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Gradation of Algebras of Curves
by the Winding Number

Mohamed Imad Bakhira and Benjamin Cooper

Abstract. We construct a new grading on the Goldman Lie algebra of
a closed oriented surface by the winding number. This grading induces
a grading on the HOMFLY-PT skein algebra and related algebras. Our
work supports the conjectures of B. Cooper and P. Samuelson [CSb].
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1. Introduction
The Goldman Lie algebra gpSq of a surface S is the Lie algebra of free

homotopy classes of loops. The product is given by summing the signed
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concatenations of curves over their points of intersection. This Lie alge-
bra encodes a wealth of information about intersection numbers of curves
[Cha15], maintains a close relation to skein invariants [Tur91] and invariant
functions on spaces of surface group representations [Gol86]. It is also a fun-
damental component of string topology [CSa]. In this article, we construct
a new cyclic grading on the Goldman Lie algebras and the HOMFLY-PT
skein algebras of surfaces. In particular, there is a product preserving de-
composition

gpSq “
à

aPZ{χ
gpSqa

where χ “ χpSq is the Euler characteristic of S. The existence of a cyclic
grading by the winding number is predicted by recent work of B. Cooper and
P. Samuelson [CSb]. This work relates the HOMFLY-PT skein algebra to the
Hall algebra of the Fukaya category. For closed surfaces, these conjectures
cannot be verified directly because the lack of Z-grading on the Fukaya
category currently impedes a rigorous study of their Hall algebras. In this
way, our work constitutes new evidence for these conjectures. Presently, the
only non-trivial evidence for closed surfaces S of genus greater than one.
This new grading may also allow us to glean new information about these
algebras and their many connections to other areas of mathematics.

In the remainder of the introduction, we explain what is meant by winding
number, we discuss the conjectural context for our construction and we
present an outline of our approach to the construction of the grading.

1.1. Winding numbers. The winding number of an closed oriented im-
mersed curve in a surface is the total signed number of revolutions that
its tangent vector undergoes in one traversal. In the plane this is a well-
defined integer, but the generalization to closed surfaces of genus g ą 1 has
some indeterminacy. For a survey of winding number see [MC93]. A brief
introduction is provided below.

In his study of regular closed curves in the plane, H. Whitney showed that
the planar winding number is invariant under regular homotopy [Whi37]. In
his thesis work [Sma58], S. Smale showed that for a Riemannian manifold
M ,

ImmppS
1,Mq » Ωp1SpTMq,

the space ImmppS
1,Mq of immersed loops at the basepoint p “ pq, vq P TM

with initial and terminal velocity v P TqM is weakly homotopic to the space
of loops in the unit tangent bundle SpTMq with basepoint p1 “ pq, v{|v|q.
This equivalence determines isomorphisms

(1.1) π0pImmppS
1,Mqq – π0pΩp1SpTMqq – π1pSpTMq, p

1q.

The regular fundamental group πRpM,pq is defined to be this group

πRpM,pq :“ π0pImmppS
1,Mqq.
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In words, πRpM,pq is the group of regular homotopy classes of curves based
at p in M under the operation of loop concatentation, see Def. 2.1. Eqn.
(1.1) implies that πRpM,pq is independent of basepoint.

H. Seifert computed the group π1pSpTSqq for a closed orientable surface
S of genus g [Sei33]. Recall that such a surface S can be expressed as a
quotient of the 4g-gon in which the ith edge is identified with the i ` 2nd
edge for each 0 ď i ă 4g such that i ” 0, 1 pmod 4q. This decomposition
gives us the presentation

(1.2) π1pSq – xa1, b1, . . . , ag, bg | ry where r “
g
ź

i“1
rai, bis.

and ra, bs “ aba´1b´1. If f “ s´1pqq denotes the homotopy class of a fiber
of the unit circle bundle s : SpTSq Ñ S then the fundamental group of the
unit tangent bundle has a compatible presentation

(1.3) π1pSpTSqq –

B

a1, b1, ..., ag, bg, f

ˇ

ˇ

ˇ

ˇ

f2g´2r and
rf, ais, rf, bis for 1 ď i ď g

F

.

From this perspective, the winding number ωpγq of a regular closed curve
γ P πRpSq is its projection onto the torsion component Z{χ Ă πRpSq

ab of
the abelianization. In more detail, the abelianization can be computed from
Equation (1.3) using Smale’s isomorphism

(1.4) πRpSq
ab – π1pSpTSqq

ab – Z2g ‘ Z{χ where χ “ 2g ´ 2

and the observation that r “ 1 in the abelianization. The torsion group is
generated by the fiber f . The winding number homomorphism

(1.5) ω : πRpSq Ñ Z{χ

first maps γ P πRpSq to the abelianization πRpSq
ab and then extracts the

coefficient of the fiber f .
There are many curves with non-zero winding number. For instance, the

separating curve on the genus 2 surface featured in Figure 1 has winding
number 1 pmod 2q.

γ

Figure 1. A curve γ with winding number ωpγq “ 1 P Z{2
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In his work on winding numbers of regular curves on surfaces B. L. Rein-
hart introduced an integral presentation for the winding number

(1.6) ωpγq “
1

2π

ż

S1
A˚γpdθq pmodχq

as the degree of the map determined by the angle Aγ between the derivative
of γ and a vector field S, see Definition 2.4 and [Rei60]. Reinhart’s integral
satisfies the property that ωpγq “ 0 for each of the regular representatives
of generators γ P tai, biugi“1 and ωpηq “ 1 for a small counterclockwise con-
tractible regular loop η. This makes it compatible with the definition above,
as the generators tai, biugi“1 determine the Z2g-component of πRpSqab, while
the fiber f corresponds to a small homotopically trivial counterclockwise
loop. See Section 2.4 for further discussion.

Remark 1.1. The winding number depends on the splitting isomorphism
in Eqn. (1.4). Although the arguments in this paper hold for any such
isomorphism, we will use the one determined by the choice of tai, biu basis
mentioned in the above. For some applications, it may be natural to grade
algebras by H1pSpTSqq rather than Z2g ‘ Z{χ.

1.2. Context. The work of B. Cooper and P. Samuelson establishes a re-
lationship between the HOMFLY-PT skein algebra of a surface and the Hall
algebra of the Fukaya category of the surface [CSb]. For certain surfaces
with boundary, they prove that elements in the Hall algebra of the Fukaya
category satisfy the HOMFLY-PT skein relation. It is natural to ask whether
there is evidence for a relationship between the Hall algebra of the Fukaya
category of a closed surface S and the skein algebra. The theorem of H.
Morton and P. Samuelson which relates the skein algebra of the torus and
the elliptic Hall algebra [MS17] provides some evidence in genus one when
one assumes that a version of homological mirror symmetry holds over finite
fields. Our construction of a grading by winding number on the HOMFLY-
PT skein algebra provides evidence for this conjecture when the surfaces are
closed and χ ă 0.

Since the Hall algebra of a category C is always graded by the Grothendieck
group K0pCq of the category, the Hall algebra of the Fukaya category FpSq
should be graded by the groupK0pFpSqq. M. Abouzaid computed this group
for closed surfaces

K0pFpSqq – H1pSpTSqq ‘ R – Z2g ‘ Z{χ‘ R

when the Euler characteristic satisfies χ ă 0 [Abo08]. So if the Hall algebra
of the Fukaya category of a closed surface could be defined then it would
be graded by the group H1pSq ‘Z{χ. Because of these observations, it was
conjectured that the HOMFLY-PT skein algebra shares this grading.

Now, it is considered well-known that one can grade skein algebras by
the first homology group H1pSq of the surface. However, a grading by the
winding number ω is somewhat counterintuitive because the curves which
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constitute elements of the skein algebra live in the 3-dimensional space S ˆ
r0, 1s, so Reinhart’s integral (1.6) is not applicable. It is in this sense that the
Z{χ-grading by winding number on the HOMFLY-PT skein algebra extends
and supports the conjectures of B. Cooper and P. Samuelson.

1.3. Results. The principal result of this paper is to establish a grading of
the Goldman Lie algebra gpSq and its quantization HqpSq the HOMFLY-PT
skein algebra by the winding number. The theorem below summarizes our
main results.

Theorem. Let S be a compact connected oriented surface. There is a canon-
ical extension of the winding number homomorphism

ω : πRpSq Ñ Z{χ ù π̂pSq Ñ Z{χ
to a map on the set π̂pSq of free homotopy classes of loops on S. This
extension determines a grading on the Goldman Lie algebra

gpSq “
à

aPZ{χ
gpSqa where rgpSqa, gpSqbs Ă gpSqa`b.

There are similar gradings on the regular Goldman Lie algebra gRpSq and
the HOMFLY-PT skein algebra HqpSq.

The main obstacle to the construction of the grading is the domain of
definition: the notion of a winding number is defined on regular homotopy
classes whereas the Goldman Lie algebra is defined on free homotopy classes
of curves. The winding number of a curve is not well-defined on curves up to
free homotopy because there are multiple regular homotopy classes within
any given free homotopy class. More concretely, topological artifacts such
as fish-tails can be introduced to artificially increase or decrease the winding
number of a curve, see Section 2.5.

Figure 2. A fish-tail

Organization Section 2 reviews concepts which will be important in
the main construction. In Section 3, the relationship between the set of
free regular homotopy classes of curves π̂RpSq and free homotopy classes of
curves π̂pSq is articulated. In §3.1, we show that there is a surjective loop
product preserving map s˚ : π̂RpSq Ñ π̂pSq, the fiber of which is a Z-torsor
generated by the operation of adding or removing fish-tails. In §3.2, we
show that the map s˚ admits a section Φ : π̂pSq Ñ π̂U,RpSq Ă π̂RpSq, taking
free homotopy classes of curves to unobstructed representatives. In §4, the
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winding grading on the Goldman Lie algebra gpSq is introduced by setting
the winding number of a non-contractible free homotopy class rαs to be the
winding number of its unobstructed representative Φprαsq. We check that
this definition respects concatenation of loops, extends additively over the
Lie bracket and so defines a map ω : gpSq Ñ Z{χ which determines a grading
of the Goldman Lie algebra. Section 5 introduces the regular Goldman Lie
algebra gRpSq. In Section 6, we prove that the winding number grading of
the regular Goldman Lie algebra extends to the HOMFLY-PT skein algebra.
Acknowledgements The second author would like to thank P. Samuel-

son for the friendly conversations and suggestions. Both authors would like
to thank C. Frohman and J. Greene, as well as the referee for the careful
reading.

2. Notations and definitions
We recall a few basic definitions, the definition of the Goldman Lie alge-

bra, Reinhart’s integral definition of the winding number and some results
about unobstructed curves.

2.1. Grading. If M is an R-module and A is an abelian group then a
grading of M by A is a direct sum decomposition M – ‘aPAMa. If M is
an algebra then we require that mn P Ma`b when m P Ma and n P Mb.
Likewise, if M is a Lie algebra then we require that rm,ns P Ma`b when
m PMa and n PMb.

If S is a set and M “ RxSy is the free R-module on S then a grading of
M by A is determined by a map gr : S Ñ A; in this case, Ma :“ Rxm |

grpmq “ ay. If M is a Lie algebra then rm,ns PMa`b when grpmq “ a and
grpnq “ b.

2.2. Surface topology. Throughout this paper, S will always be a closed
connected oriented surface. A set of curves tγi : S1 Ñ SuiPI on S is said
to be in general position when all curves are normal closed, all intersections
are transverse and there are no triple intersections among curves. We will
always assume curves are in general position.

Two curves α, β : S1 Ñ S are freely homotopic when they are in the same
path component of the free loop spaceMappS1, Sq, they are homotopic when
they share a basepoint p and are contained in the same path component of
the based loop space ΩpS “ MapppS

1, Sq. Two embeddings α and β are
isotopic when they are contained in the same path component of the space
of embeddings EmbpS1, Sq. Two immersions are freely regularly homotopic
when they are contained in the same path component of the space of im-
mersions ImmpS1, Sq and regularly homotopic when they are contained in
the same path component of the space of immersions ImmppS

1, Sq based at
p.

The set of free homotopy classes of loops on S will be denoted by π̂pSq.
A free homotopy class of map in π̂pSq can also be thought of as a conjugacy
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class of π1pSq. If γ : S1 Ñ S is a loop then we will denote by rγs its
corresponding free homotopy class. Any other equivalence relation on curves
will be indicated by a subscript on the brackets, for example

rγsπ1 P π1pS, pq

means that γ : S1 Ñ S should be seen as an equivalence class rγs of curves
in S based at p in π1pS, pq.

2.3. The Goldman Lie algebra. Here we recall the definition of the
Goldman Lie algebra. The first definition recalls how we will concatenate
curves.

Definition 2.1. (α ¨p β) Suppose that two loops α, β : S1 Ñ S cross at a
point p P αXβ then α and β define elements rαsπ1 , rβsπ1 P π1pS, pq and their
oriented loop product rα ¨pβsπ1 :“ rαsπ1rβsπ1 is just their product in π1pS, pq.
More generally, rα ¨p βs will denote the image of rα ¨p βsπ1 in π̂pSq. The free
homotopy class of α ¨p β does not depend on the choice of representatives
α P rαs or β P rβs.

Up to free homotopy, in a small neighborhood U of p P αXβ, the product
α ¨p β can be viewed as replacing the picture on the lefthand side of Figure
3 with the righthand side.

ù

α

β

α ¨p β

p

Figure 3. The loop product

This oriented loop product preserves immersions because the two dia-
grams agree on vectors in the boundary BU .

Definition 2.2. (εp) If two immersed curves α, β : p0, 1q Ñ S intersect at
a point p then the sign εppα, βq of their intersection is `1 if the ordered
pair of derivatives p 9αppq, 9βppqq agrees with the orientation of S at p and
εppα, βq :“ ´1 otherwise.

The loop product and the sign are important to us because they are used
to define the Goldman Lie algebra of the surface.

Definition 2.3 (Goldman Lie algebra). The Goldman Lie algebra gpSq of a
surface S is the free abelian group on the set π̂pSq of free homotopy classes
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of curves equipped with a Lie bracket

gpSq :“ Zxπ̂pSqy.

Given two classes of curves rαs, rβs P π̂pSq, we choose representatives α P rαs
and β P rβs so that the Goldman Lie bracket is defined to be the signed sum
of their oriented loop products at points p of intersection

(2.1) rrαs, rβss :“
ÿ

pPαXβ

εppα, βqrα ¨p βs,

see [Gol86, Thm. 5.3] for further details.

2.4. Reinhart’s winding number. As mentioned in the introduction, B.
L. Reinhart used differential topology to give a definition of the winding
number ω : πRpSq Ñ Z{χ, see [Rei60]. Here we recall a few more details.

Definition 2.4 (Winding number homomorphism). Choose a Riemannian
metric on S and a vector field X with isolated zeros. Let =ppY,Zq denote
the angle between two vectors Y and Z in TpS at p P S.

If γpθq : S1 Ñ S is an immersed curve then there is a map Aγ : S1 Ñ S1

given by
Aγpθq :“ =pp 9γ,Xq where p “ γpθq

the angle between the tangent 9γ “ γ˚pd{dθq of γ at p and the vector X “ Xp

at the same point.
Reinhart’s winding number ωpγq P Z{χ is the degree of the map Aγ taken

modulo the Euler characteristic of S

ωpγq “
1

2π

ż

S1
A˚γpdθq pmodχq

when the vector field X is chosen so that ωpaiq “ 0 and ωpbiq “ 0 for tai, biu
curves in the 1-skeleton which determines Eqn. (1.2).

Reinhart showed that this formula is independent of the choice of the
vector field X, within the imposed constraints, and the choice of the regular
homotopy representative of γ after the degree is taken modulo the Euler
characteristic of the surface [Rei60, Prop. 2]. This is due to the value of the
integral shifting by ˘χ as a regular homotopy moves a segment of γ over a
zero of X.

Remark 2.5. Reinhart’s definition is also independent of the chosen metric.
This is because the space of all Riemannian metrics on S is path-connected,
if the metric is continuously varied then the value of the integral varies
continuously, but since Z is discrete, the value must be constant.

2.5. Unobstructed curves and Abouzaid’s lemma. In this section we
recall the notion of unobstructed curves and Abouzaid’s lemma which char-
acterizes them in a convenient way.
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Definition 2.6 (Unobstructed curve). Let S̃ Ñ S be the universal covering
space of S. We say that an immersed loop α : S1 Ñ S is unobstructed when
it lifts to a properly embedded path in S̃.

Abouzaid characterized unobstructed curves in terms of fish-tails and con-
tractability [Abo08]. Roughly speaking, a fish-tail is a homotopically trivial
self-intersection, see Figure 2.

Definition 2.7 (Fish-tail). If γ : S1 Ñ S is an immersed curve then a
fish-tail in γ is a disk map D2 Ñ S which maps the boundary of the disk to
γ and is non-singular everywhere except one point on γ.

Abouzaid’s lemma states that for non-nulhomotopic curves fish-tails rep-
resent the only obstruction to being unobstructed.

Lemma 2.8 (Abouzaid). A properly immersed smooth curve γ is unob-
structed if and only if it is not nulhomotopic and does not bound an immersed
fish-tail.

Unobstructed curves are regular homotopy representatives of curves with
no unnecessary winding. The unobstructed loops are important in what
follows because they will be our canonical choice of regular representative
within each free homotopy class. More precisely, if π̂U,RpSq denotes the set
of regular free homotopy classes of unobstructed curves on S then we will
show that there is a bijection between the sets

Φ : π̂U,RpSq „ÝÑ π̂pSqztCu

where C denotes the free homotopy class of the contractible curve. We must
remove C from the righthand side since every regular representative of the
contractible free homotopy class C is obstructed.

The first step in the construction of the grading will be to define the grad-
ing on unobstructed curves in π̂U,RpSq. Since C is contained in the center
of the Goldman Lie bracket, we can define the grading on the Goldman Lie
algebra modulo the center. Then the grading can be lifted by choosing any
regular homotopy representative of C in πRpSq. We will choose the one in
Figure 4.

Figure 4. Our preferred choice of the regular representative
for the free homotopy class C of the contractible loop.
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3. Relations between free and regular homotopy
In this section we study the relationship between free and regular homo-

topy classes of curves on a surface. In Section 3.1, we prove that the map
s˚ : π̂RpSq Ñ π̂pSq which passes from regular homotopy classes to free ho-
motopy classes is a surjective, oriented loop product preserving map. The
fiber of s˚ over any free homotopy class is identified with the Z-orbit of any
regular representative. In §3.2, a section Φ : π̂pSq Ñ π̂RpSq is constructed
by mapping free homotopy classes to unobstructed representatives. This
information is summarized by the diagram below.

π̂RpSq

π̂pSq

Z ¨ Φ

π̂U,RpSq Y ΦpCqs˚

Φ

3.1. Regular curves as a Z-torsor. Here we show that the map s˚ :
π̂RpSq Ñ π̂pSq, which takes a free regular curve to its free homotopy class,
is surjective and preserves oriented loop products. The map s˚ commutes
with a Z-action on π̂RpSq which is given by gluing fish-tails onto regular
curves and there is Z-equivariant isomorphism from the fiber over any free
homotopy class to the Z-orbit of any representative

Z ¨ rγsR
„
ÝÑ s´1

˚ prγsq for γ P rγs.

Definition 3.1. (s˚) Composing the maps in Eqn. (1.1) with the bundle
map s : SpTSq Ñ S defines a map

πRpS, pq “ π0pImmppS
1, Sqq – π1pSpTSq, p

1q
π1psq
ÝÝÝÑ π1pS, qq,

which takes a based regular homotopy class of immersed curve to its cor-
responding homotopy class. This induces a map between sets of conjugacy
classes

s˚ : π̂RpSq Ñ π̂pSq.

This map is onto because every loop in π1pS, qq lifts to a loop in π1pSpTSq, p
1q;

alternatively, ImmppS
1, Sq ĂMappS1, Sq is dense. See also Lem. 3.5.

Definition 3.2. (Z-action) There are maps t, t´1 : π̂RpSq Ñ π̂RpSq which
generate a Z-action. If γ is an immersed curve in S then picking any point
p on γ we can add a small positive fish-tail at p or a small negative fish-tail
at p. In either case, this defines a new immersed curve which we call tγ or
t´1γ. These operations are well-defined and independent of p because we
can both shrink a fish-tail to be arbitrarily small and drag it around the
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curve by regular homotopy. The maps t and t´1 are illustrated by

ÞÑ and ÞÑ

respectively. These maps satisfy tt´1 “ 1π̂RpSq and t
´1t “ 1π̂RpSq because,

up to regular homotopy, a positive fish-tail can be cancelled with a negative
fish-tail. One of the two cases is shown below.

Ñ Ñ

The picture proof of the other case is obtained by reversing the orientation
above. So the maps t and t´1 define a Z – xty group action on π̂RpSq.

Since any additional fish-tails on a curve γ can be removed by homotopy,
the Z-action preserves the fiber

s˚ptrγsRq “ s˚prγsRq and s˚pt
´1rγsRq “ rγsR.

Moreover, Reinhart’s integral formula shows that this shifts the winding
number, ωptrγsRq “ ωprγsRq ` 1, compare to Cor. 4.6.

Remark 3.3. By virtue of Smale’s isomorphism φ : π̂RpSq „
ÝÑ π̂pSpTSqq.

There is an alternative way to define the Z-action. Recall from Eqn. (1.3)
that there is a central element f P π1pSpTSq, p

1q representing the fiber of
the unit tangent bundle. If rγsR P π̂RpSq then

φptrγsRq “ fφprγsRq P π̂pSpTSqq

so that multiplication by f determines the action of t on the set π̂RpSq.
This can be seen directly by observing that a curve tγ with fish-tail in
MappS1, SpTSqq is homotopic to the curve γ in S with section vectors form-
ing a positive full twist.

Definition 3.4. The category of pointed sets and pointed set maps is the
undercategory Set˚ :“ tptu{Set. In more detail, an object is a pair pA, aq
consisting of a set A and an element a P A. A map f : pA, aq Ñ pB, bq
between two such pairs is a set map f : AÑ B which satisfies fpaq “ b. A
sequence of such maps

pA, aq
f
ÝÑ pB, bq

g
ÝÑ pC, cq

is exact when g´1pcq “ impfq. There is a terminal object 1 :“ ptptu, ptq.
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The next lemma shows that passing from groups to conjugacy classes of
elements in groups is a functor from groups to pointed sets. The important
part of the lemma shows that a central inclusion of groups is mapped to
an injective map of pointed sets. So the functor preserves the exactness of
central extensions in a strong sense.

Lemma 3.5. Taking conjugacy classes determines a functor ˆ̈ : GrpÑ Set˚
from groups to pointed sets. In particular, a homomorphism a : K Ñ G of
groups induces a map â : K̂ Ñ Ĝ from conjugacy classes in K to conjugacy
classes in G. This functor satisfies the three properties below.

(1) A short exact sequence of groups induces a short exact sequence of
pointed sets.

(2) If b : GÑ H is an epimorphism then the set map b̂ is surjective.
(3) If a : K Ñ G is a monomorphism and central, i.e. impaq Ă ZpGq,

then the set map â is injective.

Proof. If a : K Ñ G then set âprksq :“ rapkqs if k „ k1 so k “ rk1r´1 then
aprksq “ raprk1r´1qs “ raprqapk1qaprq´1qs “ rapk1qs. This is a functor, if
a : K Ñ G and b : GÑ H then b̂pâprksqq “ b̂prapkqsq “ rbapkqs “ pbaprksq.

1. Suppose 1 Ñ K
a
ÝÑ G

b
ÝÑ H

p
ÝÑ 1 is a short exact sequence of groups.

Then there is a sequence of maps

1 Ñ K̂
â
ÝÑ Ĝ

b̂
ÝÑ Ĥ

p̂
ÝÑ 1

First we show that exactness holds on the left. If rks P â´1pr1sq then rapkqs “
r1s implies apkq “ r1r´1 “ 1 for some r P G. So k P kerpaq “ t1u.
Therefore, â´1pr1sq “ r1s.

Exactness hold on the right because, for all rhs P p̂´1pr1sq, there is a g P G
such that bpgq “ h by surjectivity of b. So b̂prgsq “ rbpgqs “ rhs. This is a
special case of 2. below.

Now we will show that impâq “ b̂´1pr1Hsq. First b̂ârks “ rbpapkqqs “ r1Hs
implies impâq Ă b̂´1pr1Hsq. Suppose rgs P b̂´1pr1Hsq, so b̂prgsq “ r1Hs then
there is h P H such that hbpgqh´1 “ 1H or bpgq “ 1H , so g P kerpbq “ impaq
and there exists k P K such that apkq “ g, it follows that âprksq “ rgs. Thus
b̂´1pr1Hsq Ă impâq, so impâq “ b̂´1pr1Hsq.

2. Assume that b : GÑ H is a surjective homomorphism. If rhs P Ĥ then
for any h P rhs, there is a g P G such that bpgq “ h. So b̂prgsq “ rbpgqs “ rhs.

3. Assume that a : K Ñ G is an injective homomorphism and impaq Ă
ZpGq. If âprksq “ âprk1sq then rapkqs “ rapk1qs. So there is an r P G such
that apkq “ rapk1qr´1, but apk1q P impaq Ă ZpGq implies apkq “ apk1qrr´1 “
apk1q, so k “ k1 by injectivity of a. �

Proposition 3.6. Suppose that rτ sR P s´1
˚ prγsq is any curve in the fiber of

s˚ over rγs P π̂pSq. Then there is a Z-equivariant bijection

κ : Z ¨ rτ sR „
ÝÑ s´1

˚ prγsq
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from the Z-orbit of rτ sR to the fiber.

Proof. This is because the kernel of s˚ is xfy – Z where f is the fiber. In
more detail, there is a diagram

1 π1pS
1q π1pSpTSqq π1pSq 1

πRpSq

π̂pS1q π̂pSpTSqq π̂pSq1 1

π̂RpSq

φ1

φ s˚

z

π1psq

π̂piq π̂psq

The long exact sequence of homotopy groups associated to the circle bun-
dle S1 i

ÝÑ SpTSq
s
ÝÑ S gives a short exact sequence among fundamental

groups because S1 and S are both KpG, 1q-spaces. This gives the first row.
The second row comes from Lem. 3.5 above. The map φ is the Smale iso-
morphism and the bottom triangle commutes because s˚ “ π̂psq ˝ φ. There
is an isomorphism π1pS

1q – π̂pS1q “ xfy – Z is generated by the fiber
element in the Seifert presentation of π1pSpTSqq, see Eqn. (1.3).

The map κ is determined by Z-equivariance and the assignment 0 ¨rτ sR ÞÑ
rτ sR. The two statements below are equivalent to injectivity and surjectivity
of κ respectively.

(1) If rxsR P s´1
˚ prγsq then rxsR “ tnrτ sR in πRpS, pq for some n P Z.

(2) tnrτ sR fi rτ sR for all n P Zzt0u and rτ sR P π̂RpSq.
For the first statement, fix a basepoint p “ pxpθ0q, 9xpθ0qq on x for an

x P rxsR and θ0 P S
1. In doing so φrxsR lifts trivially to rxsπ1 P z

´1pφrxsRq.
Since rxsR P s´1

˚ prγsq, φrxsR P π̂psq´1prγsq and rxsπ1 P π1psq
´1rγs. But

π1psq
´1rγs “ rγskerpπ1psqq “ rγsxfy. So rxsπ1 “ fnrγs for some n P Z. The

rest follows from Rmk. 3.3.
The second statement follows from the injectivity of π̂piq and centrality

of f P π1pSpTSq, p
1q. Here is a detailed argument. By Rmk. 3.3 we may

identify the action of t with multiplication by the fiber element f . Notice
that if the genus of S is one or rτ sR “ fNC is homotopically trivial then
the statement is trivial. So assume that the genus is at least two, τ is
homotopically non-trivial and the conjugacy classes fnrτ sR “ rτ s are equal
in π̂pSpTSqq for some n P Z. There is a curve α such that fnτ “ ατα´1 or
fn “ ατα´1τ´1. Applying the map s1 :“ π1psq gives 1 “ s1pατα´1τ´1q in
π1pSq. In particular, s1pαq P Centπ1ps

1pτqq. The centralizer of a non-trivial
element s1pτq P π1pSq is cyclic xβy when S is hyperbolic, which is true when
the genus is greater than two, see [FM11, §1.1.3]. Every element s1pτq is
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contained in it’s own centralizer. So
s1pαq, s1pτq P Centπ1ps

1pτqq “ xβy

and s1pαq “ βq and s1pτq “ βm for some q,m P Z and for some β P π1pSq.
By exactness of the first row, there are integers p, ` P Z such that α “ fpβq

and τ “ f `βm. Combining these observations gives
fn “ ατα´1τ´1

“ fpβqf `bmf´pβ´qf´`b´m

“ βqbmβ´qb´m

“ 1
in π1pSpTSqq, which contradicts injectivity of the fiber map π1piq. �

Remark 3.7. The map κ depends on the choice τ . The section Φ in §3.2
will give a canonical choice of τ .

Proposition 3.8. The map s˚ preserves the oriented loop product
s˚prα ¨p βsRq “ s˚prαsRq ¨q s˚prβsRq.

Proof. Since s˚ is induced by a map π1pSpTSq, p
1q Ñ π1pS, qq between

fundamental groups, it must preserve the product at any basepoint p. �

3.2. The s˚-section Φ. Here we define a section Φ : π̂pSq Ñ π̂RpSq of the
map s˚ : π̂RpSq Ñ π̂pSq. The map Φ is injective and its image is the set

impΦq “ π̂U,RpSq Y ΦpCq
of unobstructed regular curves in S together with a choice ΦpCq of regular
representative for the contractible curve (see Fig. 4). These properties are
established in Proposition 3.12. The proof of this proposition uses Lemma
3.9 which shows that every free homotopy class contains an unobstructed
representative and Lemma 3.11 which shows that any two unobstructed rep-
resentatives of the same free homotopy class are freely regularly homotopic.

Lemma 3.9. Let α : S1 Ñ S be a non-nulhomotopic loop in S and let rαs P
π̂pSqztCu denote its free homotopy class. Then there is a representative
ᾱ P rαs such that ᾱ is unobstructed.

Proof. Let rαs P π̂pSqztCu with α a normal representative. Assume by
contradiction that α fails to be unobstructed. Since α is not nulhomotopic,
Abouzaid’s Lemma 2.8 implies that the image of α bounds a finite (by nor-
mality) number of fish-tails. By Definition 2.7 of fish-tail, there must be a
disk through which any fish-tail can be contracted. Such disks determine a
smooth convex homotopy F : S1ˆr0, 1s Ñ S with support in a contractible
neighborhood of the fish-tails that straightens them from innermost to out-
ermost into an immersed embedded line segment. Thus the resulting loop ᾱ
representing rαs obtained via F is regular, non-trivial, has no fish-tails, and
is unobstructed, again, by Abouzaid’s Lemma 2.8. �
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The lemma above establishes the existence of unobstructed representa-
tives of curves within each free homotopy class. The next lemma will show
that there is a unique choice up to regular homotopy. We will use a relative
version of Epstein’s Theorem which we now recall.

Theorem 3.10. ([?]) Let S be a surface with boundary and α, β two em-
bedded arcs with endpoints that are equal and contained in the boundary of
S. If α and β are homotopic with endpoints fixed then α and β are isotopic
with endpoints fixed.

We are now ready to prove our lemma.

Lemma 3.11. If two unobstructed curves α and β are freely homotopic then
they are freely regularly homotopic.

The interplay between different types of equivalence classes of loops now
becomes important. Recall our notational convention from Section 2.2 of
appending subscripts to brackets around loops, indicating the quotient set
to which the equivalence class belongs.

Proof. Let α and β be unobstructed curves belonging to the same free
homotopy class: rαsπ̂ “ rβsπ̂, given in general position, in particular there
are finitely many points of intersection.

First we show that we can reduce the problem to the case where α and
β are homotopic at a fixed basepoint. Since α and β are freely homotopic,
there are basepoints a and b for α and β and a path γ : r0, 1s Ñ S from a
to b such that

rαsπ1pS,aq “ rγ̄ ¨ β ¨ γsπ1pS,aq

After a small homotopy we can assume that the curves γ and γ̄ are smooth,
regularly parametrized, concatenate regularly with each other and β and
have no fish-tails. In particular, the cyclic segment γ ¨ γ̄ can be made to
share the same tangent vector as α at a and to freely regularly retract back
to the original path segment of β crossing b. In this way we obtain a new
unobstructed representative β̃ of rγ̄ ¨ β ¨ γsπ1pS,aq which is regularly freely
homotopic to β and basepoint homotopic to α.

So, without loss of generality, we make the additional assumption that α
and β share a basepoint and are basepoint homotopic

(3.1) rαsπ1 “ rβsπ1 .

Let π : S̃ Ñ S be the universal covering and, after fixing a basepoint p̃ P
π´1ppq, there are paths α̂ and β̂ lifting the loops α and β respectively. Since
α and β are unobstructed, the paths α̂ and β̂ are embedded. Equation (3.1)
implies that these lifts share endpoints and are homotopic rel endpoints.
So by Epstein’s Theorem 3.10, α̂ and β̂ are isotopic rel endpoints in S̃.
Applying the covering map π to this isotopy produces a regular homotopy
between α and β. �
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Combining Lemma 3.9 and Lemma 3.11 shows that any two choices of
unobstructed representatives for a free homotopy class are freely regularly
homotopic. Thus any non-nulhomotopic free homotopy class rγs contains
a unique unobstructed representative Φprγsq up to free regular homotopy.
This is recorded by the proposition below.

Proposition 3.12. There is a bijection Φ between non-nulhomotopic free
homotopy classes of curves on S and regular free homotopy classes of unob-
structed curves on S

Φ : π̂pSqztCu „
ÝÑ π̂U,RpSq

such that a free homotopy class rαs contains the unobstructed regular homo-
topy class to which it corresponds.

Proof. By Lemma 3.9, for any non-nulhomotopic free homotopy class rαsπ̂,
there exists an unobstructed representative αU P rαsπ̂. Furthermore, by
Lemma 3.11, any other unobstructed representative α1U P rαsπ̂ is freely reg-
ularly homotopic to αU . Thus rαU sπU,R “ rα

1
U sπU,R . So we define

Φprαsπ̂q :“ rαU sπU,R .

Now the map Φ is injective because if two loops β and γ are not freely
homotopic then any choice of unobstructed representatives βU and γU will,
by transitivity, not be freely homotopic, and so cannot be freely regularly
homotopic. The map Φ is surjective because any unobstructed curve is non-
nulhomotopic and thus belongs to some non-nulhomotopic free homotopy
class. �

In order to define the grading, we must address additivity under the
product α ¨p β through this correspondence. This is the content of the next
section.

4. Grading the Goldman Lie algebra
We want to use the map Φ in Proposition 3.12 to define a grading on

the Goldman Lie algebra. In Lemma 4.1 we show that the oriented loop
product of two non-nulhomotopic unobstructed curves at a point of inter-
section is unobstructed when the point of intersection is not the corner of
a bigon. In Proposition 4.4 we show that the winding number is additive
over unobstructed curves. The section concludes with the grading on the
Goldman Lie algebra in Theorem 4.8.

Lemma 4.1. Suppose α and β are unobstructed curves intersecting at a
point p P S. If p is not the corner of a bigon then the oriented loop product
α ¨p β is either unobstructed or nulhomotopic.

Proof. Let U be a small neighborhood of the point p as in Figure 3. By con-
trapositive, assume α¨pβ is obstructed and not nulhomotopic, by Abouzaid’s
Lemma 2.8, the product α ¨p β contains a fish-tail. Observing that a self-
intersection must occur at a fish-tail, and that α¨pβ does not self-intersect in
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U by construction, we have that there must be some point of self-intersection
q P SzU . In SzU , connected components of α ¨p β belong originally to ei-
ther α or β which by property of being unobstructed, cannot have fish-tails.
Thus the fish-tail beginning at q must cross through U . Since the fish-tail at
q bounds a disk, by undoing the resolution at p we can see that this implies
that p and q are the corners of a bigon as in Figure 5 below. �

ù

α

β

α ¨p β

p

q

Figure 5. Recovering a bigon from a fish-tail that crosses U

Corollary 4.2. If γ and τ do not represent the trivial nulhomotopic class
and p is not the corner of a bigon then

Φprγ ¨p τ sq “ Φprγsq ¨p Φprτ sq

Proof. The map Φ contracts fish-tails. The equation holds when no new
fish-tails are created by the loop product and Lem. 4.1 above gives this
criteria. �

Remark 4.3. Note that if p and q are the corners of a bigon between two
curves α and β then

rα ¨p βs “ rα ¨q βs and εppα, βq “ ´εqpα, βq.

So the two summands in rrαs, rβss corresponding to α ¨p β and α ¨q β cancel
with each other. Thus for our purposes, when thinking about the Goldman
Lie bracket, we do not need to concern ourselves with additivity of the
winding number of curves over oriented resolution at the corners of a bigon.

We next show that ω is additive when the criteria above is satisfied.

Proposition 4.4. Let α and β be unobstructed curves. Suppose that p P
αXβ is not the corner of a bigon between α and β then the winding number
is additive over the oriented loop product

ωpα ¨p βq “ ωpαq ` ωpβq.
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Proof. The curves α and β determine classes rαsR and rβsR and the oriented
loop product pα, βq ÞÑ α ¨p β is the product in the group πRpS, pq. In
Section 1.1, the winding number ω : πRpS, pq Ñ Z{χ is defined to be a
homomorphism on this group. If p is not the corner of a bigon then α ¨p β
will be unobstructed and so it will agree up to regular homotopy with the
unobstructed representative which determines the winding number. �

A second geometric argument uses Reinhart’s definition of winding num-
ber.

Proof. Arrange the curves as in Figure 3 and let U be a small neighborhood
of p. We choose a vector fieldX which is constant in the horizontal direction.
Let Aα,Aβ and Aα¨pβ be the angle functions from Definition 2.4. We will
prove that

(4.1) 1
2π

ż

S1
A˚αpdθq `

1
2π

ż

S1
A˚βpdθq “

1
2π

ż

S1
A˚α¨pβpdθq pmodχq.

Since the curves αY β and α ¨p β are identical outside of U , the integrals
take the same values when restricted to the preimage of SzU in S1.

P1 P4

P3

P2

Figure 6. Labelled points of entry and exit of α ¨p β on BŪ

We must examine what happens within U . We show that the component
of the integrals inside the preimage of U in S1 provides no contribution to
the integrals on both sides of the equality. Without loss of generality, assume
X is tangent to α ¨p β at P1 and the rest of X on U is obtained by parallel
translation. Then when traversing the curve α ¨p β from P1 to P2, there is a
change of π{2 in angle. Similarly traversing α¨pβ from P3 to P4, the opposite
change of angles between the tangent vectors and X occurs in a mirrored
fashion, giving an overall contribution of zero to the total change in angles
between the curve’s tangent and X inside of U . Since α is perpendicular
to X in U and β is parallel to X in U , the total change of angle between
tangent vectors and X in U is zero for both α and β. Hence Equation (4.1)
holds. �

The proposition above implies the corollaries below.
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Corollary 4.5. Crossings can be resolved without changing winding number
of regular homotopy classes. Crossings which do not bound bigons can be
resolved without changing the winding number of free homotopy classes

„ω

where γ „ω γ1 when ωpγq “ ωpγ1q.
An important special case shows that fish-tails can be removed.

Corollary 4.6. Fish-tail crossings can be resolved without changing the
winding number

„ω and „ω

where γ „ω γ1 when ωpγq “ ωpγ1q.
Since a counterclockwise nulhomotopic curve has winding number `1.

The two corollaries above show that the winding number of any curve can
be computed in terms of its unobstructed representative by removing bigons
and fish-tails.

We are ready to define the grading.
Definition 4.7 (Grading on gpSq). Recall that gpSq “ Zxπ̂pSqy. Let rαs be
an element of π̂pSqztCu. Let Φprαsq be the regular homotopy class of the
unobstructed representative of rαs. The winding number ωgprαsq of rαs is
defined to be the winding number of Φprαsq. In the language of Proposition
3.12,

ωgprαsπ̂q :“ ωpΦprαsπ̂qq.
Following discussion in Section 2.5, if C represents the free homotopy class
of the contractible curve then we choose ΦpCq to be the infinity curve and
set ωgpΦpCqq “ 0.

The theorem below confirms that this definition gives a cyclic Z{χ-grading
on the Goldman Lie algebra.
Theorem 4.8. The map ωg defines a grading of Goldman Lie algebra gpSq.
Proof. Since the unobstructed representative of a free homotopy class of
curves is well-defined up to regular free homotopy, so is its winding number.
Furthermore, by Proposition 4.4, along with the fact that the sum expression
(Def. 2.3) for rrαs, rβss simplifies to contain no contribution from bigon
corners in αX β, we have that rrαs, rβss only consists of summands that are
oriented loop products at points where additivity holds and thus

ωgprrαs, rβssq “ ωgprαsq ` ωgprβsq.
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Hence the above map determines a grading of the Goldman Lie algebra
gpSq “ Zxπ̂pSqy. �

Recall that when G “ GLpn,Rq, GLpn,Cq or GLpn,Hq, Goldman con-
structed a Poisson action of gpSq on the representation variety, [Gol86, Thm.
5.4]. We ask whether there is a compatible grading on the representation
variety.
Question 4.9. Is the action of the Goldman Lie algebra on representation
varieties graded?

5. Regular Goldman Lie Algebra
Just as the Goldman Lie algebra gpSq is defined in terms of free homotopy

classes of curves π̂pSq, there is a Lie algebra gRpSq which is defined in terms
of free regular homotopy classes of immersed curves π̂RpSq.
Definition 5.1. The regular Goldman Lie algebra of a surface S is the free
abelian group on the set π̂RpSq of free regular homotopy classes of immersed
curves

gRpSq :“ Zxπ̂RpSqy.
The Lie bracket is defined in precisely the same way as the Goldman Lie
bracket in Def. 2.3. Given rαsR, rβsR P π̂RpSq, the bracket is

(5.1) rrαsR, rβsRs :“
ÿ

pPαXβ

εppα, βqrα ¨p βsR.

The bracket above determines a Lie algebra structure. In fact, the same
argument Goldman used to show that gpSq is a Lie algebra also shows that
gRpSq is a Lie algebra [Gol86, Thm. 5.3].

All of the acrobatics related to Φ and unobstructed regular representa-
tives, used to introduce the winding number grading on gpSq, are unnec-
essary for the regular Goldman Lie algebra. This is because the winding
number homomorphism ω : πRpS, pq Ñ Z{χ is defined on πRpS, pq, so it
defines a map on conjugacy classes π̂RpSq by Lem. 3.5. The proposition
below summarizes this discussion.
Proposition 5.2. The regular Goldman Lie algebra gRpSq is graded by
winding number.

In Def. 3.2 a Z-action on π̂RpSq was introduced. Here we note that it is
compatible with the bracket above.
Lemma 5.3. The regular Goldman Lie bracket is Z-equivariant

trrαsR, rβsRs “ rtrαsR, rβsRs “ rrαsR, trβsRs for t P Z.

Proof. A generator t P Z acts on any term rα ¨pβsR in Eqn. (5.1) by adding
a fish-tail somewhere along the curve. This fish-tail can be smoothly and
regularly isotoped to be small and then moved along the curve to either α
or β. This commutes with the resolution in Fig. 3. �
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The results of Section 3, relating the set of free homotopy classes of curves
π̂pSq to the set of regular homotopy classes of curves π̂RpSq, can be extended
to describe the relationship between the Goldman Lie algebra gpSq and the
regular Goldman Lie algebra gRpSq.

Definition 5.4. Suppose g is a Lie algebra over a commutative ring k and
R is a commutative k-algebra then gbk R is a Lie algebra with product

(5.2) rxb r, y b ss :“ rx, ys b rs.

The loop algebra is

Lg :“ gbk krt, t
´1s.

The loop algebra also has a canonical Z-action generated by t; t¨pxbtnq “
x b tn`1. This suggests a relationship between the loop algebra of the
Goldman Lie algebra LgpSq and the regular Goldman Lie algebra gRpSq.
The next theorem addresses this point.

Theorem 5.5. There is a Z-equivariant Lie algebra isomorphism

α : LgpSq
„
ÝÑ gRpSq

from the loop algebra of the Goldman Lie algebra to the regular Goldman
Lie algebra.

Proof. There is a map α : LgpSq Ñ gRpSq and an inverse map β : gRpSq Ñ
LgpSq which are determined by

αprγs b tnq :“ tnΦprγsq and βprτ sRq :“ s˚prτ sRq b t
dprτ sRq

where dprτ sRq, by Prop. 3.6, is the unique function d : π̂RpSq Ñ Z which
satisfies the equation

(5.3) rτ sR “ tdprτ sRqΦps˚prτ sRqq.

The value of dprτ sRq is the number of fish-tails needed to make the unob-
structed representative Φps˚rτ sRq regularly homotopic to rτ sR. In particu-
lar, dpΦprγsqq “ 0 for all rγs P π̂pSq.

The map d is Z-equivariant because tnrτ sR “ tdprτ sRq`nΦps˚prτ sRqq “
tdprτ sRq`nΦps˚ptnrτ sRqq. Which gives dptnrτ sRq “ dprτ sRq`n for n P Z from
Eqn. (5.3).

The map β is Z-equivariant because βptnrτ sRq “ s˚pt
nrτ sRqb t

dptnrτ sRq “

s˚prτ sRq b t
dptnrτ sRq “ s˚prτ sRq b t

ntdprτ sRq “ tnβprτ sRq.
Also the map α is Z-equivariant. This is because αptn ¨ prγs b tmqq “

αprγs b tn`mq “ tn`mΦprγsq “ tnptmΦprγsqq “ tnαprγs b tmq.
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Next we show βα “ 1LgpSq.

βαprγs b tnq “ βptnΦprγsqq pDef. of αq
“ tnβpΦprγsqq pEquivarianceq

“ tn ¨ ps˚pΦprγsqq b tdpΦprγsqqq pDef. of βq

“ s˚pΦprγsqq b tn`dpΦprγsqq pZ-actionq

“ rγs b tn`dpΦprγsqq ps˚Φ “ 1q
“ rγs b tn pdpΦprγsqq “ 0q

where dpΦprγsqq “ 0 is discussed above.
Now we show that αβ “ 1gRpSq.

αβprτ sRq “ αps˚prτ sRq b t
dprτ sRqq pDef. of βq

“ tdprτ sRqΦps˚prτ sRqq pDef. of αq
“ rτ sR (5.3)

Next we show that the map α is a Lie algebra homomorphisms. If rγs
is contractible then rrγs, rτ ss “ 0 for any rτ s, but αprγs b tnq “ tnΦprγsq
so that rαprγsq, αprτ sqs “ 0 too. So we assume that rγs and rτ s are not
nulhomotopic. In the equations below, all of the sums are taken over p P γXτ
and εp “ εppγ, τq; so, without loss of generality, we assume that no p is the
corner of a bigon, see Rmk. 4.3 and Lem. 5.6 below.

αprrγs b tn, rτ s b tmsq “ αpΣpεprγ ¨p τ sq b t
n`m (2.1)

“ tn`mΦpΣpεprγ ¨p τ sq pDef. of αq
“ tn`mΣpεpΦrγ ¨p τ s pLinearityq
“ tn`mΣpεprΦprγsq ¨p Φprτ sqs pCor. 4.2q
“ tn`mrΦprγsq,Φprτ sqs (2.1)
“ rtnΦprγsq, tmΦprτ sqs pLem. 5.3q
“ rαprγs b tnq, αprτ s b tmqs pDef. of αq

The inverse β of a bijective Lie algebra homomorphism α is necessarily a
Lie algebra homomorphism because

βrx, ys “ βrαβpxq, αβpyqs “ βαrβpxq, βpyqs “ rβpxq, βpyqs.
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For completeness, we include a direct proof below.

βrrγsR, rτ sRs “ βpΣpεprγ ¨p τ sRq (5.1)
“ Σpεpβrγ ¨p τ sR pLinearityq

“ Σpεps˚prγ ¨p τ sRq b t
dprγ¨pτ sRq pDef. of βq

“ Σpεps˚prγsRq ¨p s˚prτ sRq b t
dprγsRq`dprτ sRq pProp. 3.8&Lem. 5.6q

“ rs˚prγsRq, s˚prτ sRqs b t
dprγsRq`dprτ sRq (2.1)

“ rs˚prγsRq b t
dprγsRq, s˚prτ sRq b t

dprτ sRqs (5.2)
“ rβrγsR, βrτ sRs (2.1)

�

The lemma below is included to justify a step in the proof that β is a
homomorphism.

Lemma 5.6. Suppose rγsR, rηsR P π̂RpSq, γ P rγsR, η P rηsR and p P γ X η.
Then

(1) If γ ¨p η is not homotopic to the contractible curve and p is not
the corner of a bigon then d is a homomorphism, dprγ ¨p ηsRq “
dprγsRq ` dprηsRq.

(2) If γ, η or, for any p P γ X η, γ ¨p η is homotopic to the contractible
curve then rrγsR, rηsRs “ 0.

Proof. 1. By equivariance, we may assume, without loss of generality,
that γ is unobstructed and so dprγsRq “ 0. Set n “ ´dprηsRq so that
dptnrηsRq “ 0 and tnη is unobstructed. Now Lem. 4.1 shows γ ¨ tnη is
unobstructed or γ ¨p tnη is nulhomotopic. So by assumption, γ ¨ tnη must
be unobstructed and therefore dprγ ¨ tnηsRq “ 0. Since d is Z-equivariant,
dptnrηsRq “ dprγ ¨ tnηsRq implies dprγ ¨p ηsRq “ dprγsRq ` dprηsRq.

2. If γ or η are contractible then we can make them small and distant, this
shows that the geometric intersection number is zero. If γ ¨p η is contractible
then shrinking γ and η along concentric circles Sr “ tz : |z| “ ru in the
disk D2 “ tz P C : |z| ď 1u defining the nulhomotopy shows that their
geometric intersection number is zero. For any other basepoint q, πRpS, qq “
y´1 ¨ πRpS, pq ¨ y, for a path y : q Ñ p, and conjugation takes identity to
identity. �

Remark 5.7. If the function d was always a homomorphism then it would
induce a homomorphism πRpS, pq Ñ Z which, by virtue of factoring through
the abelianization πRpS, pqab, must factor through a homomorphism Z{χÑ
Z.

Here is a more concrete example. Suppose that the genus of S is 2, so
χ “ ´2. Set x “ ra1, b1s and y “ ra2, b2s in Eqn. (1.2). So that xy “ r.
Now dpxq “ 0 and dpyq “ 0 because they are unobstructed curves. But
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0 “ dpxyq “ dprq “ dpf2q “ 2 because of the relation r “ f2 from Eqn.
(1.3).

Question 5.8. Theorem 5.5 suggests that gRpSq is an analogue of the loop
algebra LgpSq of the Goldman Lie algebra. Is there a central extension of
ĝRpSq corresponding to an affinization of the Goldman Lie algebra?

6. Induced grading on HOMFLY-PT algebras
In this section we use the grading on the regular Goldman Lie algebra to

construct a grading on the HOMFLY-PT skein algebra. We first recall some
definitions.

Definition 6.1 (Conway triple). Let L`, L´ and L0 be link diagrams on a
surface, the triple pL`, L´, L0q is called a Conway triple if L`, L´, and L0
are identical outside of some small neighborhood U , and within U appear
as in Figure 7 below.

L` L´ L0

Figure 7. Diagram showing the difference between
L`, L´, L0 within U

A skein algebra is usually defined as a quotient of either framed isotopy
classes of framed oriented links in a thickening of the surface S ˆ r0, 1s or
oriented link diagrams considered up to Reidemeister moves II and III by
a relation among the Conway triples introduced above. The equivalence
between these two approaches is discussed by L. Kauffman in [Kau90].

We’ll stick with link diagrams.

Definition 6.2 (HOMFLY-PT skein algebra). Let LpSq denote the set of
oriented link diagrams on a surface S. Let R “ Zrx˘1, q˘1, v˘1s. The
HOMFLY-PT skein algebra HqpSq is the quotient of the R-span of LpSq by
the three types of relations below.
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(1) When pL`, L´, L0q is a Conway triple,

x ´ x´1 “ pq ´ q´1q

(2) When L2 is obtained from L1 via a Reidemeister I untwisting move

“ v and “ v´1

(3) If L2 is obtained from L1 via a Reidemeister II or III move then they
are required to be equal: L1 “ L2.

For more details, see [Mor02].
Now the natural projection ρ : Sˆr0, 1s Ñ S takes framed oriented knots

in S ˆ r0, 1s to immersed curves in S. A regular framed isotopy between
two knots is mapped by ρ to a regular homotopy between their projections.
By Kauffman’s work, projection defines a map ρ˚ : KpSq Ñ π̂RpSq from
oriented knot diagrams KpSq on S to π̂RpSq which preserves Reidemeister
moves II and III. An oriented crossing projects to a self-intersection

ù .

This map extends to a map on links
ρ˚ : LpSq Ñ Zxπ̂RpSqy

by setting ρ˚pLq :“
ř

i ρ˚pLiq when L “ \iLi for Li P KpSq.
By construction HqpSq is Z-spanned by elements of the form

BpSq :“ txnvmqlL : n,m, l P Z and L P LpSqu.
The winding number is defined in terms of this spanning set
(6.1) ωHpx

nvmqlLq :“ m` ωRpρ˚pLqq

where ωR : Zxπ̂RpSqy Ñ Z{χ is the linear extension of Eqn. (1.5). The
proposition below shows that this definition respects the relations in Def.
6.2.

Proposition 6.3. The map ωH : BpSq Ñ Z{χ from Eqn. (6.1) extends to
the skein algebra HqpSq along the map BpSq Ñ HqpSq.

Proof. In Def. 6.2, HqpSq is defined to be a quotient of ZxBpSqy by three
types of relations. In order to show that ωH extends to the quotient, we
check that it respects each of these three types of relations.
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In the first case the relation involves a Conway triple pL`, L´, L0q. Since
L` and L´ only differ at a crossing, their projections ρ˚pL`q “ ρ˚pL´q are
identical and this implies

ωHpxL`q “ ωHpx
´1L´q.

The geometric argument for Prop. 4.4 shows that ωRpρ˚pL`qq “ ωRpρ˚pL0qq,
so

ωHpqL0q “ ωHpq
´1L0q “ ωHpxL`q.

Thus all of terms in the skein relation are in the same graded degree.
In the second case, suppose that L2 is obtained from L1 via a Reidemeister

I twist, so that L1 “ vL2 in HqpSq. By Corollary 4.6, it follows the winding
number of their projections differ by 1,

ωRpρ˚pL1qq ´ 1 “ ωRpρ˚pL2qq

So ωHpL1q “ ωHpvL2q.
Lastly, suppose that L2 is obtained from L1 by a Reidemeister II or III

move. Then by Kauffman’s work, L1 and L2 are regularly isotopic and so
their projections are regularly freely homotopic. Thus in gRpSq, ρ˚pL1q “
ρ˚pL2q. It follows that ωHpL1q “ ωHpL2q. �

The theorem below uses the winding map determined by the proposition
above to define a grading on the skein algebra.

Theorem 6.4. The HOMFLY-PT skein algebra HqpSq is graded as a ring
by the winding number. In more detail, there is a decomposition

HqpSq “
à

aPZ{χ
HqpSqa

which respects the product: if l P HqpSqa and l1 P HqpSqb then l¨l1 P HqpSqa`b
via the map

HqpSqa bZrx˘1,q˘1s HqpSqb
¨
ÝÑ HqpSqa`b

Proof. By Prop. 6.3, the relations defining the HOMFLY-PT skein algebra
respect the winding number. So for each a P Z{χ, the ath homogeneous
component HqpSqa of HqpSq is given by

HqpSqa :“ Zxx P BpSq : ωHpxq “ ay.

We conclude by checking that the grading is additive with respect to
multiplication. If l P HqpSqa and l1 P HqpSqb then l is a Z-linear combination
of elements in BpSq with winding number a, same for l1, so it suffices to check
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additivity for monomials l “ xaqbvcL and l1 “ x`qmvnL1 in BpSq. Then
ωHpl ¨ l

1q “ ωHpx
a``qb`mvc`nL ¨ L1q

“ c` n` ωRpL ¨ L
1q

“ c` n` ωRpLq ` ωRpL
1q

“ ωHplq ` ωHpl
1q

where the equality ωRpL ¨L1q “ ωRpLq`ωRpL
1q follows from the observation

that the individual knot components in the stacking product are the same
as those of the disjoint union of L and L1, L ¨ L1 “ p\iLiq \ p\jLjq.
Remark 6.5. Since a grading of the HOMFLY-PT skein algebra attached
to the framing must respect the oriented loop product appearing in the
relation 1 of Def. 6.2, it isn’t a Z-grading for the same reasons as those
mentioned in Rmk. 5.7.

�
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