sequence in Equation 4.4 will be replaced

3I find it noteworthy that essentially the same computation admits at least two (quite
different) homological interpretations.
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by

· · · → HHi+1(I+/I0)
d→ HHi(I

+ rel I0)→ HHi(I
+)→ HHi(I

+/I0)
d→ · · · .

However, now a substantial simplification occurs: In certain circumstances
relative Hochschild homology agrees with absolute Hochschild homology, in
the sense that the natural morphism

HHi(I
0) −→ HHi(I

+ rel I0)

sometimes happens to be an isomorphism. This is known as excision; it is
easily seen to be wrong for arbitrary ideals but it turns out that the ideals I0

i
have the necessary property. This spares us from having to work with multi-
relative homology at all. Instead, we can just compose the corresponding
n connecting maps, one by one, and we will prove that this again gives the
same map, but now its construction necessitates much less effort, §6. We
will also see that it is much easier to compute this map explicitly, saving us
from a lot of trouble we had to go through in [Bra14].

5. Hochschild and cyclic picture

In this section we will formulate an analogue of Beilinson’s construction
in the context of Hochschild (and later also cyclic) homology. We follow the
natural steps:

(1) We replace Lie homology with Hochschild homology. This is harm-
less since cubically decomposed algebras come with an associative
product structure anyway. There is a natural map

ε : H•(ALie,MLie) −→ H•(A,M),

ultimately explaining numerous similarities.
(2) The Hochschild complex is modelled on chain groups A ⊗ · · · ⊗ A

instead of exterior powers. Thus, the only reasonable replacement
of the mixed exterior powers/relative homology groups

CE(j)r := j ∧
∧r−1g

in the original construction are the groups J ⊗A⊗ · · · ⊗A for J an
ideal. This is very convenient, as this just gives Hochschild homol-
ogy with coefficients Hr(A, J). Alternatively, one could work with
relative Hochschild groups. We will return to a relative perspective
in §6.

To set up notation, let us very briefly recall the necessary structures in
Hochschild homology. See [Lod92, Ch. I] for a detailed treatment. Suppose
A is an arbitrary (not necessarily unital) associative k-algebra. Let M be
an A-bimodule over k, or equivalently a left-A⊗k Aop-module. Define chain
groups Ci(A,M) := M⊗kA⊗i and a differential b : Ci(A,M)→ Ci−1(A,M),
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given by

m⊗ a1 ⊗ · · · ⊗ ai 7→ ma1 ⊗ a2 ⊗ · · · ⊗ ai
+
∑i−1

j=1 (−1)jm⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai(5.1)

+ (−1)i aim⊗ a1 ⊗ · · · ⊗ ai−1.

We call the homology of the complex (C•(A,M), b) its Hochschild homology,
denoted by Hi(A,M). Write ALie for the Lie algebra associated to A via
[x, y] := x · y − y · x. There is a canonical morphism

ε : CLie
i (ALie,MLie)→ Ci(A,M)(5.2)

m⊗ a1 ∧ · · · ∧ ai 7→ m⊗
∑
π∈Si

sgn(π)aπ−1(1) ⊗ · · · ⊗ aπ−1(i),

where Si is the symmetric group on i letters. This is a morphism of com-
plexes, in particular it induces a morphism Hi(ALie,MLie)→ Hi(A,M).

For the rest of this section assume A is unital. Clearly A is a bimodule
over itself and we write HHi(A) := Hi(A,A) as an abbreviation (see §6.2
for the correct definition when A is not unital). A k-algebra morphism
f : A → A′ induces a map f∗ : HHi(A) → HHi(A

′). The motivation for
using Hochschild homology in the context of residue theory stems from the
following famous isomorphism:

Proposition 16. (Hochschild-Kostant-Rosenberg) Suppose A/k is a com-
mutative smooth k-algebra. Then the morphism

Ωn
A/k −→ HHn(A)

f0df1 ∧ · · · ∧ dfn 7−→
∑
π∈Sn

sgn(π)f0 ⊗ fπ−1(1) ⊗ · · · ⊗ fπ−1(n)(5.3)

is an isomorphism of graded commutative algebras.

See [Lod92, Theorem 3.4.4]. Let us now assume that Q ⊆ k: On A⊗(i+1)

recall that there is an action by Connes’ cyclic permutation operator

t : a0 ⊗ a1 ⊗ · · · ⊗ ai 7→ (−1)i ai ⊗ a0 ⊗ a1 ⊗ · · · ⊗ ai−1.

Define the cyclic chain groups by CCi(A) := A⊗(i+1)/(1 − t); this is the
quotient by the action of t on pure tensors. As was discovered by Connes, it
turns out that the differential b remains well-defined on these quotients. Its
homology is known as cyclic homology and denoted by HCi(A). We shall
also need Connes’ periodicity sequence [Lod92, Theorem 2.2.1]: There is a
long exact sequence

(5.4) · · · −→ HHi(A)
I−→ HCi(A)

S−→ HCi−2(A)
B−→ HHi−1(A) −→ · · ·

where I is induced from the obvious inclusion/quotient map on the level of
complexes.
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Remark 5. At the expense of a more complicated definition of the cyclic
chain groups, all of these facts remain available without the simplifying
assumption Q ⊂ k; see [Lod92, Theorem 2.1.5, we work with Hλ of loc.
cit.]. We leave the necessary modifications to the reader.

We shall moreover employ the map (recall that g := ALie)

I ′ : Hn(g, g) −→ Hn+1(g, k)(5.5)

f0 ⊗ f1 ∧ · · · ∧ fn 7−→ (−1)n ⊗ f0 ∧ · · · ∧ fn

in Lie homology. The (−1)n is needed to make the differentials compatible.

Proposition 17. (Connes, Loday-Quillen) Suppose A/k is a commutative
smooth k-algebra and char k = 0. Then there is a canonical isomorphism

HCn(A)→ Ωn
A/k/dΩn−1

A/k ⊕
⊕

i≥1H
n−2i
dR (A)

and I : HHn(A) → HCn(A) identifies with the quotient map Ωn
A/k →

Ωn
A/k/dΩn−1

A/k and zero on the lower deRham summands.

See [Lod92, Theorem 3.4.12 and remark]. The direct summand decompo-
sition on the right-hand side can be identified with the Hodge decomposition
of cyclic homology due to Gerstenhaber and Schack [GS87].

5.1. Hochschild setup. Let A be a cubically decomposed algebra over k.
We define A-bimodules N0 := A and for p ≥ 1

(5.6) Np :=
⊕

s1...sn∈{+,−,0}
deg(s1...sn)=p

Is11 ∩ I
s2
2 ∩ · · · ∩ I

sn
n

with degree deg(s1, . . . , sn) := 1 + #{i | si = 0} as before. Each I±i is a
two-sided ideal and thus an A-bimodule.

We shall denote the components f = (fs1...sn) of elements in Np with
indices in terms of s1, . . . , sn ∈ {+,−, 0}. Clearly Np = 0 for p > n+ 1. We
get an exact sequence of A-bimodules

(5.7) 0 −→ Nn+1 ∂−→ Nn ∂−→ · · · ∂−→ N0 −→ 0

by using the following differential

(∂f)s1...sn :=
∑

{i|si=+,−}
(−1)#{j|j>i and sj=0} fs1...0...sn (for N i → N i−1, i ≥ 2)

∂f :=
∑

s1...sn∈{+,−}
(−1)s1+···+sn fs1...sn (for N1 → N0)

It is straight-forward to check that ∂2 = 0 holds, but more details are found
in [Bra14, §4] nonetheless. As tensoring with (−) ⊗ A⊗(r−1) is exact, we
can functorially take the Hochschild complex and obtain a bicomplex with
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exact rows, fairly similar to the bicomplex that we have encountered before
in Equation 3.5,

(5.8)

→ · · · → C2(A,N0) → 0
etc. ↓ ↓

0→ C1(A,Nn+1) → C1(A,Nn) → · · · → C1(A,N0) → 0
↓ ↓ ↓

0→ C0(A,Nn+1) → C0(A,Nn) → · · · → C0(A,N0) → 0

As before its support is horizontally bounded in degrees [n+ 1, 0], vertically
(+∞, 0]; we get an analogous differential on the En+1-page, which is an iso-
morphism. Proceeding as before, but this time considering degree n instead
of n+ 1, we obtain
(5.9)

φHH : HHn(A)
∼−→ Hn(A,N0)

edge−→ En+1
0,n

∼−→
d−1

En+1
n+1,0

edge−→ H0(A,Nn+1)
τ−→ k.

The consideration with the trace τ of the cubically decomposed algebra is
exactly the same as before since

H0(A,Nn+1) =
Nn+1

[Nn+1, A]
,

but Nn+1 = Is11 ∩ I
s2
2 ∩ · · · ∩ Isnn = Itr, so we obtain exactly the same object

as in the Lie counterpart, see Equation 3.7. In particular, the trace τ is
applicable for the same reasons as before. This leads to the following new
construction:

Proposition 18. For every cubically decomposed algebra (A, (I±i ), τ) over
k, there is a canonical morphism

φHH : HHn(A) −→ k.

It is functorial in morphisms of cubically decomposed algebras.

Let us explain how to obtain an explicit formula for the fairly abstract
construction of φHH . To this end, we employ the following tool from the
theory of spectral sequences:

Lemma 19 ([Bra14, Lemma 19]). Suppose we are given a bounded exact
sequence

S• = [Sn+1 → Sn → · · · → S0]n+1,0

of bounded below complexes of k-vector spaces; or equivalently a correspond-
ingly bounded bicomplex.

(1) There is a second quadrant homological spectral sequence (Erp,q, dr)
converging to zero such that

E1
p,q = Hq(S

p
•). (dr : Erp,q → Erp−r,q+r−1)

(2) The following differentials are isomorphisms:

dn+1 : En+1
n+1,0 → En+1

0,n .
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(3) If Hp : Sp → Sp+1 is a contracting homotopy for S•, then

(5.10) (dn+1)−1 = Hnδ1Hn−1 · · · δn−1H1δnH0 = Hn
∏
i=1,...,n(δiHn−i).

This result can be applied to the bicomplex of Equation 5.8. The required
contracting homotopy can be constructed from a suitable family of commut-
ing idempotents in the cubically decomposed algebra as in Definition 20:

Definition 20 ([Bra14, Def. 14]). Suppose A is an n-fold unital cubically
decomposed algebra. A system of good idempotents are pairwise commuting
elements P+

i ∈ A (with i = 1, . . . , n) such that the following conditions are
met:

• (P+
i )2 = P+

i .

• P+
i A ⊆ I

+
i .

• P−i A ⊆ I
−
i (where P−i := 1A − P+

i ).

The elements P−i then are pairwise commuting idempotents as well. We
can use the contracting homotopy developed in an earlier paper:

Lemma 21 ([Bra14, Lemma 16]). Let A be unital and {P+
i } a system of

good idempotents. An explicit contracting homotopy H : N i → N i+1 for the
complex N• of Equation 5.7 is given by

(Hf)s1...sn = (−1)deg(s1...sn) (−1)s1+···+sb P s11 · · ·P
sb
b(5.11) ∑

γ1...γb+1∈{±}
(−1)γ1+···+γb P

−γb+1

b+1 fγ1...γb+1sb+2...sn

for N i → N i+1 with i ≥ 1, where b is the largest index such that s1, . . . , sb ∈
{±} or b = 0 if none. It is given by

(5.12) (Hf)s1...sn = (−1)s1+···+snP s11 · · ·P
sn
n f

for N0 → N1.

By tensoring (−) ⊗ A⊗(r−1) this induces a contracting homotopy for the
rows in the bicomplex of Equation 5.8. The evaluation of the formula in
Equation 5.10 corresponds to following a zig-zag in the bicomplex which
can be depicted graphically as:

(5.13)

0
|

θ1,n
H←− θ0,n n

...
...

θn,1
H←− θn−1,1 1

↓
θn+1,0

H←− θn,0 0
n+ 1 n n− 1 · · · 0
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If θ0,n = f0 ⊗ · · · ⊗ fn represents an element in En+1
0,n arising from the first

part of the definition of φHH (cf. Equation 5.9)

HHn(A)
∼−→ Hn(A,N0)

edge−→ En+1
0,n 3 θ0,n,

we can compute d−1 : En+1
0,n

∼−→ En+1
n+1,0 by Equation 5.10. We claim:

Lemma 22. Let A be unital and {P+
i } a system of good idempotents. Start-

ing with θ0,n = f0 ⊗ · · · ⊗ fn, we get for s1, . . . , sn−p ∈ {+,−} the formula

θp+1,n−p|s1...sn−p0...0 = (−1)n+(n−1)+...+(n−p+1)

(−1)2+3+···+(p+1) (−1)s1+···+sn−p P s11 · · ·P
sn−p

n−p n∏
i=n−p+1

( ∑
γi∈{±}

(−1)γi P−γii fiP
γi
i

) f0 ⊗ f1 ⊗ · · · ⊗ fn−p

for the terms in Fig. 5.13. Here the product (whose factors need not com-
mute) is to be expanded left to right as the index i increases, so i = n−p+1
contributes the leftmost factor, i = n the rightmost. The product is to be
read as the identity map for p = 0.

This is the Hochschild counterpart of [Bra14, Proposition 24]. The proof
will be very similar to the one given for the Lie homology counterpart in
[Bra14], but actually quite a bit less involved.

Proof. We prove this by induction on p, starting from p = 0. In this case,
the claim reads

θ1,n|s1...sn = (−1)s1+···+sn P s11 · · ·P
sn
n f0 ⊗ f1 ⊗ · · · ⊗ fn,

which is clearly true in view of Equation 5.12. Next, assume the claim is
known for a given p and we want to treat the case p + 1, i.e. we need to
evaluate a Hochschild differential b and pick a preimage as in the step

θp+1,n−p
↓ b

θp+2,n−p−1
H←− θp+1,n−p−1

of Fig. 5.13. According to our induction hypothesis, we get θp+1,n−p|s1...sn−p0...0 =
Mf0 ⊗ f1 ⊗ · · · ⊗ fn−p with the auxiliary expression

M = (−1)n+(n−1)+...+(n−p+1)(−1)2+3+···+(p+1) (−1)s1+···+sn−p P s11 · · ·P
sn−p

n−p
n∏

i=n−p+1

( ∑
γi∈{±}

(−1)γi P−γii fiP
γi
i

)
.
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The Hochschild differential b naturally decomposes into three parts (cf.
Equation 5.1)

θ
(A)
p+1,n−p−1 = Mf0f1 ⊗ f2 ⊗ · · · ⊗ fn−p,

θ
(B)
p+1,n−p−1 =

∑n−p−1
j=1 (−1)jMf0 ⊗ f1 ⊗ · · · ⊗ fjfj+1 ⊗ · · · ⊗ fn−p,

θ
(C)
p+1,n−p−1 = (−1)n−pfn−pMf0 ⊗ f1 ⊗ · · · ⊗ fn−p−1

(here we have suppressed the subscript (−)s1...sn−p0...0 for the sake of read-

ability). Next, we need to evaluate θ
(−)
p+2,n−p−1 := Hθ

(−)
p+1,n−p−1 for the cases

A,B,C. Let us consider case C: In this case, we just use Equation 5.11 and

plugging in M , we get θ
(C)
p+2,n−p−1|s1...sn−p−10...0 =

(−1)n−p (−1)deg(s1...sn−p−10...0)

(−1)s1+···+sn−p−1 P s11 · · ·P
sn−p−1

n−p−1∑
γ1...γn−p∈{±}

(−1)γ1+···+γn−p−1 P
−γn−p

n−p fn−p

(−1)n+(n−1)+...+(n−p+1)(−1)2+3+···+(p+1) (−1)γ1+···+γn−p P γ11 · · ·P
γn−p

n−p( ∑
γn−p+1∈{±}

(−1)γn−p+1 P
−γn−p+1

n−p+1 fn−p+1P
γn−p+1

n−p+1

)
· (· · · )·( ∑

γn∈{±}
(−1)γnP−γnn fnP

γn
n

)
f0 ⊗ f1 ⊗ · · · ⊗ fn−p−1

This fairly complicated expression unwinds into something much simpler
by several observations: (1) There is a large cancellation in the sign terms

(−1)(...), (2) we have deg(s1, . . . , sn−p−1, 0, . . . , 0) = p + 2, (3) the pairwise
commutativity of the idempotents allows us to reorder terms so that we
obtain the expression

∑
γ1...γn−p−1∈{±}P

γ1
1 · · ·P

γn−p−1

n−p−1 , but this is just the

identity operator by using the fact P+
i + P−i = 1. Finally, we arrive at

θ
(C)
p+2,n−p−1|s1...sn−p−10...0 = (−1)n+(n−1)+...+(n−p+1)+(n−p)(−1)2+3+···+(p+2)

(−1)s1+···+sn−p−1 P s11 · · ·P
sn−p−1

n−p−1( ∑
γn−p∈{±}

(−1)γn−p P
−γn−p

n−p fn−pP
γn−p

n−p

)
· · ·

· · ·

( ∑
γn∈{±}

(−1)γnP−γnn fnP
γn
n

)
f0 ⊗ f1 ⊗ · · · ⊗ fn−p−1.

In a similar fashion we can deal with the cases A,B, however in both these
cases we obtain a term P γii P

−γi
i = P γii (1 − P γii ) = 0, so that these terms

vanish. We leave the details to the reader (a similar cancellation occurs in
the proof of [Bra14, Proposition 24], the cancellation is explained by the
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very beautiful identity4 H2 = 0, which holds for this particular contracting

homotopy). Hence, θp+2,n−p−1 = θ
(C)
p+2,n−p−1, giving the claim. �

Theorem 23. Let (A, (I±i ), τ) be a unital cubically decomposed algebra over

k and {P+
i } a system of good idempotents. Then the explicit formula

φHH(f0 ⊗ · · · ⊗ fn) = (−1)nτ

(
n∏
i=1

∑
γi∈{±}

(−1)γi P−γii fiP
γi
i

)
f0

holds, where the product over i is to be expanded from left to right, i.e. i = 1
corresponds to the leftmost factor.

Proof. Use the lemma with p = n and compose with the trace τ as in the
definition of φHH in Equation 5.9. �

Corollary 24. Let (A, (I±i ), τ) be a unital cubically decomposed algebra over
k, and let g := ALie be the associated Lie algebra. Then the diagram

Hn(g, g)
ε //

I′

��

HHn(A)

φHH

��

Hn+1(g, k)
φBeil

// k

commutes up to sign. Here ε refers to the comparison map from Equation
5.2. The composition φHH ◦ ε is given by the commutator formula

f0 ⊗ f1 ∧ · · · ∧ fn 7→ (−1)nτ
∑
σ∈Sn

sgn(σ)
∑

γ1...γn∈{±}
(−1)γ1+···+γn

(5.14)

(P−γ11 ad(fσ−1(1))P
γ1
1 ) · · · (P−γnn ad(fσ−1(n))P

γn
n )f0.

If n = 1 and [f0, f1] = 0, then this specializes to

(5.15) f0 ⊗ f1 7→ τ [P+
1 f0, f1].

The last equation links these formulae with the classical one-dimensional
case as found in Equation 1.6.

Proof. Let {P+
i } be any system of good idempotents. A direct computation

of φHH ◦ ε yields the explicit formula

f0 ⊗ f1 ∧ · · · ∧ fn 7→ (−1)nτ
∑
σ∈Sn

sgn(σ)
∑

γ1...γn∈{±}
(−1)γ1+···+γn

(P−γ11 fσ−1(1)P
γ1
1 ) · · · (P−γnn fσ−1(n)P

γn
n )f0,

which agrees (up to sign) with the morphism ⊗ res∗ described in [Bra14,
Theorem 25, and following discussion]. The commutativity then follows from

4pointed out to me by the anonymous referee of [Bra14]



ON THE RESIDUE SYMBOL 491

[Bra14, Lemma 23]: Extended on the right with the trace, this reads

Hn(g, g)

I′

��

//

⊗res

((⊗En+1
0,n+1

��

⊗En+1
n+1,1

��

dn+1

∼=oo // k

∼=
��

Hn+1(g, k) //

φBeil

66
∧En+1

0,n+1
∧En+1

n+1,1

dn+1

∼=
oo // k

in the notation of the reference. The formula P−γ ad(f)P γg = P−γ [f, P γg] =
P−γfP γg − P−γP γgf = P−γfP γg (since P−γP γ = 0) implies Equation
5.14. For n = 1, this specializes to

f0 ⊗ f1 7→ −τ
∑

γ∈{±}
(−1)γP−γ1 [P γ1 f0, f1]

= τ(−P+
1 ([f0, f1]− [P+

1 f0, f1]) + P−1 [P+
1 f0, f1])

and if [f0, f1] = 0 (as would be the case if f0, f1 are functions on a variety)
this simplifies to Equation 5.15 by using P+

1 + P−1 = 1. �

After these general considerations regarding cubically decomposed alge-
bras, let us turn to geometry.

Proposition 25. Let k be a field and k′/k a finite field extension. For the
equicharacteristic n-local field

K := k′((t1)) · · · ((tn)),

consider the φHH associated to its standard cubically decomposed algebra
EK (we refer to [Yek15], [BGW16a], [BGW16b], or see the proof for an
explanation).

(1) Then for all β ∈ k′, we have

φHH(β · tc0,11 . . . t
c0,n
n ⊗ · · · ⊗ tcn,1

1 . . . t
cn,n
n ) = Trk′/k(β)

∏n
i=1ci,i

whenever ∀i :
∑n

p=0 cp,i = 0 and zero otherwise.

(2) Precomposed with the HKR map (cf. Equation 5.3), this yields

Ωn
K/k −→ HHn(K) −→ k(5.16)

β · f0df1 ∧ · · · ∧ dfn 7−→ Trk′/k(β) det

c1,1 · · · cn,1
...

. . .
...

c1,n · · · cn,n


for fp = t

cp,1
1 · · · tcp,nn (0 ≤ p ≤ n) whenever ∀i :

∑n
p=0 cp,i = 0, and

zero otherwise.
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(3) For f ∈ K given by f =
∑
fα1...αnt

α1
1 · · · tαn

n (with coefficients fα1...αn ∈
k′), we have

Ωn
K/k −→ HHn(K) −→ k

fdt1 ∧ · · · ∧ dtn 7−→ Trk′/k(f−1,...,−1).

We supplement this result with two statements which elucidate the be-
haviour when plugging in infinite series.

Supplement 1. Under the same assumptions as in the proposition, we
further have the following properties:

(1) (Series variant) Assume f0, . . . , fn ∈ K are arbitrary elements. Con-
cretely, say

(5.17) fm :=
∑

c1...cn∈Z
fmc1...cnt

c1
1 · · · t

cn
n for 0 ≤ m ≤ n

and fmc1...cn ∈ k
′. Then Equation 5.16 extends to the following: The

n-form f0df1 ∧ · · · ∧ dfn gets sent to
(5.18) ∑

c0,1...c0,n

· · ·
∑

cn,1...cn,n

such that ∀1≤i≤n: c0,i+···+cn,i=0

Trk′(f
0
c0,1...c0,n · · · f

n
cn,1...cn,n

) det

c1,1 · · · cn,1
...

. . .
...

c1,n · · · cn,n

 ,

which is always a finite sum.
(2) (Approximation) Moreover, there exists some natural number N (de-

pending on f0, . . . , fn) such that for the Laurent polynomial trunca-
tions

f̃m :=
∑

−N≤c1...cn≤N
fmc1...cnt

c1
1 · · · t

cn
n

we have

φHH(f0 ⊗ · · · ⊗ fn) = φHH(f̃0 ⊗ · · · ⊗ f̃n).

Furthermore, under the map in Equation 5.16 both f0df1 ∧ · · · ∧ dfn
and f̃0df̃1 ∧ · · · ∧ df̃n are being sent to the same value.

The following proves both the Proposition as well as the Supplement.

Proof. (1) Yekutieli gives a construction of the cubically decomposed al-
gebra EK [Yek15]. Alternatively, write the underlying vector space of the
n-local field as

k′((t1))((t2)) . . . ((tn)) = colim−−−→
in

lim←−
jn

· · · colim−−−→
i1

lim←−
j1

1

ti11 · · · t
in
n

k′[t1, . . . , tn]/(tj11 , . . . , t
jn
n ).

Following [BGW16b, Example 10], this defines an n-Tate object in the cate-
gory of finite-dimensional k′-vector spaces and the main results of [BGW16b]
imply that its endomorphism algebra in the category of n-Tate objects car-
ries a cubically decomposed structure, which we may also take to be EK .
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The equivalence of both approaches was shown in [BGW16a, Theorem 3.8].
Moreover, loc. cit. shows that viewing this n-Tate object as a k′-vector
space is a faithful functor, i.e. any such endomorphism can be thought of
as a k′-linear map. For f ∈ Itr, the trace is evaluated as follows: First, pick
in big enough such that the image lies in

L1 := lim←−
jn

· · · colim−−−→
i1

lim←−
j1

1

ti11 · · · t
in
n

k′[t1, . . . , tn]/(tj11 , . . . , t
jn
n ),

and then i′n small enough such that f sends

L′1 := lim←−
jn

· · · colim−−−→
i1

lim←−
j1

1

ti11 · · · t
i′n
n

k′[t1, . . . , tn]/(tj11 , . . . , t
jn
n )

to zero. Such values for in and i′n exist since f lies (in particular) in I0
1 .

Using axiom T2 of Tate’s trace, Proposition 3, the trace of f agrees with
the trace of f |L1/L′1

. We see that this step has reduced computing the trace

of an endomorphism of n limit-colimit pairs (of finite-dimensional vector
spaces), to computing the trace for just (n − 1) limit-colimit pairs. This
holds since the limit over jn in the quotient L1/L

′
1 becomes eventually sta-

tionary, so we can drop the limit. Repeating this reduction, it suffices to
evaluate the trace on a finite-dimensional vector space, where by axiom T1
it agrees with the ordinary trace. Moreover, as these reduction steps just
restrict the ranges of exponents of the t?1 · · · t?n appearing, some finite system
of such monomials forms a k′-basis.
(2) Henceforth, in order to distinguish clearly between ti as the multiplica-
tion operator x 7→ ti · x, or as the monomials in the formal series expansion
(Equation 5.17), we write the latter in bold letters ti for the duration of this
proof. Define idempotents P+

i by

(5.19) P+
i

∑
fλ1...λntλ11 · · · t

λn
n :=

∑
δλi≥0fλ1...λntλ11 · · · t

λn
n .

Define P−i = 1−P+
i . We know that imP+

i ⊆ I
+
i is a lattice and P−i (imP+

i ) =
0, so we have a system of good idempotents in the sense of Definition 20.
Thus, by Theorem 23 we have

(5.20) φHH(f0 ⊗ · · · ⊗ fn) = (−1)n trkM = (−1)n Trk′/k(trk′M)

for the operator M defined by

(5.21) M :=
∑

γ1...γn∈{±}
(−1)γ1+···+γn P−γ11 f1P

γ1
1 · · ·P

−γn
n fnP

γn
n f0.

The remaining computation is essentially the same as in the proof of [Bra14,
Theorem 26], so we just sketch the key steps:
(a) We first handle monomials. Suppose

fm := βmt
cm,1

1 · · · tcm,n
n
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for cm,i ∈ Z and 0 ≤ m ≤ n; 1 ≤ i ≤ n. We compute

P−mfmP
+
mtλ11 · · · t

λn
n = δ0≤λm<−cm,mβmt

λ1+cm,1

1 · · · tλn+cm,n
n for 1 ≤ m ≤ n.

This formula closely mimics the one-dimensional computation in Lemma 4.
With this we can explicitly compute the action of M on a monomial. We
get

Mtλ11 · · · t
λn
n = (β0 · · ·βm)
n∏
i=1

(δ0≤λi+c0,i+
∑n

p=i+1 cp,i<−ci,i − δ−ci,i≤λi+c0,i+
∑n

p=i+1 cp,i<0)

t
λ1+c0,1+

∑n
p=1 cp,1

1 · · · tλn+c0,n+
∑n

p=1 cp,n
n .

It is clear that this operator can have a non-zero trace only if ∀i :
∑n

p=0 cp,i =
0 holds, because otherwise it is visibly nilpotent and we can invoke axiom T3
of Tate’s trace. This proves the vanishing part of the claim. Now assume this
condition holds and simplify the formula for M accordingly. An eigenvalue
count reveals

(5.22) trk′M = β0 · · ·βn
∏n
i=1(−ci,i) = (−1)nβ0 · · ·βn

∏n
i=1ci,i,

where M is still viewed as an endomorphism of a k′-vector space. See
the proof of [Bra14, Theorem 26] for the full details. Finally, trkM =
Trk′/k(trk′M) computes the value in question; the signs (−1)n from Equa-
tion 5.20 and Equation 5.22 cancel each other out.
(b) Now we handle infinite series in order to obtain the statements of the
Supplement, Equation 5.18. We return to the operator M of Equation 5.21,
but this time suppose

(5.23) fm :=
∑

c1...cn∈Z
fmc1...cntc11 · · · t

cn
n for 0 ≤ m ≤ n,

i.e., we allow arbitrary elements f0, . . . , fn ∈ K. Since under (a) we had
established Equation 5.22 for monomials, it extends linearly to all mono-
mials in the above formal series expansion (there is a subtlety, we refer to
Elaboration 1 below for a discussion). Thus, we obtain

trk′M = (−1)n
∑

c0,1...c0,n∈Z
· · ·

∑
cn,1...cn,n∈Z

such that for all 1≤i≤n: c0,i+···+cn,i=0

(f0
c0,1...c0,n · · · f

n
cn,1...cn,n

)
∏n
i=1ci,i,

giving the first claim of the Supplement.
(3) We return to Formula 5.22. Plugging in the antisymmetrizer coming
from the HKR map, we get

= β
∑

π∈Sn
sgn(π)

∏n
i=1cπ(i),i,

which up to the factor β is exactly the Leibniz formula for the determinant.
(4) In this special case, let f0 := f and fm = tm for 1 ≤ m ≤ n and proceed
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basically as before. We compute

P−mfmP
+
mtλ11 · · · t

λn
n = δλm=0t

λ1
1 · · · t

λm+1
m · · · tλnn for 1 ≤ m ≤ n

on monomials. As before, we use this to compute the trace of the operator

M :=
∑

γ1...γn∈{±}
(−1)γ1+···+γn P−γ11 f1P

γ1
1 · · ·P

−γn
n fnP

γn
n f0,

which this time unwinds as

Mtλ11 · · · t
λn
n =

∑
c0,1...c0,n

fc0,1...c0,n
n∏
i=1

(−δλi+c0,i=−1)t
λ1+c0,1+1
1 · · · tλn+c0,n+1

n

and we see that only the summand with c0,i = −1− λi remains, giving

= (−1)nf(−1−λ1)...(−1−λn)t
λ1+(−1−λ1)+1
1 · · · tλn+(−1−λn)+1

n .

This is nilpotent unless λ1 = · · · = λn = 0 and in this case indeed has the
trace Trk′/k(f−1,...,−1), proving the claim.
(4) It remains to prove the Approximation statement of the Supplement.
Let us explain why Equation 5.18 is a finite sum. This will also demonstrate
how one could make the choice of N in the Approximation statement of the
Supplement effective. For 0 ≤ p ≤ n write

fp :=
∑

cp,1...cp,n

fpcp,1...cp,nt
cp,1
1 · · · tcp,nn

and since these elements lie in k′((. . .))((tn)), they have a finite lowest tn-
degree monomial, so we can find some integer N0 such that we have cp,n ≥
−N0 for all non-zero terms in the series. This is true for all 0 ≤ p ≤ n, so
we can pick N0 to be a joint bound among all p. Hence, the constraint

c0,n
≥−N0

+ · · ·+ cn,n
≥−N0

= 0

in Equation 5.18 forces cp,n ≤ nN0 for all p, because otherwise the sum
cannot be zero anyway. It follows that it suffices if the indices c0,n, . . . , cn,n
run through a finite set and this truncation does not change the value of
Equation 5.18. This being achieved, replace each fp by

fp =
∑
cp,n

from finite set

 ∑
cp,1...cp,n−1

fpcp,1...cp,nt
cp,1
1 · · · tcp,n−1

n−1

 t
cp,n
n ,

where each term inside the bracket is an element of k′((· · · ))((tn−1)). We
may repeat the same argument inductively, e.g., the next step shows that it
also suffices to pick the indices c0,n−1, . . . , cn,n−1 from a finite set. Conclud-
ing this induction, we have shown that the a priori infinite sum in Equation
5.18 is just a sum over a finite subset of choices for {cp,i}p,i, and this finite
subset lies in some sufficiently big box with edges [−N,N ]. This N can be
taken in the Approximation statement. �
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This finishes the proof. However, the reader might find the quick reduc-
tion from infinite series to checking something on monomials a little daring,
so let us add some details.

Elaboration 1. Let us provide some more details regarding the handling of
infinite expressions around Equation 5.23 in the above proof. When we
speak of “extending linearly” right below Equation 5.23, we do not mean
the following: We have checked the identity in part (a) of the proof for
monomials fm := t

cm,1

1 · · · tcm,n
n , then these monomials span the subspace of

Laurent polynomials

(5.24) k′[t±1 , . . . , t
±
n ] ⊂ k′((t1)) · · · ((tn)),

which is much smaller than all of K, and thus does not give the claim we
make in (b). Instead, we mean the following: Let us call a map ϕ : K → K
monomial if it has the following property,

ϕ : K −→ K∑
λ1...λn

fλ1...λntλ11 · · · t
λn
n 7−→

∑
λ1...λn

fλ1...λnϕ(tλ11 · · · t
λn
n ),(5.25)

and it is understood that we demand the sum on the right-hand side to make
sense, i.e. for every monomial td11 · · · tdnn the computation of its coefficient
in ϕ(f) ∈ K reduces to a finite summation. Let us illustrate this concept
with a well-known example. If f ∈ K, then the multiplication map

ϕf : K −→ K

x 7−→ f · x

is monomial. Indeed, while it is customary to write a product in a Laurent
series ring R((t)) as

(∑
ait

i
) (∑

bjt
j
)
, it is the first exercise for defining the

ring structure that expanding this purely formal expression reduces, for each
coefficient, to a finite summation. The same verification shows that ϕf is

indeed monomial. Secondly, we note that the operators P±i of Equation 5.19
are monomial; they are in fact defined exactly in the shape of Equation 5.25.
Thirdly, both finite sums and the composition of monomial operators are
again monomial. Combining these three facts, we see that the operator M
in Equation 5.21 is monomial. Thus, when we speak of “extending linearly”
in order to settle part (b) in the above proof, we mean that M is uniquely
determined by its action on monomials via the Formula 5.25, and unlike the
situation in Equation 5.24, this indeed pins down M on all of K.

Elaboration 2. If the reader wants a more philosophical comparison between
these two different notions of linear extension, one may observe that for any
ring R, we have R((t)) ⊆

∏
λ∈ZR, which is nothing but identifying a Laurent

series by its sequence of coefficients, and by induction K ⊆
∏
λ1...λn∈Zn k′.

Since in the proof of the Supplement we only want to prove the equality of
two elements, we can just as well do this in the bigger space

∏
λ1...λn∈Zn k′.
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Here the concept of ϕ being monomial translates into a condition of a linear
extension along a product, as opposed to a coproduct, which would be the
extension à la Equation 5.24.

Next, we shall relate various φHH for different cubically decomposed al-
gebras. To clarify the distinction, let us agree to write φAHH : HHn(A)→ k
instead of φHH plain.

Theorem 26 (Local formula). Suppose X/k is a finite type reduced scheme
of pure dimension n over a perfect field k. Suppose 4 = (η0 > · · · > ηn) ∈
S (X)n with codimX {ηi} = i. Then there is a canonical finite decomposition

A(4,OX) ∼=
∏
Kj

with each Kj an n-local field. Let E4 be the cubically decomposed algebra of
Proposition 12.

(1) Each Ej := {f ∈ E4 | fKj ⊆ Kj, fKr = 0 for r 6= j} with ideals

J±i := I±i ∩ Ej is a cubically decomposed algebra over k and for
f ∈ HHn(Oη0) we have

(5.26) φ
E4
HH(f) =

∑
jφ
Ej

HH(f).

(2) There exists (non-canonically) an isomorphism Kj ' kj((t1)) · · · ((tn))
with kj/k a finite field extension such that for all β ∈ kj

φ
Ej

HH(β · tc0,11 . . . t
c0,n
n ⊗ · · · ⊗ tcn,1

1 . . . t
cn,n
n ) = Trkj/k(β)

∏n
i=1ci,i

whenever ∀i :
∑n

p=0 cp,i = 0 and zero otherwise.

(3) Precomposed with the HKR map (cf. Equation 5.3), this yields

Ωn
Kj/k

−→ HHn(Kj) −→ k

β · f0df1 ∧ · · · ∧ dfn 7−→ Trkj/k(β) det

c1,1 · · · cn,1
...

. . .
...

c1,n · · · cn,n


for fp = t

cp,1
1 · · · tcp,nn (0 ≤ p ≤ n) whenever ∀i :

∑n
p=0 cp,i = 0 and

zero otherwise.
(4) For f ∈ Kj given by f =

∑
fα1...αnt

α1
1 · · · tαn

n (with coefficients
fα1...αn ∈ kj) we have

Ωn
Kj/k

−→ HHn(Kj) −→ k(5.27)

fdt1 ∧ · · · ∧ dtn 7−→ Trkj/k(f−1,...,−1).

A word of warning: In (2), while there always exists an isomorphism
Kj ' kj((t1)) · · · ((tn)) such that the above claims hold, it is by no means
true that any isomorphism between these fields has these properties. This
very subtle behaviour is discussed extensively in [Yek15] and [BGW16a].
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Proof. Almost all of the first claim follows directly from Proposition 8.
(1) Observe that the Ej are associative algebras. Define J±i := I±i ∩ Ej
with I±i the ideals of the cubically decomposed algebra structure of E4,

see Proposition 12. It is clear that the J±i are two-sided ideals in Ej and

we claim that J+
i + J−i = Ej . To see this, let x ∈ Ej be given. We have

A(4,OX) =
∏
Kj , so let ej be the idempotent of the j-th factor. It is clear

that ej ∈ E4, because it is a multiplication operator. Write x = x+ + x−

with x± ∈ I±i . Now ejxej = ejx
+ej + ejx

−ej . Since the I±i are ideals,

ejx
±ej ∈ I±i , but also ejx

±ej ∈ Ej . It follows that ejx
±ej ∈ I±i ∩ Ej = J±i .

On the other hand, ejxej = x. The converse inclusion is obvious, so we
have J+

i + J−i = E4 ∩Ej = Ej . Since Jtr =
⋂
i=1,...,n

⋂
s{±} J

s
i ⊆ Itr we can

use the trace map of E4. This proves that (Ej , {J±i }, trItr) is a cubically

decomposed algebra. In particular, the maps φ
Ej

HH exist. The embedding
Oη0 ↪→ A(4,OX) ∼=

∏
Kj is diagonal, i.e. f 7→ (f, . . . , f). As a result, the

associated multiplication operator in E4 is diagonal in the Kj , therefore

Equation 5.26 holds. (2) For the evaluation of φ
Ej

HH , we want to pick an
isomorphism of fields

ρ : Kj
∼−→ kj((t1)) · · · ((tn))

with the following properties: (1) ρ is an isomorphism of fields, (2) ρ is
an isomorphism of k-vector spaces, and (3) ρ induces an isomorphism of
cubically decomposed algebras (Ej , {J±i }, trItr) to the cubically decomposed
algebra structure of kj((t1)) · · · ((tn)), as in Proposition 25:

(Ej , {J±i }, trItr) −→ Ekj((t1))···((tn)), f 7−→ ρ ◦ f ◦ ρ−1.

The existence of such a ρ follows from [BGW16a, Theorem 0.2, (3)], and it
hinges on k being perfect. Since the construction of φHH is intrinsic to the
cubically decomposed algebra structure, this isomorphism implies that we
may perform our computation on the level of kj((t1)) · · · ((tn)), so the entire
claim reduces to Proposition 25. �

As we have just seen how the entire result rests solely on Proposition 25 in
the end, we may also state its Supplement here, for the sake of completeness.

Supplement 2. Under the same assumptions as in the theorem, we further
have the following properties:

(1) (Series variant) Assume f0, . . . , fn ∈ Kj are arbitrary elements.
Concretely, say

fm :=
∑

c1...cn∈Z
fmc1...cnt

c1
1 · · · t

cn
n for 0 ≤ m ≤ n
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with fmc1...cn ∈ kj under the isomorphism given in claim (2) of the
theorem. Then the n-form f0df1 ∧ · · · ∧ dfn gets sent to

∑
c0,1...c0,n

· · ·
∑

cn,1...cn,n

such that ∀1≤i≤n: c0,i+···+cn,i=0

Trkj (f
0
c0,1...c0,n · · · f

n
cn,1...cn,n

) det

c1,1 · · · cn,1
...

. . .
...

c1,n · · · cn,n

 .

(2) (Approximation) Moreover, there exists some natural number N (de-
pending on f0, . . . , fn) such that for the Laurent polynomial trunca-
tions

f̃m :=
∑

−N≤c1...cn≤N
fmc1...cnt

c1
1 · · · t

cn
n

we have

φ
Ej

HH(f0 ⊗ · · · ⊗ fn) = φ
Ej

HH(f̃0 ⊗ · · · ⊗ f̃n).

Furthermore, under the map in Equation 5.27, both f0df1∧· · ·∧dfn
and f̃0df̃1 ∧ · · · ∧ df̃n are being sent to the same value.

6. A new approach

6.1. Introduction. We want to change our perspective. Let (A, (I±i ), τ)
be a cubically decomposed algebra. So far we have always worked in the
category of A-bimodules and considered exact sequences of A-bimodules like

(6.1) 0 −→ I0
n

diag−→ I+
n ⊕ I−n

diff−→ A −→ 0

or their higher-dimensional counterparts as in Equation 5.7. This approach
corresponds to viewing Hochschild homology as a functor

A-bimodules→ k-vector spaces, M 7→ Hi(A,M).

However, Hochschild homology can also be regarded as a functor

associative k-algebras→ k-vector spaces, A 7→ HHi(A).

In this section we want to transform the mechanisms of §3, §5 from the
former to the latter perspective.

6.2. Recollections. We shall need to work with non-unital algebras, so let
us briefly recall the necessary material (see [Wod89] for details). Hochschild
homology was defined and described in §5 for an arbitrary associative algebra
A. We may read A as a bimodule over itself and if A is unital we write
HHi(A) := Hi(A,A). If A is not unital, all definitions still make sense and
we write HHnaiv

i (A) := Hi(A,A) for these groups, following [Lod92, §1.4.3].
However, this is not a good definition in general, so usually one proceeds
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differently: There is a unitalization A+ along with a canonical map k ↪→ A+

of unital associative algebras, and one defines5

(6.2) HHi(A) := coker
(
HHi(k)→ HHi(A

+)
)

,

see [Lod92, §1.4] for details; this parallels a similar construction in algebraic
K-theory. If A happens to be unital, this agrees with the previous definition
as in §5, i.e. it agrees with HHnaiv

i . In general, there is only the obvious
morphism κ : HHnaiv

i (A)→ HHi(A) (sending a pure tensor to itself in A+)
which need neither be injective nor surjective.

If 0→M ′ →M →M ′′ → 0 is a short exact sequence of A-bimodules, the
sequence 0 → C•(A,M

′) → C•(A,M) → C•(A,M
′′) → 0 is obviously an

exact sequence of complexes, so there is a long exact sequence in Hochschild
homology

(6.3) · · · → Hi(A,M
′)→ Hi(A,M)→ Hi(A,M

′′)
∂→ Hi−1(A,M ′)→ · · · .

We denote the connecting homomorphism by ∂. If I is a two-sided ideal in
A, this yields the sequence
(6.4)

· · · → Hi(A, I)→ Hi(A,A)
µ→ Hi(A,A/I)

∂→ Hi−1(A, I)→ Hi−1(A,A)→ · · ·
Moreover, if M is an A/I-bimodule, it is also an A-bimodule via A �
A/I. Then there is an obvious change-of-algebra map ν : Ci(A,M) →
Ci(A/I,M). Clearly A/I is an A/I-bimodule and thus there are canonical
maps

j : Ci(A,A)
µ→ Ci(A,A/I)

ν→ Ci(A/I,A/I),

where µ is the morphism inducing the respective arrow in Equation 6.4.
One also defines the relative Hochschild homology complex K•(A → A/I),
the precise definition is somewhat involved, see [Wod89, beginning of §3,
where instead of C one uses the Hochschild version K, defined on the same
page 598 in line 5]. We write HHi(A rel I) := HiK•(A → A/I) for its
homology (Beware: The notation HHi(A, I) is customary. However, it is
easily confused with Hi(A, I), which also plays a role here, so we have opted
for the present clearer distinction). We may regard I as an associative
algebra itself, but unless A = I it will not be unital.

Proposition 27 ([Wod88], [Wod89, Theorem 3.1]). Suppose A is an asso-
ciative algebra and I a two-sided ideal. Suppose both have at least one-sided
local units. Then the canonical morphisms

(6.5) HHnaiv
i (I)

κ−→ HHi(I)
♦−→ HHi(A rel I)

are both isomorphisms. There is a quasi-isomorphism

(6.6) K•(A→ A/I) 'qis ker(C•(A,A)
j→ C•(A/I,A/I)).

5This is not the definition given in our main reference [Wod89]; here HHi(A) is the
homology of K, cf. p. 598, l. 5 in loc. cit., defined in terms of the bar complex. The
equivalence of definitions follows from the paragraph before Theorem 3.1 in loc. cit.



ON THE RESIDUE SYMBOL 501

It is noteworthy that only the right-most term in Equation 6.5 actually
depends on A.

Proof. For the proof, combine [Wod89, Theorem 3.1 and Cor. 4.5] for the
first claim: The existence of local units implies H-unitality. For the second
claim, A is H-unital, so the bar complex in the definiton of K in loc. cit.
p. 598 in line 5 is zero up to quasi-isomorphism. Applying this to the
definition of K•(A → A/I) in §3 in loc. cit. gives the second claim. For
an alternative presentation, combine the treatment [Lod92, §1.4.9] with the
generality of [Lod92, E.1.4.6]. The H-unitality of A/I follows from [Wod89,
Cor. 3.4]. �

Basically by construction, we get a long exact sequence in homology
(6.7)

· · · → HHi(A rel I)→ HHi(A)→ HHi(A/I)
δ→ HHi−1(A rel I)→ · · · .

Although different, it is not unrelated to the sequence in Equation 6.4:

Lemma 28. Suppose A is an associative algebra and I a two-sided ideal
with at least one-sided local units. Then the diagram

(6.8) · · · // Hi(A, I) //

��

Hi(A,A) //

κ

��

Hi(A,A/I)
∂ //

λ
��

· · ·

· · · // HHi(A relI) // HHi(A) // HHi(A/I)
δ // · · ·

is commutative.

Proof. Trivial if A is unital. In general: We construct this on the level
of complexes C•(−,−). The middle downward arrow maps pure tensors to
themselves, A → A+ in HHi(A

+) and then to the cokernel as given by
Equation 6.2. Similarly, the right-hand side downward arrow is induced by

a0 ⊗ a1 ⊗ · · · ⊗ ai 7→ a0 ⊗ a1 ⊗ · · · ⊗ ai,

where a0 ∈ A/I, a1, . . . , an ∈ A and · : A� A/I is the quotient map, again
sent to (A/I)+ and then to the respective cokernel. For the left-hand side
we can wlog. use the presentation on the right-hand side of Equation 6.6 for
HHi(A rel I). The downward arrow is then given by the analogous formula,
but a0 ∈ I and so a0 = 0 in A/I, so that it is clear that the image lies in
the kernel of j : Ci(A,A)→ Ci(A/I,A/I). �

6.3. The construction. Let (An, (I±i ), τ) be an n-fold cubically decom-
posed algebra over k. Define

(6.9) An−1 := I0
n J±i := I±i ∩A

n−1 (for i = 0, . . . , n− 1).

Then (An−1, (J±i ), τ) is an (n − 1)-fold cubically decomposed algebra over
k.
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Definition 29. We say that an n-fold cubically decomposed algebra (A, (I±i ), τ)
has local units on all levels (or is ‘good’) if As has local left units (or local
right units) for s = 1, . . . , n.

Evaluating Equation 6.9 inductively, we find As = (I0
s+1 ∩ · · · ∩ I0

n) ∩ A.
Define

(6.10) Λ : An −→ An/An−1, x 7−→ x+,

where x = x+ + x− is any decomposition with x± ∈ I±n (always exists and
gives well-defined map). This map does not equal the natural quotient map!
Using the relative Hochschild homology sequence, Equation 6.7, coming from
the exact sequence of associative algebras

(6.11) 0 −→ An−1 −→ An
quot−→ An/An−1 −→ 0,

the connecting homomorphism induces a map δ and we employ it to define
a map

(6.12) d : HHi+1(An)
Λ−→ HHi+1(An/An−1)

δ−→ HHi(A
n−1).

We can repeat this construction and obtain a morphism:

Definition 30. Suppose (A, (I±i ), τ) is an n-fold cubically decomposed al-
gebra over k which has local units on all levels. Then there is a canonical
map

φC : HHn(A) −→ HH0(Itr) −→ k, α 7→ τd ◦ · · · ◦ d︸ ︷︷ ︸
n times

α.

Analogously, for cyclic homology φC : HCn(A) → k (see the lemma below
why we call this φC as well).

Lemma 31. The map φC factors over HHn(A)
I−→ HCn(A) −→ k.

Proof. Let d′ be the analogue of the map in Equation 6.12 with cyclic
homology. Both Λ and the connecting map are compatible with I so that

HHn(A)
d◦···◦d//

I
��

HH0(Itr)

I
��

HCn(A)
d′◦···◦d′

// HC0(Itr)

commutes, but the right-hand side downward arrow is an isomorphism, giv-
ing the claim. �

Theorem 32. Suppose (A, (I±i ), τ) is a unital n-fold cubically decomposed
algebra over k which has local units on all levels. Then φC : HHn(A) → k
agrees up to sign with φHH , namely

φC = (−1)
n(n−1)

2 φHH .
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Proof. (1) We proceed by induction. Firstly, we construct a commutative
diagram and a map Ψ:
(6.13)

Hs(A,A
s)

Λ
��

Ψ

&&

Hs(A
s, As)oo κ //

Λ
��

HHs(A
s)

Λ
��

d

xx

Hs(A,
As

As−1 )

∂
��

Hs(A
s, As

As−1 )oo λ //

∂
��

HHs(
As

As−1 )

δ
��

Hs−1(A,As−1) Hs−1(As, As−1)oo // HHs−1(As−1)

The leftward arrows are the change-of-algebra maps along As ↪→ A.
The commutativity of the upper left square is immediate, the one on the

right agrees with the rightmost square in Lemma 28 (rotated). The down-
ward arrows in the middle row come from the connecting homomorphism in
the long exact sequences arising from Equation (6.11) (as in Equation (6.3)
and Equation (6.7), combined with Proposition 27). The commutativity of
the lower squares then follows from Lemma 28. (2) Next, we patch the
outer columns of the diagram as in Equation 6.13 for s = n, n − 1, . . . , 1
under each other, giving

Hn(A,An)

Ψ
��

Hn(An, An)
∼=oo

∼=
κ

// HHn(An)

d
��

Hn−1(A,An−1)

...Ψ
��

HHn−1(An−1)

... d
��

H0(A,A0) H0(A1, A0)oo // HH0(A0)

The middle column of the previous diagram does not fit to be glued into this
pattern, so we omit it, except for the top and bottom row. The morphisms
in the top row are isomorphisms since A (unlike the As for s < n) is unital.
We evaluate the terms in the lowest row and compose with the trace τ ,
giving the diagram

A0

[A,A0]

��

A0

[A1,A0]
oo

��

// HH0(A0)

��

k k∼=
oo

∼=
// k.

Since the trace τ factors through [A,A0] (note that A0 = Itr), it is clear that
the arrows in the bottom row must be isomorphisms. Thus, φC = τd◦n =
τΨ◦n. Note that this comparison only works because in the top and bottom
row all terms are isomorphic, whereas on the intermediate rows it is not
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clear whether there should exist arrows from the left to the right column (or
reversely). It remains to compute τΨ◦n:
(3) Consider the diagram with exact rows

(6.14) I0
s

diag
//

=

��

I+
s ⊕ I−s //

pr
I+s
��

As

(1)
��

Λ

xx

As−1 //

=

��

I+
s

//

incl

��

As/I−s

(2)
��

As−1 // As // As/As−1

(here for readability we have omitted intersecting all the ideals with As;
everything is understood to be subobjects of As). The map prI+s is the

projection (x+, x−) 7→ x+. Pick the arrows (1) and (2) such that the diagram
becomes commutative. We find both are given by x 7→ x+ where x = x++x−

with x± ∈ I±s is any decomposition of x. Moreover, the composition on the
right is indeed Λ. Taking the long exact sequences in Hochschild homology
of the top and bottom row yields

Hs(A, I
+
s ⊕ I−s ) //

incl◦pr
I+s
��

Hs(A,A
s)

∂ //

Λ
��

Hs−1(A, I0
s )

∼=
��

Hs(A,A
s) // Hs(A,A

s/As−1)
∂
// Hs−1(A,As−1)

Now by the commutativity of the above diagram Ψ = ∂ ◦ Λ : Hs(A,A
s) →

Hs−1(A,As−1) (as on the left in Equation 6.13) can be computed just by
unwinding the connecting map in the top row. It stems from the bimodule
exact sequence in the top row of Equation 6.14: Evaluating this is an easy
chase of the snake map, compare with the proof of Lemma 4: Pick some
system of good idempotents. We need to pick a lift of a0 ⊗ a1 ⊗ · · · ⊗ as ∈
Cs(A,A

s) to Cs(A, I
+
s ⊕ I−s ). We may take fγ := (−1)γP γs a0⊗ a1⊗ · · · ⊗ as

for γ ∈ {±} respectively. We need to apply the differential b, resulting in

bfγ = (−1)γ (P γs a0a1 ⊗ a2 ⊗ · · · ⊗ as +

s−1∑
j=1

(−1)j P γs a0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ as

+ (−1)sasP
γ
s a0 ⊗ a1 ⊗ · · · ⊗ as−1) ∈ Cs−1(A, Iγ1 )

Next, we need to determine the preimage in Cs−1(A, I0
s ) = Cs−1(A,As−1),

which is

Ψ(a0 ⊗ · · · ⊗ as) =
∑

γ∈{±}(−1)γP−γs (bfγ)

= (−1)s
(∑

γ∈{±}(−1)γP−γs asP
γ
s

)
a0 ⊗ a1 ⊗ · · · ⊗ as−1.
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Hence, by applying this formula inductively, we get

τΨ◦n(a0 ⊗ · · · ⊗ an) = (−1)1+2+···+nτ
∏

s=1...n

(∑
γ∈{±}(−1)γP−γs asP

γ
s

)
a0.

This expression clearly coincides (up to sign) with the one of Theorem 23 so
that the previously proven identity φC = τd◦n = τΨ◦n implies the claim. �

Corollary 33 (Comparison diagram). Under the assumptions of the theo-
rem and g := ALie,

(1) the diagram

Hn(g, g)
ε //

I′

��

HHn(A)
φHH

//

I
��

k

=

��

Hn+1(g, k)
(−1)nε

// HCn(A)
φC

// k

commutes, where for f0, . . . , fn ∈ g, the map ε in the bottom row is
given by

ε(f0 ∧ · · · ∧ fn) :=
∑
π∈Sn

sgn(π) f0 ⊗ fπ−1(1) ⊗ · · · ⊗ fπ−1(n).

(2) The composed map Hn(g, g)→ k agrees with Hn(g, g)
I′−→ Hn(g, k)

φBeil−→
k.

Proof. The left-hand side square commutes by direct inspection. Then
combine Corollary 24 and Corollary 31. �

7. Tate’s abstract reciprocity revisited

A prominent feature of Tate’s article [Tat68] is his slick proof of the residue
theorem for curves. In this section, we want to propose a formulation of
such vanishing statements on the level of cubically decomposed algebras. In
particular, we want to interpret the “abstract residue formula” of [ADCK89,
Lemma 2.4] in the Hochschild picture.

Theorem 34 (Tautological Reciprocity Law). Suppose (A, (I±i ), τ) is an n-
fold cubically decomposed algebra over k with local units on all levels. Then

φC(x) = 0

for any element x in the Hochschild homology of any of the ideals I+
i , I−i

for any i.

Proof. (Case A) Suppose the ideal is I := I+
1 . Since for Λ we may take

any decomposition x = x+ + x− with x± ∈ I±1 , we may just as well take



506 OLIVER BRAUNLING

x+ := x. But that means that Λ acts on x just like the quotient map, and
we get the dotted arrow in

HHm(I)

Λ
��vv

· · · // HHm(An)
quot

// HHm(An/An−1)
δ // HHm−1(An−1) // · · ·

and the exactness of the bottom row implies d(x) = 0. And therefore,
φC(x) = 0.
(Case B) Suppose the ideal is I := I−1 . Since for Λ we may take any
decomposition x = x+ +x− with x± ∈ I±1 , we may just pick x+ := 0. Thus,
φC(x) = 0.
(Case C) Suppose the ideal is I := Isi for i ≥ 2 and s ∈ {+,−}. Then apply
the first i − 1 maps “d” in Definition 30, and observe that its value lies in
HHn−(i−1)(A

n−(i−1) ∩ Isi ), but by the inductive nature of the definition this
means that the value lies in the ideal Is1 for the (n − i + 1)-fold cubically

decomposed algebra An−(i−1), and thus the above Cases A or B apply to
this element. Again, we obtain zero. �

Note that this proof is so simple because of the inductive nature of Defi-
nition 30. The next vanishing statement is a little more refined.

Theorem 35 (Cube Reciprocity Law). Let (A, (I±i ), τ) be a unital n-fold
cubically decomposed algebra with local units on all levels. Let P± ∈ A be
idempotents such that

P+ + P− = 1 and P±A ∈ I±1 .

If R ⊆ A is a subalgebra such that P+A (or P−A) is a left R-submodule of
A, then

φC(r) = 0

for all r ∈ HHn(R).

Proof. (Case A) Suppose P+A is a left R-submodule. We define a k-linear
map of Hochschild groups ψ : Ci(R)→ Ci(A), R⊗i+1 → A⊗i+1 by

r0 ⊗ · · · ⊗ ri 7−→ r0P
+ ⊗ · · · ⊗ riP+.

We note that the map r 7→ rP+ would have no reason to be an algebra
homomorphism from R to A, so we cannot just induce the above map from
a morphism of algebras. Instead, we need to check that the above describes
a morphism of complexes by hand. We compute

b(ψ(r0 ⊗ · · · ⊗ ri)) =

i−1∑
j=0

(−1)jr0P
+ ⊗ · · · ⊗ rjP+rj+1P

+ ⊗ · · · ⊗ riP+

+ (−1)iriP
+r0P

+ ⊗ r1P
+ ⊗ · · · ⊗ ri−1P

+.
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Since the image of P+ is a left R-module, rj+1P
+ ∈ imP+, and thus

P+rj+1P
+ = rj+1P

+, and then rjP
+rj+1P

+ = rjrj+1P
+. Thus, we get

b(ψ(r0 ⊗ · · · ⊗ ri)) =

i−1∑
j=0

(−1)jr0P
+ ⊗ · · · ⊗ rjrj+1P

+ ⊗ · · · ⊗ riP+

+ (−1)irir0P
+ ⊗ r1P

+ ⊗ · · · ⊗ ri−1P
+

= ψb(r0 ⊗ · · · ⊗ ri).
Thus, ψ ◦ b = b ◦ ψ and we conclude that ψ is a morphism of complexes.
Next, note that for any a ∈ A, we have a = aP+ + aP− with aP± ∈ I±1 . It
follows that our map ψ is a lift of Λ, i.e. the diagram
(7.1)

HHm(R)

Λ
��

ψ

vv

· · · // HHm(An)
quot

// HHm(An/An−1)
δ // HHm−1(An−1) // · · ·

commutes. As in the previous proof, the exactness of the row implies that
d(r) = 0.
(Case B) Now assume P−A is a left R-submodule of A instead. We define
ψ as before, just replacing each P+ by P−. Everything goes through, with
the exception that ψ now lifts x 7→ x− instead of x 7→ x+. However, since
P+ + P− = 1, we can replace Diagram 7.1 by

HHm(R)

Λ
��

ι−ψ

vv

· · · // HHm(An)
quot

// HHm(An/An−1)
δ // HHm−1(An−1) // · · ·

where ι is the inclusion of algebras ι : R ↪→ A (this is an algebra homomor-
phism). Thus, again Λ lifts and we obtain d(r) = 0. �

7.1. Applications of the Cube Reciprocity Law.

Example 6 (Curves, Local Theory). Let k be a field and X/k an integral
curve. Write η for its generic point. Suppose x ∈ X is a closed point. Then
the adèle object

A := A(η > x) =
∏
i

K̂i

is a finite product of 1-local fields with residue fields finite over k. The
number of factors in the product agrees with the number of preimages of the
point x in the normalization of the curve X ′ → X. If X/k is regular, there
is always just one factor, as in §2.1. Example 4 demonstrates the effect of a
singular point. Following our formalism, we get an abstract residue symbol

(7.2) resK̂i
: Ω1
K̂i/k

−→ HH1(A)
φC−→ k.
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Now write

(7.3) K̂i = Ôi ⊕B, (as Tate vector spaces)

where Ôi is the ring of integers of K̂i (this need not agree with ÔX,x if x
does not lie in the smooth locus; rather it would be a finite ring extension;

it always agrees with ÔX′,x′ , where x′ is the chosen preimage of x in the

normalization X ′), and B is any k-vector space complement. As Ôi is a
lattice of the Tate vector space, let P± be the idempotents underlying the

direct sum decomposition of Equation 7.3. Then Ôi ↪→ K̂i is a subalgebra

such that P+A is a left-Ôi-module (this is true because P+ maps everything

to Ôi ⊆ K̂i, and if we act on Ôi by multiplication with an element f ∈ Ôi,
this still lies in Ôi, and therefore applying P+ again acts as the identity).

Hence, by the Cube Reciprocity Law HH1(Ôi)→ HH1(A)
φC→ k is the zero

map. As a result, we learn that our residue map in Equation 7.2 is trivial
on 1-forms without poles and factors as Ω1

K̂i/k
/Ω1
Ôi/k

→ k. Of course, this

is one of the most obvious properties the residue map should have. We see
here that it is encoded in Theorem 35.

Example 7 (Curves, Global Theory). We continue the previous example. By
Beilinson’s resolution, Theorem 6, we have the flasque adèle resolution of
the sheaf Ω1

X/k, namely

(7.4) 0 −→ Ω1
X/k −→ A

(0)
Ω1 ⊕A

(1)
Ω1 −→ A

(01)
Ω1 −→ 0.

Here Ai
F = Ai ⊗ F denotes the adèles for the coherent sheaf F , while

the decoration A(1) denotes the adèles running through all singleton flags 4
consisting only of closed points {(x)}x∈X0 , while A(0) denotes the remaining
summand, which agrees with the rational function field k (X) of the curve.

Finally, A(01) are the adèles of all length 2 flags, i.e. those of the shape
(η > x) for η the generic point and x running through the closed points. The
adèles also carry the structure of a cubically decomposed algebra [BGW16b].
One way to see this is by using that they are a 1-Tate object, as explained
in [BGW16b], Theorem 5 (1), and therefore the endomorphism algebra in
the category of Tate vector spaces has a natural structure of a cubically
decomposed algebra, see loc. cit., Theorem 5 (2). Feeding this into our
abstract machine, we get a residue symbol on the level of adèles,

resA : HH1(A(01))
φC−→ k.

Due to the nature of the adèles, there is a projection map of 1-Tate objects

(and rings, simultaneously) A(01) −→ K̂, where K̂ is a local field factor as
in the local theory, Example 6. As a result, the residue on the adèles is just
the finite sum of the local residues

(7.5) resA((αx)x) =
∑

resK̂(αx),
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where x runs through the set of closed points. Thus, we can reduce the com-
putation of residues to local fields (this is the analogue of [Tat68, Theorem

3]). We get two reciprocity laws now: Firstly, A(1) =
∏
x∈X Ôx is an A(1)-

submodule of A(01). We get a direct sum splitting A(01) = A(1) ⊕ B and
Theorem 35 implies that residues of 1-forms from A(1) are zero. This is no
real news of course, since this already follows from the local study of Exam-
ple 6. However, we also get a direct sum splitting A(01) = A(0) ⊕B′, where
A(0) = k (X) is just the rational function field and this is a k (X)-submodule

of A(01). If X/k is proper (and only then!), the finite-dimensionality of the
cohomology implies that the assumptions of Theorem 35 are met: Con-
cretely, we could write A(01) = k (X)⊕ L for a suitably chosen lattice L of
the Tate vector space such that, on the level of k-vector spaces, this splitting
can be identified with

A(01) = k (X)⊕ A(1)

H0(X,OX)
⊕H1(X,OX)︸ ︷︷ ︸
'L

.

This is possible since Theorem 6 (applied to OX) implies that H0(X,OX) =

A(0)∩A(1) and H1(X,OX) is isomorphic to the cokernel of A(0)+A(1) inside

A(01). Since both cohomology groups are finite-dimensional k-vector spaces,
L is indeed a lattice. Thus, Theorem 35 tells us that global rational 1-forms
have vanishing global residue resA. By the global-local formula, Equation
(7.5), we conclude the following famous fact: For any global rational 1-form
ω ∈ Ω1

X/k (X)⊗ k (X), the sum of residues is zero, i.e.∑
resK̂x

(ω) = 0.

This is the analogue of Tate’s [Tat68, §3, Corollary], and of course properness
enters our argument in exactly the same rôle as in his paper. If f is a non-
zero global rational function, d log(f) = df/f is such a rational 1-form and
we learn that the total sum of orders of zeros and poles is zero (when being
added up in k; so if char(k) > 0 this statement is not as strong as it could
be).

Example 8 (Less standard fact). Suppose we are in the situation of Example

6. Instead of Equation 7.3, we also have a direct sum splitting K̂i = κ[t−1]⊕
tκ[[t]], where we have chosen, for the sake of exposition, an isomorphism

K̂i ' κ((t)). Note that κ[t−1] is also a subalgebra such that the Cube
Reciprocity Law applies. It tells us that res(t−ndt−m) = 0 for all n,m ≥ 0.
While one finds this fact rarely articulated, it is of course also easy to show
using the usual calculus of differentials: t−n(dt−m) = t−n(−mt−m−1dt) =
−mt−n−m−1dt. For n,m ≥ 0 this visibly (from the usual perspective) can
only have non-zero residue if n = m = 0, but then this expression is zero
thanks to the leading coefficient m.
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So far, we have only used the Cube Reciprocity Law to establish state-
ments in dimension one. We shall address the higher-dimensional story in a
sequel.

8. The bigger picture

In this paper, we have first tried to explain the construction of the residue
map in [Bĕı80]. Loc. cit., Beilinson does this using Lie homology, and
specifically relative Lie homology. This word never appears in [Bĕı80], but
we hope to have elucidated why and how this shows up in §4. The essence
of the construction lies in

φBeil : Hn+1(g, k)
∼−→ Hn+1(CE(g))

edge−→ En+1
0,n+1

∼−→
d−1

En+1
n+1,1

edge−→ H1(∧Tn+1
• )

τ−→ k

of §3. In the present paper, we have explained how to remove the pres-
ence of any relative Lie homology groups by (a) reformulating the theory in
Hochschild homology, and (b) showing that the above map can (essentially)
also be realized by an iterated use of a modified boundary map d,

(8.1) φC : HHn(A) −→ HH0(Itr) −→ k, α 7→ τd ◦ · · · ◦ dα.

This is based on writing the cubically decomposed algebra as an iterated
extension, An−1 → An → An/An−1.

As gets developed in joint work with M. Groechenig and J. Wolfson,
[BGW16a], one can conveniently package the definition of the adèles of a
scheme as an object of the category T := n-Tate(Vectf ) , and then the com-
plicated definition of the cubically decomposed algebra structure, Definition
10, simplifies to the plain EndT in this category. Now, for any exact sequence
of exact categories C′ ↪→ C � C′′, one has an induced long exact sequence
in the Hochschild homology of exact categories [Kel99]. Joint work with J.
Wolfson in the companion paper [BW] then shows that φC agrees with the
iterated use of the boundary map of this long exact sequence.

Thus, unlike the d in Equation 8.1, which comes from non-commutative
algebra extensions and the Toeplitz-like twist by Λ in Equation 6.12, the
localization sequence boundary map gives the right map on the nose. Com-
bined with this paper, we thus can follow the entire journey from Tate’s
original approach using commutators in [Tat68], to Beilinson’s use of rela-
tive Lie homology [Bĕı80], to Hochschild homology of non-unital algebras in
the present paper, to the Hochschild homology of categories in [BW]. The
latter paper has a new version of a Hochschild–Kostant–Rosenberg theo-
rem with supports, which also makes a connection to the local cohomology
approach of Grothendieck in [Har66].
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sibly adding mistakes, but perhaps a way of expressing appreciation for their
inventiveness.



ON THE RESIDUE SYMBOL 511

I thank Ivan Fesenko for explaining the problem to me; Michael Groechenig
and Jesse Wolfson for many interesting discussions on the ind-pro approach,
which have led to numerous joint papers; Amnon Yekutieli for his many in-
sightful remarks, suggestions and careful reading of an earlier version. This
has been most helpful.

Moreover, I thank the Essen Seminar for Algebraic Geometry and Arith-
metic for the excellent working conditions and friendly atmosphere. Finally,
we thank the anonymous referee for several helpful suggestions.

References

[ADCK89] Arbarello, Enrico; De Concini, Corrado; Kac, Victor G. The infi-
nite wedge representation and the reciprocity law for algebraic curves. Theta
functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), 171–190, Proc.
Sympos. Pure Math., 49, Part 1. Amer. Math. Soc., Providence, RI, 1989.
MR1013132(90i:22034), Zbl 0699.22028, doi: 10.1090/pspum/049.1. 464, 505

[AST07] Argerami, Martin; Szechtman, Fernando; Tifenbach, Ryan. On Tate’s
trace. Linear Multilinear Algebra 55 (2007), no. 6, 515–520. MR2360831
(2008i:15010), Zbl 1130.15001, doi: 10.1080/03081080601084112. 467
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[Hub91a] Huber, Annette. Adèle für Schemata und Zariski-Kohomologie. Schriften-
reihe des Mathematischen Instituts der Universität Münster, 3. Serie, Heft 3,
86 pp. Schriftenreihe Math. Inst. Univ. Münster 3. Ser., 3. Univ. Münster,
Math Inst., Münster, 1991. MR1105583 (92h:14014), Zbl 0728.14019. 470

[Hub91b] Huber, Annette. On the Parshin–Bĕılinson adèles for schemes. Abh. Math.
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