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Sets and mappings in βS
which are not Borel

Neil Hindman and Dona Strauss

Abstract. We extend theorems proved in [4] by showing that, if S is a
countably infinite left cancellative semigroup and there is a finite bound
on the size of sets of the form {x ∈ S : xa = b} for a, b ∈ S, then
the following subsets of βS are not Borel: the set of idempotents, the
smallest ideal, any semiprincipal right ideal defined by an element of
S∗, and S∗S∗. This has the imediate corollary that, if S is any infinite
semigroup which either has the cancellation properties just described or
has infinitely many cancellable elements, then the set of idempotents in
βS is not Borel. We extend a theorem proved in [1], which states that for
any infinite discrete groupG and any p ∈ G∗, λp : βG→ βG is not Borel,
by showing that this theorem holds for all infinite semigroups which
are right cancellative and very weakly left cancellative. We show that
continuous maps between compact spaces map Baire sets to universally
measurable sets, although this is far from being the case for Borel sets.
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1. Introduction

Let (S, ·) be a discrete semigroup. We take the Stone-Čech compactifica-
tion βS of S to be the set of ultrafilters on S with the points of S identified
with the principal ultrafilters. Given A ⊆ S, we let A = {p ∈ βS : A ∈ p}.
The set {A : A ⊆ S} is a basis for the open sets of βS as well as a basis
for the closed sets. And, as the notation suggests, A is the closure of A in
βS. The operation on S extends to βS so that the function ρp defined by
ρp(x) = x · p is continuous for each p ∈ βS. Furthermore, S is contained
in the topological center of βS, meaning that the function λy defined by
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λy(x) = y · x is continuous for each y ∈ S. Given p ∈ βS and an indexed
family 〈xs〉s∈S and a point y in a topological space X, p−lim

s∈S
xs = y if and

only if for every neighborhood U of y, {s ∈ S : xs ∈ U} ∈ p. If X is com-
pact and Hausdorff, then p−lim

s∈S
xs is guaranteed to exist uniquely and, if

ϕ : S → X is defined by ϕ(s) = xs and ϕ̃ : βS → X is its continuous exten-
sion, then ϕ̃(p) = p−lim

s∈S
xs. For p, q ∈ βS, pq = p−lim

s∈S
q−lim

t∈S
st. For A ⊆ S,

A ∈ pq if and only if {s ∈ S : s−1A ∈ q} ∈ p where s−1A = {t ∈ S : st ∈ A}.
If A ⊆ S, A∗ will denote c`βS(A)\A. We write Pf (X) for the set of finite

nonempty subsets of X.
Every compact Hausdorff right topological semigroup T has important

algebraic properties, including the fact that it has at least one idempotent.
If V is a subset of T , E(V ) will denote the set of idempotents in V . T has
a smallest two sided ideal, K(T ), which is the union of all of the minimal
right ideals and the union of all of the minimal left ideals of T . Every
right ideal of T contains a minimal right ideal, and every left ideal of T
contains a minimal left ideal. The intersection of a minimal right ideal and
a minimal left ideal is a group; and all the subgroups of T which arise in this
way are algebraically isomorphic and are homeomorphic if they lie in the
same minimal right ideal. See [3, Part I] for the facts mentioned here, and
any other unfamiliar assertions encountered. We remark that the maximal
groups in K(T ) need not be homeomorphic in general. In fact, if S is an
infinite cancellative and commutative semigroup, then by [3, Lemma 6.40
and Theorem 7.42] the maximal groups contained in any minimal left ideal
of βS lie in 2c homeomorphism classes.

We shall use N to denote the set of positive integers, ω to denote the set
of non-negative integers, Z to denote the set of all integers and R to denote
the set of real numbers. We also take ω to be the first infinite cardinal. H
will denote

⋂
n∈N c`βN(2nN). This is a subsemigroup of βN which contains

all the idempotents.
Anyone who has worked with βN, will not be surprised to learn that

some of the algebraically defined subsets of βN are not topologically simple,
even though they are very simple to define algebraically. It was shown in
[4] that the following subsets of βN are not Borel: the set of idempotents;
any semiprincipal right ideal of N∗; the smallest ideal of βN; the set of
idempotents in any left ideal of βN; N∗ + N∗; and H + H. These results
were extended to infinite countable semigroups which can be algebraically
embedded in compact Hausdorff topological groups.

A subset X of a semigroup S is a left solution set if and only if there
exist a, b ∈ S such that X = {x ∈ S : ax = b}. A semigroup S is weakly left
cancellative provided that all left solution sets in S are finite. If |S| = κ ≥ ω,
then S is very weakly left cancellative provided the union of any set of fewer
than κ left solution sets has cardinality less than κ. Similarly X is a right
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solution set if there exist a, b ∈ S such that X = {x ∈ S : xa = b}, and S is
weakly right cancellative if every right solution set is finite.

In Section 2 in the present paper, we extend some of the results of [4]
by showing that, if S is any countably infinite left cancellative semigroup
and there exists k ∈ N such that every right solution set in S has at most
k elements, then the following subsets of βS are not Borel: the set of idem-
potents; any semiprincipal right ideal of S∗; the smallest ideal of βS; and
S∗S∗. As an immediate corollary, we obtain the result that, if S is an arbi-
trary infinite semigroup which either is left cancellative with a finite bound
on the size of right solution sets, or has infinitely many cancelable elements,
then the set of idempotents in βS is not Borel.

In Section 3 we extend a theorem due to E. Glasner [1] by showing that,
if S is an arbitrary infinite cancellative semigroup and if p ∈ S∗, then the
map λp : βS → βS is not Borel. E. Glasner proved this theorem in the case
in which S is a group, and the methods that we use are based on his.

In Section 4 we discuss continuous images of Borel sets. An elegant exam-
ple, due to D. Fremlin, shows that continuous functions from βN to metric
spaces, need not map Borel sets to universally measurable sets. However,
any continuous function from a compact Hausdorff space to a compact Haus-
dorff space, does map Baire sets to universally measurable sets.

2. Subsets of βS which are not Borel

Throughout this section we will let S be a countably infinite discrete
semigroup which is at least weakly left cancellative. We will prove that if S
is left cancellative and has a finite bound on the size of right solution sets,
then the following subsets of βS are not Borel: the set of idempotents; the
smallest ideal; any semiprincipal right ideal defined by an element of S∗;
and S∗S∗. The proof is based on the following lemma.

Lemma 2.1. Every Borel subset of βS is the union of a family of compact
subsets of βS of cardinality at most c.

Proof. The proof is identical to the proof of [4, Lemma 3.1], where it was
stated for βN. �

Definition 2.2. We enumerate S as a sequence and write s ≺ t if s precedes
t in this sequence.

Lemma 2.3. There is a sequence 〈sn〉∞n=1 in S such that for each n ∈ N,

(1) sn ≺ sn+1;
(2) if a, b � sn, then ab ≺ sn+1; and
(3) if a � sn and ab � sn, then b ≺ sn+1.

Proof. We construct 〈sn〉∞n=1 inductively. One can do this because, given
n, {sn} ∪ {ab : a, b � sn} is finite and since S is weakly left cancellative,
given a, c � sn, {b ∈ S : ab = c} is finite. �
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We shall assume that we have fixed a sequence 〈sn〉∞n=1 as guaranteed by
Lemma 2.3.

Definition 2.4. We define φ : S → N by φ(t) = min{n ∈ N : t � sn}.

The function φ extends to a continuous mapping from βS to βN, which
we shall also denote by φ.

Lemma 2.5. For every x ∈ βS and every y ∈ S∗, φ(xy) ∈ {φ(y) −
1, φ(y), φ(y) + 1}.

Proof. We claim that, for every a, b ∈ S and every n > 2 in N, if a � sn−2

and sn−1 ≺ b � sn, then sn−2 ≺ ab ≺ sn+1 and hence that φ(ab) ∈ {φ(b)−
1, φ(b), φ(b)+1}. By condition (2) we have directly that ab ≺ sn+1. Suppose
that ab � sn−2. Then by condition (3) with n replaced by n − 2, we have
b ≺ sn−1, a contradiction. So we have for every a ∈ S and all sufficiently
large b ∈ S, φ(ab) ∈ {φ(b) − 1, φ(b), φ(b) + 1} If x ∈ S and y ∈ S∗, then
φ(xy) = y−lim

b∈S
φ(xb). If x, y ∈ S∗, φ(xy) = x−lim

a∈S
y−lim

b∈S
φ(ab). Therefore

for any x ∈ βS and y ∈ S∗, φ(xy) ∈ {φ(y)− 1, φ(y), φ(y) + 1}. �

Lemma 2.6. Assume that S is left cancellative and k ∈ N such that for any
a, b ∈ S, |{x ∈ S : xa = b}| < k. Then for any p, q ∈ βS, |{x ∈ S : xp =
q}| < k.

Proof. Let p, q ∈ βS and suppose that |{x ∈ S : xp = q}| ≥ k. Pick
distinct x1, x2, . . . , xk in S such that xip = q for each i ∈ {1, 2, . . . , k}.
Define f : S → S as follows.

(1) If v ∈ S \ x1S, then f(v) = x2
1.

(2) Assume that v = x1u for some u ∈ S and note that since S is left
cancellative, there is only one such u. Let f(v) = xiu where i is the
first member of {2, 3, . . . , k} such that xiu 6= x1u.

Then f has no fixed points so by [3, Lemma 3.33], pick A0, A1, A2 such that
S = A0∪A1∪A2 and for each i ∈ {0, 1, 2}, Ai∩ f [Ai] = ∅. Pick i ∈ {0, 1, 2}
such that Ai ∈ x1p. For j ∈ {2, 3, . . . , k}, let Bj = {u ∈ S : f(x1u) = xju}
and pick j ∈ {2, 3, . . . , k} such that Bj ∈ p. Let f̃ : βS → βS denote the

continuous extension of f . Then for u ∈ Bj , f(x1u) = xju so f̃ ◦λx1 and λxj
agree on a member of p so f̃(x1p) = xjp. Since Ai ∈ x1p, f [Ai] ∈ f̃(x1p) =
xjp = x1p while f [Ai] ∩Ai = ∅, a contradiction. �

Lemma 2.7. Assume that S is left cancellative and there is a finite bound
on the size of right solution sets in S. Let 〈xn〉∞n=1 be a sequence in S∗ on
which φ is injective. Then c`{xn : n ∈ N} meets S∗ \ (S∗S∗).

Proof. We may suppose that {φ(xn) : n ∈ N} is discrete, because any
infinite subset of a Hausdorff space has an infinite (strongly) discrete subset.

We claim that φ is injective on c`{xn : n ∈ N}. To see this, suppose
that p and q are distinct elements of c`{xn : n ∈ N} and φ(p) = φ(q). Pick
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A ∈ p and B ∈ q such that A ∩ B = ∅. Then φ(p) ∈ c`({φ(xn) : xn ∈ A})
and φ(q) ∈ c`({φ(xn) : xn ∈ B}). So, by [3, Theorem 3.40], without loss of
generality there exists m ∈ N such that φ(xm) ∈ c`({φ(xn) : n ∈ N \ {m}})
– contradicting the assumption that {φ(xn) : n ∈ N} is discrete.

Let x be a point of accumulation of 〈xn〉∞n=1. We claim that x /∈ S∗S∗.
To see this suppose, on the contrary, that x = yz for some y, z ∈ S∗. By
Lemma 2.5, φ assumes at most three values on βSz. So, if M = {n ∈
N : φ(xn) /∈ φ[βSz]}, then x ∈ c`{xn : n ∈ M}. Also, for every a ∈ S,
x ∈ c`{bz : b ∈ S and a ≺ b}. It follows from [3, Theorem 3.40] that xn ∈
c`{bz : b ∈ S} = βSz for some n ∈M , or for each a ∈ S, there exists ba ∈ S
such that a ≺ ba and baz ∈ c`{xn : n ∈ N}. The first possibility contradicts
the definition of M , and so the second possibility must hold for each a ∈ S.
By Lemma 2.5, for each a ∈ S, φ(baz) ∈ {φ(z)− 1, φ(z), φ(z) + 1}. Since φ
is injective on c`{xn : n ∈ N}, we have |{baz : a ∈ S}| ≤ 3. However, since
each ba � a, {ba : a ∈ S} is infinite. If every right solution set in S has fewer
than k elements, then by Lemma 2.6,

∣∣{s ∈ S : sz ∈ {baz : a ∈ S}
}∣∣ < 3k,

a contradiction. �

Corollary 2.8. Assume that S is left cancellative and there is a finite bound
on the size of right solution sets in S. On any Borel subset B of S∗S∗, φ
assumes at most c values.

Proof. Let B be a Borel subset of S∗S∗. By Lemma 2.1 pick a family D of
compact subsets of βS such that B =

⋃
D and |D| ≤ c. Since B ⊆ S∗S∗,

if D ∈ D, then D ⊆ S∗S∗. By Lemma 2.7, if D ∈ D, then φ assumes only
finitely many values on D. �

We put P = {sn : n ∈ N}. We observe that φ(sn) = n for every n ∈ N,
and so φ[P ∗] = N∗ and hence |φ[P ∗]| = 2c.

Theorem 2.9. Assume that S is left cancellative and there is a finite bound
on the size of right solution sets in S. The following subsets of βS are not
Borel: the set of idempotents; the smallest ideal; S∗S∗; and any principal
right ideal of βS defined by an element of S∗.

Proof. We shall show that φ assumes 2c values on the intersection of each
of these sets with S∗S∗. This will be sufficient, because E(βS) ∩ S∗ =
E(βS)∩S∗S∗, for any q ∈ S∗, qβS \S∗S∗ is countable, and K(βS) ⊆ S∗S∗.
(To verify the latter assertion, by [3, Theorem 4.36] K(βS) ⊆ S∗ and since
K(βS) is the union of groups, K(βS) ⊆ S∗S∗.) So, if any of these sets
were Borel, their intersections with S∗S∗ would also be Borel. We define
an equivalence relation ≡ on βS by stating that x ≡ y if φ(x) ∈ Z + φ(y).
Then the elements of P ∗ belong to 2c distinct equivalence classes. For every
p ∈ P ∗, there is an idempotent ep in the left ideal βSp of βS. Since φ(ep) ∈
φ(p) + {−1, 0, 1}, ep ≡ p. So the elements of E(βS) belong to 2c distinct
equivalence classes, and hence |φ(E(βS) ∩ S∗S∗)| = 2c. Similarly, each left
ideal βSp meets K(βS). So K(βS) is a subset of S∗S∗ on which φ assumes
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2c values. Finally, let q ∈ S∗. Since qP ∗ ⊆ S∗S∗ and φ assumes 2c distinct
values on qP ∗, S∗S∗ is not Borel. Similarly, because qP ∗ ⊆ qβS, qβS is not
Borel. �

We remark that the hypothesis used in the following lemma, that a semi-
group has an infite set of cancelable elements, holds in many familiar semi-
groups which satisfy none of our cancellativity conditions. Obvious examples
are provided by (ω, ·) or the m×m matrices over R, where m denotes a given
positive integer.

Corollary 2.10. Let R be an arbitrary semigroup which is either left can-
cellative and has a finite bound on the size of right solution sets or which
contains an infinite set of cancelable elements. Then the set of idempotents
in βR is not Borel.

Proof. If R is left cancellative and has a finite bound on the sze of left
solutions sets, let T be any countably infinite subsemigroup of R. If R has
an infite set of cancelable elements, let X be a countably infinite set of
cancelable elements of R and let T be the subsemigroup of R generated by
X. Then c`βR(T ) is a compact subsemigroup of βR which is a copy of βT

and E(βT ) is not Borel. If E(βR) were a Borel subset of βR, E(βR)∩(T ) =
E(T ) would be a Borel subset of βT . �

Given a sequence 〈xn〉∞n=1 in a semigroup R, we say that 〈xn〉∞n=1 has dis-
tinct finite products provided that whenever F,G ∈ Pf (N) and

∏
n∈F xn =∏

n∈G xn one must have F = G, where the products are computed in in-

creasing order of indices. Given m ∈ N, we let FP (〈xn〉mn=1) =
{∏

n∈F xn :

∅ 6= F ⊆ {1, 2, . . . , n}
}

. We remind the reader that a semigroup R of car-
dinality κ is very weakly left cancellative if the union of fewer than κ left
solution sets has cardinality less than κ.

Lemma 2.11. Let R be a semigroup with cardinality κ ≥ ω and assume that
R is very weakly left cancellative and has κ right cancelable elements. There
is a sequence 〈xn〉∞n=1 of right cancelable elements in R which has distinct
finite products.

Proof. Let T = {s ∈ R : s is right cancelable in R}, let I = {s ∈ R : s is
a left identity for R}, and for u, v ∈ R, let Au,v = {s ∈ R : us = v}. Given
u ∈ R, I ⊆ Au,u so |I| < κ. We construct 〈xn〉∞n=1 in T inductively. Pick
x1 ∈ T \ I. Now let n ∈ N and assume we have chosen 〈xt〉nt=1 in T such
that for each m ∈ {1, 2, . . . , n}

(1) FP (〈xt〉mt=1) ∩ I = ∅;
(2) if m > 1, then xm /∈ FP (〈xt〉m−1

t=1 ); and

(3) if m > 1 and u, v ∈ I ∪ FP (〈xt〉m−1
t=1 ), then uxm 6= v.

Let H = I ∪ FP (〈xt〉nt=1) and let K =
⋃
{Au,v : u, v ∈ H}. Then |H| < κ

so K is the union of fewer than κ left solution sets and thus |K| < κ. Pick
xn+1 ∈ T \ (H ∪K).
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We have that xn+1 /∈ I. If ∅ 6= F ⊆ {1, 2, . . . , n}, u =
∏
t∈F xt, and

v ∈ I, then xn+1 /∈ Au,v so
∏
t∈F∪{n+1} xt /∈ I. Thus hypohesis (1) holds.

Since FP (〈xt〉nt=1) ⊆ H, hypothesis (2) holds. To verify hypothesis (3), let
u, v ∈ I ∪ FP (〈xt〉nt=1). Then xn+1 /∈ Au,v as required.

The construction being complete, suppose we have F 6= G in Pf (N) such
that

∏
t∈F xt =

∏
t∈G xt and pick such F and G with |F ∪ G| as small as

possible. Assume without loss of generality that maxF ≤ maxG = m.
Suppose first that maxF < m. If G = {m} we contradict hypothesis (2)
so |G| > 1. Let u =

∏
t∈G\{m} xt and let v =

∏
t∈F xt. Then uxm = v,

contradicting hypothesis (3).
Thus maxF = m. If |F | > 1 and |G| > 1, then since xm ∈ T we get

that
∏
t∈F\{m} xt =

∏
t∈G\{m} xt contradicting the minimality of |F ∪G|, so

we may assume that F = {m} and |G| > 1. Let v =
∏
t∈G\{m} xt. Then

xm = vxm so for each s ∈ R, sxm = svxm. Since xm ∈ T , we have for each
s ∈ R, s = sv so that v ∈ I, contradicting hypothesis (1). �

Corollary 2.12. Let R be a semigroup with cardinality κ ≥ ω and assume
that R is very weakly left cancellative and has κ right cancelable elements.
Then E(βR) is not Borel.

Proof. By Lemma 2.11 and [3, Theorem 6.27], βR contains a subspace L
topologically isomorphic to H. In particular L is Borel. Now E(H) = E(βN)
is not Borel, and so E(L) is not Borel. If E(βR) were Borel, then E(L) =
E(βR) ∩ L would also be Borel. �

Note that the hypotheses of Theorem 2.9 cannot be weakened to left
cancellative or right cancellative. If S is a right zero semigroup, then S is
left cancellative, βS is a right zero semigroup, and E(βS) = K(βS) = βS,
S∗S∗ = S∗ and if r ∈ S∗, then rS∗ = S∗. If S is a left zero semigroup, then S
is right cancellative, βS is a left zero semigroup, and E(βS) = K(βS) = βS,
S∗S∗ = S∗ and if r ∈ S∗, then rS∗ = {r}. Nor can they be weakened
to weakly right cancellative and weakly left cancellative as shown by the
example (N,∨), where x ∨ y = max{x, y}. In this case, for p, q ∈ βN, if
q ∈ N∗, then p ∨ q = q, while if q ∈ N and p ∈ N∗, then p ∨ q = p so
E(βN) = βN, N∗ ∨ N∗ = K(βN) = N∗, and if r ∈ N∗, then r ∨ N∗ = N∗.

Notice that in each of these examples, the specified sets are all compact.
This raises the following question.

Question 2.13. Does there exist a countable semigroup S such that some
or all of E(βS), K(βS), S∗S∗, or rS∗ with r ∈ S∗ are not compact and are
Borel?

We remark that the results of Theorem 2.9 are stronger than the state-
ment that the sets considered are not Borel, because they show that they
cannot be expressed as the union of c or fewer compact subsets. The set of
subsets of βS which can be expressed as the union of c or fewer compact
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subsets, is strictly larger than the set of Borel subsets. It contains the ana-
lytic subsets of βS, if these are defined as the set of subsets of βS which can
be obtained from the Borel sets by applying operation (A). (For a definition
of this operation, see, for example, [5, Chapter II, Section 5].)

As shown in the proof of [4, Lemma 3.1], if X is an arbitrary compact
Hausdorff space of weight at most c, the family σ(X) of subsets A of X
for which A and X \ A are unions of c or fewer compact subsets, is a σ-
algebra which contains the Borel subsets of X. We claim that, if X and Y
are compact Hausdorff spaces of weight at most c and if f : X → Y is a
continuous open mapping, then f [σ(X)] ⊆ σ(Y ). To see this, let A ∈ σ(X).
Clearly, f [A] is the union of c or fewer compact subsets of Y . A is also
the intersection of a family U of open subsets of X for which |U| ≤ c. Let
V = {f−1

[
f [U ]

]
: U ∈ U}. Then Y \ f [A] =

⋃
{Y \ f [V ] : V ∈ V}. So

Y \ f [A] is also the union of c or fewer compact subsets of Y . In particular,
π1[σ(Y ×X)] ⊆ σ(Y ).

We have therefore shown that the subsets of βS discussed above, are not
analytic and are not projective.

We are grateful to D. Saveliev for a very helpful correpondence about
these concepts.

3. λp is not Borel

Throughout this section S will denote an infinite semigroup of cardinal-
ity κ which is right cancellative, very weakly left cancellative, and has a
designated left identity e. (S may or may not have other left identities.)

Ω will denote the set S{0, 1} of functions from S to {0, 1} with the product
topology. We work in the dynamical system 〈Ω,Φs〉s∈S where Φs : Ω→ Ω is
defined by Φs(w) = w ◦ ρs. That is, for w ∈ Ω and t ∈ S, Φs(w)(t) = w(ts).
(This is the shift map action in the case in which S is N or Z). If p ∈ S∗,
Φp : Ω → Ω is defined by Φp(w) = p−lim

s∈S
Φs(w). Note that, given t ∈ S

and w ∈ Ω, Φp(w)(t) =
(
p−lim

s∈S
Φs(w)

)
(t) = p−lim

s∈S
w(ts). If w : βS → {0, 1}

denotes the continuous extesnion of w, Φp(w) = w(tp). For a given value of
p, this is a continuous function of t. We shall say that w ∈ Ω is transitive if
{Φs(w) : s ∈ S} is dense in Ω.

Ω can be given the structure of a compact topological group by noting

that Ω = SZ2. We shall use λ to denote normalised Haar measure on Ω,
and shall use Bλ to denote the σ-algebra of subsets of Ω generated by the
Borel sets and the λ-null sets.

The following lemma is well known. We include a proof, however, because
the proof is short and simple.

Lemma 3.1. If p ∈ S∗, then {1A : A ∈ p} is not Bλ-measurable, where
1A ∈ Ω is the characteristic function of A.
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Proof. Suppose that P = {1A : A ∈ p} is λ-measurable. Then 1S + P =

{1S\A : A ∈ p} so P and 1S+P are disjoint subsets of G = SZ2 whose union

is all of G. So λ(P ) = λ(1S+P ) = 1
2 . By [2, Theorem A, Chapter 12, Section

61, and Theorem B, Chapter 12, Section 62], P+P contains a neighborhood
of 0 in G. So there exists F ∈ Pf (S) such that

⋂
x∈F π

−1
x [{0}] ⊆ P + P =

{1A∆B : A,B ∈ p}. But then 1S\F ∈ P + P , so S \ F /∈ p. Consequently p
must be a principle ultrafilter, a contradiction. �

Lemma 3.2. We can choose an element w0 ∈ Ω which is transitive, and
so the function ψ : βS → Ω defined by ψ(p) = Φp(w0) is a continuous
surjection.

Proof. We enumerate Pf (S) as a κ-sequence 〈Fα〉α<κ. For α < κ let τα =
|Fα| and δα = 2τα . We note that if ∅ 6= A ⊆ S, |A| < κ, and α < κ,
then {s ∈ S : Fαs ∩ A 6= ∅} =

⋃
a∈Fα

⋃
b∈A{s ∈ S : as = b}, so is the

union of fewer than κ left solution sets and thus, since S is very weakly left
cancellative, |{s ∈ S : Fαs∩A 6= ∅}| < κ. Consequently we may inductively
choose {sα,t : α < κ and t ∈ {1, 2, . . . , δα}

}
so that Fαsα,t ∩ Fσsσ,r = ∅

whenever α, σ < κ, t ∈ {1, 2, . . . , δα}, r ∈ {1, 2, . . . , δσ}, and (α, t) 6= (σ, r).
For each α < κ, enumerate the set of functions from Fα to {0, 1} as

〈fα,t〉δαt=1. We define w0 ∈ ω on
⋃
α<κ

⋃δα
t=1 Fαsα,t by, for a ∈ Fα and t ∈

{1, 2, . . . , δα}, w0(asα,t) = fα,t(a). (We are using here the fact that S is

right cancellative.) Define w0(x) at will for x ∈ S \
⋃
α<κ

⋃δα
t=1 Fαsα,t.

To see that {Φs(w0) : s ∈ S} is dense in Ω, let U be a nonempty ba-
sic open set in Ω. Pick α < κ and t ∈ {1, 2, . . . , δα} such that U =⋂
a∈Fα π

−1
α [{fα,t(a)}]. Then for a ∈ Fα, Φsα,t(w0)(a) = w0(asα,t) = fα,t(a)

and so Φsα,t(w0) ∈ U .
It is routine to verify that ψ is continuous. Since ψ[βS] is compact and

dense in βS, ψ[βS] = βS.
�

Definition 3.3. We fix w0 ∈ Ω and ψ : βS → Ω as guaranteed by Lemma
3.2.

Definition 3.4. If µ is a probability measure on a compact space X, Bµ

will denote the σ-algebra of subsets of X generated by the Borel subsets and
the µ-null subsets. We shall say that a subset of X is universally measurable
if it is a member of Bµ for every probability mesaure µ defined on X.

We remind the reader that a subset A of X is in Bµ if and only if
sup({µ(C) : C is compact and C ⊆ A}) = inf({µ(U) : U ⊆ X is open
and A ⊆ U}).

We are grateful to E. Glasner for sending us a proof of the following
lemma.

Lemma 3.5. Let X and Y be compact Hausdorf spaces, and let f : X → Y
be a continuous surjection. Then f [B] is universally measurable for every
universally measurable subset B of X for which B = f−1

[
f [B]

]
.
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Proof. Let µ be a probability measure on Y . It follows from the Hahn
Banach Theorem and the Riesz Representation Theorem, that there is a
probability measure ν on X for which ν(g ◦ f) = µ(g) for every continuous
g : Y → R. Let ε > 0. We can choose a compact subset C of B for which
ν(C) + ε > ν(B) and a compact subset D of X \ B for which ν(D) + ε >
ν(X \B). We can then choose disjoint open subsets U and V of Y such that
f [C] ⊆ U and f [D] ⊆ V , and µ(U) < µ(f [C]) + ε and µ(V ) < µ(f [D]) + ε.
Let g and h be continuous functions from Y to [0,1] such that g = 1 on
f [C], g = 0 on Y \ U , h = 1 on f [D], and h = 0 on Y \ V . Then ν(C) ≤
ν(g ◦ f) = µ(g) ≤ µ(f [C]) + ε and ν(D) ≤ ν(h ◦ f) = µ(h) < µ(f [D]) + ε.
Now ν(C) + ν(D) > 1 − 2ε. So µ(f [C]) + µ(f [D]) > 1 − 4ε and hence
µ(Y \ f [D]) < µ(f [C]) + 4ε. Since Y \ f [D] is an open set containing f [B]
and f [C] is a compact set contained in f [B], it follows that f [B] ∈ Bµ. �

Definition 3.6. Let p ∈ S∗. We put Qp = {q ∈ βS : ψ(pq)(e) = 1}.

Lemma 3.7. Let p ∈ S∗. Then ψ[Qp] = {1A : A ∈ p}.

Proof. Let D = {s ∈ S : w0(s) = 1}. Note that for any q ∈ S∗,

ψ(pq)(e) = 1 ⇔ (pq)−lim
s∈S

Φs(w0)(e) = 1

⇔ (pq)−lim
s∈S

w0(s) = 1

⇔ {s ∈ S : w0(s) = 1} ∈ pq
⇔ {s ∈ S : s−1D ∈ q} ∈ p .

and

{s ∈ S : ψ(q)(s) = 1} = {s ∈ S : Φq(w0)(s) = 1}
= {s ∈ S : q−lim

t∈S
w0(st) = 1}

= {s ∈ S : {t ∈ S : w0(st) = 1} ∈ q}
= {s ∈ S : s−1D ∈ q} .

Consequently, if q ∈ Qp and A = {s ∈ S : ψ(q)(s) = 1}, then ψ(q) = 1A and
A ∈ p.

Now assume A ∈ p and pick, by Lemma 3.2 q ∈ βS such that ψ(q) = 1A.
Then A = {s ∈ S : s−1D ∈ q} ∈ p so ψ(pq)(e) = 1. �

Theorem 3.8. For each p ∈ S∗, the mapping λp : βS → βS is not Borel.

Proof. By Lemmas 3.1, 3.5, and 3.7, Qp is not a Borel set. Since Qp =
λ−1
p [{x ∈ βS : ψ(x)(e) = 1}] and {x ∈ βS : ψ(x)(e) = 1} is compact, λp is

not Borel. �

As in Section 2, we remark that the preceding theorem need not hold if
we weaken our hypothesis to left cancellativity, right cancellativity or weak
cancellativity. If S is a left zero semigroup, a right zero semigroup or (N,∨),
then λp : βS → βS is Borel for every p ∈ βS.
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4. Images of Borel Sets

In this section we address the question of which compact spaces X and
Y have the property that, whenever f : X → Y is continuous, f [B] is a
universally measurable subset of Y whenever B is a Borel subset of X. We
remark that X and Y have this property if they are metric spaces. However,
the following elegant result, due to D. Fremlin in personal correspondence,
shows that this property fails dramatically in the case in which X = N∗.

Theorem 4.1. Let f : N∗ → Y be a continuous surjection onto a compact
metric space. Then, for every subset E of Y , there is an open subset U of
N∗ such that f [U ] = E.

Proof. For every y ∈ Y , f−1[{y}] is a non-empty Gδ subset of N∗. It
therefore contains a non-empty open subset Uy of N∗ by [3, Theorem 3.36].
If U =

⋃
{Uy : y ∈ E}, then U is open in N∗ and f [U ] = E. �

We shall show that continuous mappings between compact Hausdorff
spaces do map Baire sets to universally measurable sets, where we define
the Baire subsets of a compact Hausdorff space X to be the sets in the
smallest σ-algebra of subsets of X containing the compact Gδ subsets of X.
(Other definitions exist in the literature.)

Definition 4.2. A determining system in a space X is a family U of subsets
of X indexed by the set of finite sequences of positive integers. The nucleus
N(U) of U is

⋃
{An1 ∩An1n2 ∩An1n2n3 . . . : 〈ni〉∞i=1 is a sequence in N}.

We shall call such a system a compact determing system if all the sets
in the system are compact and An1n2...nknk+1

⊆ An1n2...nk for all positive
integers n1, n2, . . . , nk+1.

Determining systems were first defined by Alexandrov in 1916. In any
topological space, every determining system of universally measurable sets
has a nucleus which is universally measurable by [5, Theorem 5.5].

Lemma 4.3. The set of nuclei of compact determining systems in a compact
Hausdorff space X is closed under countable unions and countable intersec-
tions.

Proof. Suppose that U(m) = {An1n2...nk(m) : 〈ni〉ki=1 is a finite sequence in
N} is a compact determining system for each m ∈ N. Let N(m) = N(U(m))
for each m ∈ N.

Then
⋃∞
m=1N(m) is the nucleus of the system {Bn1n2...nk : 〈ni〉ki=1 is a

finite sequence in N} defined by putting Bn1n2...nk = An2n3...nk(n1) if k > 1,
and Bn = X for every n ∈ N.

To see that
⋂∞
m=1N(m) is the nucleus of a compact determining system

{Cn1n2...nk : 〈ni〉ki=1 is a finite sequence in N} ,
choose a partition of N into a sequence 〈En〉∞n=1 of infinite pairwise disjoint
subsets. For each finite sequence σ = 〈n1n2 . . . nk〉 of positive integers and
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each m ∈ N, let σm be the subsequence of σ formed by the integers ni for
which i ∈ Em. Then put Cσ =

⋂
m∈N Aσm(m), with A∅(m) defined to be

X. �

Lemma 4.4. Let X be a compact Hausdorff space. If B is a compact Gδ
subset of X or a σ-compact subset of X, then B is the nucleus of a compact
determining system.

Proof. Note that any compact set C is the nucleus of a compact determining
system defined by An1n2...nk = C. A compact Gδ is the intersection of a
sequence 〈Cn〉∞n=1 of compact sets, so the conclusion follows from Lemma
4.3. �

Lemma 4.5. Let X be a compact Hausdorff space. Every Baire subset of
X is the nucleus of a compact determing system.

Proof. If B is a compact Gδ subset of X, then both B and X \B are nuclei
of compact determining systems, because X \B is σ-compact. Since the set
of nuclei of compact determining systems is closed under countable unions
and intersections, it contains all the Baire subsets of X. �

Theorem 4.6. Let X and Y be compact Hausdorff spaces and let f : X → Y
be a continuous surjection. If B is a Baire subset of X, then f [B] is a
universally measurable subset of Y .

Proof. B is the nucleus of a compact determining system

{An1n2...nk : 〈ni〉ki=1 is a finite sequence in N} ,
and so f [B] is the nucleus of the compact determining system

{f [An1n2...nk ] : 〈ni〉ki=1 is a finite sequence in N} ,
because for every decreasing sequence 〈Cn〉∞n=1 of compact subsets of X,

f [
⋂∞
n=1Cn] =

⋂∞
n=1 f [Cn] .

It follows that f [B] is universally measurable by [5, Theorem 5.5]. �
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