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Trajectorial martingale transforms.
Convergence and integration

S.E. Ferrando and A.L. Gonzalez

Abstract. Starting with a trajectory space, providing a non-stochastic
analogue of a discrete time martingale process, we use the notion of
super-replication to introduce definitions for null and full sets and the
associated notion of a property holding almost everywhere (a.e.). The
latter providing what can be seen as the worst case analogue of sets of
measure zero in a stochastic setting. The a.e. notion is used to prove
the pointwise convergence, on a full set of the original trajectory space,
of the limit of a trajectorial transform sequence. The setting also allows
to construct a natural integration operator which we study in detail.
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1. Introduction

A recent trend in the literature incorporates uncertainty in the distri-
bution and on the support of a modelling stochastic process by minimiz-
ing or dispensing all together with probabilistic assumptions. An example
is given by sublinear expectations and their associated stochastic calculus
([11]). Some results in financial mathematics weaken, or eliminate entirely,
stochastic assumptions; as examples, we mention robust versions of the Fun-
damental theorem of Asset Pricing [3], [4] and [5]. Along this line of research,
our framework does not make use of any prior stochastic assumptions.

Martingales are a fundamental class of stochastic processes; in particular,
they play a crucial role in defining stochastic integrals, modeling gambling
games and providing no arbitrage models of financial markets. The paper
investigates traces of the martingale notion that remain after the removal of
the apriori given probability space. We ask the question: what charateristics
of the path space and/or gambling strategies, associated to a martingale, are
responsible for the uncertainty properties inherent in the process? Definition
6, provides a setting to develop some trajectorial martingale theory that
remains after the removal of the defining measure. The stochastic point
of view places the uncertainty on random events occurring accordingly to a
probability law. The point of view pursued here pays attention to individual
trajectories and, because of this characteristic, could be labelled a worst case
point of view. Even though an apriori measure is not assumed, there is a
natural notion of outer functional (superhedging, or super-replication, in a
financial interpretation) that leads to the definitions of null and full sets.

To show that we have captured a useful trajectorial analogue of a martin-
gale process we prove a trajectorial version of Doob’s pointwise convergence
theorem. Our integral operator can also be constructed conditional on a
given trajectory segment S0, . . . , Sk leading to (conditional) integral opera-
tors which are the substitute of conditional expectations. The said condi-
tional integrals can be used to extend our results from trajectorial martingale
transforms to more general trajectorial martingales. These developments are
left for future research.

Our work grew independently of the much related work [12] (see further
references therein) that develops an outer measure and the analogue of an
stochastic integral in a non probabilistic setting. [12] works in continuous
time while we assume a discrete time setting leading to a different approach
and constructions. The work of [12] is extended and further developed in
[10]. The basic ingredient in this line of research, as well as in ours, is the
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notion of superhedging that can be seen as the replacement of the original
stochastic assumptions by a worst case point of view. Other work, rather
unrelated, connecting trajectory based results and martingales are [2] and
[1].

Daniell and Lebesgue integration heavily rely on working with a vector
lattice of functions. By necessity, our setting precludes the lattice property.
Despite this fact, a well defined, but weaker, integral is still available. We
follow the original developments in [8] (see also [9] and [7]) but are forced
to provide alternative definitions and proofs to the ones from [8] given our
specific motivations and setting.

Thus, our setting starts with a trajectory space S, S ∈ S being a sequence
of real numbers Si with common initial value S0 = s0. No apriori topology,
measure structure or cardinality constraints are placed on S. The main
object of study are the trajectorial transforms, i.e. a sequence of functionals

ΠV,H
n (S) ≡ V +

∑n−1
i=0 Hi(S)(Si+1−Si) where V is a real number andHi(S) =

Hi(S0, . . . , Si); these Riemann sums will dictate several definitions in the
paper. Even though the results of the paper are purely mathematical and

do not require an interpretation for ΠV,H
n , it is useful to provide them with

a financial meaning so as to motivate the developments to come. Under
such perspective, consider a portfolio that holds shares of a risky asset and
cash in a riskless bank account that pays no interest: Hi(S) represents the
number of shares of asset S when its value is Si, Hi(S)(Si+1 − Si) is the
profit/loss resulting from holding Hi(S) shares and the asset changing value
from Si to Si+1. V is the initial investment for setting up a portfolio with
H0(S) shares and a deposit of V −H0(S)S0 in a riskless bank account. No
additional funds, besides the original investment, are inputted or withdrawn

from the portfolio (i.e. it is a self financing portfolio). Therefore, ΠV,H
n (S)

is the total value of a portfolio that results from performing the trades Hi,
i = 0, . . . , n − 1. We rely on these interpretations when describing related
notions below.

Several of our results rely on the existence of contrarian trajectories (CT),
one such trajectory will move in a contrarian way to a given investing port-
folio (as per Definition 12). These trajectories have the effect of making
potential profits arbitrarily small. This is a key local trajectorial property
that we use; it holds for discrete time martingales and we provide sufficient
conditions for its validity, in our general setting. There are closely related
conditions which are used at some points in our developments.

Sets of measure zero appear in stochastic models because their reliance
on measure theory, while the use of sets of measure zero in the latter theory
is due to a variety of reasons (e.g. to incorporate functions that take infinite
values). The conceptual role of such sets in stochastic modeling is quite
ambiguous; below we provide an informal/heuristic discussion of null sets in
the proposed setting and make precise comments about their role elsewhere
in the paper.
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A ⊆ S is called a null set if betting on the event of its occurrence can be
done with an arbitrarily small investment. Essentially, an event holds a.e.
if it may only fail on a null set A and its complement Ac contains a CT
(but see the remark after the introduction of the a.e. notion). The latter
implies that potential profits could be arbitrarily small in case Ac occurs.
What is the likelihood of a null event? Our definition of null set implies
that investors betting on the associated event will see arbitrarily large re-
turns relative to an arbitrarily small investment. Therefore, for realistic
models, a probability assignation to a null set should be zero (see remark
in [10] indicating that Vovk’s outer measure dominates simultaneously all
local martingale measures).

We describe next the contents of the paper. Knowledge of finance is not
used nor required but, for the interested reader, we refer to [6] for financial
background material associated to the present paper. The brief Section 2
defines the trajectory setting. Section 3 defines the outer functional, de-
scribes some of its basic properties and the notion of a property holding
a.e. Section 4 proves the convergence of trajectorial martingale transforms.
Section 5 defines an integral operator and a space of integrable functions
and proves the Beppo-Levi convergence theorem. Section 6 identifies the
integral providing a useful characterization. Section 7 shows that existence
of contrarian trajectories (CT) imply the crucial property of continuity from
below, the latter property is needed for the construction of the integral and
to establish convergence in a full set for the martingale transform sequence.
Section 8 provides two approaches establishing existence of CT under a vari-
ety of conditions. Appendix A describes an alternative integral that satisfies
the monotone convergence theorem, Appendix B remarks on the case when
the trajectory space is given by the paths of a martingale process. Appendix
C makes some basic comments on some financial implications. Appendix D
collects, for the reader’s convenience, the well known results on upcrossing
inequalities that we use.

2. Trajectorial setting

Definition 1 (Trajectory Set). Given a real number s0, a trajectory set,
denoted by S = S(s0), is a subset of

S∞(s0) = {S = (Si)i≥0 : Si ∈ R, S0 = s0}.

A set H consists of sequences H = (Hi)i≥0, where Hi is a function
Hi : S → R, which are assumed to be non-anticipative in the following
sense: for all S, S′ ∈ S, if Sj = S′j , 0 ≤ j ≤ i, then Hi(S) = Hi(S

′)

(i.e. Hi(S) = Hi(S0, . . . , Si)). H ∈ H may, occasionally, be referred to as a
portfolio. The null portfolio is assumed to belong to H. The pairM = (S,H)
may, occasionally, be referred to as a market.

The notation ∆iS = Si+1 − Si, i ≥ 0, will be used.
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2.1. Hypothesis on H. Several assumptions onH are needed for different
results in the paper. It is relevant to keep hypothesis on H minimal but, for
simplicity, we assume them all at once and list them in this short section.

We assume that for any f : S → R, where f(S) = V f+
∑nf−1

i=0 Hf
i (S) ∆iS

for some V f ∈ R, Hf ∈ H, nf ≥ 0, there exists H∗ ∈ H such that H∗i = Hf
i

for 0 ≤ i < nf and H∗i = 0 for i ≥ nf , such function could be Hf itself.

Therefore f can be written as f(S) = V f + lim infn→∞
∑n−1

i=0 H
f
i (S) ∆iS.

The following simple portfolios are also assumed to be in H. Given a
sequence of (trajectory based) stopping times {τk}∞k=0, 0 ≤ τ0 ≤ τ1 ≤ . . . ≤
τk ≤ τ∞ =∞ (stopping times are introduced in Definition 16) and constants
dk, k ≥ 0; set: Hi(S) ≡

∑∞
k=0 dk1[τk(S),τk+1(S))(i) for i ≥ 0. We then assume

such H ≡ {Hi}i≥0 ∈ H; in particular {Hi ≡ 1}i≥0 ∈ H.
Finally, we assume H+ αH ⊆ H for all α ∈ R.

3. Daniell-Leinert outer functional and null sets

The following notation will be used,

C ≡ {f : S → [−∞,∞]}, P = {f : S → [0,∞]}.
We define (f + g)(S) = 0 whenever f(S) + g(S) is undefined. We follow
Leinert’s integration framework [8] but with some needed variations. When

the context makes it clear, we may write an expression like ΠVm,Hm

n (S) ≥ 0
(and neglect to explicitly add ∀S ∈ S, ∀m,∀n).

Definition 2 (Trajectorial Transforms). Given V ∈ R and H ∈ H, set

ΠV,H
n (S) = V +

n−1∑
i=0

Hi(S)∆iS, V ∈ R, H ∈ H, n ≥ 0,

notice that ΠS0,1
n = Sn. The sequence of functions ΠV,H ≡ {ΠV,H

n } is called
a trajectorial transform.

A trajectorial transform, when augmented with certain hypothesis on
S or M, will be our analogue of martingale transforms. Such hypothesis

are studied in Section 7. We will also use the notation ΠV,F
n for a given

F = {Fi}i≥0 sequence of non-anticipative functions (not necessarily in H.)
The following functional plays the analogue role to the outer measure in
Caratheodory’s approach to Lebesgue integral.

Definition 3. For f ∈ P, define

(3.1) I(f) = inf{
∞∑
m=1

V m : f ≤
∞∑
m=1

lim inf
n→∞

ΠVm,Hm

n , ΠVm,Hm

n ≥ 0}.

Definition 4. For g : S → [−∞,∞], define ‖g‖ = I(|g|). A function g
is a null function if ‖g‖ = 0, a subset E ⊂ S is a null set if ‖1E‖ = 0.
Similarly, a subset E ⊂ S is a full set if ‖1E‖ = 1. A property that holds in
the complement of a null set, is said to hold “almost everywhere” (a.e.)
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Proposition 3 provides conditions that guarantee that complements of
null sets are full sets. The notion of a.e., introduced above, follows the usual
definition even though in our setting one needs to check separately that the
complement of a null set is full. Including this latter property into the a.e.
definition would be natural but non standard.

Based on ‖.‖, we will construct an integral operator on a complete space
L1 of real integrable functions defined on S. This will be done in Section
5. Less structure is required to prove convergence of trajectorial martin-
gale transforms and hence, we prove that result first. We collect needed
definitions and intermediate results in the remaining of the present section.

We leave out the simple proofs of the following results.

Proposition 1. I is isotone, positive homogeneous, countable subadditive
and I(1S) ≤ 1.

The next result is a proposition in [8, p 259]. Leinert’s proof is valid given
that our I satisfies the properties in Proposition 1.

Proposition 2. Consider f, g : S → [−∞,∞], then

(1) ‖g‖ = 0 iff g = 0 a.e.
(2) ‖g‖ <∞ then |g| <∞ a.e.
(3) f = g a.e. then ‖f‖ = ‖g‖.
(4) The countable union of null sets is a null set.

3.1. Continuity from below. The next definition is the analogue, in our
framework, to Leinert’s continuity from below requirement in [8], which, in
turn, takes over the role of continuity at 0 in the case of Daniell’s integration
on a a vector lattice.

Definition 5 (Continuity from Below Property). M = (S,H) is said to
satisfy the continuity from below property if for any H ∈ H, V ∈ R and
n∗ ≥ 0

V +
n∗−1∑
i=0

Hi(S)∆iS ≤
∞∑
m=1

lim inf
n→∞

ΠVm,Hm

n (S), =⇒ V ≤
∞∑
m=1

V m,

where

(3.2) ΠVm,Hm

n (S) = V m +

n−1∑
i=0

Hm
i (S)∆iS ≥ 0, Hm ∈ H, V m ∈ R.

Conditions on M implying the continuity from below property are given
in Theorem 6 in Section 7.

Remark 1. Since I(0) ≤ 0, If M satisfies the continuity from below prop-
erty, then I(0) = 0.

Proposition 3. Assume M satisfies the continuity from below property,
then:

‖1S‖ = 1.
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Moreover, for any A ⊂ S,

(3.3) ‖1A‖ = 0 =⇒ ‖1Ac‖ = 1.

Proof. The inequality I(1S) ≤ 1 is immediate from the definition without

any additional assumptions. Consider that 1S ≤
∞∑
m=1

lim inf
n→∞

ΠVm,Hm

n , with

conditions as in (3.2); then, by continuity from below, 1 ≤
∑∞

m=1 V
m which

implies 1 ≤ I(1S). The implication in (3.3) follows by subadditivity of I. �

4. Convergence

Given M = (S,H), we present conditions that imply the pointwise con-

vergence of ΠH,V
n (S) as n → ∞ in the sense that possible divergence takes

place in a null set and convergence in a full set. The word convergence, for
the present section, means convergence in R. In particular convergence to
∞ or −∞ is treated as a divergent limit.

We rely on the usual notion of upcrossings of the sequence ΠV,H
n (S), n =

0, 1 . . ., through a band [a, b]. Once H and V are fixed, Un(S) ≡ U
[a,b]
n (S)

will be the notation for the number of upcrossings, of the sequence ΠV,H
j (S)

through the interval [a, b] up to time n, to alleviate notation, the interval
[a, b] may be kept implicit. We refer to Appendix D for notation and some
basic results we use, such as the usual upcrossing inequality.
In the next developments we assume Sn ≥ 0 but clearly this can be weakened
as indicated in Appendix D.1.

Theorem 1. Given M = (S,H), assume that Sn ≥ 0, for all n and S ∈ S.
Then, the set of divergence:

Sdiv(ΠS0,1) ≡ {S ∈ S : limn→∞ΠS0,1
n (S) = limn→∞ Sn diverges}, is a null

set.

Proof. Fix an interval [a, b] and k ≥ 1, define:

Akn ≡ {S : Un(S) ≥ k}, Ak ≡ ∪n≥1A
k
n and A ≡ A[a,b] = ∩k≥1A

k.

From the upcrossing inequality (D.3), obtained in the Appendix D, it
follows that

k (b− a)1Akn(S) ≤ a+
n−1∑
i=0

Di(S) ∆iS, for any n ≥ 1.

Moreover, for m ≥ n, if S ∈ Akn, then S ∈ Akm, while if S /∈ Ak,
1Ak(S) = 0 ≤ a+

∑m−1
i=0 Di(S) ∆iS, so we get

k (b− a)1A(S) ≤ k (b− a)1Ak(S) ≤ lim inf
n→∞

(a+
n−1∑
i=0

Di(S) ∆iS),
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that is,

1A(S) ≤ 1Ak(S) ≤ a

k(b− a)
+ lim inf

n→∞

n−1∑
i=0

1

k(b− a)
Di(S) ∆iS, ∀S ∈ S.

Since a
k(b−a) +

∑n−1
i=0

1
k(b−a)Di(S)∆iS ≥ 0, ∀S ∈ S and D = {Di} ∈ H (see

Lemma 8 and Section 2.1), by definition of I, we have

0 ≤ ||1A|| = I(1A) ≤ a

k(b− a)
,

and so ||1A|| = 0. It then follows from Proposition 2 that ||1∪iA[ai,bi]
|| = 0,

where [ai, bi] is an arbitrary countable collection of intervals.
From Lemma 9 in Appendix D.1, we observe that 1Sdiv(ΠS0,1) ≤ 1∪iA[ai,bi]

+

1A∞ where A∞ ≡ {S ∈ S : S /∈ ∪iA[ai,bi] & limn→∞ Sn =∞}. Notice now
that for any ε > 0,

A∞ ⊆ {S ∈ S : ∃ M = M(S), Sn ≥
1

ε
, if n ≥M} ≡ Aε.

If S ∈ Aε, then s0 + lim infn→∞
∑n−1

i=0 ∆iS = Sn ≥ 1
ε , consequently, for all

S ∈ S:

1A∞(S) ≤ 1Aε(S) ≤ εs0 + lim inf
n→∞

n−1∑
i=0

ε∆iS.

Since ε s0 +
∑n−1

i=0 ε∆iS = εSn ≥ 0 it follows by definition of I that

I(1A∞) ≤ I(1Aε) ≤ εs0.

So I(1A∞) = 0. It then follows that ||1Sdiv(ΠS0,1)|| = 0. �

Corollary 1. Assume M = (S,H) satisfies the continuity from below prop-
erty and Sn ≥ 0 for all S, then:

lim
n→∞

ΠS0,1
n (S) = lim

n→∞
Sn converges on a full set.

Proof. When M satisfies the continuity from below property, Proposition
3 combined with Theorem 1 shows that Sconv(ΠS0,1) ≡ S \ Sdiv(ΠS0,1) is a
full set, namely ||1Sconv || = 1. �

We prove below convergence of ΠV,H
n (S) in a full set, to do so we apply

the previous results. For V ∈ R and H ∈ H fixed, such that ΠV,H
n ≥ C for

a constant C, define

SV,H = {SH = {SHn } ∈ S∞(V − C) : ∃ S ∈ S, SHn ≡ ΠV,H
n (S)− C},

notice that SHn ≥ 0 and SH0 = V − C, ∀SH ∈ SV,H and S = SS0,1.
Let HV,H be any portfolio set defined on SV,H that verifies the assumptions
listed in Section 2.1. Note that for fixed S ∈ S, ∆iS

H = Hi(S)∆iS; for
G ∈ HV,H define:

(4.1) Fi(S) = Gi(S
H)Hi(S), and F = {Fi}i≥0.
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Notice that Fi is non-anticipative; indeed, assume S̃j = Sj , 0 ≤ j ≤ i, then

S̃Hj = V − C +

j−1∑
i′=0

Hi′(S̃)∆i′S̃ = V − C +

j−1∑
i=′0

Hi′(S)∆i′S = SHj , and

Fi(S̃) = Gi(S̃
H) Hi(S̃) = Gi(S

H) Hi(S).

Set β : S → SV,H by β(S) = SH . To alleviate notation, below we will use

SV,Hdiv ≡ S
V,H
div (ΠV,1) ≡ {SH ∈ SV,H : lim

n→∞
ΠV,1
n (SH) = lim

n→∞
SHn diverges},

the notation SV,Hdiv (ΠV,1) is consistent with the one introduced in the state-
ment of Theorem 1.

Theorem 2. Given M = (S,H), consider V ∈ R and H ∈ H satisfying:

(4.2) ΠV,H
n (S) ≥ C, ∀S ∈ S, ∀n ≥ 0,

for some constant C. Assume also that for G ∈ HV,H , F given by ( 4.1),
belongs to H and thatM satisfies the continuity from below property. Then:

lim
n→∞

ΠV,H
n (S) converges on a full set and may diverge in a null set.

Proof. Assumption (4.2) allows us to apply Theorem 1 to

M = (SV,H ,HV,H); therefore, SV,Hdiv is a null set and so, for ε > 0, k ≥ 1

there exists Gk ∈ HV,H such that for any S ∈ S

(4.3) 1SV,Hdiv
(SH) ≤ ε+

∑
k≥1

lim inf
n→∞

∑
i

Gki (S
H)∆iS

H .

Notice that β−1(SV,Hdiv ) = Sdiv(ΠV,H) ≡ {S ∈ S : limn→∞ΠV,H
n (S) diverges}

and, by hypothesis, F defined by (4.1) belongs to H. Then, (4.3) implies

1Sdiv(ΠV,H)(S) ≤ ε+
∑
k≥1

lim inf
n→∞

∑
i

Fi(S)∆iS.

Therefore ||1Sdiv(ΠV,H)|| = 0, given that M satisfies the continuity from

below property, Proposition 3 implies that Sconv(ΠV,H) ≡ S \ Sdiv(ΠV,H) is
a full set. �

5. Integral operator

This section constructs an integral operator acting on a class of (inte-
grable) functions defined on S, the developments rely on the previously
introduced notion of a property holding a.e. An alternative integral, with
somewhat better properties but requiring stronger hypothesis, is detailed in
Appendix A. Set:

E = {f : S → R : f(S) = V f +
nf−1∑
i=0

Hf
i (S)∆iS, H

f ∈ H, V f ∈ R, nf ≥ 0},

(5.1)



TRAJECTORIAL MARTINGALE TRANSFORMS 711

where nf denotes an integer constant that can depend on f . Hf
i = 0, i ≥ nf

is assumed. Elements f ∈ E are referred to as (finite) trajectorial martingale
transforms (or trajectorial transforms, for short). We assume the necessary
hypothesis for E being a R-linear space, namely H+ αH ⊂ H.

The following conditional spaces play a crucial role. Given S, for S ∈ S
and j ≥ 0 set:

S(S,j) ≡ {S̃ ∈ S : S̃i = Si, 0 ≤ i ≤ j}.
Notice S(S,0) = S and that if S′ ∈ S(S,j), then S(S′,j) = S(S,j). Pairs (S, j)
with S ∈ S and j ≥ 0 will be called nodes, local properties are relative to a
given node.

Definition 6 (0-Neutral Nodes). Given a trajectory space S and a node
(S, j):

• (S, j) is called a 0-neutral node if

(5.2) sup
S̃∈S(S,j)

(S̃j+1 − Sj) ≥ 0 and inf
S̃∈S(S,j)

(S̃j+1 − Sj) ≤ 0.

S is called locally 0-neutral if ( 5.2) holds at each node (S, j).

The following Lemma, based on local properties of S gives a basic proce-
dure to construct particular trajectories.

Lemma 1. Assume S is locally 0-neutral and let F = {Fi}i≥0 be a sequence
of non-anticipative functions and ε > 0. Then for any S0 ∈ S and n0 ≥ 0
there exists a sequence of trajectories {Sn}n≥1, such that for every n ≥ 1,
Sn ∈ S(Sn−1,n0+n−1) and

(5.3) Fi(S
n)∆iS

n <
ε

2i+1
, n0 ≤ i ≤ n0 + n− 1,

and so,

(5.4)

n0+n−1∑
i=n0

Fi(S
n) ∆iS

n <

n0+n−1∑
i=n0

ε

2i+1
.

Proof. From local 0-neutrality, there exists S1 ∈ S(S0,n0) such that

F0(S1) ∆0S
1 < ε

2n0+1 . Inductively, once Sn ∈ S(Sn−1,n0+n−1) has been

constructed verifying (5.4), there exists Sn+1 ∈ S(Sn,n0+n) satisfying:

Fn(Sn+1) ∆nS
n+1 <

ε

2n+1
,

so (5.3) holds; then (5.4) follows by resorting to the non-anticipativity prop-
erty of F . �

Corollary 2. Consider M = (S,H) with S locally 0-neutral and f, g ∈ E
with f(S) = V f +

∑nf−1
i=0 Hf

i (S)∆iS and g(S) = V g +
∑ng−1

i=0 Hg
i (S)∆iS. If

f = g then V f = V g.
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Proof. Let h ≡ (f −g) ∈ E , we can write h(S) = V +
∑n−1

i=0 Hi(S)∆iS with

V = V f − V g and H = Hf −Hg. Take ε > 0, from Lemma 1 with n0 = 0,
F = H and n ≡ max(nf , ng), there exists Sn ∈ S, such that

0 = h(Sn) = V +

n−1∑
i=0

Hi(S
n)∆iS

n ≤ V + ε.

Given that ε is arbitrary, the above gives a contradiction if V < 0. In case
that V > 0 one applies the same reasoning to −h(S), −V and F = −H. �

In the general case when S is locally 0-neutral we can see that E is not a
vector lattice. For example, take V = 0 and Hk = 0, k ≥ 1 and H0(S) = 1
so f(S) = (S1 − S0). Assume |f(S)| ∈ E , so |f(S)| = |S1 − S0| = VG +∑n−1

i=0 Gi(S) ∆iS ∀ S for some G ∈ H and n ≥ 0. A similar reasoning as in
Corollary 2 implies |f(S)| = |S1 − S0| = VG + G0(S) (S1 − S0) ∀ S which
is impossible if there exist S, S′ such that S1 < S0 and S′1 > S0 . It follows
that f ∈ E does not imply |f | ∈ E and so the latter is not a vector lattice.

GivenM = (S,H) with S locally 0-neutral, the following operator is well

defined by Corollary 2 and is linear. For f(S) = V f +
∑nf−1

i=0 Hf
i (S)∆iS,

f ∈ E , define

(5.5) I : E → R, by I(f) = V f .

Remark 2 (I Continuous from Below). Whenever M = (S,H) satisfies
the continuity from bellow property, given by Definition 5, and S is locally
0-neutral, we will say that I is continuous from below. In this case, if f ∈ E
and f ≤

∞∑
m=1

lim inf
n→∞

ΠVm,Hm

n , and the conditions in display ( 3.2) are in

effect, then I(f) ≤
∞∑
m=1

V m.

The next proposition collects some basic properties satisfied by I.

Proposition 4. Given M = (S,H), assume S is locally 0-neutral. Let
f ∈ E, f ≥ 0, then

(5.6) I(f) ≥ 0.

Moreover I is isotone (i.e. order preserving).

Proof. Let f ∈ E , f(S) = V f +
∑nf−1

i=0 Hf
i (S)∆iS ≥ 0. Consider ε > 0

then by Lemma 1 there exist Sn
f

such that

0 ≤ V f +
nf−1∑
i=0

Hf
i (Sn

f
)∆iS

nf < ε+ V f .

Which leads to I(f) = V f ≥ 0.

Let now g(S) = V g +
∑nf−1

i=0 Hg
i (S)∆iS, and g ≤ f , so 0 ≤ (f − g) ∈ E ,

then (5.6) implies I(f − g) = V f − V g ≥ 0 and so I(g) ≤ I(f). �
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5.1. Integrable functions. Let F ≡ {f : S → [−∞,∞] : ‖f‖ < ∞},
where the functions that are equal a.e. are identified. (F , ‖.‖) with pointwise
operations, defining [f + g](S) = 0 if f(S) + g(S) does not exist, becomes a
linear normed space thanks to Propositions 1 and 2 (which do not require
any hypothesis).

Item (2) in the next proposition can be considered to be a generalized
version of the Beppo-Levi theorem (usually considered in a context of inte-
gration).

Proposition 5. Let fn : S → [−∞,∞], n ≥ 1.

(1) If
∑
n≥1

fn converges pointwise a. e., then

‖
∑
n≥1

fn‖ ≤
∑
n≥1

‖fn‖.

(2) If {fn} ⊆ F and
∑

n≥1 ‖fn‖ <∞, then
∑k

n=1 fn converges pointwise

a.e. and in the norm of F to f ≡
∑
n≥1

fn and f ∈ F .

Proof. (1) From our hypothesis, |
∑
n≥1

fn| defines a function on P (ex-

tended by 0, if necessary). From isotony and countable subadditivity
of I,

‖
∑
n≥1

fn‖ = I(|
∑
n≥1

fn|) ≤
∑
n≥1

I(|fn|) =
∑
n≥1

‖fn‖.

(2) Since
∑
n≥1
|fn| ∈ P, from countable subadditivity of I,

‖
∑
n≥1

|fn|‖ = I(
∑
n≥1

|fn|) ≤
∑
n≥1

I(|fn|) =
∑
n≥1

‖fn‖ <∞.

Then from Proposition 2, item (2),
∑
n≥1
|fn| <∞ a. e., in particular

f ≡
∑
n≥1

fn exists as pointwise limit a.e. From our hypothesis and

(1), it follows that f ∈ F . Finally

‖
∑
n≥1

fn −
k∑

n=1

fn‖ ≤
∑

n≥k+1

‖fn‖ →k→∞ 0.

�

Theorem 3. If {gn}n≥1 is a Cauchy sequence in F , then there exist g ∈ F
and a subsequence {gnk}k≥1 which converges a.e. and in norm to g. In
particular F is complete.

Proof. We select a subsequence {gnk}k≥1 satisfying ‖gnk − gnk+1
‖ < 2−k,

k ≥ 1. We proceed as follows: choose n1 ≥ 1 such that
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‖gn1−gn‖ < 2−1, ∀n ≥ n1; once nk has been selected, there exists nk+1 > nk
such that ‖gnk+1

− gn‖ < 2−(k+1), ∀n ≥ nk+1.
Let fk = gnk−gnk+1

, then
∑
k≥1

‖fk‖ ≤ 1, so {fk}k≥1 satisfies the hypothesis

of Proposition 5, item (2), and consequently
m∑
k=1

fk converges pointwise a.e.

and in norm to
∞∑
k=1

fk. Thus gnk = gn1 −
k−1∑
m=1

fm converges pointwise a.e,

and in norm to g ≡ gn1 −
∞∑
k=1

fk. �

Definition 7. Let E ′ ≡ {f ∈ E : ||f || < ∞} ⊂ F and denote with L1 its
norm closure. f ∈ L1 is referred to as an integrable function.

Remark 3. (a) L1 is complete since it is closed in F , which is complete.
(b) For g : S → [−∞,∞], g ∈ L1 if and only if for every ε > 0, there

exists f ∈ E ′ such that ‖g − f‖ < ε.

(c) E ′ and then L1 are non trivial spaces, since the functions Πa,D
n of E

given by ( D.3), in Appendix D, belong to E ′.

The following theorem is similar to a result in [8], pg 260.

Theorem 4. E ′ is a subspace of F and if S is locally 0-neutral, I is linear
on E ′. Moreover, if I is continuous from below (as per Remark 2) then:

|I(f)| ≤ ‖f‖, ∀ f ∈ E ′.

Proof. If f, g ∈ E ′, and α ∈ R, then αf + g ∈ E , and ‖αf + g‖ ≤ |α|‖f‖+
‖g‖ < ∞. So E ′ is a subspace of E and F , consequently I is linear on

E ′. Finally, for f ∈ E ′ assume |f | ≤
∞∑
m=1

lim inf
n→∞

ΠVm,Hm

n , where ΠVm,Hm

n

satisfies the conditions in display (3.2). Then, since f ≤ |f |, by continuity
from below of I, I(f) ≤

∑∞
m=1 V

m, thus

I(f) ≤ I(|f |) = ‖f‖.

Noticing that −f ≤ |f |, the above analysis implies I(−f) ≤ ||f || and so
I(f) ≥ −||f ||. �

Under the assumption of continuity from below, Theorem 4 shows that I
can be extended to L1 by continuity.

Definition 8. Given M = (S,H) such that S is locally 0-neutral, if I is
continuous from below, its linear and continuous extension to L1 is denoted
by
∫
f , for f ∈ L1, and called the M-integral.

We assume, in the remainder of the paper, the implicit convention that every
time that we rely on the existence of theM-integral, the hypothesis that S
is locally 0-neutral and I is continuous from below are in effect.
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Lemma 2. Let f ∈ L1, and g ∈ C such that g = f a.e., then g ∈ L1, and∫
g =

∫
f .

Proof. Let {fn}n≥1 be a sequence in E ′ such that lim
n→∞

‖fn−f‖ = 0; by item

(3) in Proposition 2, g ∈ F , because ‖g‖ = ‖f‖ <∞, and lim
n→∞

‖fn−g‖ = 0;

therefore g ∈ L1 and so ∫
g = lim

n→∞
I(fn) =

∫
f.

�

The classical Beppo-Levi theorem holds for this integral.

Proposition 6. Let {fn}n≥1 ⊆ L1 such that
∑
n≥1
‖fn‖ < ∞; then

m∑
n≥1

fn

converges a.e. and in norm to f ≡
∞∑
n≥1

fn. Moreover, f ∈ L1 and

∫ ∑
n≥1

fn =
∑
n≥1

∫
fn.

Proof. From hypothesis, since L1 ⊂ F , item (2) of Proposition 5 gives that
f ≡

∑
n≥1

fn exists pointwise a.e., and converges to f ∈ F in the norm. So

completeness of L1 and fn ∈ L1, n ≥ 1, implies f ∈ L1.
Linearity and continuity of the M-integral imply,

|
∫
f −

m∑
n≥1

∫
fn| = |

∫
(f −

m∑
n≥1

fn)| ≤ ‖f −
m∑
n≥1

fn‖ → 0.

�

6. M-integral characterization

The present section characterizes theM-integral in terms of the operator
W , given by Definition 10 below . We use the fact that W coincides with I
on E , and acts on functions defined on the space C ≡ {f : S → [−∞,∞]},
through an extension H of the portfolio set H. In particular this operator is
not considered as acting on classes of functions (e.g. elements of F). Some
intermediate results are postponed to Appendix A where an alternative in-
tegral operator is developed. Such integral has its own notion of null sets
based on W instead of the norm given by I.

Definition 9. H will be a linear space of non-anticipative sequences
H = {Hi}i≥0 of functions Hi : S → R, with the following properties:

(1) H ⊂ H,
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(2) For any sequence Hm ∈ H, such that
∞∑
m=1

Hm
i (S) is convergent, for

any i ≥ 0, and any S ∈ S, then H defined by

Hi(S) =
∞∑
m=1

Hm
i (S) and H = {Hi}i≥0,

belongs to H.

Definition 10. Define the operator W : C → R by
(6.1)

Wf = inf{V ∈ R : f(S) ≤ V + lim inf
n→∞

n−1∑
i=0

Hi(S) ∆iS, S ∈ S, withH ∈ H}.

Also define Wf = −W [−f ].

The notion of up-down node, used in the rest of this section, is given by
Definition 11 in Section 7.

Proposition 7. Assume each node of S is up-down then

W |f | ≤ ‖f‖, ∀f ∈ C.

Proof. It is enough to assume that ‖f‖ < ∞. For ε > 0, let |f | ≤
∞∑
m=1

lim inf
n→∞

ΠVm,Hm

n with V m ∈ R, Hm ∈ H,ΠVm,Hm

n ≥ 0 ∀ n ≥ 0, and

∞∑
m=1

V m < ‖f‖+ ε. Then, by Fatou’s lemma,

|f(S)| ≤
∞∑
m=1

V m + lim inf
n→∞

n−1∑
i=0

[
∞∑
m=1

Hm
i (S)]∆iS, ∀S ∈ S.

Since, by Lemma 3,
∑∞

m=1H
m
i (S) ≡ Hi(S) is well defined and so

H = {Hi}i≥0 belongs to H. Therefore, W |f | ≤
∞∑
m=1

V m, and consequently

W |f | ≤ ‖f‖. �

Conditions guaranteeing W0 = 0, appearing below, is given in Corollary
7 in Appendix A.

Corollary 3. Assume each node of S is up-down and W0 = 0. If f ∈ L1

and f > −∞, then ∫
f = Wf.

If f <∞ then
∫
f = Wf as well.

Proof. Let {fn}n≥1 a sequence in E ′ such that lim
n→∞

‖fn − f‖ = 0. Since

f, fn > −∞ and |Wfn| = |I(fn)| <∞, for all n ≥ 1, Theorem 7 in Appendix
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A and Proposition 7 above imply |Wf −Wfn| ≤W |f − fn| ≤ ‖f − fn‖ and
so, ∫

f = lim
n→∞

I(fn) = lim
n→∞

Wfn = Wf.

Where the intermediate equality holds by Proposition 16 in Appendix A.
On the other hand, if f <∞,

|Wf −Wfn| = | −W [−f ] +W [−fn]| ≤ ‖f − fn‖.
Thus Wf = lim

n→∞
W (fn) = lim

n→∞
I(fn) =

∫
f , also by Proposition 16. �

Remark 4. The M-integral is positive on L1, if each node of S is up-down
and W0 = 0. Indeed for 0 ≤ f ∈ L1, under the hypothesis of existence of
the integral, Corollary 3 applies and so∫

f = Wf ≥ 0.

Where the last inequality follows from the isotony of W and W0 = 0.

The characterization given by Corollary 3 is not valid for general f ∈ L1

as f > −∞, or f <∞ is required. We provide now another characterization
removing such restriction.

Proposition 8. Assume each node of S is up-down and W0 = 0. For
f ∈ L1, define

(6.2) f̃(S) =

{
f(S) if |f(S)| <∞
0 if |f(S)| =∞ .

Then ∫
f =

∫
f̃ = Wf̃ = Wf̃.

Proof. f̃ ∈ F , because |f̃ | ≤ |f | so ‖f̃‖ ≤ ‖f‖ < ∞. From item (2) in
Proposition 2, it is known that {|f(S)| = ∞} is a null set, which implies

that f = f̃ , a.e. Then from Lemma 2∫
f =

∫
f̃ = Wf̃ = W (f̃),

where the last two equalities follow from Corollary 3 given that
−∞ < f̃ <∞. �

We provide, yet, another characterization that will require the hypothesis
Wf ≤ Wf . For this reason we give first a result that provides sufficient
conditions for the validity of such inequality.

Proposition 9. Let M = (S,H), with W0 = 0 and assume that for any
H ∈ H,

lim inf
n→∞

n−1∑
i=0

Hi(S)∆iS > −∞, ∀S ∈ S.
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Then for f ∈ C, such that Wf > −∞, and W [−f ] > −∞, it follows that

(6.3) Wf ≤Wf.

Proof. In order to establish (6.3), it is enough to assume Wf < ∞ and
W [−f ] < ∞. Since Wf and W [−f ] are finite, let H,G ∈ H, V,U ∈ R be
such that for all S ∈ S

(6.4) f(S) ≤ V +lim inf
n→∞

n−1∑
i=0

Hi(S)∆iS, −f(S) ≤ U+lim inf
n→∞

n−1∑
i=0

Gi(S)∆iS.

We proceed by cases.
I. f(S) 6= ±∞ in (6.4) then

(6.5) 0 ≤ V + U + lim inf
n→∞

n−1∑
i=0

[Hi(S) +Gi(S)]∆iS, ∀S ∈ S.

II. f(S) =∞, then lim inf
n→∞

∑n−1
i=0 Hi(S)∆iS =∞, thus

0 ≤ V + U + lim inf
n→∞

n−1∑
i=0

Hi(S)∆iS =

V + U + lim inf
n→∞

n−1∑
i=0

Hi(S)∆iS + lim inf
n→∞

n−1∑
i=0

Gi(S)∆iS.

Therefore, (6.5) is valid given that the last sum is well defined by hypothesis.

III. f(S) = −∞, then lim inf
n→∞

∑n−1
i=0 Gi(S)∆iS =∞. By symmetry with case

II, (6.5) is valid.
Finally 0 = W0 ≤ V +U , by taking infimum on V , and then on U . Since

the following sum is well defined, then

0 ≤Wf +W [−f ].

�

Proposition 10. Assume each node of S is up-down and W0 = 0. Consider
f ∈ L1 and assume Wf ≤ Wf . Let f̃ be as introduced in display ( 6.2) in

Proposition 8. Then, Wf̃ = Wf = Wf = Wf̃ , and so∫
f = Wf = Wf.

Proof. Define h ∈ C by h(S) = f(S) − f̃(S). By (2) of Proposition 2,
h = 0 a.e., then ‖h‖ = 0 by item (1) of Proposition 2. In consequence by
Proposition 7

Wh ≤ ‖h‖ = 0, and Wh = −W [−h] ≥ −‖h‖ = 0.

Since f = f̃ +h, with the sum well defined, and |Wf̃ | <∞, by (A.2) and
Proposition 14, both in Appendix A,

Wf ≤Wf̃ +Wh ≤Wf̃
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On the other hand |Wf̃ | = |W [−f̃ ]| <∞ then by Corollary 6

Wf̃ ≤Wf̃ +Wh ≤Wf ≤Wf ≤Wf̃.

The proof concludes by using Proposition 8. �

6.1. Further convergence properties of the M-integral. Leinert ([8])
provides an in-depth study of the conditions needed for integrals of the type
introduced in our paper to have further convergence properties as well as
supporting a σ-algebra of integrable subsets. Apparently, without some kind
of lattice property it is not possible to go beyond the Beppo-Levi and the
monotone convergence theorems. In Appendix A we define an alternative
integral

∫ ′
f that satisfies all the properties of the M-integral plus some

more while still remaining in our non lattice setting. We discuss here some
of the implications of those additional properties for the M-integral.

The next two propositions make use of results valid for W that are de-
veloped in Appendix A. The corresponding statements for the M-integral
represent weaker versions. The main point being that the function f , ap-
pearing in each of the statements, need to be assumed to be integrable a fact
that is derived in the classical version of the results valid for W . The notion
of Contrarian Trajectories (CT) used in the next proposition is introduced
in Definition 12.

Proposition 11. Given M = (S,H), assume that S has the CT property
for any H ∈ H and each node of S is up-down. Let {fn} ⊆ L1, 0 ≤ fn,
−∞ < f ∈ L1 and f ≤

∑
n≥1 fn then:

(6.6)

∫
f ≤

∑
n≥1

∫
fn.

Proof. The result follows from the same property satisfied by W , stated in
Proposition 15 Appendix A, after noticing that Wf =

∫
f and Wfn =

∫
fn

which hold because Corollary 3. �

We prove below a weaker version of the classical monotone convergence
theorem relying on the classical version of the theorem valid for the alter-
native integral

∫ ′
f .

Theorem 5. Assume each node of S is up-down and W0 = 0. For k ≥ 1,
let fk ∈ L1, with −∞ < fk ↑ f <∞ and −∞ <

∫
fk ≤ C <∞. Then

W (f) = lim
k→∞

W (fk) = lim
k→∞

∫
fk.

If f ∈ L1 is further assumed, then W (f) =
∫
f .

Proof. We refer to the set of integrable functions L1 introduced in Appendix
A. Our hypothesis allow to apply Proposition 7 which implies L1 ⊆ L1.
Therefore fn ∈ L1 and an application of (A.7) gives

∫ ′
fn = Wfn =

∫
fn
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where the last equality follows from Corollary 3. We apply Theorem 9 and
note that

∫ ′
f = Wf and so we conclude

(6.7) Wf = lim
n→∞

∫
fn.

Finally, if we further assume f ∈ L1, Corollary 3 implies Wf =
∫
f . �

7. Continuity from below and contrarian trajectories

The convergence result and the construction of theM-integral in previous
sections relied on the continuity from below property of I. The latter is
a crucial analytic property for a Daniell integration approach; the present
section provides the key link between general local trajectory properties and
continuity from below.

The said properties are introduced in stages starting with Definition 11
below (a refinement of Definition 6) that encodes pathwise properties of
discrete time martingales, and continuing in Section 8.

Definition 11 (Up-Down Nodes). Given a trajectory space S and a node
(S, j):

• (S, j) is called an up-down node if

sup
S̃∈S(S,j)

(S̃j+1 − Sj) > 0 and inf
S̃∈S(S,j)

(S̃j+1 − Sj) < 0.

Observe that any up-down node is 0-neutral.
Lemma 1 from section 5, based on the locally 0-neutral property of S,

gives a basic procedure to construct contrarian trajectories. Consider the
case that there exist Ŝ ∈ S such that Ŝi = Sii , i ≥ 0, for the sequence of

trajectories {Sn}n≥1 verifying (5.4), as in referred Lemma 1. Such Ŝ satisfies

lim inf
n→∞

∑n−1
i=0 Fi(Ŝ) ∆iŜ ≤ ε. In that case, Ŝ will be called an ε-contrarian

trajectory for F . This type of trajectory is crucial to establish the continuity
from below property of the operator I. A discussion on existence of these
trajectories is given in Section 8.

Definition 12 (Contrarian trajectories, CT). We will say that a trajectory
set S has the contrarian trajectory (CT) property for F = {Fi}i≥0, a se-
quence of non-anticipative functions on S, if the following holds: for any
S∗ ∈ S, n∗ ≥ 0 and ε > 0 there exists Sε ∈ S(S∗,n∗) such that

(7.1) lim inf
n→∞

n−1∑
i=n∗

Fi(S
ε) ∆iS

ε ≤ ε.

Lemma 3 below is used to establish the continuity from below of the
operator I, it requires the up-down property for the nodes of S.
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Lemma 3. Assume each node of S is up-down. For any m ≥ 1, let Gm =
{Gmi }i≥0 be sequences of non-anticipative functions on S, and V m ∈ R such
that

ΠVm,Gm
n (S) = V m+

n−1∑
i=0

Gmi (S)∆iS ≥ 0, S ∈ S, n ≥ 1. If
∑
m≥1

V m <∞,

then ∑
m≥1

Gmi (S) is convergent, for any i ≥ 0, and S ∈ S.

Proof. Assume that j ≥ 0 is the minimum index such that
∑
m≥1

Gmj (Sj) is

not convergent for some Sj ∈ S. Then, there exists ε > 0, with the property
that for any M ∈ N there exist m2 > m1 ≥M such that

(7.2) |
m2∑

m=m1+1

Gmj (Sj)| ≥ ε.

Note that m1,m2 just depend on M and the conditional space S(Sj ,j). Since

by hypothesis the node (Sj , j) is up-down, let

θ− =
1

2
inf

S∈S(Sj ,j)
(Sj+1 − Sjj ) < 0 and θ+ =

1

2
sup

S∈S(Sj ,j)

(Sj+1 − Sjj ) > 0.

Set ε∗ ≡ εmin{−θ−, θ+}. If j > 0,
∑
m≥1

Gmi (S) is convergent for any

0 ≤ i < j and S ∈ S. Having in mind that, and the convergence of
∑
m≥1

V m,

there exist M0 such that for any 0 ≤ i < j, and m′′ > m′ ≥ M0 implies
(recall V m ≥ 0 resulting by the n = 0 in our assumptions),

m′′∑
m=m′+1

V m <
ε∗

2j+2
,

and

|
m′′∑

m=m′+1

Gmi (Sj)| < ε∗

2i+2ρi
. (ρi = |∆iS

j | 6= 0, or ρi = 1)

By the up-down property, for M = M0 and the corresponding m1 < m2 as
in (7.2), there exists Sj+1 ∈ S(Sj ,j) with ∆jS

j+1 ≤ θ− or θ+ ≤ ∆jS
j+1, such

that
m2∑

m=m1+1

Gmj (Sj+1)∆jS
j+1 ≤ −ε|∆jS

j+1| ≤ −ε∗.

Consequently, for 0 ≤ i < j,

|
m2∑

m=m1+1

Gmi (Sj+1)∆iS
j+1| = |

m2∑
m=m1+1

Gmi (Sj)∆iS
j+1| <
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ε∗

2i+2ρi
|∆iS

j+1| ≤ ε∗

2i+2
.

So

m2∑
m=m1+1

V m +

m2∑
m=m1+1

j∑
i=0

Gmi (Sj+1)∆iS
j+1 < −ε∗(1−

j∑
i=0

1

2i+2
).

With the recursive procedure, as in the proof of Lemma 1, for n : j ≤ n, it
is possible to find Sn+1 ∈ S(Sn,n), such that

∑m2
m=m1+1G

m
n (Sn+1)∆nS

n+1 ≤
ε∗

2n+2 . Then for SN , N ≥ j fixed, it follows that for any 1 ≤ n < N :

m2∑
m=m1+1

V m +

m2∑
m=m1+1

n∑
i=0

Gmi (SN )∆iS
N < −ε∗(1−

n∑
i=0

1

2i+2
).

From which results the contradiction

0 ≤
m2∑
m=1

ΠVm,Gm

N (SN )−
m1∑
m=1

ΠVm,Gm

N (SN ) =

m2∑
m=m1+1

V m +

m2∑
m=m1+1

N−1∑
i=0

Gmi (SN )∆iS
N < −ε∗(1−

N−1∑
i=0

1

2i+2
) < 0.

�

Theorem 6. GivenM = (S,H), assume each node in S is up-down. More-

over, S has the CT property for any F = {Fi = Gi − Hf
i }i≥0, Hf ∈ H,

Hf
i = 0 for all i ≥ nf , Gi ≡

∑
m≥1G

m
i , Gm ∈ H and the Gm satisfy the

properties in the statement of Lemma 3 for some real numbers V m. Then,
M and I satisfy the continuity from below property.

Proof. Let f ∈ E , Gm ∈ H, m ≥ 1, and V m ∈ R such that ΠVm,Gm
n ≥ 0, as

in (3.2), and

(7.3) f ≤
∞∑
m=1

lim inf
n→∞

ΠVm,Gm

n .

Without loss of generality, we may assume that V =
∑∞

m=1 V
m < ∞ then,

by Lemma 3, the functions Gi(S) ≡
∑∞

m=1G
m
i (S) are well defined for any

S ∈ S and i ≥ 0. It can be easily seen that they are non-anticipative. An
application of Fatou’s Lemma for nonnegative series gives
(7.4)

V +
∞∑
m=1

lim inf
n→∞

n−1∑
i=0

Hm
i (S)∆iS =

∞∑
m=1

lim inf
n→∞

(V m +
n−1∑
i=0

Hm
i (S)∆iS)

≤ lim inf
n→∞

∞∑
m=1

(V m +
n−1∑
i=0

Hm
i (S)∆iS) = V + lim inf

n→∞

n−1∑
i=0

Gi(S)∆iS.
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Letting f(S) = V f +
nf−1∑
i=0

Hf
i (S)∆iS, with Hf

i = 0 for all i ≥ nf ; we note

in passing that inequalities (7.3) and (7.4) imply

(7.5) V f +
nf−1∑
i=0

Hf
i (S) ≤ V + lim inf

n→∞

n−1∑
i=0

Gi(S)∆iS, ∀S.

For fixed ε > 0, applying the CT property to Fi ≡ Gi − Hf
i with n∗ = 0,

gives

lim inf
n→∞

n−1∑
i=0

Gi(S
ε)∆iS

ε ≤
nf−1∑
i=0

Hf
i (Sε)∆iS

ε + ε.

Then (7.5) implies V f ≤ V + ε and so I(f) = V f ≤ V =
∑∞

m=1 V
m. �

8. Existence of contrarian trajectories

Under general conditions, we develop two quite different approaches that
lead to the CT property for S and hence to the validity of the continuity
from below property for M and I (required in several key results of the
paper). The said approaches are described in Sections 8.1 and 8.2 below.

8.1. Complete set of trajectories.

Definition 13. S is called complete if for all {Sn}n≥1 ⊆ S satisfying

(8.1) ∀ n, Sni = Sn+1
i 0 ≤ i ≤ n,

there exists S ∈ S satisfying

(8.2) Si = Sni , 0 ≤ i ≤ n, ∀ n ≥ 1.

The following notation will be useful (even when S may not be complete),
given {Sn}n≥1 ⊆ S obeying (8.1) define

(8.3) S = {Si}i≥0 by Si ≡ Sii , we will use the notation S = lim
n→∞

Sn.

Section 8.1.1 shows how to complete a given space S.
Lemma 1 and completness provide existence of CT for any non-anticipative

sequence F = {Fi}.
Proposition 12. Assume S is locally 0-neutral and complete. Then S sat-
isfies the CT property for any sequence of no-anticipative functions F =
{Fi}i≥0.

Proof. The result follows from (5.4) and completeness. �

Corollary 4. Given M = (S,H), assume each node in S is up-down. If S
is complete, then M and I satisfy the continuity from below property.

Proof. The hypothesis of up-down nodes implies the property of locally
0-neutral for S. Therefore, Proposition 12 is applicable implying the CT
property for any non-anticipative sequence F = {Fi}; the result then follows
from Theorem 6. �
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8.1.1. Completeness in trajectory spaces. Here we develop the com-
pletion of trajectory spaces.

Lemma 4. Let {Sm} ⊆ S satisfy ( 8.1), then for any m:

(8.4) Sii = Smi , 0 ≤ i ≤ m,
and for S given by ( 8.3)

(8.5) Si = Smi , 0 ≤ i ≤ m.

Proof. For n = 0 both equations hold; notice that (8.4) follows directly by
induction. (8.5) follows from (8.3) and (8.4). �

Given a trajectory set S it is trivial to complete it by defining a new
trajectory set

S ≡ {S : S = {Si = Sii} where {Si} ⊆ S obeys (8.1)},
in particular S ⊆ S.

Proposition 13. S is complete.

Proof. Take {Sn}n≥0 ⊆ S satisfying

(8.6) S
n
i = S

n+1
i , 0 ≤ i ≤ n, ∀n ≥ 0.

Therefore, for each n ≥ 0, there exists {Gn,m}m≥0 ⊆ S satisfying

S
n

= lim
m→∞

Gn,m and Gn,mi = Gn,m+1
i 0 ≤ i ≤ m, ∀m ≥ 0.

From Lemma 4 and (8.6) it follows that

Gn+1,i
i = Gn+1,n

i = S
n+1
i = S

n
i = Gn,mi = Gn,ii , 0 ≤ i ≤ n,m ∀n,m ≥ 0.

Define Sn ≡ Gn,n. Notice that {Sn} ⊆ S because Gn,m ∈ S for any pair
n,m. Moreover {Sn} verifies (8.1), since ∀n ≥ 0

Sn+1
i = Gn+1,n+1

i = S
n+1
i = S

n
i = Gn,n+1

i = Gn,ni = Sni , 0 ≤ i ≤ n.

Define Si = Sii , so S = (Si) ∈ S. It remains to check if for all n ≥ 0:

Si = S
n
i , 0 ≤ i ≤ n. Indeed it is, because

Si = Gi,ii = S
i
i = S

n
i ,

where the last equality as in (8.4) again. �

The properties 0-neutral and up-down are defined through S(S,j), where

S = lim
n→∞

Sn, and just depend on the (j + 1)−coordinate. It is enough to

observe that for m > j,

lim
n→∞

Ŝn = Ŝ ∈ S(S,j) if and only if Ŝmj = Ŝj = Sj = Smj .

Thus

Ŝm ∈ S(Sm,j) and Ŝj+1 = Ŝmj+1.
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8.2. Modified I. Lemma 5 below establishes existence of CT under a
rather weak property on S, the result requires a nonnegative constraint
on the sequence F = {Fi} though. This extra requirement will force a re-
definition of I in order for us to be able to conclude continuity from below
for M and I.

Definition 14. We say that S satisfies a δ-property if Sn ≥ 0 for all n and
all S and there exists δ > 0 such that for all nodes (S, n):

(1) If Sn < δ, then there exists S′ ∈ S(S,n) and S′k = Sn ∀ k ≥ n,
(2) If Sn ≥ δ, then there exists S′ ∈ S(S,n) and S′n+1 − Sn ≤ −δ.

We assume Sn ≥ 0 for simplicity, the condition can be extended to Sn ≥ C
for a constant C.

Lemma 5. Assume that S is locally 0-neutral and satisfies a δ-property. Let
F = {Fi}i≥0 be a sequence of non-anticipative functions and assume there
exists a constant M satisfying Fi(S) ≥ 0 for all i ≥M . Then, for any ε > 0

and node (S∗, n∗) there exists Ŝ ∈ S(S∗,n∗) such that

(8.7) Fi(Ŝ) ∆iŜ <
ε

2i+1
, ∀i ≥ n∗.

It then follows that S has the CT property w.r.t. F .

Proof. Without loss of generality we can provide a proof for the node (S∗, 0)
(otherwise start the construction below at (S∗, n∗)). Using the local 0-
neutrality assumption as in Lemma 1, we conclude that there exists SM

satisfying

(8.8) Fi(S
M ) ∆iS

M <
ε

2i+1
, ∀i ≥ 0 ≤ i ≤M − 1.

If SMM < δ we take Ŝ ≡ S′ ∈ S(SM ,M) satisfying S′k = SMM ∀k ≥ M . Oth-

erwise, we proceed recursively on j ≥ 0, set SM,0 ≡ SM , if SM,j
M+j < δ

set Ŝ ≡ S′ ∈ S(SM,j ,M+j) satisfying S′k = SM,j
M+j ∀k ≥ M + j and termi-

nate the recursion; otherwise, choose SM,j+1 ∈ S ∈ S(SM,j ,M+j) satisfying

SM,j+1
M+j+1 − S

M,j
M+j ≤ −δ. Notice that if this recursion continues indefinitely

we obtain
p−1∑
j=0

(SM,j+1
M+j+1 − S

M,j
M+j) = SM,j+p

M+j+p − S
M
M ≤ −p δ

with gives a contradiction with Sn ≥ 0 for large p. Therefore, the recursion
terminates at some J ≥ 0. We remark that by construction

(8.9) FM+j(S
M,j+1) ∆M+jS

M,j ≤ 0 <
ε

2M+j+1
, 0 ≤ j < J.

The inequalities (8.8) and (8.9) and the fact that SM,J ∈ S(SM ,M) imply that

Ŝ ≡ SM,J satisfies (8.7). In turn, that inequality implies the CT property
of S w.r.t. F . �
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To make use of the above lemma we are required to change some of our
basic definitions.

Definition 15. For f ∈ P, define
(8.10)

I(f) = inf{
∞∑
m=1

V m : f ≤
∞∑
m=1

lim inf
n→∞

ΠVm,Hm

n , ΠVm,Hm

n ≥ 0, Hm
i ≥ 0 }.

Similarly, the continuity from below in Definition 5 is modified so that Hm
i ≥

0 is required as well. I is positive homogeneous, countable subadditive and
isotone. This means that all our constructions are valid by replacing I with

I, it remains to establish the validity of the modified continuity from below
property of M (and so for I).

Corollary 5. Given M = (S,H), assume each node of S is up-down, and
it satisfies a δ-property. Then, M and I satisfy the (modified) continuity
from below property.

Proof. To avoid repetition, we rely on definitions, notation and the general

argument from the proof of Theorem 6. In particular Fi = Gi −Hf
i , then if

we set M ≡ nf it follows that Fi = Gi ≥ 0 for all i ≥ M . Given ε > 0, by
an application of Lemma 5, it follows that there exists Sε ∈ S such that

lim inf
n→∞

n−1∑
i=0

Gi(S
ε)∆iS

ε ≤
nf−1∑
i=0

Hf
i (Sε)∆iS

ε + ε,

which concludes the proof as in Theorem 6. �

Notice that the corresponding space L1 will be, in general, smaller when

defined through I than when using I.
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Appendix A. Alternative integral operator

This section presents an alternative integral to theM-integral constructed
in Section 5. For reasons of space we do not present all the details and rely,
in some instances, on obvious extrapolations of the results from Section 5.
The main point that will come across is that the new integral allows to prove
the classical monotone convergence theorem but requires an extremely large
portfolio set H. Because of this reason we emphasized theM-integral in the
main body of the paper.

The section also presents properties of W which are used in Section 6 as
well. The next results present some basic properties of W .

Proposition 14. Fix f, g ∈ C.

(1) If f ≤ g then Wf ≤Wg.
(2) Wf ≤W |f |.
(3) Assume f + g and Wf +Wg are well defined, then

W [f + g] ≤Wf +Wg.

Proof. The first two statements follow directly from the definition of W .
Fix S ∈ S, it is enough to consider Wf(S) <∞,Wg(S) <∞. Let V,U ∈ R
and H,G ∈ H such that for any S ∈ S,

f(S) ≤ V + lim inf
n→∞

n−1∑
i=0

Hi(S) ∆iS, and g(S) ≤ U + lim inf
n→∞

n−1∑
i=0

Gi(S) ∆iS.

We need to consider the following cases,

I. If f(S), g(S) are finite, then lim inf
n→∞

n−1∑
i=0

Hi(S) ∆iS > −∞ and

lim inf
n→∞

n−1∑
i=0

Gi(S) ∆iS > −∞, consequently its sum is well defined and

(A.1) f(S) + g(S) ≤ V + U + lim inf
n→∞

n−1∑
i=0

[Hi(S) +Gi(S)] ∆iS.

II. If f(S) = ∞, then g(S) > −∞, lim inf
n→∞

n−1∑
i=0

Hi(S) ∆iS = ∞, and

lim inf
n→∞

n−1∑
i=0

Gi(S) ∆iS > −∞, so its sum is also well defined and (A.1) holds.

By symmetry, (A.1) also holds if g(S) =∞.
III. If f(S) = −∞, then g(S) < ∞ so f(S) + g(S) = −∞ and (A.1) holds.
Similar if g(S) = −∞.

From (A.1),
W [f+g](S) ≤ V +U , and consequently W [f+g](S) ≤Wf(S)+Wg(S). �

The next dual property is clear.
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Corollary 6. Fix f, g ∈ C. Assume f + g and Wf +Wg are well defined,
then

Wf +Wg ≤W [f + g].

The next lemma is based on Definition 12, given in Section 7.

Lemma 6. Given M = (S,H), assume S has the CT property for any
H ∈ H. Fix V ∈ R and let H ∈ H be such that

0 ≤ V + lim inf
n→∞

n−1∑
i=0

Hi(S) ∆iS, ∀S.

Then for any n ≥ 0,

0 ≤ V +

n−1∑
i=0

Hi(S) ∆iS, ∀S.

Proof. Assume there exist n∗ ≥ 0, S∗ ∈ S and ε > 0 such that

V +
n∗−1∑
i=0

Hi(S
∗) ∆iS

∗ < −ε.

From the CT assumption, there exists Ŝ ∈ S, an ε-contrarian trajectory
w.r.t. H, starting at (S∗, n∗), such that

lim inf
n→∞

n−1∑
i=n∗

Hi(Ŝ) ∆iŜ ≤ ε.

Therefore V + lim inf
n→∞

∑n−1
i=0 Hi(Ŝ) ∆iŜ < 0. �

Corollary 7. Given M = (S,H), assume S has the CT property for any
H ∈ H, then W0 = 0.

Proof. Clearly W0 ≤ 0, consider V ∈ R and H ∈ H such that 0 ≤ V +
lim infn→

∑n−1
i=0 Hi(S)∆iS for all S. Then Lemma 6 implies V ≥ 0. �

Proposition 15. Given M = (S,H), assume S has the CT property for
any H ∈ H and that each node of S is up-down. Then, W is countable
subadditive for non-negative functions.

Proof. Let gk ≥ 0, k ≥ 1, and g ≤
∞∑
k=1

gk. It is enough to assume

∞∑
k=1

W (gk) < ∞ (is non-negative), which, together with Corollary 7 and

Proposition 14 leads to 0 ≤ W (gk) < ∞. So for any k ≥ 1 there exist
Hk ∈ H such that

gk(S) ≤W (gk) + εk + lim inf
n→∞

n−1∑
i=0

Hk
i (S) ∆iS, ∀S,
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for given ε > 0 and εk > 0 with
∑
εk = ε. By Lemma 6, it follows that

W (gk) + εk +
n−1∑
i=0

Hk
i (S) ∆iS ≥ 0 ∀S.

Thus, Lemma 3 is applicable and so Hi =
∞∑
k=1

Hk
i is well defined and H =

{Hi}i≥0 belongs to H. Then by Fatou’s lemma for series

g(S) ≤
∞∑
k=1

W (gk) + ε+ lim inf
n→∞

n−1∑
i=0

Hi(S)∆iS, ∀S.

Consequently W (g) ≤
∑∞

k=1W (gk). �

Proposition 16. Assume W0 = 0 and let f ∈ E, then

Wf = V f = Wf.

Proof. We can write f(S) = V f +
∑nf−1

i=0 Hf
i (S)∆iS ∀S ∈ S, with V f ∈ R

and Hf ∈ H (Hf
i ≡ 0 for i ≥ nf ).

It is clear that W (f) ≤ V f . Consider V ∈ R and H ∈ H such that

f(S) ≤ V + lim inf
n→∞

n−1∑
i=0

Hi(S) ∆iS, ∀S ∈ S.

Then,

0 ≤ V − V f + lim inf
n→∞

n−1∑
i=0

Hi(S̃) ∆iS̃ −
nf−1∑
i=0

Hf
i (S)∆iS

≤ V − V f lim inf
n→∞

n−1∑
i=0

[Hi(S)−Hf
i (S)]∆iS.

So 0 = W0 ≤ V − V f , from where V f ≤ Wf . Finally Wf = −W [−f ] =
−(−V f ) = Wf . �

Proposition 17. Fix f ∈ C such that f > −∞. Then

(A.2) |Wf | ≤W |f |.

Proof. Recalling item (2) of Proposition 14, we just need to prove that
−W |f | ≤ Wf . Then it is enough to assume that W |f | < ∞, which leads
to Wf < ∞. Consequently Wf + W |f | is well defined and, by hypothesis
f + |f |, is well defined as well. Thus Proposition 14 item (3) is applicable,
and since 0 ≤ f + |f | it follows, using Proposition 7, that

0 = W0 ≤W [f + |f |] ≤Wf +W |f |.

�
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Theorem 7. Consider f, g ∈ C satisfying f, g > −∞ and Wf −Wg is well
defined. Assume W0 = 0, then

(A.3) |Wf −Wg| ≤W |f − g|.

Proof. We may assume W |f −g| <∞. Using our hypothesis, we can check
that:

(A.4) f(S) ≤ g(S) + |(f − g)(S)|, ∀ S,
where we have used our convention (f − g)(S) = 0 for the case g(S) =
f(S) = ∞. The sum in the right hand side in (A.4) is well defined for all
S. Notice that W |f − g| ≥ 0 follows from W0 = 0 and Proposition 14, item
(1). Therefore 0 ≤ W |f − g| <∞ and Wg +W |f − g| is well defined, thus
by Proposition 14 item (3)

(A.5) Wf ≤Wg +W |f − g|.
If both Wf and Wg are finite, it follows that Wf−Wg ≤W |f−g|. If Wf =
∞, by hypothesis Wg ∈ [−∞,∞) and so we contradict (A.5). If Wf = −∞,
by hypothesis Wg ∈ (−∞,∞] so Wf −Wg = −∞ ≤ W |f − g|. We have
then established Wf − Wg ≤ W |f − g|. The other required inequality:
Wg −Wf ≤ W |f − g| follows by symmetry given that our hypothesis are
symmetric under the swap of f and g. �

A.1. Alternative norm and integral. Here we introduce a new norm
and a related integral, we do so by heavily relying on the operator W intro-
duced in Definition 10. Define

||f ||′ ≡W |f | where f ∈ C.
The countable subadditivity property for nonnegative functions of W im-

plies the same property for || ||′ and so, under the required conditions for the
validity of Proposition 15, allows to establish the validity of the statements
in Proposition 2 but now replacing || || by || ||′. In the present section the
notion of a.e. refers to the one derived from || ||′.

We can then proceed as we have done with the construction of the M-
integral by defining F ′ ≡ {f ∈ C : ||f ||′ < ∞}, which results a completed
normed space, and E ′′ ≡ {f ∈ E : ||f ||′ < ∞} = E ∩ F ′ and define L1 to be
the || ||′-closure of E ′′ on F ′. For completeness we state the most important
results.

The following are the analogue of the generalized Beppo-Levi result in
Proposition 5 item (2), and Theorem 3.

Proposition 18. Given M = (S,H), assume S has the CT property for
any H ∈ H and each node of S is up-down. Let {fn} ⊆ F ′ such that∑
n≥1
‖fn‖′ < ∞. Then the limit

∞∑
n≥1

fn ≡ limm→∞
m∑
n≥1

fn exists a.e. and in

the norm || ||′ and
∞∑
n≥1

fn ∈ F ’.
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Theorem 8. Given M = (S,H), assume S has the CT property for any
H ∈ H and each node of S is up-down. Then (F ′, || ||′) is complete, and so
L1 is.

From Propositions 16 and 17 follows that

(A.6) |I(f)| ≤ ||f ||′, ∀f ∈ E .

Inequality (A.6) allows to define
∫ ′
f to be the continuous linear extension

of I from E ′′ to L1.
The classical Beppo Levi theorem holds for this integral as well.

Proposition 19. Given M = (S,H) assume S has the CT property for
any H ∈ H, and each node of S is up-down. Let fn ∈ L1, n ≥ 1, such

that
∑
n≥1
‖fn‖′ < ∞. Then

m∑
n≥1

fn converges a.e. and in the || ||′-norm to a

function in L1. Moreover, ∫ ′∑
n≥1

fn =
∑
n≥1

∫ ′
fn.

Under the assumption that for M = (S,H), S has the CT property for
any H ∈ H, and each node of S is up-down. Given that I = W on E by
Proposition 16, Theorem 7 allows us to conclude

(A.7)

∫ ′
f = Wf forall f ∈ L1, f > −∞,

therefore

(A.8)

∫ ′
f = ||f ||′ forall f ∈ L1, f ≥ 0.

Following [8], it is (A.8) that allows us to obtain the usual monotone con-
vergence theorem.

Theorem 9 (Monotone Convergence Theorem for
∫ ′
f). GivenM = (S,H)

such that S has the CT property for any H ∈ H, and each node of S is up-
down. Let {fn}n≥1 ⊆ L1, fn ↗ f ,

∫ ′
fn ≤ C = constant < ∞. Then:

||f − fn||′ → 0, f ∈ L1 and
∫ ′
f = limn→∞

∫ ′
fn.

Proof. Define for n ≥ 1, gn ≡ fn+1 − fn ≥ 0, the result then follows from
(A.8) and Proposition 19. �

Appendix B. Connections with martingales

To show a connection with discrete time martingale processes, we rely on
the following definitions; let X = {Xn} be a martingale on (Ω, P,B) and
filtration F = {Fn}, Fn ⊆ B with F0 trivial. We set s0 = X0(w); in this
section S is given by

S = {S = {Sn} ∈ S∞(s0) : ∃ w ∈ Ω, Sn ≡ Xn(w)}.
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Where we assumed, without loss of generality, that all the random variables
Xn are defined everywhere in Ω. Define α : Ω → S by α(w) = S where
S = {Sn = Xn(w)}.

We do not require any special property ofH but we assumeH = {Hi} ∈ H
satisfies Hi : Ri → R are bounded Borel-measurable functions. This will
provide the non-anticipative property. Proposition 20 below shows that
our definition of a null set does not introduce new sets of measure zero
for the case when the trajectories come from a martingale. Similarly sets
of probability one will be full sets, according to our definition, and so the
approach does not miss such events.

Proposition 20. Given (Ω, P,B), assume that Hi, with H ∈ H and Hi :
Ri → R are bounded Borel-measurable functions. We have the following
implications:

(B.1) if ||1A|| = 0 and α−1(A) ∈ B, then P (α−1(A)) = 0,

(B.2) if P (α−1(A)) = 1, then ||1A|| = 1.

Proof. To establish (B.1) notice that for a given ε > 0 there exists Hm ∈ H,
depending on ε and εm > 0 satisfying

∑
m ε

m ≤ ε and

εm +

n−1∑
i=0

Hm
i (X0(w), . . . , Xi(w)) (Xi+1(w)−Xi(w)) ≥ 0 ∀ w ∈ Ω ∀ n ≥ 0.

Moreover,

1α−1(A)(w) ≤ f(w) ≡

∑
m

[εm + lim inf
n→∞

n−1∑
i=0

Hm
i (X0(w), . . . , Xi(w)) (Xi+1(w)−Xi(w))]

Therefore

α−1(A) ⊆ B ≡ {f(w) ≥ 1}.
We remark that B ∈ B and

P (B) ≤
∫

f(w)dP (w) ≤ ε,

where we used: f ≥ 0 for the first inequality and Fatou’s lemma combined
with Monotone convergence theorem and the martingale property for the
second inequality. Therefore P (α−1(A)) = 0 (notice that if B were complete
it would imply the current assumption α−1(A) ∈ B).

To establish (B.2) consider

(B.3) 1A(S) ≤
∞∑
m=1

lim inf
n→∞

fmn (S), ∀ S,
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where fmn (S) = V m+
n−1∑
i=0

Hm
i (S) ∆iS ∀ S, with Hm ∈ H, V m ∈ R+, as well

as fmn ∈ E , fm ≥ 0, for m ≥ 1, n ≥ 0. (B.3) implies

(B.4) 1α−1(A)(w) ≤
∞∑
m=1

lim inf
n→∞

fmn (α(w)), ∀ w.

As α−1(A) ∈ B, taking expectations in both sides of (B.4) and applying
Fatou’s lemma combined with Monotone convergence theorem and the mar-

tingale property it follows that
∞∑
m=1

V m ≥ 1, therefore I(1A) ≥ 1 but we

know that I(1A) ≤ 1 as well so the result follows. �

Proposition 21. Given the market M = (S,H), H ∈ H, write Hi(w) ≡
Hi(X0(w), . . . , Xi(w)) and assume Hi : Ri → R are bounded Borel measur-
able. Furthermore, there exists CH(w) integrable satisfying:

(B.5) lim inf
n→∞

n−1∑
i=0

Hi(w)∆iX(w) ≥ CH(w) a.e.,

where ∆iX(w) ≡ (Xi+1(w) −Xi(w)). Let ε > 0, then there exists a set Aε
with P (Aε) > 0 and Sε ∈ α(Aε) is an ε-CT for H (as per Definition 12 and
paragraph prior to that definition).

Proof. Define Aε ≡ {w ∈ Ω : lim infn→∞
∑n−1

i=0 Hi(w) ∆iX(w) ≤ ε}. Notic-
ing that Fatou’s lemma is applicable because of (B.5), we obtain

0 = lim inf
n→∞

∫
Ω

n−1∑
i=0

Hi(w) ∆iX(w)dP (w) ≥

∫
Ω

lim inf
n→∞

n−1∑
i=0

Hi(w) ∆iX(w)dP (w) ≥
∫
Aε

CH(w)dP (w) + P (Acε)ε.

The obtained inequality implies a contradiction if P (Aε) = 0. �

Appendix C. Financial interpretation

We make some informal comments on a financial interpretation; call A ⊆
S an arbitrage set if there exists H ∈ H satisfying

(C.1) lim inf
n→∞

n−1∑
i=0

Hi(S)∆iS ≥ 1A(S) ∀ S,

according to our definitions, 1A is then a null function. The fact that (C.1)
holds can be considered to provide an arbitrage strategy, namely H, in a
market model of the type (S,H). Under the assumption of existence of
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contrarian trajectories in the limit, for each 1 > ε > 0, there exists such
contrarian trajectory S and (C.1) implies that S ∈ Ac. It then follows that

inf
S∈Ac

lim inf
n→∞

n−1∑
i=0

Hi(S)∆iS = 0.

This co-existence between contrarian trajectories and arbitrage opportuities
is present, under the label 0-neutrality in [6]. Under stronger, but still
natural hypothesis, one can eliminate such notion of arbitrage; one only
needs to require that for any givenH ∈ H there exists a contrarian trajectory
S satisfying

lim inf
n→∞

n−1∑
i=0

Hi(S)∆iS < 0,

this will eliminate the possibility that an arbitrage set exists.
Finally, our definition of null sets includes sets which are not necessarily

arbitrage sets but their characteristic functions can be superhedged with
arbitrarily small initial investments.

Appendix D. Upcrossing inequalities

In order to obtain the upcrossing inequality, first we introduce the formal
definition of upcrossing through a band. Let S a trajectory set, for any
n ≥ 1 and 0 < a < b real numbers, define for a generic S ∈ S:

τ0(S) = inf{i ≥ 0 : Si < a}
τ1(S) = inf{i ≥ τ0(S) : Si > b}

and continue recursively for k ≥ 1:

(D.1)
τ2k(S) = inf{i ≥ τ2k−1(S) : Si < a}

τ2k+1(S) = inf{i ≥ τ2k(S) : Si > b}.
and we use the convention inf ∅ =∞. Notice that, if τk’s are finite:

Sτ2k(S) < a and Sτ2k+1(S) > b then τ2k+1(S) ≥ τ2k(S) + 1.

The quantities τk are actually stopping times, according to the following
definition from [6].

Definition 16. Given a trajectory space S, a trajectory based stopping time
is a function ν : S → N such that if S, S′ ∈ S and Si = S′i for 0 ≤ i ≤ ν(S)
then ν(S′) = ν(S).

Lemma 7. The quantities τk defined by ( D.1) are trajectory based stopping
times.

Proof. Consider S, S′ ∈ S. If τ0(S) = 0, it means that s0 < a and con-
sequently τ0(S′) = 0. Assume now that Si = S′i for 0 ≤ i ≤ τ0(S) 6= 0,
then for 0 ≤ i < τ0(S), S′i = Si ≥ a and S′τ0(S) = Sτ0(S) < a, it means that

τ0(S′) = τ0(S). Let us finish the proof by induction on k.
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Assumed Si = S′i for 0 ≤ i ≤ τk+1(S), by inductive hypothesis τk(S
′) =

τk(S). Thus Si = S′i for τk(S
′) ≤ i ≤ τk+1(S). For i < τk+1(S), if k + 1 is

even, as for the case k = 0, S′i = Si ≥ a, and if k + 1 is odd S′i = Si ≤ b, it
follows that τk+1(S′) = τk+1(S). �

In the sequel, for simplicity, once S is clearly understood, we will write τk
instead of τk(S) for any k ≥ 0.

Definition 17. For n ≥ 1 and S ∈ S, denote by U
[a,b]
n (S) = Un(S) the

number of upcrossings of the sequence (S)ni=1 through the interval [a, b], it
is, Un(S) = 0, or

Un(S) = max{k ∈ N : τ2k−1 ≤ n}.
The total number of upcrossings of S will be denoted by

U [a,b](S) = U(S) = sup{n ≥ 1 : Un(S)}.

We are now going to introduce a portfolio that allows to count the upcross-
ings.

Lemma 8. For any i ≥ 0, define Di : S → R by

Di(S) = 1, if there exists k ≥ 0 such that τ2k(S) ≤ i < τ2k+1(S),

Di(S) = 0 otherwise.

It follows that D = (Di)i≥0 is non-anticipative.

Proof. Fix i ≥ 0 and let S, S′ ∈ S with Sj = S′j for 0 ≤ j ≤ i. Assume

there exists k ≥ 0, such that τ2k(S) ≤ i < τ2k+1(S), then τ2k(S
′) = τ2k(S).

Thus, it must be i < τ2k+1(S′), and Di(S
′) = Di(S) = 1. On the other

hand, if Di(S) = 0, also Di(S
′) = 0, if not, by symmetry, it would be a

contradiction. �

Proposition 22. For any S ∈ S and n ≥ 1 one of the following inequality
holds.

(D.2)

∑n−1
i=0 Di(S)∆iS ≥ (b− a)U

[a,b]
n (S).∑n−1

i=0 Di(S)∆iS ≥ (b− a)U
[a,b]
n (S) + (Sn − a) .

Therefore, since Si ≥ 0 for any i ≥ 0, then

(D.3) (b− a)Un,a,b(S) ≤ a+

n−1∑
i=0

Di(S)∆iS.

Proof. Fix S ∈ S and n ≥ 1. It is enough to consider τ0 < ∞. Observe
that if 0 ≤ i < τ0 then Di(S) = 0, so the non null terms in (D.2) starts at

i = τ0. If n < τ0, it follows that Un(S) = 0 and
∑n−1

i=0 Di(S)∆iS = 0 =

(b− a)U
[a,b]
n (S). We are going to split the rest of the proof in the following

to cases:
I) τ2k−1 ≤ n < τ2k, for some k ≥ 1.
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II) τ2k ≤ n < τ2k+1, for some k ≥ 0.

Observe that in both cases U
[a,b]
n (S) = k. For case I),

n−1∑
i=0

Di(S)∆iS =
k−1∑
i=0

(Sτ2i+1 − Sτ2i) > (b− a)U [a,b]
n (S).

For case II)

n−1∑
i=0

Di(S)∆iS = Sn − Sτ2k +

k−1∑
i=0

(Sτ2i+1 − Sτ2i) > Sn − a+ (b− a)U [a,b]
n (S).

�

D.1. Upcrossings: some technical matters. The purpose of this sec-
tion is to show that in markets M = (S,H), where the nodes Sn of any
trajectory could be negative, the convergence theorem 1 still holds.

For a real number K > 0 consider a market M = (S,H) such that
Si ≥ −K for any S ∈ S and i ≥ 0. All previous results in that section holds
up to equation (D.2), included. Equation (D.3) must be replaced by (D.4)
below. Since Si ≥ −K for any i ≥ 0, then

(D.4) (b− a)Un,a,b(S) ≤ a+K +
n−1∑
i=0

Di(S)∆iS.

The next lemma is implicit when proving convergence through the use of
upcrossings, we include its proof for completeness.

Lemma 9. If {an}n≥1 ⊆ R, with an ≥ 0 for n ≥ 1, does not converge in
R and upcrosses any interval only a finite number of times then, {an}n≥1

diverges to ∞.

Proof. Since {an}n≥1 does not converge in R,

∀r ∈ R ∃ εr > 0 : ∀n ≥ 1 ∃ n′ > n with |an′ − r| > εr.

Fix r > 0. Let n1 > 1 the first integer such that |an1−r| > εr. Once n1, ..., ni
were chosen, let ni+1 > ni the first integer such that |ani+1 − r| > εr.

Assume first that ani > r + εr for infinitely many integers i ≥ 1. In this
case there can only be a finite number of integers n ≥ n1 such that Sn < r.
Otherwise, there would be an infinite number of upcrosses through [r, r+εr].
Let nr be the largest such n then, an ≥ r for any n ≥ nr. We then conclude
that {an}n≥1 diverges to ∞.

On the other hand if there are infinitely many integers i ≥ 1 such that
ani < r − εr, there exists nr such that an ≤ r for any n ≥ nr. This means,
in this case, that {an} converges to 0, which contradicts the hypothesis. �
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