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Iterating the Cuntz—Nica—Pimsner
construction for compactly
aligned product systems

James Fletcher

ABSTRACT. We study how decompositions of a quasi-lattice ordered
group (G, P) relate to decompositions of the Nica—Toeplitz algebra and
Cuntz—Nica—Pimsner algebra of a compactly aligned product system X
over P. In particular, we are interested in the situation where (G, P)
may be realised as the semidirect product of quasi-lattice ordered groups.
Our results generalise Deaconu’s work on iterated Toeplitz and Cuntz—
Pimsner algebras — we show that the Nica—Toeplitz algebra and Cuntz—
Nica—Pimsner algebra of a compactly aligned product system over N*
may be realised as k-times iterated Toeplitz and Cuntz—Pimsner algebras

respectively.
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1. Introduction

In [15], Fowler introduced product systems of Hilbert bimodules as a
generalisation of the continuous product systems of Hilbert spaces studied
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by Arveson [2] and the discrete product systems studied by Dinh [9]. Loosely
speaking, a product system of Hilbert A-bimodules over a unital semigroup
P is a semigroup X = Upe p Xy, such that each X, is a Hilbert A-bimodule,
and the map x ®4 y — zy extends to an isomorphism from X, ®4 X, to
X, for each p,q € P\ {e}.

Motivated by the work of Nica [28] and Laca and Raeburn on Toeplitz
algebras associated to non-abelian groups [23], Fowler focused on product
systems over quasi-lattice ordered groups that satisfied a condition he called
compact alignment. Fowler then studied representations of such product
systems satisfying a constraint called Nica covariance. Results of [15] show
how to associate to each compactly aligned product system X a C*-algebra
NTx, generated by a universal Nica covariant representation, which we
call the Nica—Toeplitz algebra of X. In the same article, the faithful rep-
resentations of Nica—Toeplitz algebras are characterised [15, Theorem 7.2],
generalising both Laca and Raeburn’s uniqueness theorem for Toeplitz al-
gebras of quasi-lattice ordered groups [23, Theorem 3.7], and Fowler and
Raeburn’s uniqueness theorem for Toeplitz algebras of Hilbert bimodules
[17, Theorem 2.1]. Subsequently, it was shown in [13, Theorem 3.2], that
the hypothesis present in [15, Theorem 7.2] of each fibre being (left) nonde-
generate is not necessary.

Fowler also proposed a notion of Cuntz—Pimsner covariance for represen-
tations of a compactly aligned product system over a quasi-lattice ordered
group (G, P), and an associated universal C*-algebra, denoted by Ox, which
generalises the Cuntz—Pimsner algebra associated to a single Hilbert bimod-
ules [30, 20]. In general, Fowler’'s Cuntz—Pimsner algebra need not contain
a faithful copy of A, and even when it does, examples in the appendix of
[34] show that a representation of Ox that is faithful on the copy of A
need not be faithful on the generalised fixed point algebra O% (where v is
the canonical gauge coaction of G on Oy). Furthermore, in contrast with
the Cuntz—Pimsner algebras associated to Hilbert bimodules by both Pim-
sner [30] and Katsura [20], Fowler’'s Cuntz-Pimsner algebra need not be a
quotient of N'Tx.

To overcome these issues, Sims and Yeend defined a C*-algebra N Ox
generated by a universal Cuntz—Nica—Pimsner covariant representation of
X [38]. They showed that NOx coincides with Katsura’s Cuntz—Pimsner
algebra when P = N, and coincides with Fowler’s Ox whenever A acts
faithfully and compactly on each X, and each pair of elements in P has
a common upper bound. Furthermore, Sims and Yeend showed that their
Cuntz—Nica—Pimsner algebras generalise the Cuntz—Krieger algebras associ-
ated to finitely aligned higher-rank graphs [34], and the boundary quotients
of Toeplitz algebras associated to quasi-lattice ordered groups studied by
Crisp and Laca [6]. By viewing N'Ox as a co-universal algebra, Carlsen,
Larsen, Sims, and Vittadello later proved a gauge-invariant uniqueness the-
orem for Cuntz—Nica—Pimsner algebras [4].
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The object of this article is to study how the C*-algebras N7 x and N Ox
associated to a compactly aligned product system X over a quasi-lattice or-
dered group (G, P) decompose given a decomposition of (G, P). In partic-
ular, we show how a decomposition of the underlying quasi-lattice group as
a semidirect product of quasi-lattice ordered groups gives a decomposition
of the associated C*-algebras.

In [8], Deaconu investigated what he called iterated Toeplitz and Cuntz—
Pimsner algebras. Unfortunately, some of Deaconu’s proofs lack detail, and
it is not clear which of his various hypotheses are necessary to make the pro-
cedure work. Indeed, our original motivation for this article was to verify
and better understand the arguments in [8]. The results in this article show
that Deaconu’s iterative procedure can be extended to quasi-lattice ordered
groups that are more general than (Z2,N?). Applying this iterative proce-
dure to compactly aligned product systems over N¥ immediately enables us
to extend many of Katsura’s results from [20] to Nica-Toeplitz and Cuntz-
Nica—Pimsner algebras. In the future, it would be interesting to see if this
iterative procedure can be combined with the Pimsner—Voiculescu exact se-
quence [20, Theorem 8.6] to describe the K-theory of Cuntz—Nica—Pimsner
algebras associated to product systems over N* (we are particularly inter-
ested in the situation where the product system comes from a higher-rank
graph).

In Section 2 we review the necessary background material for product
systems and their associated C*-algebras. We begin by recapping the def-
initions of product systems, representations, compact alignment, and Nica
covariance. Next we present the definition of Cuntz—Pimsner covariance de-
veloped by Sims and Yeend [38] and show how it relates to Fowler’s notion
of Cuntz—Pimsner covariance in [15]. We also summarise the key results
from the literature that we will make use of throughout the article.

In Section 4 we examine the Nica—Toeplitz algebra associated to a com-
pactly aligned product system Z over a quasi-lattice ordered group of the
form (GxqH, Px4Q), where (G, P) and (H, Q) are themselves quasi-lattice
ordered groups. If we let X be the product system corresponding to the fibres
of Z associated to the semigroup P, then our main result (Theorem 4.17)
shows that there exists a product system YNT over (H,Q), whose coeffi-
cient algebra is the Nica—Toeplitz algebra of X, such that the Nica—Toeplitz
algebras of YM7 and Z coincide. This result generalises [8, Lemma 4.1].

In Section 5, we extend the results from Section 4 to Cuntz—Nica—Pimsner
algebras associated to product systems. Our main result (Theorem 5.20)
shows that there exists a product system YV over (H,Q), whose coefficient
algebra is NOx, such that the Cuntz—Nica—Pimsner algebras of YNO and
Z coincide. This result generalises the second part of [8, Lemma 4.2]. The
main difficulty in establishing Theorem 5.20 is finding sufficient conditions
to ensure that NOx acts faithfully on each fibre of YN, which makes
the Cuntz—Pimsner covariance relation in N Ovywvo tractable. We deal with
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this difficulty in Proposition 5.12. At the end of Section 5 we present three
examples that illustrate our procedure and demonstrate the utility of the
decompositions given by Theorem 4.17 and Theorem 5.20.

In Section 6 we finish by examining what we call relative Cuntz—Nica—
Pimsner algebras. In particular, we consider the Cuntz—Nica—Pimsner alge-
bra of the product system defined in Section 4, as well as the Nica—Toeplitz
algebra of the product system defined in Section 5. The main result of
Section 6 (Theorem 6.10) generalises the first part of [8, Lemma 4.2].

2. Preliminaries

The majority of background that we will require can be found in [25, 15,
38].

2.1. Hilbert bimodules. Let A be a C*-algebra. An inner-product A-
module is a complex vector space X equipped with a right action of A,
and a map (-,-)4 : X x X — A, (complex) linear in its second argument,
satisfying the following conditions:

(1) (z,y)a = <y,1‘>j‘4;
(H) <.I‘,y ' a)A = <$,y>ACL;
(iii) (x,x)a > 0in A; and
(iv) (z,x)4 =0 if and only if x = 0;

for any 2,y € X and a € A. The formula ||z| y = ||<x,33>AHZ/2 defines a
norm on X by [25, Proposition 1.1}, and we say that X is a Hilbert A-module
if X is complete with respect to this norm.

Let X be a Hilbert A-module. We say that a map T : X — X is ad-
jointable if there exists a map T : X — X such that (T'z,y)4 = (x,T*y)a
for each z,y € X. Adjointable operators are automatically linear and con-
tinuous, and have a unique adjoint. Equipping the collection of adjointable
operators on X, which we denote by £4(X), with the operator norm gives it
the structure of a C*-algebra. For each x,y € X there is an adjointable oper-
ator O, , defined by O, (2) := z-(y, 2)a. We call such operators generalised
rank one operators. The closed subspace K4 (X) :=span{©,, : =,y € X},
elements of which we call generalised compact operators, forms an essential
ideal of L4(X).

A Hilbert B-A-bimodule (also called a B-A C*-correspondence in the
literature) is a Hilbert A-module X equipped with a left action of B by
adjointable operators, i.e. there exists a homomorphism ¢ : B — L4(X).
To simplify notation, we will often write b -z for ¢(b)(x). When A = B,
we say that X is a Hilbert A-bimodule. Since each ¢(b) is by definition
adjointable, and so A-linear, we have that b- (z-a) = (b- z) - a for each
ac A be B, andr € X.

A particularly simple (and important) example occurs when X = A.
Letting A act on X by left and right multiplication, and equipping X with
the A-valued inner product (a, b) 4 := a*b, gives a Hilbert A-bimodule, which
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we denote by 4A4. The map O, — ab* extends to an isomorphism from
Ka(aAa) to A, whilst £4(4A4) is isomorphic to the multiplier algebra of
A, which we denote by M(A).

Every Hilbert A-module X is nondegenerate in the sense that the span
of the set {x-a:x € X,a € A} is dense in X. In particular, the Hewitt—
Cohen—Blanchard factorisation theorem [35, Proposition 2.31] says that for
cach x € X, there exists a unique 2’ € X such that x = 2/ - (¢/,2")4. In
general, a Hilbert A-bimodule need not be left nondegenerate in the sense
that X =span{a-z:z € X,a € A}.

We form the balanced tensor product of two Hilbert A-bimodules X and
Y as follows. We let X ® Y denote the algebraic tensor product of X
and Y as complex vector spaces, and write X ®4 Y for the quotient by
span{z-a@y—z@a-y:x € X,y €Y, a € A} (we write z ©®4 y for the
coset containing = ® y). The formula (x ©4 y,w ©4 2) 4 := (y, (z,w)4 - 2) 4,
determines a bounded A-valued sesquilinear form on X ©®4 Y. If we let
N be the subspace span{n € X ©®4 Y : (n,n)4 = 0}, then the formula
|z + N|| := infpen ||{(z +n, 2+ n>AH114/2 gives a norm on (X ©®4Y)/N. We
define the balanced tensor of X and Y, which we denote by X ®4 Y, to be
the completion of (X ®4 Y)/N with respect to this norm.

Given two Hilbert A-bimodules X and Y and an adjointable operator
S € LA(X), the formula x ®4 y — (Sz) ®4 y extends to a map on all of
X ®4 Y, which we denote by S ® 4 idy. It is straightforward to check that
S ®4 idy is adjointable, with adjoint S* ® 4 idy.

Given a Hilbert B—A-bimodule X, the theory of induced representations
enables us to convert representations of A into representations of B. If 7 :
A — B(H) is a nondegenerate representation of A on a Hilbert space H, then
[35, Proposition 2.66] gives a representation X-Ind§r : B — B(X ®4 H)
such that (X-Ind5n) (b)(z ®4 h) = (b-2) ®a h for each b € B, v € X, and
heH.

2.2. Product systems of Hilbert bimodules and quasi-lattice or-
dered groups. Let P be a semigroup with identity e, and A a C*-algebra.
A product system over P with coefficient algebra A is a semigroup X =
Llpep Xp such that:

(i) for each p € P, X, C X is a Hilbert A-bimodule;

(ii) X is equal to the Hilbert A-bimodule 4A4;

(iii) for each p,q € P\{e}, there exists a Hilbert A-bimodule isomorphism
Mgfq : X,®4X, = X, satisfying M;(q(l‘(@/;y) = xy for each x € X,
and y € Xg; and

(iv) multiplication in X by elements of X, = A implements the left and
right actions of A on each X,; that is za = = - a and ax = a - x for
eachp e P,a€ A, and z € X,

We write ¢, : A = L4(X,,) for the homomorphism that implements the
left action of A on X, i.e. ¢p(a)(x) = a-x = ax for each p € P, a € A, and
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x € X,,. Multiplication in X is associative since X is a semigroup. Hence,
dpg(a)(zy) = (¢p(a)z)y for all p,g € P,a € A, z € X,, and y € X,;. We
also write (-, )% for the A-valued inner-product on X,,.

By properties (ii) and (iv), for each p € P there exists A-linear inner-
product preserving maps Mgfe : X, ®4Xe =+ X, and Me{(p  Xe®aX, =+ X,
such that MX(z ®4a) =za =2 -a and MX (a ®4 ) = ax = a - x for cach
a € X, =Aand z € X,. Each Mgfe is surjective by the Hewitt—Cohen—
Blanchard factorisation theorem, and so an A-bimodule isomorphism. On
the other hand, the maps M 32, need not be surjective, since we do not require
that each X, is (left) nondegenerate.

For each p € P\ {e} and ¢ € P, we define a homomorphism ¢
La(Xp) = La(Xpg) by

pqg .
p -

P1(S) == MY, 0 (S ®4idx,) o (M)~

for each S € L4 (X,). Equivalently, (57 is characterised by the formula
B1(S)(zy) = (Sx)y for each S € L4 (X,), z € X,, y € X, Since X, ®4 X,
need not be isomorphic to X,, we cannot necessarily define a map from
L4 (Xe) to L4 (X,) using the above procedure. However, as K4 (X.) =
Ka(aAa) =2 A, we can define id : Ka (Xe) = L4 (X,) by td(a) == ¢y(a).
For notational purposes, we define ¢, : L4 (X;,) — L4 (X;) to be the zero
map whenever p,r € P and r # pq for all ¢ € P. It is also useful to know
what happens when we compose these homomorphisms: routine calculations
show that for any p,q,r € P, we have (" o [ = D7".

A quasi-lattice ordered group (G, P) consists of a group G and a sub-
semigroup P of G such that PN P~! = {e}, and with respect to the partial
order on G induced by p < ¢ < p~'q € P, any two elements p,q € G which
have a common upper bound in P have a least common upper bound in P.
It is straightforward to show that if two elements in G have a least common
upper bound in P, then this least common upper bound is unique. If it
exists, we write p V g for the least common upper bound of p,q € G. For
p,q € G, we write pV ¢ = oo if p and ¢ have no common upper bound in P,
and pV g < oo otherwise. We say that P is directed if p V ¢ < oo for every
p,q € P.

Let (G, P) be a quasi-lattice ordered group and X a product system
over P with coefficient algebra A. We say that X is compactly aligned
if YUY EUT) € Ka(Xpvq) whenever S € Ka(X,) and T € Ka(X,) for
some p,q € P with pV ¢ < co. It is important to note that this condition
does not imply that either &5%(S) or (T is compact.

2.3. Representations of compactly aligned product systems, Nica
covariance, and the Nica—Toeplitz algebra. Let (G, P) be a quasi-
lattice ordered group and X a compactly aligned product system over P
with coefficient algebra A. A representation of X in a C*-algebra B is a
map v : X — B satisfying the following relations:
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(T1) each ¢, := ¢|x, is a linear map, and v, is a homomorphism;
(T2) Yp(x)g(y) = Ypg(xy) for all p,qg € P and z € X,,, y € X,; and
(T3) ¥p(2)*Up(y) = Ye((z,y)}) for all p € P and 2,y € X,,.

Relations (T1) and (T3) show that a representation v is always norm-
decreasing, and isometric if and only ). is injective. Furthermore, by [31,
Proposition 8.11] there exists a homomorphism 1) : K4 (X,) — B for each
p € P, such that ) (0,,) = 1,(2)Y,(y)* for all 2,y € X,

A representation ¢ : X — B is said to be Nica covariant if, for any
p,q € Pand S € Ka(X,), T € Ka(Xy), we have

VD (FY(9)EUT)) ifpVg< oo
0 otherwise.

YO (S)p(T) = {

Making use of the Hewitt—Cohen—Blanchard factorisation theorem, it follows
that 1p(Xp)"q(Xe) S SPAT{Yp1(pvg) (Xp—1 (pve) Vg1 (ove) (X1 (pvg)) T i
pVq < oo,and is {0} otherwise.

Theorem 2.10 of [26] gives the existence of a C*-algebra N'Tx and a Nica
covariant representation ix : X — NTx, that are universal in the following
sense:

(i) the image of ix generates N7 x; and
(ii) given any other Nica covariant representation ¢ : X — B, there
exists a homomorphism v, : N'Tx — B such that 1, oix = .

We call NTx the Nica—Toeplitz algebra of X. Since ix generates N'Tx, it
follows that N'Tx = span {ix(z)ix(y)* : z,y € X}.

Theorem 3.2 of [13] characterises the faithful representations of Nica—
Toeplitz algebras. Suppose that (G, P) is a quasi-lattice ordered group with
GG amenable, X is a compactly aligned product system over P with coefficient
algebra A, and ¢ : X — B(H) is a Nica covariant representation of X on a
Hilbert space H. Then the induced homomorphism 1, : NTx — B(H) is
faithful provided for any finite set K C P\ {e}, the representation

A>a— e(a) H (idy — projm) € B(H)
teK
is faithful.

Given a compactly aligned product system X, we let Fx := ®p€ Xy
denote the space of sequences (zp)p,cp such that x, € X, for all p € P
and »  p(zp, Tp)a converges in A. Proposition 1.1 of [25] shows that there
exists an A-valued inner product on Fx such that ((z,)pep, (Yp)pepr) s =
> pepr(Tp,Yp)a, and that Fx is complete with respect to the induced norm.
Letting A act pointwise from the left and right gives Fx the structure of
a Hilbert A-bimodule, which we call the Fock space of X. Lemma 5.3 of
[15] then shows that there exists an isometric Nica covariant representation
X = La(Fx) such that I,(x)(yg)gep = (2Yq),ep for each p € P, z € X,
and (yq)qep € Fx. We call [ the Fock representation of X.
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2.4. Cuntz—Pimsner covariance and the Cuntz—Nica—Pimsner al-
gebra. The notion of Cuntz—Pimsner covariance for representations of com-
pactly aligned product systems introduced by Sims and Yeend in [38] is
somewhat complicated and requires some preliminary definitions to formu-
late. We set I. := A and I, := [, <, ker(¢q) for each p € P\ {e}. For
each p € P we define the Hilbert A-bimodule

X, =P Xy L1y
q<p
where X - Ij-1, = {r-a:2xeXyac Ip71q}. For each p € P, we write
Op: A= Ly (Xp) for the homomorphism defined by

(qu(a)(w))q = ¢q(a) (xq)

foreacha € A, x € )Nip, and q < p.
Whilst the collection of bimodules {Xp i p € P} resembles a product

system, we warn that in general X, ® 4 X, need not be isomorphic to X,,.
However, for each p,q € P with p # e, we still have a homomorphism
of : L4(X,) = L4(X,) characterised by the formula

(T (9)(2)), = 1 (S)(ar)
for each = € )Nip and r < ¢g. Additionally, after identifying KC4 (Xe) with A,
we define 7d : K4 (Xe) — L4(X4) to be ¢q for each g € P.

To formulate the Cuntz—Pimsner covariance condition, we require another
definition. Given a quasi-lattice ordered group (G, P), we say that predicate
statement P(s) (where s € P) is true for large s if, given any p € P, there
exists ¢ > p, such that P(s) is true whenever s > q.

Finally, we are ready to present the definition of Cuntz—Pimsner covari-
ance originally formulated by Sims and Yeend [38, Definition 3.9]. We give

a definition only in the situation that all of the homomorphisms ¢, : A —

LA (Xp) are injective. We say that a representation ¢ : X — B is Cuntz—
Pimsner covariant if, for any finite set F© C P and any choice of compact
operators {T), € K4 (X,) : p € F'}, we have that

ZT;(TP) =0¢€ La(X,) forlarges = Z Y P)(T,) = 0.

peF peEF
We say that a representation is Cuntz—Nica—Pimsner covariant if it is both
Nica covariant and Cuntz—Pimsner covariant.

In Proposition 3.12 of [38] it is shown that for each compactly aligned
product system X (with each (Aﬁlp A — Lg (ip) injective), there exists a
C*-algebra N'Ox, which we call the Cuntz—Nica—Pimsner algebra of X, and
a Cuntz—Nica—Pimsner covariant representation jx : X — NOx, that are
universal in the following sense

(i) NOx is generated by the image of jx;
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(ii) if ¢ : X — B is any other Cuntz—Nica-Pimsner covariant represen-
tation of X, then there exists a homomorphism IIy) : NOx — B
such that Iy o jx = 1.
It follows that A'Ox is a quotient of N'Tx. We write ¢x : NTx — NOx
for the quotient homomorphism, which is characterised by gx o ix = jx.
In [38, Theorem 4.1], it is shown that the universal Cuntz—Nica—Pimsner
covariant representation jx is always isometric.
Lemma 3.15 of [38] shows that the requirement that each of the homo-
morphisms gp is injective is automatic, provided either
(i) each ¢, is injective; or
(ii) every nonempty bounded subset of P has a maximal element in the
following sense:

If S C P is nonempty and there exists ¢ € P such that p < ¢
(2.1) for all p € S, then there exists p € S such that p £ p’ for all

P e S\ {p}

In the situation where each ¢, is injective, the Hilbert A-bimodules f(p
and X, are isomorphic. Moreover, this isomorphism intertwines ¢, and

5})7 as well as ¢, and ¢;. In this situation a representation ¢ : X —
B is Cuntz—Pimsner covariant provided, whenever F' C P is finite and

{T, € Ka(Xp) :p € F}is such that 3 pip(T)) =0 € L4 (X,) for large s,

we have 3 YP)(T,) = 0.

In [15], Fowler defined a representation 1 of a product system X over a
semigroup P (with each ¢, injective) to be Cuntz-Pimsner covariant if, for
every p € P, the Toeplitz representation (¢, %) of the Hilbert A-bimodule
X, is Cuntz-Pimsner covariant (in the sense that for each a € ¢, (K4(X,)),
we have () (¢,(a)) = be(a)). Proposition 5.1 of [38] shows the relationship
between Fowler’s notion of Cuntz—Pimsner covariance and that defined by
Sims and Yeend. If X is a compactly aligned product system with each ¢,
injective, P is directed, and i : X — B is a representation, then

(i) If ¢ is Cuntz—Pimsner covariant in the sense of [38, Definition 3.9],
then (1, 1) (6p(a)) = e (a) for a € 6,1 (K(X,)) and p € P;
(ii) Tf ¢,(A) C Ka(X,) and P (¢,(a)) = be(a) for each a € A, p € P,
then v is Cuntz—Pimsner covariant in the sense of [38, Definition 3.9].
For any discrete group G, the universal property of the group C*-algebra
C*(G) induces a homomorphism dg : C*(G) — C*(G) ® C*(G) such that
dclic(g)) = ig(g) ®ig(g) for each g € G (we use an unadorned & to denote
the minimal tensor product of C*-algebras). Recall that a (full) coaction of
G on a C*-algebra A, is an injective homomorphism ¢ : A — A ® C*(G),
that satisfies the coaction identity (6 @ idg+(g)) 00 = (ida ® dg) o, and is
nondegenerate in the sense that A @ C*(G) = span{d(A4) (14 ® C*(G))}
(where 1 (4 is the identity of the multiplier algebra of A). For those readers
interested in learning more about coactions, we suggest [10, Appendix A].
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As noted in [4, Remark 4.5] there exists a canonical gauge coaction vx :
NOx — NOx ® C*(G) such that vx(jx,(z)) = jx,(z) ® ig(p) for each
p € P and x € X,

Carlsen, Larsen, Sims, and Vittadello proved the following gauge-invariant
uniqueness theorem for Cuntz—Nica—Pimsner algebras [4, Corollary 4.12]. If
(G, P) is a quasi-lattice ordered group with G amenable, and X is a com-
pactly aligned product system over P with either each ¢, injective, or each

¢p injective and P directed, then a surjective homomorphism ¢ : NOx — B
is injective if and only if

(i) @ljx(a) is injective; and
(ii) there exists a coaction f : B — B ® C*(G) such that o ¢ =
(qﬁ X ldC*(G)) orx.

3. Combining quasi-lattice ordered groups

The next result shows that the direct product of quasi-lattice ordered
groups is quasi-lattice ordered. Furthermore, it provides sufficient conditions
for a semidirect product of quasi-lattice ordered groups to be quasi-lattice
ordered.

Lemma 3.1. Let (G,P) and (H,Q) be quasi-lattice ordered groups. If
a: H — Aut(G) is a group homomorphism with ag(P) C P, then the
semidirect product (G X4 H, P Xo Q) is a quasi-lattice ordered group.

Proof. Since P and @ are subsemigroups of G and H respectively, and
ag(P) C P, we see that P x, @ is a subsemigroup of G x, H.

Next, we show that (P x4 Q) N (P %o Q)' = {egu,u} If (g,h) €
(P xo Q)N (P xq Q)7L then (g,h) ™1 = (ap-1(g71),ht) € P x4 Q. Thus,
h,h~! € Q, which forces h = ey since (H, Q) is quasi-lattice ordered. Hence,
g,ap-1(g71) = g~ € P, which forces g = eg since (G, P) is also quasi-lattice
ordered. Therefore, (g,h) = (eq,en) = eGu H-

Finally, we show that the order on the semidirect product (GxoH, Px,Q)
is the product order, i.e. (g,h) < (¢',h') in (G x4 H, P %, Q) if and only
if g <g in (G,P)and h < h' in (H,Q). Let g, € G and h,h € H.
Suppose that (g,h) < (¢/, 1) in (G %o H, P x4 Q). Then (g,h)" (¢, 1) =
(ap-1(971g"),h"'H) € P x4 Q. Therefore, h™'h' € Q (so that h < )
and g7 l¢' = ap(ay-1(971¢")) € ag(P) C P (so that g < ¢'). Conversely,
if g < g and h < I/, then h™'W € Q and a),-1(97'¢) € ay(P) C P,
and so (g,h)"1(¢',h') € P x4 Q. Thus, (g,h) < (¢',h'). We conclude that
(GxoH, Px,Q) is a quasi-lattice ordered group and for any (g, h), (¢',h') €
P x, Q, we have

(gVg,hvh) ifgvg <ocoand hVh <o
o0 otherwise.

(g,h)\/(g',h') = { Ul
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Whilst the conditions in Lemma 3.1 are sufficient for a semidirect product
of quasi-lattice ordered groups to be quasi-lattice ordered, Proposition 2.2
of [24] shows that they are not necessary.

4. Iterating the Nica—Toeplitz construction

In this section we investigate product systems over semidirect products
of quasi-lattice ordered groups of the sort appearing in Lemma 3.1. More
precisely, given a product system Z (with coefficient algebra A) over a quasi-
lattice ordered group of the form (G %, H, P X, @), with (G, P) and (H, Q)
quasi-lattice ordered groups and ay(P) C P, we will show that there exists
a product system X (also with coefficient algebra A) over (G, P) sitting
inside Z, and a product system YN over (H,Q) with coefficient algebra
NTx, such that the Nica—Toeplitz algebras of Z and YNT are isomorphic.
In passing from the product system Z to the product system YNT | we
have in a sense decreased the size of the product system at the expense of
increasing the size of the coefficient algebra, without losing any C*-algebraic
information in the process.

To help readers keep track of everything that is going on, we first provide a
brief overview of the key results that we will prove and a pair of commutative
diagrams in Figures 1 and 2 that summarise the various spaces, and the maps
between them, that we are going to be working with. We hope that if readers
happen to lose their way in Sections 4.1 and 4.2 they will be able to return
to this overview and the two diagrams for assistance.

(1) In Proposition 4.1 we define a product system X C Z over (G, P),
and show that the inclusion of X in Z induces a homomorphism gb/)\(/T
from N'Tx to N'Tz such that ¢/)¥T oix = i7.

(2) In Proposition 4.2 we argue that the homomorphism is injective.

(3) In Proposition 4.3, we use gzﬁé\(m— to construct a collection {Y{I\/T 1q €
Q} of Hilbert N'Tx-modules inside N7 z.

(4) In Proposition 4.6, we use qﬁj)\{T to show that each Yé\/ T carries a left
action of N'Tx by adjointable operators.

(5) In Propositions 4.7 and 4.12, we show that YN7 := Uyeo Yé\”—
is a compactly aligned product system over (H, Q) with coefficient
algebra N'Tx.

Once we have the product system YV T, we prove that N Tynr ZNTz.

(6) In Proposition 4.13 we use the universal Nica covariant represen-
tations of Z and YN7 to construct a representation ¢N7 of Z in
NTyNT.

(7) In Proposition 4.15, we prove that cpN T is Nica covariant, and hence
induces a homomorphism QN7 : N'Tz — N'Tyar such that QN7 o
Z'Z(p’q) == ZY;'IVT

(8) In Proposition 4.16 we show that the inclusion of YN7 in N'Tz is a
Nica covariant representation, and hence induces a homomorphism

NT
X
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QNT - NTynr — NTz such that QN7 o iy is the inclusion of
YNT in NTg.

(9) In Theorem 4.17 we prove that QV7 and QN7 are mutually inverse
isomorphisms.

In summary, we will show that for every p € P and g € @), the maps in the
interior parts of Figures 1 and 2 exist and make the diagrams commutative
(the exterior parts of the diagrams will be used in the setup for Section 5).

Q/NO

9z

NO
Yq

FIGURE 1. The homomorphisms QV7, QN7 and QNO, QNO

4.1. Constructing the product systems.

Standing Hypotheses. We will assume that (G, P) and (H, Q) are quasi-
lattice ordered groups and « : H — Aut(G) is a homomorphism such that
ag(P) € P. By Lemma 3.1, (G x4 H,P %, Q) is quasi-lattice ordered.
Also, Z will be a compactly aligned product system over (G X, H, P X4 Q)
with coefficient algebra A.
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IZ(pepr)

"Z(pepr)

X, ——— N7y — L NOg

NT
5

NOx =YNO
F1GURE 2. The homomorphisms ¢§\(/T and ¢§\£O

Since G = G X4 {ey} is a subgroup of G x, H and P = P x, {ey}
is a subsemigroup of P X, ), we obtain a product system over the quasi-
lattice ordered group (G, P) by considering just those fibres of Z coming
from P x, {ex}.

Proposition 4.1. For each p € P, let X}, :=Z, ). Then X := |—|peP X,
is a compactly aligned product system over (G, P) with coefficient algebra A.
The inclusion of X in Z induces a homomorphism ¢§'1 : NTx — NTz
such that (;S/)\(/T oix = 1ig.

Proof. For p € P, define gbé\/T : X, - NTz by %}VT =

Zz(p,eH) . We
w/\/T

claim that is a Nica covariant representation of X in N7 z. Since
iz is a representation, we know that each wé\/ T is linear and @bé\gT is a
homomorphism. If x € X, and z € X, then

BT @A (2) = i,
For z,z € X,,, we have
NT (N NT (L) _ s *4
wp () wp (2) = ZZ(p,eH)(x) ZZ(PveH)(z)
- iz(ec,eH) (<QZ, Z>(Ap76H)) = wé\éT(@c, Z>€1)

Thus, 1/JN T is a representation. It remains to check that sz T is Nica co-
variant. Fix § € K4(X,,) and T € K4(X,). Since wNT(t) = i(z(t’eH)) for any

vy B2 () =iz, (22) = U (@2).
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t € P, we see that

LZJNT(p)(S)d)NT(T) (T) = i(z(p’eH))(S)i(Z(T’eH))(T)-
If (p,er) V(r,ey) = oo (which is precisely when pVr = o0), Nica covariance
of iz tells us that wNT(p)(S)z/JNT(T) (T) = 0. On the other hand, when
pVr < oo, we have (p,ep) V (r,eg) = (pVr,en) < oo, and so

¢NT(p)(S)1/JNT(T) (T) = i(z(pVT,eH)) (L(pVT’,eH)(S)L(p\/hEH)(T))

(pen) (rem)

_ Q]Z)NT(PVT) (Lg\/'r (S) Ler (T)) )

Thus, ¢N T is Nica covariant, and there exists a homomorphism gzﬁé\(/T :
NTx — NTgz such that ¢§7 (ix(x)) = N7 (z) = ig(x) for z € X. O

When G is amenable the homomorphism gzﬁj)\(/T is injective.

Proposition 4.2. Suppose that G is an amenable group. Then the homo-
morphism ¢y : NTx — NTz is injective.

Proof. Fix a faithful nondegenerate representation p : A — B(H) of A. Let
li : NTz — L4(Fz) denote the Fock representation of NTz. To show that
<Z>/)\(/T is faithful, it suffices to show that the representation

Fz-Ind\T%p = (Lo o} 7) @aidy : NTx — B(Fz 04 H)

is faithful. Denote by ¢ := (l* o qbé\(/T ) zx) ®4 idy the Nica covariant rep-
resentation of X that induces the homomorphism (l* ) qﬁj)\(”_) ®4 idg. Our
aim is to prove that
(i) for each p € P\{ec}, A®aH = Xep, @aH C (0p(X,)(Fz @4 H))*E;
(ii) A acts faithfully (via ge,) on A ®4 H.
To see why this suffices, suppose that (i) and (ii) hold. For each t € P\ {eg}

let P?:= projm. Then the representation

A3 ars gegla) [[ (1P € B(FzoaH)
teK
is faithful for each finite subset K C P\ {eg}. Since G is amenable, [13,
Theorem 3.2] implies that (l* o qﬁé\(m-) ® 4 1dyy is faithful as required. We now
prove (i) and (ii).
If p € P, then

X)) (Fz@aH)= B Zpeysn @4t
(s,t)EPxaQ

= @ Z(s,t) ®A H
(s,t)EPXx0Q:p<s

Now suppose that p € P\ {eg}. We suppose that p < eg and derive a
contradiction. Then p~! = p~leqg € P, which forces p = eg, since PNP~! =
{ec}. Thus, p £ eg. Hence for any a € Xe, = A, z € Z(,y) with p < s,
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and h,g € H, since A = X, and Z, ) are orthogonal in Fx, we see that
(a®@ah,z®4g)c = (h,(a,z)a-g)c = 0. Since inner-products are linear and
continuous, we conclude that A®4H C (0,(X,)(Fz @4 H))", which proves
(1).

It remains to show that A acts faithfully on A ® 4 H. This follows from
[35, Corollary 2.74] since A acts faithfully on itself and the representation p
is faithful. O

Using the injective homomorphism gbj)\(/T : NTx — NTz, we can con-
struct a Hilbert N7 x-module Y{I\[ T for each q € Q.

Proposition 4.3. Suppose that G is an amenable group so that the ho-
momorphism qb/)\{/T is injective by Proposition 4.2. For each q € Q \ {ex},
define

Yéw— D= span{iz(ecyq)(:c) N7 () :x e Zicig)) VENTx} CNTg

and let Yé\g— = NTx NTx)pry Then for g € Q\ {en}, Y{I\/T carries a
right action of NTx given by y - b := yqb/)\{r(b) for each y € Yé\m— and
b € NTx. There is an NTx-valued inner-product on Y{JVT such that
<Z>/)\([T(<y, w>7\/TX) = y*w . With this structure, each Y{JVT is a Hilbert N'T x -
module.

Proof. Since multiplication in AN'T 7 is continuous, it is clear that the right
action of N'Tx on Y{]\/ T is well-defined. Next, we check that for y, w € Y(/]V T

we have y*w € qb/)\(fT(/\/' T x). Since QSQ(/T is a homomorphism, it suffices to
check the case where y = iz( . )($)¢/>\(/T(b) and w = iZ(eG q)(z)gbé\(/T(c) for

ey

some z,z € Z and b,c € NTx. Since iz is a representation, we see

that

€G 7Q) ’

s, A NT (py*,s * NT
v =T iz, @iz, (KT ()
= X7 (0)iz,, .\ (@257 XT (o)
= o\ (vix,, ((2,2){%?)c) € o} (N'Tx).
Thus, since (]5/}\([T is injective, we may define (-, '>31\fo : ngT xYévT — NTx
by (y, w) {1y = (qu)\(/T)_l (y*w) for each y,w € Y7 Clearly (., ThTo 18
complex linear in its second argument. If y, w € Y{]\/ T and b € N'Tx, then
1, -1, .
(ow-b)r = (X)) WwsX (1) = (X)) (yw)b= (y,w){ 7 b,
and
-1, -1 £ \k *
(o) = (X)) () = (6X7) " (w'y)” = (w.y)hery) "

Also, if y € Y7, then

) hery, = (GX7) 7 (y7y) > 0
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since y*y > 0 in N'Tz. Moreover, if (y,y)}-r, = 0, then y*y = 0 because
¢§\(/T is injective, which forces y = 0. Lastly, we show that the norm induced
by (-, ‘>7\/Tx is just the norm on N7z restricted to YfIvT. Since gbé\(m' is
isometric, we see that for any y € Yév T,

H?JH%(QNT =W ) 8 v = H(qﬁ?cﬁ)fl(y*y)“/\/n

2
= 1y yllar, = lYllaT, -

As Yév T is closed in N'Tz, we see that Yé\/ T is complete with respect to
the norm induced by (-, '>7\/Tx‘ We conclude that Yév T is a Hilbert N'Tx-
module. O

Remark 4.4. Since ay(P) C P, we have that ay(P) = P for each ¢ € Q.
Hence, for any ¢ € Q \ {en}, it can be shown that

Yy =spanliz, , (Zo)iz,.,) (Zoem) 97 € P}
Furthermore,

Y?I[,T = ¢J)\([T NTx) = SPW{Z.Z(MH) (Z(p,eH))iZ(T,eH) (Z(T,eH))* “pyr € P}‘

Remark 4.5. The module Yé\/T contains iz(ec’q)(Z(qu)): if 2 € Zeg q)

and 2" € Zc, 4) is chosen so that z = 2’ - (¢, z’>f§c’q>, then
. . Ny 1 (ec.q)
(g0 = 2. )12 (25 2047T)

iz o AT (i (15 € 2T

We now show that Yé\[ T also carries a left action of N'Tx by adjointable
operators for each g € @ \ {egy}, and hence is a Hilbert AT x-bimodule.

Proposition 4.6. Suppose that G is an amenable group so that the Hilbert
NTx-module Y{I\[T of Proposition 4.3 is defined. For each q € Q \ {en},

there exists a homomorphism <I>{ZVT : NTx — Ly (Y(/IVT) such that
@{Z\/T(b)(y) = X7 (b)y for each b€ NTx and y € YéVT.

Proof. Firstly, we check that ¢§7 (N7Tx) Y7 C Y27, Since the semidi-
rect product (G x H, P X, Q) has the product order, for any s,t € P we
have

(s,em) (ten) ™ ((tem) V (e, q)) = (e, q) (ag-1(s),en)

and

(e, @)™ ((trem) V (e, q)) = (ag-1(1)em) .
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Thus, for any z € X, y € Xy, 2 € Z and b € N'Tx, using the Nica

covariance of iz, we have

erq)7

o7 (ix. (2)ix, (v) ) iz, , ()X (V)

. . X NT
= ZZ( )(x)ZZ(t’eH)(y) ZZ(equ)(Z)fﬁx (0)

s,epr
€ W{iz(em) (Zieg.a))PX (ixaq_1 o (Key 1) 1%, 0 (Ko, (t))*b> }
Since

{ix,(Xoix,(Xe) :s,t € P} and iz, (Zieg.)dX NTx)}

span dense subspaces of N'Tx and Y{Iv T respectively, whilst Q%\(/T is a ho-
momorphism and multiplication in N7 z is bilinear and continuous, we con-
clude that ¢ 7 (N'Tx) Y{I\/T is contained in Y{I\/T. Thus, for each b € NTx,

we may define @{I\[T(b) : Y{I\/T — Y{Z\[T by @{I\[T(b)(y) = ¢¥ 7 (b)y for each
y € YévT. Next, we claim that @yT(b) is adjointable with @{I\[T(b)* =
@{I\/T(b*). To see this, observe that for any y,w € Y{JVT,

(X w)er, = (@) e (07)w) = (v, X7 (0 )w) s, -

Finally, since <Z>§£T is linear and multiplicative, the map b — (I){]V T(b) is
also linear and multiplicative. Thus, b — @{]\/ 7—(b) is a homomorphism from
NTx to L7y (YNT). O

Next we show that YN7 := L] 4€Q Yév T can be viewed as a product system
over the quasi-lattice ordered group (H, Q) with coefficient algebra N7 x.

Proposition 4.7. Suppose that G is an amenable group so that the Hilbert
NTx-bimodule Yé\/T from Propositions 4.3 and 4.6 is defined. Let YNT :=

|_|qu Y{I\[T. Then YNT is a product system over (H,Q) with coefficient
algebra N'Tx, and multiplication given by multiplication in N'T z.

Proof. We already know from Propositions 4.3 and 4.6 that each Yé\/ T is
a Hilbert N'T x-bimodule, and Y7 = nry (N'Tx) NTx Dy definition. If
we equip YNT with the associative multiplication from N7z and identify
NTx with ¢§7 (NTx) € NTz, then YN becomes a semigroup. Tt is
straightforward to check that multiplication in YNT by elements of Yé\lff =
NTx implements the left and right actions of N'Tx on each Yé\/ T,

For YV7 to be a product system, it remains to show that there exists a
Hilbert N'T x-bimodule isomorphisir\l[ M, ;SSNT : Yé\[ T® NTx Y,{v T Y{Z\t/ T for
each q,t € Q \ {em} such that M;(t T(y QNTx W) = yw for each y € Yé\”—
and w € Y{VT. We begin by checking that YQ/TYévT C Yé\[T for each
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q,t € Q. Making use of Proposition 4.6, we see that
Y.[/I\/TY.t/\fT
=spaniz,  (Zeeq) X NTX)iz,  (Zieen)dX NTx)}
g Span{iz(eg,qt) (Z(erqt)) é\{r (NTX) } = Y'(/]\[T

Next, observe that if y,u € YévT and w,v € Y{VT, then

(Y ONTx W, U AN TR VINTx = (W, (Y, “>7\/Tx : v>j\/7’x
= (w,6 (eX7) " 'w)) 0)or
= (6X7) " (wy uv)
~ (g, u)

Thus, the map y ®xy 74 w — yw extends by linearity and continuity to a
well-defined inner-product preserving map from Yé\/ T® NTx Y{v T to Yé\t/ T
which we denote by M;(;NT. Clearly, M;@NT is both left and right N7 x-

linear. Surjectivity of the map M;{tNT follows from the fact that Z,

G7qt) =
Zieo.a)eat) = Liega) @A) (since g # en) and iz, (Zieg,q) S Y3
Y{I\,{T = Span{iz(ec,qt) (Z(ec,qt)) ‘bj)\([T (NTx) }
=span{iz, (Zec) iz, Zeon)ox” NTx)}
NT
= MY (YNT onry YNT).

Putting all of this together, we see that M;{tNT is an N'T x-bimodule iso-
morphism. O

We now prove that if A acts faithfully on Z(.,, 4), then N'Tx acts faithfully
on Yg\/ T. We will make use of this result later in Subsection 6 when we
consider the Cuntz—Nica—Pimsner algebra of the product system YV7.
Proposition 4.8. Suppose that G is an amenable group so that the product
system YNT from Proposition 4.7 is defined. If ¢ € Q and A acts faith-
fully on Zc,, q), then the homomorphism @{1\/7— NTx = Ly (YévT) is
mjective.

Proof. When ¢ = ey, the map @{1\/ T is just left multiplication on YQI[{T =
NTx by elements of NTx, which is obviously faithful. So suppose that
g€ Q\{ey}. Let p: A — B(H) be a faithful nondegenerate representation
of A on a Hilbert space H. To prove that @{1\/ T is faithful, it suffices to show
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that the induced representation
(YT v ) T
= (I)(/]\[T ONTx IdFry ®aidy : NTx — B (Yq ONTx FX DA H)

is faithful. Let p := (CID{I\/T ONTx 1dFry ®a idH) oix denote the Nica covari-
ant representation of X that induces @{1\/ T ® NTx 1dFry ®4idy. Our aim is
to prove that

(i) for each p € P\ {ec},

iZ(EG,q) (Z(ecvq)) ONTx A®ANC (Qp(Xp) (Yé\/T ONTx FX ®a ’H))J— ;

(ii) A acts faithfully (via ge,) on iz Ziciq) ONTx A®AH.

(erq)(
To see that this suffices, suppose for a moment that (i) and (ii) hold. For
each t € P\ {eq}, let

P? =

prOJQt(Xt)(Y'L'I\[T(@NTx]:x@AH)'
Then the representation
A>Sar g, (a) H (1-P%eB (Yé\/T ONTx FX D4 H)
teK

is faithful for each finite subset K C P\ {eg} . Since G is amenable,
[13, Theorem 3.2] then implies that <I>{1v T® NTx 1dry ®4 idy is faithful as
required.

We now prove (i) and (ii). Let p € P. For any s € P, we have
(p,en)(s,q) = (e,q)(ay-1(ps),en), and so using the description of Yf]\/T
given in Remark 4.4, we see that

27 (i, (X)) (Y37)
= Z.Z(equ) (Z(eGaQ)) ’ Span{ixaqfl(ps) (Xaqfl(ps))ixt (Xt)* : S’t € P}

For any s,r € P, since a-1(p) ta,-1(ps)r = ay-1(s)r € ag(P)P C P, we
have that a,-1(p) < a,-1(ps)r. Thus,

span{ix, (Ko ao)ix(X) 5P Fx S P X,
meP:a,_1(p)<m
and so
0p(Xp) (Y37 @7y Fx @4 H)
Ciz, . 1 Zec.g) ONTx P X.oan

meP:o, 1 (p)<m

Now suppose that p # eg. Since ay(P) C P and PN P! = {eg} it follows

that a,-1(p) £ eg. Hence for any z,w € Z, ¢, @ € Xeg = A, v € Xy,
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with a,-1(p) < m, and h,g € H, we see that

<iZ(EG’q) (Z) ®N'Tx a @A haiZ(eG’q) (U/) ®NTX T RA g>(c

= (h. (a.ix,, (7 w) ) - x) 4 - )

must be zero (since ix, ((z, w)SG’Q)) -z € X, which is orthogonal to A =

X in the Fock space Fx). Since the inner-product on Y{]\/T@WTX Fx@aH
is linear and continuous, we conclude that

iz, Bleca) EnTx ABAH C (0y(X,) (YT @y Fx 2a M)

Next we check that A acts faithfully on iz(eG 2 (Z(eG,Q)) ONTx A®aH

via the homomorphism g., = (@évT o iXeG) ONTx Idry ®aidy. Fix a €

A\ {0}. Since A acts faithfully on Z,, 4, we can choose z € Z,, 4 such
that a - z # 0. Since p is faithful, we can then choose h € H such that

(h,{a-z, a-z>E46G’q > # 0. By the Hewitt—Cohen-Blanchard factorisation

theorem, we can write z = 2’ - (2/, 2 >(jG’q) for some 2’ € Z
calculations show that

ec,q)- Routine

<iz(eg,q) (a-2') Onrx (7, z'>§c’q),iz(eG’q) (a-2") p7y (2 Z/)Efc,q)>A
(eca)
a

=(a-z,a-z

Hence,

Qe(a) (iZ(EG’q)( ) QONTx <z z >SG7Q) ©a h) H2

:<h,<a-z,a-z) ccd) | py c 70,

and so A acts faithfully on iy 2 (Z(ec’q)) ONTx A®aH. O

(e

We now work towards showing that the product system YNT is compactly
aligned. The next result characterises the compact operators on each fibre of
YVNT . We need some more notation: given a C*-algebra B, for each b € B,
we write M, € Lg(Bp) for the map defined by Mj(c) := be for each ¢ € B.

Lemma 4.9. Suppose that G is an amenable group so that the Hilbert N'T x -
bimodule Yé\m— from Propositions 4.3 and 4.6 is defined. For each q € Q, if

be NTgz is such that My € Lar7y (Y{]\/T), then

IMill ey ey < Bllar, -
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Proof. Since the norm on Y{I\/ T C N'Ty is just the restriction of the norm
on N'Tz, and the norm on any C*-algebra is submultiplicative, we have

M, = M
| bHﬁNTX (YNT) y:;lqﬁﬁ 1Mo (y)llyyr
||1/||Y{1\/T§1

= sup_ |[byllnrry, < 10l pr7y, - 0
yEYQ/T: z z
||Z/||NTZS1
Lemma 4.10. Suppose that G is an amenable group so that the product
system YNT from Proposition 4.7 is defined. For each q¢ € Q, let NT%,
denote the closed subspace spaniiz,, (Zp,q))iz, . (Zrg)" : pi7 € P}.
: t
(i) Let g,t € Q and T € Kparry (Y{I\/T). Then I (T) € Larry (Yé\t/T)
is left multiplication by an element of NTJ, on Yé\t/T CNTz. In
particular, if y,w € YQ\[T, then yw* € N'T%, and the rank one
operator Oy € Knry (Yf]\/T) satisfies

Myw* Zf q 7é €
Moyr ey a=eH-

Lgt(@y,w) = {

(ii) Let be NT} and q # eq. Then My, € Karry (YQ/T).

Proof. We begin by proving part (i) of the result. Fix ¢, € @ and a rank
one operator Oy, € a7y (Y{]\/T). If ¢ = ey, then for any z € Yé\m—, we
have

1 (040)(2) = BN T () (2) = T (') = Myyr (e (2).
Thus, i, (Oyw) = My (- Moreover, N (yw*) € T (NTx) =
NTH.
Now suppose that q # ey. For any u € Z., ¢), v € Zey, 1), and b € NTx,
8Oy iz, ()6XT () = Oyliz (W))iz, (0)XT)
= yw*iz(ec’q) (u)iz(ec,t) (1}) /)\(/T(b)

= My (iz, ,, (u0) YT (b)).

Since the closed span of {iz(eg,q) (Z(6G7q))iz(ec,t) (Z(eG’t))gbj)\(/’T (NTX)} is
equal to Y{I\,{T, whilst Lgt(@%w) and My, are linear and continuous, we
conclude that 12" (0y.4) = My € LarTx (Y{;{T).

It remains to check that if y,w € YévT, then yw* € NT. Since NTF is
a closed subspace, it suffices to consider when y =iz, (az)iz(mH) (z)* and

w = iz(m,q)(“)iz(n,eH)(U)* for some = € Z, ¢y, 2 € Zirepy), U € L), and
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V€ Zy ey If 7V =00, then the Nica covariance of iz gives
yw* - Z.Z(P,Q) (x)iz(r,eH) (Z)*iz(n,eH) (/U)Z.ZWWZ) (U)* =0,
which is certainly in N'7%. On the other hand, if r V n < oo, then yw*
belongs to the closed span of
. . *
ZZ(joz)ql(v"_l(1”\/n)),q) (Z(pQQ(ril(rvn))Q))lz(maq(n_l(r\/n)),q) (Z(mQQ(nil(rvn))ﬂ)) ’

and so is contained in N'T7.
We now prove part (i) of the result. Let b:= iz  (2)iz, ,(w)* € NTg
where z € Z, ) and w € Z, ). Then iz,  (2), iz, (w) € Y{I\/T and, so

by (i) we see that
Mi * — /,g (@

2y ()i () iz, iz, ) )

— NT

N @iZ(ZMJ) (z)’iz(nq) (w) € ’CNTX (Yq ) ’
Since the map b +— M, is linear, and ”Mb”ENTX (YN7) < [|6]| 7, Whenever
b € NTgz is such that My € L7y (Yé\/ 7) (by Lemma 4.9), we conclude
that M, € Ky (Y(/]\/T) whenever b € span{iz(p’q) (Z(p,q))iZ(W) (Z(nq))* :
p,r € P} =NTL. 0
Lemma 4.11. For any q,t € Q,
N’T%Vt ifqVit<oo
{0} otherwise.

In particular, each N'T% is a subalgebra of N'Tg.

NTINTY C {

Proof. Since multiplication in ATz is bilinear and continuous, it suffices
to show that

NT%Vt, if gVt <oo

YZip.o) (:U)Zz(r,q)(z) Y2 1) (U)ZZ(n,t) (v)" € {{0}, otherwise

forz € Zy gy, ¥ € Z(yq), U € L gy, and v € Zgy, ). If rVm = oo or ¢Vt = oo,
then (r,q) V (m,t) = oo, and so iz,  (¢)iz, , (2)"z, , (@)iz,, (V)" = 0.
On the other hand, if r Vm < oo and ¢ V t < oo, then (r,q) V (m,t) < oo,
and so iz, (az)iz(n@(z)*iz(mio (u)z’zmt) (v)* can be approximated by linear
combinations of elements from the set

. . *
ZZ(prfl(r\/m),qvt) (Z(pril(rvm)ﬂ\/t))ZZ(nmfl(r\/m),qvt) (Z(nmil(rvm)g\/t)) )
and so belongs to NT%W. O

We are finally ready to prove that the product system YNT is compactly
aligned.

Proposition 4.12. Suppose that G is an amenable group so that the prod-
uct system YNT from Proposition 4.7 is defined. Then YNT s compactly
aligned.
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Proof. Let S € Kx7y« (Y{J\[T) and T € K7y (Y{\[T) with ¢ Vit < co. If
q =1t =eq, then

@YHS)YH(T) = et (S)eck(T) = ST € Ky (Y2 ) = Kvr (Y1) -

q €H
Now suppose that ¢ # ef or t # eg. Thus, ¢Vt # ey. By Lemma 4.10,
WHS) = My and JVN(T) = M, for some b € N'T% and ¢ € NT}. Since
bc e N T%Vt by Lemma 4.11, we can use Lemma 4.10 again to see that

VU S) YU T) = MyM, = My € Knry (YQC[) . O

4.2. Isomorphisms of Nica—Toeplitz algebras. For the product system
YNT defined in Subsection 4.1, we will show that NTyar = NTz. To
do this we will use the universal property of each C*-algebra to induce a
homomorphism to the other, and then check that these homomorphisms are
mutually inverse. In summary, we will show that the maps in Figure 1 exist
and make the diagram commutative.

To make our arguments easier to write down, we will identify the coeffi-
cient algebra N'Tx of YN with ¢§7 (NTx) C N'Tz. Thus, every fibre of
YNT can be viewed as sitting inside N7z, and the left and right actions of
NTx = ¢¥T (NTx) on each Y{I\[ T are just multiplication in N7 z.

To begin we get a homomorphism from N7z to N'Tyar by exhibiting a
Nica covariant representation of Z in N'Tyar.

Proposition 4.13. Suppose that G is an amenable group so that the com-
pactly aligned product system YNT from Proposition 4.7 is defined. Define
ONT 2 Z — NTynr by

(’0{\157‘1’) = iyé\/T © Z'Z(p,q)’

for each (p,q) € P x4 Q. Then N7 is a representation of Z.

Proof. Firstly, SDj(\eZeH) = iyé\g o iZ(eG,eH) is the composition of homomor-

phisms and so is a homomorphism. Similarly, @?If 7(;) = iyé\/T 01z, , 1S the
composition of linear maps, and so is linear for any p € P, ¢ € Q. For any
2 €2 q and w € Z(, ), since iy is a representation, we see that

(P'E\I{Z]-) (Z)(p'é\;z; (’U)) = iy{]\fT (Z.Z(pﬂ) (Z)) th (iz(s,t) (w))

=iy (iz,, (2)iz, (W)
Since iz is also a representation, this must be equal to
(zw))

_ NT _ NT
= Plpag(s)at) (FW) = Plpg)(sn(ZW0),

iy N7 (1200000 (70) = FynT (iz(mq@%qt)
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and we see that N7 satisfies (T2). For (p,q) € P X Q and 2z, w € Z, ),
since 7y is a representation, we have

90?1% (Z)*‘pé\z% (w) = iypr (iz,.,) () iy, (iz,,,) (w))

= Z'Y%T (<iz(p,q) (Z)’ Z'Z(WD (w)>-(/1\/’7—x) )

Since iz is also a representation, this must be equal to

iy 7 (12,0 (2)"i2,,0) (W) = iypT (iz(ec,eH) ((= w>(f1‘o7q)))
= Feem (00 F7).
Hence, ¢N7 satisfies (T3), and so is a representation of Z in N'Ty. O
To show that gaN T is Nica covariant, we first need a lemma.

Lemma 4.14. Suppose that G is an amenable group so that the compactly
aligned product system YNT from Proposition 4.7 is defined. Let (p,q) €
PxoQ and T € Ky (Z(pyq)). Then

NT((p:2) _ (9

Proof. It suffices to prove the result when 7' is a rank one operator. To
this end, fix z,w € Z(,,. Lemma 4.10, says that O,

(p,q) (Z)’iz(p,q) (w) =

: ) « =M. and so
02, q) (2)1Z, ) (W) iSO, )’

oD@, ) =iy w7 iz, (2))iv, (izg, (W)
_ @ — ;9
o Z‘?NT <@iz(pyq) (z)’iz(p,q) (w)) B Z;}NT (Mi(z(p‘q))(ezlw)> - -

Proposition 4.15. Suppose that G is an amenable group so that the com-
pactly aligned product system YNT from Proposition 4.7 is defined. Then
the representation N is Nica covariant, and so there exists a homomor-

phism ONT : N Tz — N'Ty such that
NT _ - _  NT _ ; .
W0z, ) = Plpg) = IYNT 0z,

for each (p,q) € P x4 Q.

Proof. Fix § € K4 (Z(p,q)) and T € Ky (Z(S’t)). Using Lemma 4.14 we see
that

s s,t . .
(1) N ED (@) ANTED (1) = ifhr (Mi(Z(P,q))(S))Zg)/\/T <Mi<z<s*”)(T))‘
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Since iy a7 is Nica covariant, this is zero if ¢ V¢ = co. If ¢Vt < 00, then
(4.1) gives

¥
Vi) Vi
g?NT (ng (M«p ) S)> o <M1;(Z(s">)(:r)>>

(4.2)
= ZyNT Mo gy Mo, t”(T))

= ng% (M((p (s )¢<Z<5*f>>(:r)> :

Since iz is also Nica covariant and (G X H, P %, Q) has the product order,
if pVs = oo, then the last line is zero. If pVs < oo, then another application
of Lemma 4.14 shows that (4.2) yields

NT(P,2)) NT((s,0)) gV
¥ (S)QO (T) = lynNT (M ((pVs, q\/t))( Ezvqu ,qVt) () Ez:\;s th)( )>)

NT((pVs,qVt)) (L(PVSqut) (S)L(P\/Syq\/t) (T)) )

(p,9) (s:t)
Thus,

@NT((p’qD (5)(10((5@) (T)

{ NT(BVsavD) (ngzj,th)( S) ng;vqw) (T)> if (p,q) Vv (5,1) < o0
0

otherwise,
and so ¢ is Nica covariant. U

Next, we construct a homomorphism from N7y a7 to N'Tz by exhibiting
a Nica covariant representation of YNT in NT 3.

Proposition 4.16. Suppose that G is an amenable group so that the com-
pactly aligned product system YNT from Proposition 4.7 is defined. For
each q € Q, let @'NT be the inclusion of Y{I\/T in NTg. Then ¢NT is a
Nica covariant representation onNT. Hence, there exists a homomorphism
QNT - NTynxt — NTz such that

INT INT
Q OZYN’T = ¢,

for each q € Q.

Proof. It is trivial to check that cp’N T is a representation. We now show
that M7 is Nica covariant. If ¢ € Q and b € NT%, then Lemma 4.10 tells

us that M, € Knry (Y{I\/T). We claim that cp’NT(q)(Mb) = b. To see this,
observe that if z € Z(, ,y and w € Z, 4), then

INT (@) ( INT (@) (@

v MiZ(m) (2)iz(,. ) (‘”)*) ¥ 2, q) (22 ) (“’))

= ‘P;NT (izmq) (2)) ‘PQNT (izmq) (w))"

= iz(p,q) (Z)Z’Z(T,Q) (w)*
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Now fix Oy, € Kn7x (Yé\/ T) and ©,, € Kn7y (Y{\/ T). Making use of
Lemma 4.11 and Proposition 4.12, we see that

/NT(q)(@ /NT(’J)(@UW) = "D (M) @' (Myr) = yw*uv’,

2 y,w)‘P

which is zero if ¢ V t = 00, and equal to

S0/,/\/’7‘((1\/1%) (M

yw*uv*

) — (plNT(q\/t) (Myw*Muy*>
= SOINT(th) (Lth(@y,w)L(t]\/t(Gu,v)>

q
if ¢Vt < co. Hence, ¢’ is Nica covariant. [l
Putting all of this together, we get the following.

Theorem 4.17. Suppose that G is an amenable group so that the compactly
aligned product system YNT from Proposition 4.7 is defined. Then the ho-
momorphisms QONT - NTz — NTyxr and QNT - NTyxr — NTz are
mutually inverse isomorphisms. Thus, NTz X NTy~nr.

Proof. We begin by showing that QN7 oQNT = idyrr,. For (p,q) € PxaQ,
we have

(Q/NT ° QN’T) = Q//\/'T

© ZZ(zwz © lY{;\[T © ZZ(p,q) = ZZ(W;{) :

Since N'Tz is generated by the image of iz and QN7 o QN7 is a homomor-
phism, we conclude that QN7 o QN7 = idprr, .
Next we check that QV7 o QNT = idarT, a7+ For any p € P,

_QNT

QYT o NT) o (iyg\gj o iz(p,eH)) =

o1 =1 o1 .
Z(er) — YT O (pey)

Since Yé\gr = NTx = ¢¥7 (NTx) is generated by the images of each

iz(p ey VE conclude that (QNT o Q’NT) o iyé\g = iyé\g. Now let ¢ € Q \
egtand z € Z ,weZ . Since QN7 o iyar is the inclusion map
(m,q) (n,emr) Y)
and QN7 is multiplicative, we see that

- ZY(JI\/T ZZ("”:Q) (Z)ZZ(TL,EH)

Since Yfl\/T = span{izm’q) (Z(qu))iz Yim,n e P}, and iy a1

(n.epr) (Z(n:eH))
ONT o Q/NT)

is linear and isometric, we see that ( o iyé\rT = iyévr for q €

Q\{ex}. Since N Ty is generated by the image of iyar and QVT o QNT

is a homomorphism, we conclude that QN7 o QNT = AT pr7 - O
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There are a number of results in the literature relating the coefficient al-
gebra of a Hilbert bimodule to its Toeplitz algebra. By decomposing N¥ as
N x N¥=1 Theorem 4.17 enables us to view the Nica-Toeplitz algebra of a
compactly aligned product system over N* as a k-times iterated Toeplitz al-
gebra, and so immediately extend these results to compactly aligned product
systems over N¥.

Corollary 4.18. Let Z be a compactly aligned product system over N* with
coefficient algebra A. Then

(i) The homomorphism iz, induces an isomorphism between K,(A) and
(ii) If A is separable and the fibres {Z¢, : 1 < i < k} are countably
generated as Hilbert A-modules, then iz, induces a KK -equivalence
between A and N'T z;
(iii) A is exact if and only if N'Tz is exact; and
(iv) A is nuclear if and only if N'Tz is nuclear.

Proof. Part (i) follows from [20, Proposition 8.2]. Part (ii) follows from [30,
Theorem 4.4] (the hypothesis that A is separable and each Z,, is countably
generated ensures that the Nica—Toeplitz algebra we get at each step of the
iterative procedure is separable). Part (iii) follows from [20, Theorem 7.1]
and part (iv) from [20, Theorem 7.2]. O

5. Iterating the Cuntz—Nica—Pimsner construction

We would like to be able to replicate our work from Section 4 using
Cuntz—Nica—Pimsner algebras in place of Nica—Toeplitz algebras. Specifi-
cally, can we construct a product system YNO over (H, Q) with coefficient
algebra N'Ox such that the Cuntz—Nica-Pimsner algebras of Z and YNO
are isomorphic?

The basic idea is to extend the interior portions of the commutative dia-
grams in Figures 1 and 2 by applying the canonical quotient homomorphisms
gx : NTx — NOx and qz : NTz — NOgz at the relevant places. Since
every Cuntz—Nica—Pimsner covariant representation is by definition a Nica
covariant representation, many of the results from Section 4 that we require
work exactly as before. Sometimes we will impose additional hypotheses
to get things to work, and unsurprisingly, our proofs often become more
complicated. We will add in hypotheses as and when needed, since we are
not sure if they are necessary, in the hope that future work may be able to
relax /remove them.

We now list the results that we will prove in Section 5, and summarise
the various spaces and maps that we will be working. As before, we hope
that if readers lose track of what is going on, they will be able to return to
this point for assistance.
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(1) In Proposition 5.3 we show that the inclusion of X in Z induces a
homomorphism d)?{o from NOx to NOgz such that ¢/}\C/’O ogx =
qz 0 0%

(2) In Proposition 5.6 we show that the homomorphism ¢§© is injective.

(3) In Proposition 5.7, we use gi)/)\(/T to construct a collection of Hilbert
N Ox-bimodules {Yé\/o i q € Q} inside NOg.

(4) In Proposition 5.8, we show that YNO := Uyeo Y{I\/O is a compactly
aligned product system over (H, Q) with coefficient algebra N Ox.

(5) In Proposition 5.12, we find sufficient conditions for NOx to act

faithfully on each fibre of YVO.
Once we have the product system YVO we prove that NOyro = NOg.

(6) In Proposition 5.15 we use the universal Cuntz—Nica—Pimsner co-
variant representations of Z and YNO to construct a Cuntz—Nica—
Pimsner representation ga/\/ O of Z in NOyw~o. Using the universal
property of N Oz we get a homomorphism QMO : NO7z — N Oywo
such that QVO sz(p,q) = jyé\/’o ojz(m).

(7) In Proposition 5.18 we find sufficient conditions for the inclusion
of YNO in Ny to be a CuntzNica-Pimsner covariant representa-
tion. The universal property of N Oy ~o then gives a homomorphism
QNO . NOyno — NOgz such that QNO o Jyo is the inclusion of
YNO in NO3.

(8) In Theorem 5.20 we prove that QN0 and QN0 are mutually inverse
isomorphisms.

In summary, we will show that for every p € P and g € @), the maps in the
outer portions of Figures 1 and 2 exist and make the diagrams commutative.

5.1. Constructing the product systems. The first step is to check that
the inclusion of X in Z induces a homomorphism from N Ox to NOgz,
analogous to Proposition 4.1. To do this we need a couple of lemmas.

Lemma 5.1. Let T € Ka(X,) and (s,t) € P x4 Q. If s # eq, then
(s5t) Y/ s . Z -1
(51) L(p,e) (T) - M(s,eH),(eG,t) © (LP(T) X4 Idz(eG,t)) © (M(S7€H)7(€G7t)) :

Proof. If y € Z, ;) and 2 € Z(,, 1), then

<M<Zs,eH>,<ec,t> o (166(T) ®aidz, ) o (M(Zs,eH),<ec,t>)_l> (v2)
— 5 (T) ()2 = ¢5(T)(v)2 = oy (T)(wz) = 15 (T)(y2).

(eg,em)

. Z . VA -1 (S,t)

Since M{s o) (e © (166 (T) @aidz ) 0 (Mo y) (i) a0 tegey (T)
are linear and continuous, and everything in Z,; can be approximated by
linear combinations of elements from {yz : y € Lisey) 2 € Z(ec,t)} (as

s # eq), we see that Equation 5.1 holds when p = eg.
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Now suppose that p # eg. If p £ s, then (p,ey) £ (s,t) and so both
sides of Equation 5.1 are zero. So suppose that p < s. For any = € Z
Y€ Lpsey), and z € Ly, 1), we see that

p.er)

s . -1
(ME e ey © (5(T) ©aidz, ) o (ME L o)) (@w2)
= i3(D)(wy)z = (Tx)y) 2 = (Tx)(yz) = 100 | (T)(wy2).

Since Zs ) = span{zyz : @ € Zpey) Y € Lp-tsen) 2 € Lieg,)}s We con-
clude that (5.1) holds when p # eq as well. O

Lemma 5.2. Suppose that A acts faithfully on each fibre of X and each <;~5(p7q)
is injective. Fix a finite set F C P and a collection of compact operators
{T, € Ka(X,) : p € F} such that

E 1p(Tp) =0 € La(Xs) for large s € P.

peF

Then
Z’[(s’t) (T,)=0¢€ EA(Z(S’t)) for large (s,t) € P X4 Q.

(p’eH)
peEF

Proof. Let (u,v) € Px,Q. Hence, we can choose r > u such that whenever
s > r, we have

> u(Ty) =0 € La(Xy).

peEF

Since (G X H, P x4 Q) has the product order, we know that (r,v) > (u,v).
We claim that for any (s,t) > (r,v), we have

"“(Svt) — 7
Z L(]LGH)(TP) =0€ Ly (Z(&t)).
peF
Fix (s,t) > (r,v) and let z € Z(s’t). We need to show that
~(s,t
(Do @) )
peEF
is zero in Z(S7t), which is equivalent to showing that
N(Svt)
(( Z “(pem) (Tp)) (Z)> (m,n)
peEF

is zero in Z,, ) for every (m,n) < (s,t). With this in mind, let (m,n) <
(s,t). If m # s, then a,,—1(m~1s) # eq, and so

(e en) < (ap—1(m~1s),ey) < (anfl(m_ls),n_lt) :
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As A acts faithfully on each fibre of X, it acts faithfully on Xo, 1 (m-1s) =

Z(o _ (m-1s)ey) In particular, and so

Ly =1(5,0) = L, 1 (m15)m1¢) = M ker (¢(z.y)) = {0}-
(ecrem)<(z,y)
S(an,l (m_ls),n_lt)

Thus, if m # s, then 2(50) € Zimn) - Lmmn)-1(s) = {0}. Hence, for any
(m,n) < (s,t), we have

(Tt @m)@), =i @) Gonm)
F ’ peF

pe
= { (ZpeF LE;::L)(TP)) (Z(s,n)) ifm=s

0 otherwise.

Thus it remains to show that (ZpeF LE;:ZL)(TP)) (2(s,m)) = 0.

If s # eq, then Lemma 5.1 combined with the fact that . ¢;(Tp) =0,

shows that 3 p LE;ZL)(TP) = 0. On the other hand, if s = eg, then
0= T - 1 (Tog) Heg€F [T, ifegeF
vy 0 otherwise 0 otherwise,

and so either e ¢ F or T, , = 0. Thus,

(32 m @) (zam) = (08T Cec)

peF peEF
_ (¢(€G7n) (Tec)) (Z(eg,n)) ifeq € F
0 otherwise

is zero as required. We conclude that Zpe r Z(;S;tl){)(Tp) =0 as claimed. [

Proposition 5.3. Suppose that A acts faithfully on each fibre of X and each
qg(p,q) 1s injective. Then the inclusion of X in Z induces a homomorphism
PNO : NOx — NOgz such that ¢§° (jx(z)) = jz(x) for each x € X. Thus,
X oqx =qzo¢¥.

Proof. We need to exhibit a Cuntz—Nica—Pimsner covariant representation
of X in NOgz. For each p € P, define wzf,\/o : X, - NOz by wé\[o =2y,

Since wlj,\[ O—ygo w;?\/ T where YN is the Nica covariant representation of
X from Proposition 4.1, we see that 1”V© is a Nica covariant representation
of X.

We now check that ¥V is Cuntz—Pimsner covariant. Suppose that F C
P is finite and {T), € K4(X,) : p € F'} is a collection of compact operators

such that > p 3 (1) = 0 € La(X,) for large s € P. We need to show
that > cp wNO(p)(Tp) = 0. Since @ZJNO(p) = j(z(p’eH)) for each p € P and
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CL - . . ~(s,t) o
jz is Cuntz—Pimsner covariant, it suffices to prove that Zpe P L(p76H)(Tp) =

0 e EA(z(&t)) for large (s,t) € P %, @, which follows from Lemma 5.2.
Thus, YN is Cuntz—Pimsner covariant, and so there is a homomorphism
PO 1 NOx — NOg such that ¢§© (jx(x)) = ¢NO(x) = jz(x) for each
x € X. Finally, since the image of ix generates N'Tx, and

oXO 0 gx o ix = ¢¥C 0 jx = jzlx = 4z o izlx = az 0 #¥7 oix.
we conclude that qﬁj)\(m ogx = qgz ©° Q%\(/T- O

It is not clear whether the hypotheses for Proposition 5.3 can be re-
laxed. The hypothesis that each ¢, ) is injective is used only to ensure
that the Cuntz—Nica—Pimsner algebra N'Oz exists. The assumption that
A acts faithfully on each fibre of X allows us to make use of Lemma 5.2.
If we tried to prove Lemma 5.2 without assuming that A acts faithfully on
each fibre of X, we would need to prove that whenever F' C P is finite
and {T), € Ka(X,) : p € F} is a collection of compact operators such that

> per b (Ip) is zero in EA(XS) for large s € P, then 3 p [(Svet;)(Tp) is

zero in L4 (z(s,t)) for large (s,t) € P X, Q. The following example us-
ing higher-rank graphs, shows that this need not be true. For the relevant
background on higher-rank graphs and their associated Cuntz—Krieger alge-
bras, see [34]. For the relationship between product systems and higher-rank
graphs see [32] and [38, Section 5.3].

Example 5.4. Let I' be the 2-graph consisting of three vertices u, v, w, one
edge A of degree (1,0), one edge p of degree (0,1), with ranges and sources
s(A\) = u, s(u) = w, and r(\) = r(p) = v. The associated compactly aligned
product system Z C C*(T") over (Z?, N?) has fibres given by

A= 2oy = spanity, ty, tw} = C*({tu, tv, tw}), Z(10) = span{ty},
Z,) =span{t,}, Zgyy) =10} for all other (m,n) € I\

From this, we define another compactly aligned product system X over
(Z,N), whose fibres are given by X,, := Z, ¢y for each n € N. Example 3.3
of [38] shows that for any n > 1 we have

X,, = span{t, : v € IS0} = span{t,, t,, t\},
whilst for any (n,m) > (1,1) we have
Z(ymy = SpAT{t, 1 v € DS = Span{ty, tu, tr, tu ).
Consider t, € A= K4 (Xo) and Oy, 4, € K4 (X1). Then
I (ty) = i{'(Ot, 1,) =0 € La (in) for any n > 1.

For any (n,m) > (1,1), since r(u) = v, we have

o (80) () = e
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Since A and p have no minimal common extensions, it follows that
i (O, (1) = tatit = 0.
Thus,
oy (00) = 71y (1)) (t) = 1
(0,0) ¥ (1,0) txita)) p ws
and so

Z((éfg;) (tw) — 5((17?{)7;)(@»16)) #0€ La(Znm))-

We should not be particularly surprised by Example 5.4 — the product
system Z associated to I' contains no two dimensional information (since
the higher-rank graph I' contains no paths of degree (1,1)). In [14, Propo-
sition 4.6] we show that if the higher-rank graph is locally convex (see [33,
Definition 3.9]), then problems of this variety do not occur. As such, it
would be interesting to see if there is a notion of local convexity for arbi-
trary product systems over N* (or even more general quasi-lattice ordered
groups) that ensures the inclusion of X in Z induces a homomorphism from
NOx to NOgz.

Similar to Subsection 4.1, in order to construct a product system sitting
inside N Oz with coefficient algebra N'Ox, we need to check that the ho-
momorphism qbé\(/o : NOx — NOgz is injective. The idea is to show that
by restricting the canonical coaction of G x, H on NOgz to the image of
qﬁé\éo, we get a coaction of G on gbé\éo (NOx). As such, we need to know
when the group C*-algebra of G x4, H contains a faithful copy of the group
C*-algebra of G.

Lemma 5.5. Let G and H be groups, and suppose that o : H — Aut(Q)
is a group homomorphism. Then there exists a homomorphism v : C*(G) —
C*(G %o H) such that 1(iq(g9)) = igx,m(g,em) for each g € G (where
ig and igx,m are the universal unitary representations of G and G x,
H respectively). If G is amenable, then ¢ is injective. Thus, C*(G) =
span{igu, i (G o {eg})} C C*(G 1, H).

Proof. It is straightforward to check that g — igw, m((g,€em)) is a unitary
representation of G in C*(G x4 H). The universal property of C*(G) then
provides us with the homomorphism ¢.

We now assume that G is amenable. Hence,

C*(G) = C*({T, : g € G}) C B(*(Q)),

where the operator T, € B(¢*(G)) is defined by Ty(f)(h) := f (¢~ 'h) for g €
G, f € (*(G), and h € G. Similarly, the map (g,h) = Sy ) € B(l*(GxoH))
where

St (F)(k1) = F((g. 1) (k. 1)) = f (a1 (g7 k), h 1)

for each f € £2(G x, H) and (k,1) € G x4 H, is a unitary representation
of G x4 H. Clearly, if f € £2(G), then the map f : G xo H — C defined
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by f(g, h) = pe, f(g) belongs to 2(G x4 H) and Hf”éQ(G) = HfH@(GXaH).
Now let F' C G be a finite set. For any f € ¢*(G) we have

> Sgen (F = > Y Sen (kR

geF @Q(G*‘aH) (k,R)EGxaH ' geF
2

= > > flekR)

(k,h)EGxoH ' gEF
2

=2 |2 fla7'h)

keG ' geF
2

=Y ZTg(f)(k)
keG ' geF

=D T,(f) :

geF (@)
Thus,
ZTQ < ‘ ZS(g,eH) :
geEF B(£2(G)) geF B(KZ(GX]aH))
Since ¢ is norm-decreasing, we have
Sic)| = Tioto)
geF C*(G) geF C*(GxaH)

> icuan(g,em) :
gEF C*(GxaH)

Since iGx,m is the universal unitary representation of G x, H, we deduce
that

> iclo)

Z S(g €H

geF geF B(£2(GxaH))
> DT, = || 2 i@
geF IB(G geF (@)

where the last equality follows from the amenability of G. Hence ¢ is iso-
metric on the dense subspace span{ig(g) : ¢ € G} of C*(G). We conclude
that ¢ is an isometry. (|

Proposition 5.6. Suppose that A acts faithfully on each fibre of X, and each
¢(pq is injective, so that the homomorphism d)NO NOx — NOgz from
Proposition 5.3 exists. If G is an amenable group, then (bNO 18 injective.
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Proof. Since G is amenable, we can use [4, Corollary 4.12] to show that gbj)\(/o
is injective. Firstly, we need to check that ¢§(/O| TXeg (A) is injective. Suppose
that a € A is such that ¢§© (leG(a)) = 0. Then jz@cyem(a) :(g)7 which
forces a = 0 since jz is isometric by [38, Theorem 4.1]. Thus, ¢§©| ey (4)
is injective.

Next, let vz : NOz — NOz @ C*(G %, H) denote the canonical gauge
coaction of G x, H on NOgz. Since

vz (sX° (ix, (2))) = vz (2, @) =iz, (@) Dicu.m (P, en)
= X (jx, () ® ¢ (ic(p)) ,
for any x € X,,, we can define 3 : %° (NOx) — ¢X° (NOx) ® C*(G) by
B 1= (idgyo oy © 1) 0 vzlswox)-

We claim that 3 is a coaction of G’ on d)é\éo (NOx).
Since vz and id¢§‘(/o( NOx) @ .~! are injective homomorphisms, so is . If
x € X, then

((8®ido()) © B) (6XC (jx, (2)))
= (B®idc~(e)) (iz,,,, (@) @ ia(p))
) (7) ®ia(p) ®ia(p)
= (idyyo o) ®c) iz, (@) @ ic(p))
= ((idgyonox) ®0c) 0 B) (#X° (ix, ().

Since d)é\([ O (N Ox) is generated by the image of the homomorphism Q%\(/O 0JX,
and both (ﬁ ® idc*(G)) o 3 and (idd),é\(/’o NOx) ® 5g) o 8 are homomorphisms,
we conclude that /3 satisfies the coaction identity. For any x € X,,, w € X,
and g € G, we have

X (jx, (2)jx, (w)*) @ ic(g)

= (6X° (ix, ()i, (0)") @ i (™) ) (Luygao woxy) ©ic(r7'9))

= JZ(

= 80X (ix, (@)%, (1)) ) (Lug(sgro won) @ i (r07"9)).
Thus,
X% (NOx) @ C*(G) = span{B(¢X° (W Ox)) (1M(¢f,¥O(NOX)) ®C*(G))},
and so § is coaction nondegenerate. Finally, for any z € X,, we have
(806X) (ix, (@) = (idgyo oy ® ") (v2(iz,,,\ (@)))
= (idgyovox) @) Uiz, (@) @ iGxau (P en))
= ((¢X° ®idcx(a)) ° vx) (ix, (@)
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Since [ o (;59(/0 and (q%\(fo ® idc*(G)) o vx are homomorphisms, and jx gen-
erates NOx, we see that 3o ¢J}\(f(9 = ((bé\éo ® idc*(G)) ovx. By [4, Corol-
lary 4.12], ¢J)\£O is injective. O

Almost identically to Subsection 4.1, we can use the injective homomor-
phism ¢/)\(/(’) to construct a product system. Firstly, we construct a collection
of Hilbert N Ox-bimodules {Y{I\/O :q € Q\{en}}. The idea is to make use

of the collection of Hilbert AT x-bimodules {Yf]\/ T:qeQ\{en}} defined
in Propositions 4.3 and 4.6 and apply the quotient maps gx and gz at the
appropriate places.

For each g € Q\{en}, we let Yé\/o =qz (Y(/]\/T). We then show that there

exists a right action of NOx on Y{I\/ O and a NOx-valued inner product
(-, -)}I\mx on Yf]\/ O making the diagrams in Figure 3 commutative.

La) sy 0T
YNT x NOx LTy NT oy NT oy NT TN e
9z X gx 9z 9z X 9z ax

YNO s« NOx ——  ,YNO yNO,yNO . NO
q X (.0) >y -a q q q s Vvon X

FIGURE 3. The Hilbert N’Ox-module YO

We also show that there exists a left action of NOx, implemented by a
homomorphism Q){]\/ . NOx — Lynox (Y{l\[ O), such that the diagram in
Figure 4 is commutative.

(a,y) = @Y7 (a)(y)

NTx xYNT YNT
ax X qz qz
NOx x YN© YNO

(a,y) = €37 (a)(y)

FIGURE 4. The homomorphism <I>{Jv o
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Proposition 5.7. Suppose that G is an amenable group, A acts faithfully
on each fibre of X, and each ¢, q) is injective, so that the homomorphism
<Z>/)\([O of Proposition 5.3 exists and is injective. For each ¢ € Q\{en}, define

Y0 =span{jz,, (@)¢X(b) : 2 € Zieg g, bENOx} C NOg.
Then YQ\/O carries a right action of NOx such that
y-b=ysXO(b) for eachy € YAC and b e NOx.
For each y,w € Y{J\[O, we have y*w € ¥ (NOx), and there is an NOx
valued inner-product (-, '>7\/Ox : Yévo X Yfl\/o — NOx such that
<va>3]\/(’)x = (¢/)\(/@)—1 (y*w) for each y,w € Yévo.

With this structure, Yé\/o becomes a Hilbert NOx-module. Furthermore,
there exists a homomorphism @é\/o : NOx — Lyox (Yé\/o) such that

@fl\/o(b)(y) = XNOb)y  for each b e NOx and y € Y{IVO.
With this additional structure, Y{]\fo becomes a Hilbert N Ox-bimodule.

Proof. We have effectively already completed all of the necessary calcula-
tions in Subsection 4.1 to prove the result. Rather than just rerunning the
arguments of Propositions 4.3 and 4.6 with Y{J\/ O in place of Y{I\[ T we will
show how these two spaces are related via the quotient maps on N'7x and
NTz and use this to prove the result. The key observation is that the quo-
tient homomorphisms ¢x and gz intertwine the homomorphisms <Z>/)\(/T and

FRO.
Since gz o iz = jz and qz o qb/)\(/T = gbé\(fo o gx, we have
YO =span{jz, (@)6KO () : @ € Ze g, b€ NOX]
= gz (span{iz, (@)X (0) : 2 € Z(eg g, bENTx})
=az (Y7'7).
We now show how the right actions of NOx on Yé\[ O can be obtained

from the right action of NTx on Y{IW—. For any a € NTx and y € YévT,
we have

(5.2) 4z (y-a) = qz (yoX ' () = az(y)az (6% () = az(y)¢X (ax(a)).

Ifa e NTx and y € Yé\/T with gx(a) = ¢x(a') and ¢z(y) = qz(¥’), then
(5.2) is equal to

1z(y)XC (ax(d)) = q2(y)az (X7 (d)) = qz (y'¢X " () = qz (v - @)
Thus, Yé\/ © carries a right action of NOx defined by the formula

qz(y) - gx(a) := qz(y -a) for eacha € NTx and y € Y{;/T.
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Moreover, (5.2) shows that
y-a= ygbé\(/o(a) for any a € NOx and y € Yé\/o.
Next we show how the NOx valued inner-product on YNO can be ob-

tained from the N'Tx valued inner-product on Y{I\[ T, For any y,w € Yév T
we have

(5:3) ax (w7 ) = ax((XT) " (y*w)) = (6¥°) ™ (az(y)*az(w)) .

If o/, w' € Y{JVT with gz (y) = qz(y') and gz(w) = gz(w'), then this is equal
to

(X)) (a2 az(w)) = () (@ 20/ w)
= ax ((6X7) " (") = ax (', ) rr)-
Thus, we can define (-, '>7\f(’)x : Y{]\/O X Yé\[o — NOx by
(az(v), z(w) ko, = ax (Y, w)kr,) for any y,w e YT
Moreover, (5.3) shows that

—1 %
(5.4) (. w) ko, = (6X°) (y*w) for any y,w € Y.

Using (5.4), it is elementary to show that (Yé\/o, (- )voy ) is a Hilbert
N Ox-module.
It remains to check that Yév O carries a left action of NOx by adjointable

operators. We show how the homomorphism <I>f1v O NOx = L NOx (Yé\/ O)
can be obtained from the homomorphism q){}\/ T NTx = LynTx (Y{J\/ T).
For any a €e NTx and y € Y{ZVT, we have

2 (237 () (y)) = az (X" (a)y) = az (6X (a)) az(y)

X (ax(a)) az(y)-
Ifa' e NTx and ¢ € Y{J\/T with ¢x(a) = gx(a’) and ¢z(y) = ¢
(5.5) is equal to

X (ax(a) az(y') = 4z (X (a) az(y) = az (6X (a')y')
=4z (2)7 (")) -

Thus, for a € N'Tx, there exists a map @{I\/O (gx(a)) : Yévo — Yé\/@ given
by

(5.5)

7(y'), then

&) (ax(a)) (az(y)) == gz (¥ (a)(y)) for each y € Y,'7.
Moreover, (5.5) shows that
(5.6) @{1\[0 (a) (y) = ¢¥C (a)y for any a € NOx and y € Yé\/o
Using (5.4) and (5.6), it is routine to check that @{IVO (gx(a)) is an ad-

jointable map on Y{JVO and the map ¢x(a) — @g\fo (gx(a)) is a homomor-

phism from NOx to Ly oy (Yfl\/ O), which we denote by ‘Iﬂq\[ 0o, O
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The next result shows that if Yé\go = Nox (NOX) oy then YNO =
L] 4€Q Y{I\[ O has the structure of a compactly aligned product system.

The idea is to use the Hilbert N7 x-bimodule isomorphism MqYJNT :
YévT ONTx YévT — Yg\th from Proposition 4.7 to define a Hilbert N Ox-
bimodule isomorphism MqutNO : Yé\/ © R0y Y{v o Y{J\tf O such that the
diagram in Figure 5 is commutative.

wNT
NT NT ot NT
9z ONTx 9z qz
NO NO NO
Yq ONox Yi o th
q,t

FIGURE 5. The Hilbert N Ox-bimodule isomorphism M;‘;No

Proposition 5.8. Suppose that G is an amenable group, A acts faithfully on
each fibre of X, and each $(p,q) is injective, so that the collection of Hilbert
N Ox -bimodules {Yfl\/o g e\ {eH}} from Proposition 5.7 exists.

Let Yé\go = NOx (NOX)NOX, and for each g € Q\{en}, define Y{J\/O as
in Proposition 5.7. Then YNO .= |_|qu Y{I\/O 18 a compactly aligned product
system over (H,Q) with coefficient algebra N Ox, with multiplication in
YNO given by multiplication in NOg.

Proof. We have already shown that each Yé\/ O is a Hilbert NOx-bimodule.
To show that YNO .= Uyeo Yé\/o is a product system over (H,Q) with
coefficient algebra A’'Ox and multiplication inherited from N Oz, we need
only check that there exists a Hilbert N'Ox-bimodule isomorphism M, ;{tNO
Yé\/o Onox YNVO = Y{I\t/o for each ¢,t € Q \ {em} such that

(5.7) M;QNO (y @nox w) =yw for each y € Yé\/o, we YN

Rather than just rerun our argument from Proposition 4.7 with Yé\/ O in
place of Yé\[ T we will show how these isomorphisms can be obtained from
the Hilbert N7 x-bimodule isomorphisms M;SENT : ng T® NTx Y{v T
Yé\tf 7 using the quotient map gz. Observe that if v,y € Yé\[ T with ¢y (y) =
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qz(y') and w,w' € Y{VT with gz (w) = gz(w’), then

NT
QZ(MqY,t (y OnTx w)) = gz (yw)
NT
=qz (') = qz(M), " (¥ a7y ).
Hence, there is a well-defined map M ;@No : Y{]\/ % N Ox Y{v o Y{I\tf O given
by

MY ((az @xox 42)(2)) : = a2 (M5 (2)

for each z € Y{I\/T ONTx Y{VT,

which satisfies (5.7). Since M;{tNT is surjective and gz (YA7) = YA©, the
map M;@No is also surjective. Routine calculations using (5.7) show that
M;@NO is inner-product preserving and left N'Ox-linear. Hence, M;{tNO is
a Hilbert N'Ox-bimodule isomorphism. We conclude that YVO has the
structure of a product system.

It remains to show that YVO is compactly aligned. Fix ¢,t € @ with
qVt<oo, andlet S € Kyox (Yé\/o) and T' € Knox (Y{VO). We need to
show that (2"(8)8Y (T) € Knoy (Yé\(,?) .If g = ey or t = ey, the result

is trivial, so we may as well suppose that ¢,t # ep. Since Lth and L?W

are linear and continuous, as is multiplication in Ly oy (Yé\(,?), we may as
well assume that S and T are rank one operators. Hence, S = ©

and T = @qz(u),qz(v)
Z € Yé\@—, we have

(427 (Oaz@02) 1" Bz a(w)) ) (02(2))
= (Moz(0)az(v) Moz (wyaz(v)-) (a2(2))
= dqz (Mmy*uv* (Z)) .

Lemma 4.11 and Proposition 4.12 show that Mgy «u,x € Ka7y (Yé\f/?)
Thus, the previous line can be approximated by sums of the form

qz (604,,3(*2)) = 8qz(oz),qz(,é’) (QZ(Z)) )
where a, 8 € Y{l\\//;r. Since z € Yé\\[,zi was arbitrary and Y{"\/ O =gz (Yj}/ T)
for each r € Q \ {ex}, we conclude that (" (Ouz(2).az(v)) WV (Ouz(w).az(v))
can be approximated by sums of operators in o4 (Yé\//?) Thus,

Lg\/t (@

9z (z),qz(y)
for some x,y € Yé\”— and u,v € Y,{VT. Then for any

QZ(QE)HZ(Z!)) Lg\/t (QQZ(U)aQZ(U)) € Knvox (Yé\c?)

as required. O

Shortly, we will examine the Cuntz—Nica—Pimsner algebra of the product
system YNO. To make the calculations tractable, we seek sufficient con-
ditions for the homomorphisms Cbé\[ O NOx = L NOx (Y{J\/ (9) that imple-
ment the left action of NOx on the fibres of YVO to be injective. Again,
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we will make use of [4, Corollary 4.12]. The main step is showing that
<I>{1v O (NOx) C Lyox (Yé\/ ) carries a coaction of G that intertwines @{1\/ o
with the canonical coaction of G on NOx. We first need some preliminary
results.

Lemma 5.9. Suppose that G is an amenable group, A acts faithfully on
each fibre of X, and each qS(p q) 18 injective, so that the product system YNO
from Proposition 5.8 exists. Then

Vg O NO (¢NO®L)OZ/X
Furthermore, if a € NOx and y € ngo, then

vz (8)C(a)(y)) = ((27° @ 1) (vx(a))) (va(y)).

Proof. Since both vg o (25/)\(/(9 and (gﬁj)\(fo ® /,) o vx are homomorphisms, it
suffices to check that they agree on the generators of NOx. If z € X,,, then

vz (X° (ix, (7)) = va(iz,.,, @) =iz,
= (X9 @) (jx, (z) ® ic(p))
= (X° @) (vx (Jx,(x)))

as required. Since vz is a homomorphism, we see that for any a € NOx
and y € Yé\/ o

2 (2O (a)(y)) = vz (¥C (a)y) = vz ($XC(a)) va(y)
= (X9 ® 1) (vx(a))vz(y)
= ((2)9 @ 1) (vx(a))) (valy)). O

Lemma 5.10. Suppose that G is an amenable group, A acts faithfully on
each fibre of X, and each qb(p q) 18 injective, so that the product system YNO
from Proposition 5.8 exists. Then for each q € @,

(idyyo 1) (YN0 © C*(G))
= span{uz( )(1M(N0z) ® G, (G X {q” 1}))}

Proof. We begin by showing C. Fix g € G and z € Z, ¢y, W € Zrcp).
Since

() ®igun (p.en)

Per)

(p7 Q) (’I", eH)_l (Taq*1 (p_lg) 7q_1) = (g>eH)7
we see that

(idyyo @) (jz, ) (2)iz,,, (W)* @ic(9)
=z (jZ@,q)(z)jZ(r,eH)(w)*) (Lmwoz) ® iGuan (rag-1(p™"9),a7"))
€ Spﬁ{yz (YNO) (1M(N0z) ® iGuaH (G X {q_l})) }

Since YNO span{jz o) )jz(r,eH)(w)* ipyr €EP 2z €2, wE Z(r,eH)}
and C’*(G) =span{i¢(g) : g € G}, we conclude that C holds.
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We now prove 2. Fix p,r € P, g € G, z € Z, ), and w € Z(, . Since
(p7 Q)(Tv eH)_l(gv q_l) = (paq(r_lg), eH)7 we have

vz.(Jz, ., (2)iz,. )(w)*) (1M(Noz) ®iGuat(9,07"))
= (idyé\/o @) (]z(p 9 (rem) (w)* ® ig(pozq(r_lg)))
€ (idywo ®1) (Y3 ® C*(G)).

Since YNO span{]z(p q)( )jZ(r’eH)(w)* ip,r €P 2 €y, weE Z(r,eH)}

and g € G was arbitrary, we conclude that D holds. ([l

Lemma 5.11. Suppose that G is an amenable group, A acts faithfully on
each fibre of X, and each qb(p q) 18 injective, so that the product system YNO

from Proposition 5.8 exists. If @NO( ) = 0 € Lyox (YNO) for some
a € NOx, then

(24O @ ide-(g) (vx(a)) = 0 € Loy (YVO) @ C*(G).

Proof. Suppose that a € NOx is such that @{I\/O(a) =0¢€ Lyoy (Yévo).
We want to show that (@g\/o ®@ides(e) (vx(a)) = 0 € Lyox (Yévo) ®
C*(G). Since the external tensor product Loy (ngo) ® C*(G) is iso-
morphic to Lyox (Yé\[ %) ® Lc+c)(C*(G)), which embeds isometrically in
LAoxacH(@) (Yévo ® C*(G)) (see [25, Chapter 4] for the details regard-
ing exterior tensor products of Hilbert modules), it suffices to show that
(QJ{I\/O ®idew(g)) (vx(a)) acts as the zero operator on Y(/]\/O ® C*(G). By
Lemma 5.10, it suffices to show that (@{Ivo ®idew(g)) (vx(a)) is the zero
operator on

W{(idygfo ®) (Vz (Y2'©) (Lmwog) @ iGu.n(G {(171}))) }
To do this we will use the fact that
(24° @ ider(@)) (vx(a)) o (idyyo @)
= (idyyo @t 7") o (237 @1) (vx(a)),
and (@’fq\/o ® ) (vx(a)) is left multiplication by ((bj)\cfo ® ) (vx(a)) on
YO ® CH(G % H) CNOz® C*(G %o H)
C M(NOZ) @ C*(G %o H).

Since multiplication in M (N Oz) @ C*(G %, H) is associative, we see that
for any y € Yévo and g € G,
(5.8)

(‘P{]\/O@)id()*(c)) (vx(a)) ((idYg\/O @) (vz2(y) (Lmwvoy,) Ricxam (9, q_l))))

= (ideO ®u) (((%vo@b) (vx(a))(vz2())) Amwoz) RicraH (9, q_l))>-
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By Lemma 5.9, we have
(@)C @ 1) (vx(a)) (vz(y)) = vz (23C(a)(y)) =

0.
Thus, (5.8) is zero, and we conclude that (@{I\[O ®idew () (vx(a)) is the
zero operator on Yé\/ O ® C*(G) as required. O

We are now ready to show that the homomorphism CI‘qu . NOx —
Lnox (Yévo) is injective.
Proposition 5.12. Suppose that G is an amenable group, A acts faithfully
on each fibre of X, and each ¢, ) is injective, so that the product system
yNo from Proposition 5.8 exists. If A acts faithfully on Z then @{1\[0 :

NOx — Lyox (Y{I\/O) 1s ingjective.

equ)’

Proof. Since G is amenable we can use [4, Corollary 4.12] to prove the
result. We begin by checking that <I>f1v O|jx is injective. Suppose that
€G

a € A is such that @fl\[o (leG (a)) = 0. For any z € Z ), We then have

eG7q
that
A NOJ . . . . )
0= (jxeG (a)) (jz(ecvq) (Z)) T IZ(egen) (a)jz(eGﬂ) (2) = I2(cg.0) (a-2).
Since jz (cca) is isometric and A acts faithfully on Z, 4, we deduce that

a =0, and so jx, . (a) = 0.
We now need to show that there is a coaction 5 of G on @{1\/ © (NOx)

that intertwines @{1\/ O with the canonical gauge coaction of G on N Ox.

Lemma 5.11 shows that there is a well-defined map £ : @{]\f O(NOx) —
(I){]\/O (NOx) ® C*(G) such that

B @] CI){I\/O = (@'Z]\/’O [} ldo* (G’)) ovx
Since @{1\/ o, @{]\f °® ido+ (@), and vx are all homomorphisms, we see that

is a homomorphism.
We now check that 3 satisfies the coaction identity. We see that

(8 ®idge(c) o Bo®)O
= (B®ido-()) o (PXC @ ider(@)) o vx
= ((Bo®7) ®idev(c)) o vx
= (®)0 @ idev(g) ® idoe () © (vx ® idoe () © vx.

Since vx satisfies the coaction identity (VX ® idc*(G)) ovx = (idyox ® dg)o
vx, the last line is equal to

(‘1>{sz ® ide+(g) @ idew(g) © (idyoy @ 6a) o vx
= (idéyO(NOx) ®dg) o (‘I’Q\/O ®idew () ° vx
— (dagorsion & bo) 0303
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Thus, (B®@idc«(@)y)oB = (ide,(vox) ®dc) 0B, and so 3 satisfies the coaction
identity.
We also need to show that § is coaction nondegenerate. We have

span{ (&, (NOx) ) (Lu(ayowox) ® C7 (@)}
= span{ ((¥,"7 ® ide- () (vx (NOX)) ) (Lpy(ao o)) © C7(G)) }
= (29 ® ido- () 5Pt {vx (NOx) (Lavox) ® C(G))}
Since vx is coaction nondegenerate, this is equal to
(MO @ idp-()) NOx ® C*(G)) = 2O (NOx) ® C*(G),

and we see that [ is coaction nondegenerate.
Finally, we check that 3 is injective. Suppose that 3 (@{J\/O(a)) = 0 for

some a € NOx. We must show that @é\[o(a) = 0. We will make use of the
fact that (@{1\/0 ® ) (vx(a)) is left multiplication by (qﬁj)\go ® 1) (vx(a)) on
YNO ® C*(G xq H) CNOz @ C*(G %0 H) € M(NOZ) ® C*(G %, H),

and multiplication in M (N Oz)® C*(G x, H) is associative. For y € Y{I\/O,
Lemma 5.9 shows that

vz (32 (a)(y))
= (@)° ®1) (x(a)) (v2(y))
= (@) ® 1) (x(0) (v2(¥) (Lo, @ iGuan (6 a71)))
X (Lpnog) @ iauat (ec,q)) -

(5.9)

Since
vz(y) (Lvwog) @ icxan (e a™)) € YO 0 0(C*(G))
by Lemma 5.10, and
(22 @ 1) (vx(a))
= (idY,(/I\fO ®1) o (@é\/o ®ides()) (vx(a)) o (idY{Z\[O ® L_l)
= (idywo ®1) 0 8(23/°(a)) o (idyyo ® 1) =0,

we conclude that (5.9) is zero. As vz is injective, we have @{]\fo(a)(y) = 0.
Asy € Y{I\f O was arbitrary, it follows that @é\/ ©(a) = 0. Hence, f is injective.

Putting all of this together and applying [4, Corollary 4.12], we conclude
that @{1\[ O is injective. ([

In the next subsection we will investigate the Cuntz—Nica—Pimsner alge-
bra of YN©. To make our calculations tractable we will assume that A acts
faithfully on each fibre of Z — by Proposition 5.12 this then implies that
NOx acts faithfully on each fibre of YN, Moreover, if A acts faithfully
on each fibre of Z, then A acts faithfully on each fibre of X and each ¢
is injective, ensuring that all of the results from Subsection 5.1 hold.

P,q)
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5.2. Isomorphisms of Cuntz—Nica—Pimsner algebras. We now work
towards showing that NOyro = NOz. To do this we will use the universal
property of each C*-algebra to induce a homomorphism from one to the
other, and then check that these homomorphisms are the inverses of each
other. To make our arguments easier to write down, we will identify the
coefficient algebra NOx of YVO with (bé\cfo (NOx) C NOgz. Thus, every
fibre of YVO can be viewed as sitting inside N'Og, and the left and right
actions of NOx = ¢J)\([O (NOx) on each ng O are multiplication in N Og.

We begin by getting a homomorphism from N Oz to N Oy o by exhibit-
ing a Cuntz—Nica-Pimsner covariant representation of Z in NOvywo. First,
we need a couple of lemmas.

Lemma 5.13. Suppose that (K, R) is a quasi-lattice ordered group. Let
F C R be finite. Then

F={reF:r<m}u{reF:rvm=oo}
for large m € R.

Proof. Clearly, {r € F:r <m}U{r € F:rVm = oo} C F forany m € R.
Thus, it remains to show that F C {r e F:r <m}U{re F:rVm= oo}
for large m. Fix p € R, and let F’ be a maximal element of the collection
{F' C FU{p}: F’ contains p and is bounded above} (partially ordered by
set inclusion), which exists since F' is finite whilst {p} C FU{p} is bounded
above (by p) and contains p. Let n be an upper bound for F’. Since p € F,
we have that p < n. Suppose that m € R withn <m. Let r € F. If r € F’
then r < n < m. Alternatively, if » € F'\ F’, then rVm = oo (if rVm < oo,
then rVm is an upper bound for F’U{r}, which contradicts the maximality
of F'). Thus, FC{re F:r <m}uU{r e F:rVm=oo}. Since p € R was
arbitrary, we conclude that F C {re€ F:r <m}U{re€ F:rVm= oo} for
large m. ]

Lemma 5.14. Suppose that G is an amenable group, and A acts faithfully
on each fibre of Z, so that the product system YNO from Proposition 5.8
exists. Let (p,q) € P xa Q and T € Ka(Zgyq)- If m € Q and ¢V m = oo,
then

NO
Mj(z(p’Q))(T) =0¢€ Knox (Y0©) -

Proof. Fix T' € Ka(Z, ) and m € Q with mV ¢ = oo. Let z € Z, ,) and
w € Ly, Since (p,q) V (r,m) = oo as ¢V m = oo, the Nica covariance of
jz gives

M o0 gy (02 (i, (0)7) = G577 (T2, (2D, ) ()7 =0

As Y%O = Spﬁ{jz('r,m) (z)jz(n,eH) (w)* TN e P7Z € Z(Tym)’w € Z(nveH)}7

we conclude that Mj<<p,q>>(T =0¢€ Kyox (Yﬁ\nfo). (]
Z

)
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Proposition 5.15. Suppose that G is an amenable group, and A acts faith-
fully on each fibre of Z, so that the product system YN from Proposition 5.8
exists, and N'Ox acts faithfully on each fibre of YNO by Proposition 5.12.
Define ¢NO : Z — NOyno by
NO _ ;
s0(17,(1) T jYé\/o CIZpg)-
Then ¢NO : Z — NOywo is a Cuntz-Nica-Pimsner covariant representa-
tion, and so induces a homomorphism QN : NOgz — NOywo such that

NO _ _  NO _ . .
Q ©JZpq = S0(17711) - JYszO ©JZ .4

for each (p,q) € P x4 Q.

Proof. Since jywnvo and jz are Nica covariant representations, the same
reasoning as in the proofs of Proposition 4.13, Lemma 4.14, and Proposi-
tion 4.15 shows that cpN © is a Nica covariant representation of Z. We now
show that it is Cuntz—Pimsner covariant.

Let F' be a finite subset of P x, () and suppose that we have a set of
compact operators {T(p,q) €4 (Z(pyq)) 2 (p,q) € F} such that

Z L%Z’,Z)) (Tip.g)) =0€ La (Z(s,t))
(p,g)EF

for large (s,t) € P x4 Q. Since jz is Cuntz—Pimsner covariant, we know

that
Z j(z(p,Q))(T(p’q)) —0.
(P9 EF

To show that gpN © is Cuntz-Pimsner covariant, we need to show that
Z ¢NO((p7Q)) (T(p,q)) —0e NOYN’O,
(p.g)eF
which by Lemma 4.14 is equivalent to showing that
Z ]g.z\/o (Mj(Z(qu))(T@ q))) = O € NOYNO
(p.g)eF 7

Since jywvo is a Cuntz—Pimsner covariant representation of YNO it suffices
to show that

Z o (M.((p,q)) ) =0¢€ Lyoyx (Y%O) for large m € Q,
a Jz. (T(P,q))
(p.g)eF
which is equivalent to showing that

> Mjup,q))(T )= 0 € Lnox (YHO)
(pg)eFiqsm e
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for large m € Q). Making use of Lemma 5.13, we see that for large m € Q,

Z M((pq (Tp.o) Z M PLZ))(T< Z M(Pq)) Tp.a)

(p.g)EF: (p.a)eF (p,q)EF:
qg<m qgVm=oo
=M M.
Z(p q)eFJ(z( T(p ) Z ((p q>> Tip.a)
(p.q)EF:
qVm=oo
M
( Z)E:F é(p ) (Tip,q)"
p,q
qVm=oo

It then follows from Lemma 5.14, that the last line is zero, as required.
Hence, g@N © is Cuntz-Pimsner covariant. The final statement follows from
the universal property of N'Ogz. O

We now work towards getting a homomorphism from NOyrxo to NOz
inverse to the one from N Oz to NOyw~xo just constructed. Our plan is to
exhibit a Nica covariant representation of YV© in NOz and then use the
universal property of NOy~xo to induce the required homomorphism.

In Proposition 5.12 we found conditions on the group G and the product
system Z to ensure that the left actions of NOx on each Yé\[ O are faithful.
In the next result, we exhibit sufficient conditions for these actions to be by
compact operators.

Lemma 5.16. Suppose that G is an amenable group, and A acts faithfully
on each fibre of Z, so that the product system YNO from Proposition 5.8
exists. For any g € @ and a € qb (ICA (Z(EG,q)))’ we have

S IC/\/OX (Yé\/o) .

(ec9)

N0 =M .
(510) (]XFG( )) J;( qu))(¢( )(a))
In particular, if A acts compactly on Zc, q), then NOx acts compactly on
YNO.

eGy4q

Proof. Fix ¢ € Q and a € ¢ (ICA (Z(eG q))). Hence, for some choice of
Pkeis Vi € Lieg q), WE can erte

Pleca)(@) = lim Z Oy, € KA (Zeaq) -

ki=1
For any z € Z,, 4 and b € NOx, we have that

3 (jx. o (@) iz, )<z>¢NO(b>>
= jz,, ) (¢ eGq>< a)(2)) X ()
= Jz EG@(A%OEZJ% eG’q)chO( ).

k=1
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Since jz - is linear and norm-decreasing, this is equal to

a)

lim Z
1—00 Z eG q)

1 M
Zggszl ()

- s 2) 57D O (b)

(72, , ()X (0).

g”ki’”ki)
Since the map b — M is linear and [|M,|, (Yy©) < |6l ;r0,, Whenever
X q

b € NOg, is such that My € Ly ox (YZI\/O) (see Lemma 4.9), and j(z(ec’q)) is
also linear and continuous, the previous line is equal to

j;(ecﬂ)) (hmi%oo 22;11 @y.k.,uk,) (]Z(erq) (Z)¢X ( ))
— M . NO(b)).
LD (g, @) (Uz,.,, , (2)ox° (1))
As cp/\/o (le (a)) and Mj;(ec,q))( A are linear and continuous, whilst
eG»q
YNO = span{jz . (z)cZ)NO(b) 02 € Lieg ), b € NOx }, we conclude that

@{1\/0 (leG( a)) is left multiplication by jzec, (¢(eq,q)(@)). To establish
((ec+q)) (¢(8G7q)(a)) is a
compact operator onYNO. Since j((ec’q)) (gf)(ec’q) (a)) € NOZL, this follows
from Lemma 4.10.

Now suppose that A acts compactly on Z, 4. Fix 2 € X, and choose

z' € X, so that z = 2/ - (2/,2/)"). Since (2/,2')") € ¢(61G,q) (Ka(Zieg,q)), we
can apply the first part of the lemma to see that

BN (jx, (x)) = 8O (jx, (@) 8} (jx., (&', 2'))) € Knox (Y)O).

Since @{1\/ © is a homomorphism and N'Ox is generated by the image of jx,
we have that @fl\/o (NOx) C Knox (Yé\[o), and so NOx acts compactly
on Y{IV . U

(5.10), it remains to show that multiplication by j,

We are almost ready to show that the inclusion of YNO in NOgz is a
Cuntz—Nica—Pimsner covariant representation. Before we do so, we need
one last lemma.

Lemma 5.17. Let ¢ € Q and a € d) (ICA (Z(ecq )) If Q is directed,
then

jZ(eG,eH) (a) = j(z(ec’q» (¢(6G7q) (a)) )
Proof. Since jz is Cuntz—Pimsner covariant, it suffices to show that

(s:t) W50 _
(511) L((Sig,eH) (a) (ZG q) (d)(eGa‘I) ( )) =0¢c EA (Z(Svt))
for large (s,t) € P x4 Q.



786 JAMES FLETCHER

Fix (m,n) € P x, Q. Since @ is directed, (m,n) < (m,n V q). Suppose
that (s,t) € P o Q with (m,nV q) < (s,t). For any 2z € Z and
w E Z(a i ().a1t) we have

(LEZQGH) (@) = LEZ;)q ( (ec,a (a)) ) (
= P(s,1) () ( ) (¢(eg,q (a) (2))
((¢(ec q) ((b(e(; Q) (a))) (Z)) w=0.

(¢(ec,q) (a)) €Ly (Z(s,t)) is linear and continuous,

eG’q)

(s:t)

Since v )(a) — 5

L

(ec-q)

and since Z ;) = span{zw : z € Liceq)w € L (s q71t)}, we conclude
b b q b

that (5.11) holds. O

Proposition 5.18. Suppose that G is an amenable group, A acts faithfully
on each fibre of Z, so that the product system yNo from Proposition 5.8
exists, and NOx acts faithfully on each fibre of yNo by Proposition 5.12.
Moreover, suppose that A acts compactly on each Z so that NOx acts
compactly on each fibre of YN by Lemma 5.16.

For each q € Q, let @&NO be the inclusion of Yévo in NOgz. If Q is
directed, then gp’N O is a Cuntz—Nica—Pimsner covariant representation of
YNO. Hence, there exists a homomorphism QNC : NOyno — NOgz such
that

erq)7

NO o
O o jyyo = ¢4

for each q € Q.

Proof. The same reasoning as in Proposition 4.16 shows that ¢"V© is a Nica
covariant representation of YV in NOgz. It remains to show that ¢VO is
Cuntz—Pimsner covariant. By Proposition 5.12 and Lemma 5.16, N'Ox acts
faithfully and compactly on each Yé\/ O Hence, by [38, Proposition 5.1],

it suffices to check that (@’NO)(Q) o q)fl\/o = 90/6/}{/0 for each ¢ € . This
is clear when ¢ = ey, so we just need to worry about when q # ep. As
Yé\go = NOx = gbé\éo (NOx) is generated by the image of jz|x it suffices
to show that
(512) (V) Do BNO) (jg(x)) = ¢ O (ju(w)) for all 2 € X.
If z € X, and 2’ € X, is chosen so that x = 2’ - (2/,2")%, then
INO . . N ! _N\D
Pey (]Z(pe )(Z')) - JZ(pYEH) (.%') - JZ(pyeH) (Z’ )]Z( (<ZL‘ y L >A)

eG-eH)

By the first part of Lemma 5.16, we see that

(z)) =M ((ec9))

q)NO
( PeeH) iz )(33')]2 (¢(8G,q)(<$',93'>§;))
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Since jz(p err) (xl)j(z(ec’q)) (¢(eg,q) (<5'3/, $,>€1)) € NOY, it follows from the ar-

gument in Proposition 4.16 that

((£™) 0 2)9) iz, ) (@)

_ (JNOY(@ < M )
(gp ) jz(p,eH) (x/)j;(ecm)) (¢(6G,q) (<x,’m,>§1))

= jz(p’eH) (x/)j(z(eG,Q)) (¢(eg,q)(<$la x/>i)) )
Since
EG,EH)<<:U/7$,>];1) — j(Z(EGH)) (¢(5G,q)(<$/,$/>§\)) 7

by Lemma 5.17, we conclude that (5.12) holds. O

Jz(

Remark 5.19. It is not clear if all of the hypotheses in Proposition 5.18 are
necessary. Proposition 4.14 of [14] suggests that the assumption of A acting
compactly on each Z, ;) is not necessary, at least in the situation where
Z is a product system over N* and we can make use of Katsura’s work on

gauge-invariant ideals of Cuntz—Pimsner algebras [22, Theorem 8.6].

Putting all of this together, we can show that NOz and NOvyw~o are
isomorphic.

Theorem 5.20. Suppose that G is an amenable group, A acts faithfully
on each fibre of Z, so that the product system yNo from Proposition 5.8
exists, and NOx acts faithfully on each fibre of yNo by Proposition 5.12.
Moreover, suppose that A acts compactly on each Z so that NOx acts
compactly on each fibre of YN by Lemma 5.16.

Suppose that Q is directed, so that the homomorphism YNO from Propo-
sition 5.18 exists. Then the homomorphisms QNC : NOgz — NOywo and
QNO . NOyno — NOgz are mutually inverse. Thus, NOgz = NOyxo.

erq)’

Proof. The same reasoning as in the proof of Theorem 4.17 shows that
QN0 and QNO are mutually inverse. O

Theorem 5.20 enables us to view the Cuntz—Nica—Pimsner algebra of a
compactly aligned product system over N* (with faithful and compact left
actions) as a k-times iterated Cuntz—Pimsner algebra. As in Corollary 4.18,
this immediately allows us to generalise results from the literature that relate
the coefficient algebra of a Hilbert bimodule and its Cuntz—Pimsner algebra.

Corollary 5.21. Let Z be a product system over N* with coefficient algebra
A. Suppose A acts faithfully and compactly on the fibres {Z., : 1 < i < k}.
Then

(i) A is ezact if and only if NOgz is exact;
(i) If A is nuclear, then N'Ogz is nuclear;
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(iii) If each Z., is countably generated as a Hilbert A-module and A is
separable, nuclear, and satisfies the universal coefficient theorem of
[36], then N'Ogz satisfies the universal coefficient theorem.

Proof. Firstly, we observe that since A acts faithfully and compactly on
each Z,, it follows from [25, Proposition 4.7] that A acts faithfully and
compactly on every fibre of Z. Since A acts compactly on each fibre of Z, [15,
Proposition 5.8] says that Z is compactly aligned. Part (i) of the corollary
then follows from [20, Theorem 7.1], and part (ii) from [20, Corollary 7.4].

If A is separable and each Z., is countably generated then the Cuntz-
Nica—Pimsner algebra we get at each stage of the iterative procedure is
separable. Furthermore, if A is nuclear, then part (ii) ensures that the
Cuntz—Nica—Pimsner algebra we get at each stage is also nuclear. Hence,
part (iii) of the corollary follows from [20, Proposition 8.8]. O

Remark 5.22. The Pimsner—Voiculescu exact sequence [20, Theorem 8.6]
relates the K-theory of a Cuntz—Pimsner algebra associated to a Hilbert
bimodule, to the K-theory of the bimodule’s coefficient algebra. As such it
may be possible to gain K-theoretic information about Cuntz—Nica—Pimsner
algebras associated to compactly aligned product systems over N* by viewing
them as iterated Cuntz—Pimsner algebras. In particular we are interested to
see if such an approach could be used to compute the K-theory of finitely
aligned k-graph algebras when k& > 3 (the k = 1 case is covered by [3,
Theorem 6.1] and the k = 2 case by [11, Proposition 3.16]).

5.3. Examples. We now present three examples that show what kind of
product systems our two decomposition theorems (Theorem 4.17 and Theo-
rem 5.20) can be applied to, and what these results reveal about the struc-
ture of the associated Nica—Toeplitz and Cuntz—Nica-Pimsner algebras.

Our first example/application looks at twisted crossed products by groups
[29]. We begin by recapping what we mean by twisted crossed products, and
explain their relationship with product systems. Let G be a (discrete) group,
A a C*-algebra, f : G — Aut(A) a homomorphism, and w : G x G — T a
normalised 2-cocycle, i.e. w(eg,eq) =1 and

w(gh,k)w(g,h) = w(g, hk)w(h,k) for all g,h, k € G.
The twisted crossed product A xg,, G is by definition the universal C*-
algebra generated by a covariant representation of the twisted dynamical
system (A, G, ,w): that is, a homomorphism #y* : A — A xg, G and
multiplier unitaries {zg’w(g) : g € G} such that for g,h € G and a € A,

i (9)ig” (h) = w(g, h)iZ* (gh)

i (9)in (@)ig” (9)" = i3 (By(a)).
When G contains a subsemigroup P such that (G, P) is quasi-lattice or-
dered, P is directed, and P generates G as a group, [4, § 5] tells us how to
realise A xg, G as a Cuntz-Nica—Pimsner algebra.
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We write G°P for the opposite group of G: as a set G°P is equal to G,
with multiplication in G°P given by g *,, h := hg. Since the isomorphism
h +— h~! from G to G°° maps P to P!, we see that if g,h € G, then g < h
in (G, P) if and only if g~* < h=1 in (G°P, P1). It follows that (G°P, P~1)
is quasi-lattice ordered: the least upper bound of g,h € G°P in (G°P, P71)
is equal to (g~ v h=1) 7L if the least upper bound g=' vV h=1 of g7, A1 in
(G, P) exists, and is oo otherwise. Observe that P is directed (as a subset
of G) if and only if P~! is directed (as a subset of G°P).

We define a product system Z := | |,c p-1 Z; over (G, P~1) as follows.

For each p € P71, Z, is the Hilbert A-bimodule g, A4, which is equal to A
as a vector space, with operations

<ﬂ?,y>ﬁ ="y a-z:= Ppla)r T-a:=2zxa

for all z,y € Z, and a € A. For each p,q € P! there exists a Hilbert
A-bimodule isomorphism M,ng 14y @4 Ly — 2y, such that

Mpzﬂ(a: ®ay) =w(q,p)By(x)y forallx € Zy, yecZ,

It is not difficult to see that the homomorphism ¢, : A — L4(Z,) imple-
menting the left action of A on Z,, is injective and takes values in K4(Z,):
if {ux}ren is an approximate identity for A, then ¢p(a) = limyer ©g () u, -
Thus, it follows from [12, Proposition 3.1.24] that Z is compactly aligned.
Finally, [4, Corollary 5.2] tells us that there is an isomorphism from N Oz to
A x g, G that takes jz, () to idw(p)*ii’w(ac) for each p € P! and x € Z,,.

We now use our decomposition theorem for Cuntz—Nica—Pimsner algebras
(Theorem 5.20) to show that the twisted crossed product of a C*-algebra by
a semidirect product G X, H can be realised as an iterated twisted crossed
product, first by GG, and then by H.

Example 5.23. Let G and H be groups, and « : H — Aut(G) a homo-
morphism. Also, let A be a C*-algebra, § : G xq H — Aut(A) a homo-
morphism, and w : (G xo H) X (G xq H) — T a normalised 2-cocycle.
Define normalised 2-cocycles w|g : G x G — T and w|g : H x H — T by
wlalgn, 62) == w((g1,en), (g2, em)) and wl(hn, ha) = w((ea, h), (eq, ha))
respectively, and define 3|g : G — Aut(A) by (Blc)g := B(g,e;)- Then there

exists a homomorphism S|y : H — Aut(A X ggwle G) such that

(B|H)h (iibw\c (a)) _ iilcvw\c (/B(eg,h) (@))

3y, (Blawle w((ea, ), (g:€n))  plowlc
(Ble)n (i (9) = i (an(g))
U™ 6) = Canta),ean). (ean B ©
for each a € A and g € G (where in the second expression we are thinking
of the extension of (8|); to the multiplier algebra of A x g, o, G)-

Furthermore, suppose that G contains a subsemigroup P, and H contains
a subsemigroup @, such that (G, P) and (H, Q) are quasi-lattice ordered, P

(5.13)
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and @ are directed, and P and @) generate G and H respectively. If G is
amenable and oy (P) C P, then

(A X Blawla G) XE\H,MH H=A XB.w (G Mg H)
Explicitly, this isomorphism is given by

(5.14) i R (i (9) i (@)

= w((g, en), (ec, ))igs (9, )% (a)
for (g,h) € G o H and a € A.

Proof. Firstly, we note that this is certainly not a novel result: [29, Theo-
rem 4.1] deals with the more general situation where the topology on G x, H
need not be discrete. We also point out that the additional hypotheses on
the groups G and H and the action « are to enable us to apply our decom-
position theorem, as well as to allow us to view the three twisted crossed
products A xg ., (G Xa H), A Xg|, |, G, and (A Xg, 0|5 G) X Bla1 ol H as
Cuntz—Nica—Pimsner algebras, and are not required in [29, Theorem 4.1].
For each h € H, it is straightforward to check that the homomorphism

ii'a’w‘c © B(eq,n) and the multiplier unitaries

w((eGah)>(gveH)) imG,MG o .
{w«ah(g),em, o hy'c () g€ G}

give a covariant representation in A Xg, .|, G of the twisted dynamical
system (A, G, B|g,w|c). Hence, the universal property of A xg, o, G

induces a homomorphism (3|g), : A XBlgwle G = A Xglgwlg G satisfy-
ing (5.13). One can check on generators that (§|H)6H = idaxg, .,G and

(Blr)n o (Ble)k = (Blm)nk for each h,k € H. Thus, the map h — (8|g)n
gives a homomorphism from H to Aut(A Xg|, 4|, G), which we denote by
Bla.

Now let Z := [y pepra@)-t Zwa) = Upgerrag) A4 be the
compactly aligned product system over ((G x4 H)P, (P x,Q)~!) associated
to the twisted dynamical system (A4, G xo H, B,w). Thus, Axg,(GxoH) =
NOz.

In order to apply our decomposition theorem to the product system Z we
need to know that the quasi-lattice ordered group ((G x4 H)°P, (P x4,Q)™1)
decomposes as the semidirect product of quasi-lattice ordered groups. It
is routine to check that the map 7 : (G xo H)® — G°P Xpoinv, HP
(where invy : HP — H is the isomorphism that sends h to h~') defined by
n(g,h) := (a,-1(g), k) is an isomorphism. Moreover, since n((P x4 Q)~!) =
P~ X goinvy @71, it follows that (g,h) < (s,t) in ((G xq H)P, (P xqQ)71)
if and only if n(g,h) < n(s,t) in (G Xaoinv,y; HP, P71 Xaoinvy Q@71).
Hence, as in Proposition 4.1, we may define a compactly aligned product
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system X := | | cp-1 X, over (G°P, P~1) with coefficient algebra A by set-
ting X, = anl(pﬁH) = Z(p,eH) = (5|G)pAA for each p € p-1 Clearly,
X is also the product system associated to the twisted dynamical system
(A, G, B|a,w|g). Thus, by [4, Corollary 5.2], there exists an isomorphism
7: NOx — A X, u|c G such that

(5.15)  7(jx,(z)) = ill9I% (p)*i%le 1 (2) for pe P' and @ € X,

We now consider the compactly aligned product system YNO, as defined
in Propositions 5.7 and 5.8, over (H°P, Q1) with coefficient algebra N'Ox.
For ¢ € Q~', we have n ! (eq, q) = (eq,q), and so the fibres of YNO are
given by

Y(/J\[O = m{jZ(EGm (Z(ec,q))¢/}\([O(NOX)}'
We claim that YVO is isomorphic to the product system associated to the
twisted dynamical system (A xg,, .|, G, H, B|n,w|n), where we identify the
respective coefficient algebras NOx and A xg|, |, G via the isomorphism
Ve, := 7. For simplicity, we also identify NOx with its image in N Oz
under the injective homomorphism qﬁé\cfo .

Straightforward calculations show that for ¢ € Q! there exists a linear
inner-product preserving map v : Y{I\/O = Glm) (A Xglewle G)ax Q)

H)q ) Blawla
such that

(5.16) vy (jz,,, ) (@)X (s)) = 4 (a)r(s) for a € e ). 5 € NOX.

It is not difficult to see that each v, is surjective. Since every element of
A can be written as a product of two elements, it suffices to show that

iga’w‘c(g)iib’w‘c(bc) belongs to the range of v, for any g € G and b, ¢ € A.
If we choose s € NOx such that 7(s) = iglc’w‘c(g)iilc’wb(c), then

va(iz., o (Bl0)g(0)) KO (5)) = ig1¢ (9)i{ I (be)

as required.

To see that the Hilbert bimodule isomorphisms {v, : ¢ € Q~'} implement
an isomorphism of product systems between YVNO and the product system
associated to (A Xg|, | G, H, B\H,w]H), it remains to show that

€G 7q) )

Wi (t, @) (Bl )1 (v (y))ve(w) = vig (yw)
forall g,t € Q' and y € Y{I\[O,w € Yivo.

By linearity and continuity, it suffices to verify (5.17) in the situation where
Y =2 (a)qu)\(fo (jxp(b)jxr (c)*) and w := JZep, o) (d)(j)é\cfo(s) for arbitrary
.t € Q7 ', p,re Pt abc,dc A and s € NOx. The first thing to do
is rewrite yw in the form that allows us to apply the formula for v, given
by (5.16). Observe that the least upper bound of (r,er) and (eq,t) in the
quasi-lattice ordered group ((G xo H)P, (P x4 Q)71) is

(5.17)

(ae(r),t) = (r,em) *op (e, t) = (eq,t) *op (at(1), em).
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Using the collection of Hilbert A-bimodule isomorphisms {M (mn), () -
(m,n), (u,v) € (P x4 Q)~'} we can show that

i — w((eg, ), (r en))w((au(p), en), (ea; 1))
wlu(t, w((au(r), en), (ea, t))w((ea,t), (p, em))
X JZeg, tq>( (eait) (@) B(ay(p—1 (b))
B ¢NO( Xt (p) (/B eg,t)( ))jxat(r) (/B(at(r),eH)(d*))*S)‘

Applying the formulas for 144, 14, and v, given by (5.16), the formula for 7
given by (5.15), and the definition of (3|z):, we see that

o (yw) = ——2eart), (ren)w((a(p), en), (e, 1))
q W|H(t7Q)W(( (7‘) ) (EG, ))w((eg, ) (p,eH))

X 59 (B (@) Blay (1)) (1)) i1 (0 ()
% % (Blog (€ Blaw(ryem) (@) 10 S 1 (an(r))7(s)

w((ert>v(r7€H)) ((at(p)aeH)a(eG7t))
wla(t, Qw((a(r),en), (e, t))w((ea,t), (p,en))

X0 (B 1y (@) T (e (p)*
X AT (Beg 1y (be"))igt N (g ()i} T (d)7(s)
= Wl (@) (Blm)e (3% ()igt 19 (p) i) 19 (be")igs 19 (r)
e ) )
= W(BIH)t(vq(y))w(w)

as required. Thus, YNO g isomorphic to the product system associated to
the twisted dynamical system (A x g, w|; G, H, Blm,w|H)-
Hence, combining Theorem 5.20 and [4, Corollary 5.2], we see that

A Xpg (G xo H)ZNOz = NOyno = (A X Bl wla G) x H.

E'H:w‘H
Chasing through the formulas for the isomorphisms given by Theorem 5.20
and [4, Corollary 5.2], as well as the formula given by (5.16) that identifies
YNO with Bli)e (AXBlewle G)(Axﬂlg,wIGG) shows that the isomorphism from

(A Xglgwle G) X Blywly H 1O A xg,, (G %o H) satisfies (5.14). O

In our next example, we look at a result of Hao and Ng ([18, Theo-
rem 2.10]) on crossed products of C*-correspondences. Let («,7) be an ac-
tion of a discrete group G on a Hilbert A-bimodule X, ie. a: G — Aut(A)
and v : G — Aut(X) are homomorphisms such that for g € G, a € A, and
x,y € X, we have

(1) (vg(),79(¥))a = ag({@, ) a);
(ii) vg(x - a) = v4() - ag(a);
(ili) v4(a - z) = ag(a) - v4(2).
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As in [19, Section 3.7], this data can be used to construct a Hilbert A x, G-
bimodule (one can think of this process as extending the coefficient algebra
of X from A to the (trivially twisted) crossed product A x, G). For &,n €
C.(G,X) and u € C.(G,A) (which we view as a dense x-subalgebra of
A %o G via the map u — 3 1% (u(9))ig(g)), we define £ - u € Co(G, X)
and (€, 1) ax,c € Ce(G, A) by

(€-u)(r) =) &(s) - as(u(s™"r))

seG

(€ manaa(r) =D a1 ((E(s),n(sr))a).
seG
These operations turn C.(G, X) into a pre-inner product C.(G, A)-module,
and we denote its completion by X x., G (see [35, Lemma 2.16] for details
on this process). The left action of A x, G on X %, G is given on functions
by
(w-&)(r) =D uls) - 7s(&(s7'r)).
seG

Our second example/application uses our decomposition theorem to show
how the Cuntz-Pimsner algebras of X and X x. G are related.

Example 5.24. Let («,) be an action of a discrete group G on a Hilbert
A-bimodule X. Then there exists a homomorphism 5 : G — Aut(Ox) such
that

(5.18) Bg(iala)) = jalag(a)) and  By(jx(z)) = jx (ve(z))
foreach g € G, a € A, and x € X. Suppose that G is amenable and contains
a subsemigroup P that generates GG, and such that (G, P) is quasi-lattice
ordered and P is directed. Furthermore, suppose that the left action of A
on X is faithful, nondegenerate, and by compacts. Then

Oxu,c = 0x x5G.
Explicitly, this isomorphism is given by
(5:19) G0 o (@09)i%n. o (yon)" = idy (G (@)i " (Yo, () )i (gh™)
for m,n >0,z € X®" yc X® g hedG.

Proof. Before, we begin the proof, we point out that this result is not new.
Indeed, Hao and Ng prove in [18, Theorem 2.10] that the Cuntz—Pimsner
algebra of X x, G and the crossed product associated to the dynamical
system (Ox, 5, G) coincide provided G is amenable (their result also covers
the situation where the topology on G is not discrete). The additional
constraints we have imposed on G and X are to enable us to realise the
crossed product Ox x5 G as a Cuntz-Nica-Pimsner algebra and to apply
our decomposition theorem.

Routine calculations show for each g € G, the maps a — ja(ay(a)) and
x — jx(74(z)) are a Cuntz-Pimsner covariant Toeplitz representation of X,
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and so induce a homomorphism 3, : Ox — Ox satisfying (5.18). Since «
and vy are automorphisms, it follows that the map g — [, is an action of G
on Ox by automorphisms.

In order to prove that Ox xgG = Ox . g, we will first use the action («, )
to construct a compactly aligned product system Z over (Z x G°P, N x P~1).
We will then use two applications of our decomposition theorem to show
that both Ox xg G and OXMG are isomorphic to NOz.

For each (n,p) € Nx P~1, we let Z, ) equal X" as a Hilbert A-module.
The left action ¢,y : A = La(Z(y,yp)) is then given on simple tensors by
Pnp)(@)(T1 @4 @axn) = (p(a) 1) ®a -+ ®a Ty, Observe that Z, .,
is equal to X®" as a Hilbert A-bimodule, whilst Zyp) is equal to 4, A4. For
each (n,p), (m,q) € Nx P~!, there exists a Hilbert A-bimodule isomorphism
M(%L,p),(m,q) : Z(n,p) ®A Z(m7q) — Z(n—l—m,qp) such that

M(%L,p),(m,q) (l‘ ®a y) = ’YSZm(:E) ®ay

for each z € Z, ) and y € Z(y, 4 (where by convention 7(;@0 := ag). These
isomorphisms give Z := |_|(n7p) enxp-1 L(np) the structure of a product sys-
tem over (Z x G°P,N x P~!). Since A acts compactly on each apAa and
on X, it follows from [25, Proposition 4.7] that A acts compactly on each
Z(, ;). Hence, by [12, Proposition 3.1.24], Z is compactly aligned.

We now define X := | |, oy Z(n,e)- Then NOx = Ox. As in Proposi-
tion 5.3, we let qﬁj)\(fo : NOx — NOgz denote the injective homomorphism
induced by the inclusion of X in Z. For each p € P~!, we define Y]/Dv 0 .=
span{jz(Z(,p)) X (NOx)} € N Oz, which has the structure of a Hilbert
N Ox-bimodule, as in Proposition 5.7. Equipping YNO .= |—|p€P71 YQ/O
with the multiplication from N Oz gives YNO the structure of a compactly
aligned product system. We claim that YNO s isomorphic to the product

system associated to the dynamical system (N Ox, G, 3). Routine calcula-
tions show that the formula

20, (X (£) = jx, (@)t

extends by linearity and continuity to an inner product preserving map
from YIJ,V © to NOx NOx, Which we denote by 7,. The map 7, is clearly
right AN'Ox-linear, and is surjective because X is nondegenerate. To see
that the collection of maps {7, : p € P~1} give an isomorphism of product
systems, it remains to show that 8,(7,(y))7,(w) = 74p(yw) for p,q € P71
and y € Y;)\[O,w € Yflvo. Ifa € Zypy = a,44,0 € Zgg) = o,A4,5 €
NOx,z € X,,,y € X,,, then

320, (@K (7% (€)%, (1)) 52,0, (D)X (5)

= 120,49 (@ (@)X (7%, (35 ™ (@), (b - 75" (9)) ")



ITERATING THE CUNTZ-NICA-PIMSNER CONSTRUCTION 795

Hence,

Tap (210 (@K (7%, (@)%, (1) )iz, (B)SK O (5))
= jxo(0q(@)) %, (g™ (@))%, (0" - 7" (¥))"s
= Bq(7%0(0)7%,0, (€)%, (4)") %, (D)5
= Ba (10720, (@K (%, (@)%, (2)))) 74 (G20, (D)X (5)).
By linearity and continuity it follows that S4(7,(y))7q(w) = 74p(yw) for all
Yy € Y;Jv O and w e Yé\/ O as claimed. Applying Theorem 5.20, we see that
NOz X NOynvo ZNOx x5 G = Ox x3G.

Next we define X" := | | ,c p-1 Z(g). Then NOx: =2 A %, G via the map
Jxy(a) = ap-1(a)d,-1 € Ce(G, A) (which we denote by w). We let NP
NOx: — N Ogz denote the injective homomorphism induced by the inclusion
of X in Z. We claim that Y,V := span{jz(Z e ) X (N Ox/)} C N Oy,
and X X, G are isomorphic as Hilbert NOx/ = A X, G-bimodules.

Calculations show that the formula

02000 ()X (G (@), (0)7) = (2 - a1 (ab®)) 6,14 € Ce(G, X)

extends by linearity and continuity to an inner product preserving map from
Y/VO to X X~ G, which we denote by 77.

For any a € X/p = apAA,b S X; = anA,C S Xg = OésAA,d S Xé = atAA,
we have

Jix; (@)ix; ()" jx; (¢)ix; (d)*
] (O‘(q\/s)q*1 (ab*))jX’ (a(q\/s)s*1 (dC*))*

(qvs)s—1t

!
(qvs)g~1lp

Hence if x € Z(; .,) = X, then

7 (20,0 (@)X (i (@), (0)) - (s ey ()"))

= (z- ap-1(ab* a1 (cd™)) 61451

= (z- ap-1(ab*)6y-1,) - (cg-1(cd*)dg-14)

=71 (21,0, (@)X (Gx (@), (1)) - w (i (), (d)°),

which shows that 7{ is right NOx = A X, G-linear. Since P generates
G as a group and X is right nondegenerate as an A-module, the previous
calculation also shows that 7{ is surjective.

Furthermore, we can show that if x = 2’ - (2/, 2') 4, then

dxy (@), ()7 - Gz, .. (2)XE (ixy ()i (4)°)
= jZ(1,eG) (’Yp—l (ab™ - ’7q(x,)))

NO( ' j
X ¢)X’ (]X’(qu)qilp (Oqus(<:E y L >A))jxl(qv3)571t

(a(qu)S_l (dc*))*) :
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71 (7% (@)%, (0)" - ..y ()X (G (), (d)))

= (e (06" (")) s g (0, ') a1 () ytgacr
— (a2 (@) - Ay 1g @y (6d) 8y 101
—1(ab*)d,-14) - (2 - g1 (cd*)dg-14)

= w(ixy (@)jx, (0)) - 71 (fzy o, (@)X (ixs (€2 (A))),

which shows that 77 is left NOx/ = A x4 G-linear. Thus, Y/1N0 and X x, G
are isomorphic as Hilbert NOx: = A x, G-bimodules, and so applying
Theorem 5.20, we have

NOZ gNOY/NO = OY/lNO = OXN»YG'

Hence,

OXNH,G g/\[C’)z = OX Xpg G.
Chasing through the isomorphisms given by Theorem 5.20 as well as the
identifications of Y’lN 9 and Y1VO with X X G and the product system
associated to (NOx, G, ) respectively, shows that the isomorphism from
Oxx,c to Ox xg G satisfies (5.19). O

In our final example we look at twisted C*-algebras of topological higher-
rank graphs [1]. Recall that for k£ € N\ {0}, a topological k-graph is a small
category A = (Obj(A),Mor(A),r, s,0) and a functor d : A — N¥ such that

(i) the sets of objects Obj(A) and morphisms Mor(A) in A are second-
countable, locally compact Hausdorff topological spaces;

(ii) the range and source maps r and s are continuous, and s is a local
homeomorphism;

(iii) if A xc A :={(\p) € AxA:s(A) =r(\)} is equipped with the
subspace topology inherited from the product topology on A x A,
then composition o : A X, A — A is a continuous open map;

(iv) the degree functor d is continuous (where N* has the discrete topol-
ogy);

(v) A satisfies the unique factorisation property: if A € A and d(\) =
m + n for some m,n € NF, then there exist unique p,v € A with
d(p) = m and d(v) = n such that A = uv.

For each n € N, (A% := d=1(0), A" := d~!(n), r|sn, 8|an) is a topological
graph, and we let Z,, denote the associated topological graph correspondence
(see [21] for the details of this construction). Lemma 3.18 of [1] shows that if
A is source-free (in the sense that {\ € A% : r(\) = v} is nonempty for each
v € A% and each i € {1,...,k}) and proper (in the sense that the restriction
r|an is a proper map for each n € N¥), then the left action of Cy(A°) on
each Z,, is faithful and by compacts.

Now fix a continuous T-valued 2-cocycle on A, i.e. a continuous map
c: A x. A — T satisfying



ITERATING THE CUNTZ-NICA-PIMSNER CONSTRUCTION 797

(1) ¢\, pw)e(Ap,v) = e\, pv)e(p, v) for all A\, u,v € A with s(\) = r(u)
and s(u) = r(v);
(ii) e(A, s(A)) =c(r(A),A) =1 for all A € A.
We use this cocycle to define multiplication on Z := | |,y Zn. For f €
Z,,,q € Z, we use [1, Proposition 4.1] to define fg € Zy,+, by

(fa)(Au) == e\, ) f(N)g(p)

for X € A™ € A" with s(A\) = r(x). With this multiplication, Z has
the structure of a compactly aligned product system over (ZF, NF) with
coefficient algebra Cp(A?). Following [1, Definition 4.4], the twisted Toeplitz
algebra TC*(A, ¢) and the twisted Cuntz—Krieger algebra C*(A,c) of A are
defined to be N'Tz and N Oz respectively.

Example 5.25. Let A be a source-free proper topological k-graph, and ¢
a continuous T-valued 2-cocycle on A. For each i € {1,...,k}, let A* :=
{A € A :d()\); = 0} (which we view as a topological (k — 1)-graph) and
define ¢’ := ¢|pix_pi- Then TC*(A,c) and C*(A,c) can be realised as the
Toeplitz and Cuntz—Pimsner algebras of Hilbert bimodules with coefficient
algebras TC*(A?,¢") and C*(A?, ') respectively. Consequently, 7C*(A, c)
and C*(A, ¢) can be viewed as iterated Toeplitz and iterated Cuntz—Pimsner
algebras over TC*(AY) = C*(A%) = Cy(A?).

Furthermore, TC*(A,c) and Cy(A°) are K K-equivalent and have the
same K-theory. Both TC*(A,c) and C*(A, ¢) are nuclear, exact, and satisfy
the UCT.

Proof. It is routine to check that the product system over N*=1) associated
to A’ and ¢, is just the restriction of the product system Z associated to
A and ¢ to the fibres {n € N*¥ : n; = 0} = N =1 which we denote by
X. We let YVN7 and YVO be the product systems over N, with coefficient
algebras N'Tx = TC*(A%, &) and NOx = C*(A?, ¢*) respectively, as defined
in Propositions 4.7 and 5.8. By Theorems 4.17 and 5.20,

TC' (A e) =NTz = NTywnr = Tynr
C*(A,0) = NOz = NOyxo = Oyyo.

Repeatedly applying this procedure shows that 7C*(A, c) and C*(A, ¢) can
be realised as iterated Toeplitz and iterated Cuntz—Pimsner algebras over
Co(A°) respectively.

Since each A™ is locally compact, Hausdorff, and second-countable, each
Z., is countably generated as a Cp(A”)-module [21, Lemma 6.2] and Cy(A?)
is separable [5, Theorem 2.4]. Corollary 4.18(ii) tells us that 7C*(A,c)
and Cp(AY) are K K-equivalent (extending [21, Lemma 6.5] from untwisted
topological graphs to twisted higher-rank topological graphs). Consequently,
TC*(A, c) and Co(A%) have the same K-theory and TC*(A, c) satisfies the
UCT [7, Proposition 2.1(1)]. Since Cy(A°) is commutative, it is nuclear (and
hence exact), and so Corollary 4.18(iv) and Corollary 5.21(ii) tell us that
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TC*(A,c) and C*(A,c) are nuclear (and hence exact). Also, since Cp(A)
satisfies the UCT (it is commutative and separable), Corollary 5.21(iii) tells
us that C*(A, ¢) satisfies the UCT (generalising [21, Proposition 6.6]). O

Remark 5.26. When A is countable and discrete (i.e. A is a higher-rank
graph), [14, Theorem 4.16] shows that the hypothesis of A being proper (i.e.
A is row-finite) can be dropped and the hypothesis that A is source-free can
be relaxed to asking that A is locally-convex.

6. Relative Cuntz—Nica—Pimsner algebras

We now consider the Cuntz—Nica-Pimsner algebra of the product system
YNT defined in Section 4. When the action « is trivial, we will show that
there exists a product system V over (H,Q), and a product system WHNO
over (G, P) with coefficient algebra N'Ov, such that NOyar and NTwao
are isomorphic. In a sense, the Cuntz—Pimsner covariance in NOyn7 can
be moved into the coefficient algebra of WNO,

Since we are, in effect, only asking for Cuntz—Pimsner covariance in some
of the fibres of Z, we like to think of NOyax7 and NTwnro as relative
Cuntz—Nica—Pimsner algebras. This nomenclature is motivated by the rela-
tive Cuntz—Krieger algebras of higher-rank graphs introduced by Sims [37],
and the relative Cuntz—Pimsner algebras introduced by Muhly and Solel [27]
(which were studied further by Fowler, Muhly, and Raeburn [16]).

Standing Hypotheses. We assume that the action o : H — Aut(G) is
trivial. Hence, Z is a compactly aligned product system over (G x H, P X
Q) = (H x G,Q x P). As such, we can swap the roles of G and H, and P
and @ in our results from Sections 4 and 5. To ensure that the C*-algebras
and product systems we want to work with actually exist, we assume that
both G and H are amenable, A acts faithfully on each Z,, 4, and each

P(p,q) 18 injective.

We now summarise the setup, as well as fixing some notation.

(1) For each g € Q, we let Vg :=Z, . Then V:=|] Vg is a com-
pactly aligned product system over (H, Q) with coefficient algebra
A.

(2) By Proposition 5.3, since A acts faithfully on each fibre of V and
each homomorphism $(p7q) A= Ly (Z(M)) is injective, there exists
a homomorphism <Z>/\\,[O : NOv — NOg such that gb/\\,[o o jv = jz.
Furthermore, since H is an amenable group, Proposition 5.6 says
that d)J\\,[O is injective.

(3) Since H is amenable, A acts faithfully on each fibre of V, and each
25(},@ is injective, Proposition 4.7 and Proposition 4.12 give the exis-
tence of a compactly aligned product system WHNO gver (G, P) with
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coefficient algebra MOy, with fibres given by
W;D\/O = span{jz(pveH)(w) VO : x e Zipen) b € NOV}

for each p € P\ {eg}. For simplicity’s sake, we will frequently
identify the coefficient algebra of WO with ¢{/© (NOy) C NOz.

We will exhibit homomorphisms w : NOyxy7 — NTwro and o :
NTwwro — NOynr, and show that they are inverses of each other. We
now list the results that we will prove in Section 6, and summarise the vari-
ous spaces and maps that we will be working with in a pair of commutative
diagrams (see Figures 6 and 7).

(4)

(9)

In Proposition 6.1 we use the universal Cuntz—Nica—Pimsner co-
variant representation of Z along with the universal Nica covariant
representation of WHNO {5 define a Nica covariant representation
¥ of Z in NTyyw~o. This gives the existence of a homomorphism
2:NTz — NTww~o such that

Eo iz(p,q) = ﬁ(l’»‘l) = Z.WQ/O sz(n@ for (pa Q) €EPxQ.

We then show that restricting the homomorphism = to YNT CNTo
gives a Nica covariant representation of YN T, which we denote by
V. The idea is that = plays the same role as the inclusion map in
Propositions 4.16 and 5.18.

In Proposition 6.2 we find sufficient conditions for ¥ to be Cuntz—
Pimsner covariant, and use the universal property of NOyn7 to
induce a homomorphism w such that w o jyar = V.

In Proposition 6.4 we use the universal Nica covariant representation
of Z and the universal Cuntz—Nica—Pimsner covariant representation
of YNT to define a Cuntz—Nica—Pimsner covariant representation 1’
of V in NOywn7. The universal property of N’Oy then gives us a
homomorphism ¥¢ , : NOy — N Oyw7 such that

/ . - .
Vei 0dv, = Jyn7oiz,  forqe@.

In Proposition 6.5 we use the homomorphism W, . to construct a
linear map ¥}, : Wﬁf © — NOyw7 such that

\Il/p sz(p,q) = jYé\[T e} Z.Z(p’q) fOI’ (p, q) & P x Q

In Proposition 6.8 and 6.9 we show that the collection of maps
{¥}, : p € P} gives a Nica covariant representation of the prod-
uct system WHNO The universal property of N'Tyww~o then gives a
homomorphism w’ : NTywrvo — NOywn7 such that w’ oiywo = V.
In Theorem 6.10 we prove that w and w’ are mutually inverse iso-
morphisms.

In summary, we will show that for every (p,q) € P x @, the maps in
Figures 6 and 7 exist and make the diagrams commutative.
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]Y{Z\/T
= Y./\/T
q
(p,2)
jZ(p q) Z‘Z(pyq)
incl. Z(p,q) incl.
jZ(p,q) k)
NOqg NTz

FIGURE 6. The homomorphisms w, w’

NT
Yq
jYé\/'T ;
Z(eg.a)
9 Jz
q (eg-a)
NOYNT < Vq - Z(eG’q) > NOZ
Jjv

\I/’EG ? ¢/\\//o

_ NO

NOy = WY

FIGURE 7. The homomorphisms gzﬁj\\,/o, v,

We begin by exhibiting a Cuntz—Nica—Pimsner covariant representation
U of YNT in A Twn~o. The idea is to produce a homomorphism from N7z
to N'Tw~o, and then restrict this map to YN7.
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Proposition 6.1. Define ¥ : Z — NTyw~o by
19(1074) = iw;j,\fo © jz(p,q)'

Then 9 is a Nica covariant representation of Z, and so there exists a homo-
morphism E : N'Tz — NTww~o such that

Eo iz(pnz) - iwé\/o ° jz(p,q)
for each (p,q) € P x Q. If ¥ : YNT — N'Twwo is defined by

\Ilq = E|Y{Z\[T’

then V¥ is a Nica covariant representation of YNT.
Proof. Both iwévo and J‘Z(p,q) are Nica covariant representations, and so
the same reasoning as in Propositions 4.13 and 4.15 shows that 4 is a Nica
covariant representation. The universal property of N'Tz then induces the
homomorphism =.

Since = is a homomorphism, it is elementary to check that ¥ := Z|ynr
is a representation. We claim that ¥(9(M,) = Z(b) for each b € N'T%. If

S Z(m,q) and w € Z(mq), then iz(myq)(z)iz(nyq) (w)* € NT% and
_ NT
Miy Gig, @) = Oz iz, ) € Ky (Y 7).
Hence,

VO (M, (i, (w)°)

S

q(iz(m,q) (Z))\Ijq(iz(mq) (U}))*

= E(iz (., (2)iz, , (0)7)-
By linearity, continuity, and an application of Lemma 4.9, we get our claim.
We now prove that ¥ is Nica covariant. Fix b € N'T% and ¢ € NT%.
By Lemma 4.11, bc € /\/'T%]W) if ¢Vt < oo, and is zero otherwise. Hence,
U@ (M) TO (M) = Z(b)E(c) = E(be) is zero if ¢Vt = oo, and equal to
W@V (M) = U@V (M) Y (M) if ¢Vt < oo. By Lemma 4.10, it
follows that ¥ is Nica covariant. U

Proposition 6.2. Suppose that A acts compactly on each Z.,, ) and Q is
directed. Then V is a Cuntz—Pimsner covariant representation of YN T and
so there exists a homomorphism w : NOyxt — NTwno such that

w OjY,(/I\/’T = \I/q = E”YQ/T
for each q € Q.

Proof. Since G is amenable and A acts faithfully on each Z, 4, Propo-
sition 4.8 tells us that AT x acts faithfully on each fibre of YN7. Addi-
tionally, since A acts compactly on each Z, ), the same reasoning as in
the proof of Lemma 5.16 shows that N'Tx acts compactly on each fibre
of YNT. Hence, to see that ¥ is Cuntz—Pimsner covariant, it suffices by
[38, Proposition 5.1] to check that ¥(@ o @{J\[T = U, for each ¢ € Q. As
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Yé\gr =NTx = Q%\(W(NTX) is generated by the image of ¢J}\(/T oix = iz|x
it suffices to show that

(6.1) (\II(Q) o <I>(/]\/T) (iz(z)) = Ve, (iz(x)) for each z € X.
To this end, fix z € X,,. Choosing =’ € X, so that z = 2’ - (z/, 2/)}, we have
Veu (2., () = =iz, .,y ()
= iWﬁfO (jZ(p,eH) (.’E))
= iz oy 0 i s (57570
By the first part of Lemma 5.16, we see that

@'(/]V-T(iz(p,eH) (.Qf)) == M

e IC YNT
N COL L AT ) N (Y5 )

and iz, (@)if D (feq g ((@',2")})) € NO. Thus,
NT /-
@ (@q Tiz,., (x)))
== (iz(p’eH) (I/)i(z(e(;,q)) (¢(ec,q) (<‘,L,/7 $/>§74))>

= iwyo (724, (@) iwge (3577 (G (. 2)1)).

Thus, for (6.1) to hold, we need

(@, 2")B) = 5D (¢ o (@, 2)B)),

which follows from Lemma 5.17. O

Jz(

eGeH)

Remark 6.3. As in Remark 5.19, it is not clear if all of the hypotheses
in Proposition 6.2 are necessary. We would like to be able to rerun the
argument used in the proof of Proposition 5.15 (where we did not need A
to act compactly on each Z,, 4, nor for @ to be directed), but iw{,\fo need
not be Cuntz—Pimsner covariant in general.

It remains to exhibit a Nica covariant representation of WN? in A/ OynT
that induces a homomorphism w' : N'Twwyo — NOyar inverse to w. Un-
fortunately, defining this representation is more difficult than when we de-
fined the representation ¥ of YN in N'Tyywvo. Whilst each fibre of WO
sits inside the C*-algebra N'Oz, in general there need not exist a homo-
morphism from N'Ogz to N'Tyno which we can just restrict to WV, We
get around this difficulty as follows. Firstly, we produce a homomorphism
v ., from Wje\go = NOv to NOyn~7 by exhibiting a Cuntz—Nica—Pimsner
covariant representation of V in NOyaxr. Secondly, we use the homo-
morphism ¥;, . to construct a collection of linear maps ¥}, from W;,v © to
NOvynr for each p € P\ {eg}, and then argue that this collection forms a
Nica covariant representation.
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Proposition 6.4. Define ¥ : V. — NOynr by
Uy = JyNT © iz(ec,q)

for each q € Q. Then 9" is a Cuntz—Nica—Pimsner covariant representation
of V, and so there exists a homomorphism ¥, : PNONOy) — NOynr
such that

\II jZ(e ) - ]Y{I\/T O/LZ(EG’q)‘

Proof. The same reasoning as used in the proof of Proposition 4.13 and
Proposition 4.15 shows that 19’ is a Nica covariant representation of V. We
show that 9" is Cuntz—Pimsner covariant. Suppose F' C (@ is finite and the

collection {T, € Ka (V) :q € F} is such that >° pef(Ty) = 0 € La(Vy)

for large t € Q. We need to show that 3 p0"(T,) =0 € NOynr. We
claim that

(6.2) Z Ly (Mi(ec,q)(Tq)) =0¢€ LyTx (Y,{VT) for large ¢.
qeF z

Observe that for any compact operator T' € K4 (Vy), and z € Zicg )
b e NTx, we have

‘g (Mi(zec"’)(:r)> (iz(ecvt) (Z)gbj)\(/T(b)) - iz(ec,t) (LZ(T)(Z))¢/>\<[T(5)~

Given r € Q, fix s > r, such that ) h(Ty) =0€ La(Vi) =LA (Z(€G7t))
for all ¢ > s. Then for any ¢t > s, we see that

< >t (Migam(Tq))) (Y7)

qeF

—spn{ (0 (Mi(zec,q) o)) (2 Ziec) TN T0) |

qEF
—son{iz, (3 4(1)) ) )TN0 = (01
qEF
and so (6.2) holds. Thus,
ST =3 e (M g,)) = 0.
qeF qeF

since jyw7 is Cuntz—Pimsner covariant, and so we conclude that ¥ is Cuntz—
Pimsner covariant. U

Proposition 6.5. For each p € P\ {eq}, there exists a norm-decreasing
linear map Wy, : WNO — NOyw~7 such that

6.3) W (iz,,,, @NOO) =ivar iz, @)V, (67 0)

(Perr)
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forz € Zg, ., and b € NOv . In particular, if z € Zpq and w € Zeg, p,
then
(6.4) W, (jz,.,(2)iz o) (w)*) = jya (izg, , (2)) yn7 (iz (et (w))".

Proof. We claim that for any finite set F' C Z, .,y x NOv,

> dvarlizg, (@)%, (64°0))

z,b)EF
(6.5) (r0)

Z JZ(P )

(z,b)eF

NOyNT

NO(b)

NO
W:D

Since jyw~7 is a homomorphism and iz is a representation, the C*-identity
°G

can be used to show that

2
S dvarlizg,. (@) Vi, (5°0)
(z,b)eF NOynT
= | 2 o (WOEivag (7, (2 W <¢/v“@<c>>H
(J/‘,b), NOyNT
(y,c)EF
| S v (RCwia,, ., ()TN0 ) “ ,
(z,b), NOyNT
(y,0)€F
where the second equality comes from the fact that \IJ’eG o jz, (ccren) = A g =

. . . /
JYNT Oz, Since Ve,

Z ¢NO b*

(@) )0 (@)

is a homomorphism, this is no greater than

eG,eH
(z,b), NOz
(y.0)eF
= Z b* ]Z )(x)*jZ(p’EH) (y) J\\/'[O(c)
(x,b), NOgz
(y,0)eF
p
= < S iz, @RCO), S iz, ) <¥0<c>>
(z,b)eF (y,c)eF NOzZIINOz
2
= > T2y 0 )9 (b)
(x,b)EF wWHO
Thus, (6.5) holds. It follows that
. NO . : NO
T2y, D) > Gy iz, () W (WO0)
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determines a well-defined norm-decreasing linear map \I/; on W{D\[ o, ([

For our proofs of Lemma 6.7 and Proposition 6.9 we will make use of the
next remark.

Remark 6.6. Suppose that (K, R) is a quasi-lattice ordered group and ¢
is a Nica covariant representation of a compactly aligned product system U
over R with coefficient algebra B. Let x € U, and y € U, for some p,q € R
with p,q # ex and p V ¢ < oo, and choose 2/ € U, and y' € U, so that
r=a(2,2)}, andy =y - (', y')%. Since U is compactly aligned and

Upyg =span{or:0 €Uy, 7 € Up—l(p\/q)}

= Span{np neUy, pe Uq—l(pvq)},

there exist 0j, € Up, 75, € Up-15vg), M5 € Ug, pj; € Ug—1(pvq) such that

pVq
k;
v Y :
Lg q (@zl7x/) Lg q (@y/ﬂ/) = Zli)l’élo @inTji Mj; Pi; € ICB (Uqu) .
Ji=1
Using relations (T1)—(T3) and the Nica covariance of ¢, it can be shown that

k;
p(7)"5q(y) = lim Sp=1(pvq) (<x’, Ujiy;% Tji) Sq=1(pvq) (<y', 77j¢>qB Pji)* :

1—00 4
Ji=1

Moreover, if z € U, and w € Uy, then

Sr(2)6p(2) Sq(y)ss (w)”*

k;
- Zliglo Z Srp=1(pvq) (Z <x', Uji>173 Tji) Ssq=1(pVvq) (w <y', nji>qB pji)* :
Ji=1

We now prove that the collection of maps {\Il; : p € P} defined in Propo-

sitions 6.4 and 6.5 gives a representation of the product system WHNO The
proof that ¥’ satisfies relation (T2) is particularly onerous, so we present it
first as a lemma.

Lemma 6.7. The map W' : WNO — NOywr satisfies relation (T2).
Proof. We need to show that
(6.6) W, (x)W,(y) = ¥y, (zy) for any p,r € P and x € Wi,vo, y e WNO.

We begin by showing that (6.6) holds when r = eq. If z € Zpe,) and

b,c € NOv, using (6.3) and the multiplicativity of ‘I/’ec and qu\\,[o, we see
that

W, (jz,, . (AN B) L, (HO(0))
= yar iz, (@)W, (AOB) ., (5O(0))
= Wiz, (A OHO ().
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Since WO = span{jz(p,CH)(z)W\\,/O(b) t 2 € Zipey) b € NOy} and WO

is isomorphic to (;5/\\,/0 (NOv), we conclude that (6.6) holds when r = eg.
We now move on to the case where r # eg. Since ¥}, and W], are linear and

norm-decreasing, and multiplication in N'Oyw7 is linear and continuous, it

suffices to prove that (6.6) holds when z = jz (2)jz (w)* and y =

(cat)
jz(r’m) (u)jz(ec’n) (v)* for z € Z(p,q), w e Z(eg,t)7 u € Z(r,m)v and v € Z(eg,n)~

We deal with the cases where t = ey and t # epr separately.
If t = ep, then w € Z A, and so an application of (6.4) gives

eG»eH) =

Vi (12,0 ()2 oy (W) 52y Wiz Ly (0)7)

eGeH
*

= JyNT (iz@wm) (zw*u))jYQ/T (iz(ec,n) (v)) .

qm

Another application of (6.4), shows that the previous line is equal to

JYNT (Z.Z(p,q) (z)iZ(eG’EH) (w)*iZ<T7m> (u))]Y{yT (Z‘Z(Ecyn) (U>) "

qm

*

= Jyp iz, (Z))jY%T (iz(ecﬁeH) (w))
)
= \I/; (jZ(qu) (Z)jz(ec,eH) (’U})*) \I/;“ (jZ(TvWﬁ (u)jZ(CG*") (v)*) ’

X Gyt (i, (W) Iy a7 (iz (e

as required.

It remains to deal with the situation where ¢t # ey. We make use of
Remark 6.6 to rewrite the product jz, (Z)jZ(eG ) (W) 2.y (u)jz(ec )(v)*
in the form required to apply (6.4). If tVm = oo, then (eg,t) V (r,m) = oo,
and so using the Nica covariance of jz and jyw7 we see that both

,n

\Il;/m* (]‘Z(p’w (Z)]Z( ) (w)*jZ(rym) (u)jZ(EGyn) (U)*)

eqt

and
(v)")

= JyNT (iz(m) (Z))jY{VT (iz(ec,t) (w)) *jYi}{T (iz(r,m) (“))jYéVT (iz(eg,n) (v)) ’

\II; (jZ@,q) (Z)jz(ec,t) (w)*) \Il;ﬂ (jZ(Tﬁm) (U>jz(

eg,n)

are zero. Thus, we may as well suppose that tVm < oo. Choose w' € Zice )

(east) (r,m)

and v’ € Z,, so that w = w' - (w',w') ;" and u = v’ - (u',u) ;. Since
Z is compactly aligned, and
Zrpvm) =Spa0{0T : 0 € e ), T € L1 0vm)) }
= Span{np ne Z(r,m)ap € Z(ec,mfl(t\/m))}7

we can write
(6.7)

(rvm) (rvm) S

r,tvVm r,tvVm BERT
ooty (Ouar )i (Ouw) = Hm 3 Oari 05, € Kt (Ziravm)

Ji=1
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for some 0, € Zeg 1), Tji € Ly p=1(tvm))» Mis € Lirom)s Pii € Legm=1(tvm))-
Combining (6.4) and Remark 6.6, we have

v, (92, q)(z)jz(e W)z, ) Wiz

(6.8) = lim Z Jy

z—>oo t 1(t\/m)

@)

eqn
Z' (z(w' o >(6G’t)7" ))
Z(pr,qtfl(th)) 'Yl A Ji

XJ NT (iz(ecﬁnmfl(tvm))( < 777]z>(rm)pji))*'

nm=1(tvm)

! . / . .

We I.lOW calculfite \I/p(jz(p’q)(zljz(ec’t) (w).*)\pr (JZQW (u )jz(e n)( )*)7 which
requires applying Remark 6.6 to the Nica covariant representation jyar.
Using the fact that w = w' - (w’,w’>f§G’t) and v = u’ - (u’,u’)%m), we see

. _ N s Nz N\t : NT
that ZZ(Eg,t)(w) =iz, (w') <ZZ(5G,t)(w ),zz(ecvt)(w DTy i Y3 ' and
2y (W) = iz, (W) - iz, (W) iz, (W) Ry 1D YNT. Furthermore,
(6.7) implies that
t\/m( tvm

iz,

Y (EG’t)(w’)»iz( @) O iz, )

Zli>I?O Z:l @lZ ,t) (Uji )iz(r,t*1 (t\/m)) (Tji)7iz(rxm) (nji )Zz(
Ji=

€ Knrx (YNT)
whilst iz(eg,t)(aji) € Y{VT, iz(rt 1(tv n))(Tji) € Y (th) iZ(r,m)(nj'i) €
YNT | and iz(eG,mfl(th»(pﬁ) e YV —1(tv )- Thus, (6.4) and Remark 6.6
imply that
V(12,4 (Z)jz(eG,t) (W)") ;. (32, m) (u)jz( ) (v)")
= jYNT (iZ(p q) (Z))]YNT (iz(eG,t) (’UJ)) jY-T’\nfT (iZ(nm) (U))]Y{I\/T (iZ(EG’n) (U))
- L%JZJ

X JyNT ( (EG n)(vxiz(r,m)(ul)7iz(r,m)(77ji)>./T<L/"7’xiz(ecm—1(tv,n))(pji))*

nmfl (tvm)

) (pji)

eG,mfl(t\/m)

eqn

iZ (p, q)(z)<iz(ec,t)(wl)7iZ(eG,t)(Uji )).t/\/'TxZ‘Z(,«’t—HWm))(Tji ))

qt— 1 (tvm)

. / . (8G7t) .
a zli>nolo Z ‘7 t 1(th) Z(PTaqt_l(th)) (Z<'U} 70Ji>A Tji))

i—

X JyNT (iz(ec,nm—l(th)) (1) <u/’ 77ji>§4r7m)pji))*’

nm=1(tvm)

which is (6.8). Thus,
Vo (32,0 (Z)jz( o) (W) 72 (“)jZ(eG,n) (v)7)
= U, (jz,., (= )iz, 0 (w)*) %7 (52, ) (u)jz

(v)7)

eg,n)
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when ¢ # er. We conclude that the map U : WNO — N Oynr satisfies
relation (T2). O

Proposition 6.8. The map ¥ : WNO — NOynr is a representation of
WO,

Proof. By construction, each \I/;) is linear and W/ . 18 a homomorphism.
Hence, U satisfies (T1). We already showed that U’ satisfies (T2) in
Lemma 6.7. It remains to show that ¥’ satisfies (T3).

Fix z,w € Zp.,) and b,c € NOy. Making use of (6.3), we see that

V, (jz,,,, (V1) iz, (W)Y ()
= (dvayr iz, DV (OO (vary (iz,,.., () Ve (HO(0)) )
= UL (VOO )iy iz, ((0) T)) WL, (9 0)).
Since jz is a representation of Z and W/ . 18 a homomorphism satisfying
Jyv AT O iz, (ccren) — \I”ec o jz (ccren)’ the previous expression is equal to
¥, (00 . (2w 70) 60 (o))
= U (ROW) iz, () z,,, ()R ()
= v, ((iz,,,, (v ®), Jz( o @A) 0, )-

Since W{)\/O = span{jz(p’eH) (Zpen) )¢NO NOV } for each p € P, ¥,
is linear and norm-decreasing, and multiplication in N'Oya7 is linear and
continuous, we conclude that W (x)*®7 (y) = W, ((z, y)ﬁfov) for each z,y €
W{,\/ O, Thus, ¥ satisfies (T3), and we conclude that ¥’ is a representation
of WNO O

eGeH)

We can also show that the representation ¥’ is Nica covariant.

Proposition 6.9. The representation U’ : WNO — NOynr is Nica co-
variant, and so there exists a homomorphism w' : NTywwxo — NOyn1 such
that

CL), o Zwﬁ/’o = \I/;)
for each p € P.

Proof. We need to show that if S € Kyo,, (Wévo) and T € Ko, (WNO),
then W/®) (S)W () (T) is equal to W PV7) (.57 (S)2Y"(T)) when pVr < co and
is zero otherwise. If p = eg or r = eq, the result is trivial, so we suppose
that p,r # eq. Hence, by Lemma 4.10, it suffices to show that

V(O (z, @)Y (O iz, )

(6.9) {‘P’(pw)( T2 (i (W) 2y (Wi y (0)*) PV T <00

0 otherwise.
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whenever z € Z, ), W € Z(p4), U € L), U E Lirp)-

We begin by showing that (6.9) holds when p V r = oo or t Vm = oc.
Since jz, ., (2)iz,., (W) iz, Wiz, (0)" = 0if t V.m = oo, it suffices to
show that

p/(P) (

(6 10) sz(znq) (Z)’jz(pyt) (w)) \II/(T) (@

ifpVr=occortVvm=oo.

T2y (W72 ()

Observe that

p/(P) (© p/(r) (©

2, ) ()i 4y () T2y Wiz ()

(6.11) = jyfl\/T (iz(p,q)(z))jY{‘/T (izmt) (w))

*

X jYNT (Z.Z(Tym) (u))]YnNT (Z‘Z“Yn) (U)) *'

m

If tvVm = oo then (6.11) is zero since jy7 is Nica covariant. Hence, we need
to consider the situation where tVm < oo and pVr = co. Choose w’ € Zyp

and u' € Z, ) so that w = w’ - <w’,w’>ff’t) and u = u - <u’,u’>g’m). The

Nica covariance of jy~T gives

Iyt (iz ) () vy (12, ()

. . N ¥ .(th)
- ]Yé\/T (ZZ(p,t) (w )) ]YNT (Mi(z(p't))(ew’,w’)i(z(r’m))(®u’,u’)>

X ]Y%T (Z.Z(nm) (U,)) *7
which is zero since iz is Nica covariant and (p,t)V (r,m) = oo (as pVr = 00).
Thus, (6.11) is zero, which completes the proof of (6.10).
It remains to prove that (6.9) holds whenever pVr < oo and t Vm <

00. As in Lemma 6.7, we will need to make use of Remark 6.6 to rewrite

things in a form that allows us to apply the description of ¥’ given by (6.4).

(p:t)

Again, choose w' € Z, ;) and v’ € Z(, ) 50 that w = w' - (w',w') ;" and

u=u"-{u, u'>g’m). Writing
oty (Ot )™ (Ot )
ki
- }E{}o 2_:1 Ooj,riimispi; € KA (Zpvrpvm))
for some choice of o;, € ZJ(:’t), Tj;, € Z(p—l(pvr)7t_1(tvm))7 n;; € z(r’m)’ and
Pji € Lr—1(pvr),m—1(tvm)), Remark 6.6 tells us that

2.0 (2)T25 1) (W) 2,y (W) T2,y (V)

k;
- L ; o A®t)
= lim Z;]Z(pvr,qtluvm» (z(w’, 05,04 75:)
Ji=

(r,m)

. m *
X ]Z(pVT,nmfl(t\/m)) (U<UI’ 77.]1>A p.]l) :
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Thus,
I(pV
\P (p T) (MJZ<P q) (Z).]Z p,t) (w)*jz(r,m) (u)jZ(T’,,w (U)*)
_ 1(pVr)
lli)rélo Zl \Il <@jz(z<w,’o'ji>ff’t)7—ji)7jz(v<u,a7]ji>fqr7m)pji))
Ji=
(6.12) N .
o . . p,t
N zliglo zjleiz\tffl(tvm (ZZ(PVT’qf”(th)) (2w, 05,0 47 730))
Ji=
. 1o A (mm) oy E
X ] ilvv:—l(th) (ZZ(va’nmfl(th» (U<u 777]¢>A p]i)) .

To complete the proof we will apply Remark 6.6 to the product system YNT
in order to show that (6.12) is equal to the left hand side of (6.9). Since
w=w-(w, w/)%’i)
in YNT is iz, (W) (iz, , (W), iz, (W) 7y - Similarly, iz, (u) is equal
to iz, ., (W) iz . (W), iz ., (0)) {7 Moreover,

tvm
by

; the Hewitt-Cohen-Blanchard factorisation of iz, , , (w)

(O, t)(w’):iz( o)t Oy w)iz,, ()

zli{& Z @ )iz (75, )iz (n5; )iz (ps; )

Ji=1
whilst iz, , (05,) € YT

’ Zz(p_l(pVT) t— 1(f\/m)) ( ) € t— 1(th) ZZ('I‘,m) (77.71) S
Y./\/'Z
m

, and Z.Z(rl(pw),mfl(tvm) (pj;) € Y 1(th) Hence,

v (szmq) (2):72 1) (“’)> v <@jz<r m)y (W2 ) (“)>

:jYQ’T(Z(pq) ))dxy iz, (w W) Gy (12, () Gy iz, (0)

. . . )
N zliglo Z jYé\Zl(th) (Zz(anqtfl(th» (z(w UJZ>“{) sz))
Ji=
% ]Y;:f'rzll(t\/ ) (Z.Z(P\/T,nmfl(t\/m)) ( <u 77]1>(T m)p]’b))*7

which is precisely (6.12). This completes the proof that ¥’ is Nica covariant.
[l

Finally, we are ready to prove that NOyn7 and NTyao are isomorphic.

Theorem 6.10. Suppose that A acts compactly on each Z, 4 and Q is
directed, so that the homomorphism w of Proposition 6.2 exists. Then w :
NOynT = NTwro and ' : NTywwro — NOywn7 are mutually inverse
isomorphisms. Thus, NOyxt Z NTwnro.

Proof. Firstly, we show that wow' =1idy7  yo- AS NTwno is generated
by iww~o, it suffices to show that w o w' o iywwwvo = iwno. If 2 € Z(, 4y and
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W € Ze 1), then

(wo o) (iwyo (iz,. (i, (@)))
= (wo ) iz, )iz, , (0))
= w (jygw (i) (2)dxa7 (2, (w)*))
= E(iz,, )iz, , (1))

(w))”

= ZWI,/}/'(’) (jz(p,q) (z))ZW'é\[GO (jz(eG,t)

= iwyo (iz,, o (2)iz,..,  (0)°).
Since W{,\/O = span{jz(pm (Z(p,q)) jZ(EG,t) (Z(ec,t))* : ¢t € Q} for each

p € P, whilst both of the maps w o W’ o iywwxo and iywwxo are linear and
continuous, we conclude that w o w’ o z‘wyo = iwzj)vo for each p € P. Thus,

wow =1ida T vo-
W-
Secondly, we check that w' ow = ldyoyyr- As NOynr is generated by
Jy~T, it suffices to check that w' ow o jyar = jyar. For any z € Z,q) and
W € Ly ey, we have

(' o) (dvy7 iz, iz, (w)))
= (w, ° E,) (iz(p,q) (z)iz(r,eH) (w)*)
= w/ (iW{)\/O (jz(pyq) (Z)) 7’VVJT\[O (jZ(T»EH) (’UJ)) *>
= \II;; (jZ(p,q) (Z))\I/;, (jZ(r’eH) (’U))) :
= ]Y-('JVT (iZ(p,q) (Z))jYé\gT (iZ(TyeH) (’U))) i
— jy(jsz (Z.Z(pm (Z)’L'z(r’eH) (w))*
Since Y(/]W' = spﬁ{iz(m) (Z(p,q)) iz(mH) (Z(neH))* :p,q € P} for each

g € Q, whilst both of the maps &’ o w o jya7 and jyar are linear and
continuous, we conclude that w’' ow o le/Z\/T = jyéVT for each ¢ € ). Thus,

w ow =idyo,ur- O
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