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Boundedness of Littlewood-Paley
g-functions on non-homogeneous

metric measure spaces

Huaye Jiao and Haibo Lin

Abstract. In this paper, we establish the boundedness of Littlewood-
Paley g-functions on Lebesgue spaces, BMO-type spaces, and Hardy
spaces over non-homogeneous metric measure spaces satisfying the weak
reverse doubling condition.
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1. Introduction

It is well known that the Littlewood-Paley theory plays an important
role in harmonic analysis. It was first introduced by Littlewood and Paley
[LP31, LP37II, LP37III] just for the one-dimensional case. In 1958, using
real variable methods, Stein [S58] extended the theory to high-dimensional
cases. From then on, the Littlewood-Paley theory drew wide concern in the
field of analysis.

Many results, including the Littlewood-Paley theory, on the classical Eu-
clidean space can be extended to the space of homogeneous type, which is
generally regarded as a natural setting for singular integrals and function
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spaces. We call (X , d, µ) a space of homogeneous type in the sense of Coifman
and Weiss [CW71], if (X , d) is a metric space and µ is a non-negative Borel
measure satisfying the measure doubling condition: there exists a positive
constant C(µ) such that, for all x ∈ X and r ∈ (0,∞),

(1.1) µ(B(x, 2r)) ≤ C(µ)µ(B(x, r)),

where B(x, r) := {y ∈ X : d(x, y) < r}. For spaces of homogenous type with
the additional property that a reverse doubling property holds, Han, Müller
and Yang [HMY06] developed a Littlewood-Paley theory for atomic Hardy
spaces, where a continuous version of the Littlewood-Paley g-function was
used.

On the other hand, many results were proved to remain valid in other
settings as well, for instance, (Rn, |·|, µ), the Euclid space with non-doubling
measure. Recall that a non-negative Radon measure µ on Rn is called a non-
doubling measure, if µ satisfies the polynomial growth condition: there exist
some positive constants C0 and κ ∈ (0, n] such that, for all x ∈ Rn and
r ∈ (0,∞),

(1.2) µ(B(x, r)) ≤ C0r
κ,

where B(x, r) := {y ∈ Rn : |x − y| < r}. The measure as in (1.2) may
not satisfy the doubling condition (1.1). The analysis on such non-doubling
context plays a striking role in solving several long-standing problems related
to the analytic capacity, like Vitushkin’s conjecture or Painlevé’s problem;
see [T03]. Moreover, Tolsa [T01am] developed some Littlewood-Paley theory
in this setting.

Recently, in [Hy10], Hytönen pointed out that the measure µ satisfying
the polynomial growth condition is different from, not general than, the dou-
bling measure. In other words, there exists no inevitable inclusion relation
between the spaces of homogeneous type and the metric measure spaces with
non-doubling measure. To unify these two spaces, Hytönen [Hy10] intro-
duced the so-called non-homogeneous metric measure spaces satisfying both
the upper doubling and the geometrically doubling condition (see, respec-
tively, Definitions 1.1 and 1.2 below). We mention that several equivalent
characterizations for the upper doubling condition were recently established
by Tan and Li [TL15, TL17] and the so-called Bergman-type operator ap-
pearing in [VW12] can be seen as the Calderón-Zygmund operator in this
new setting; see also [HM12] for an explanation. Furthermore, plenty of
theoretical achievements, including some Littlewood-Paley theory, in this
new context sprang up soon after 2010; see [LY11, HYY12, FYY12, BD13,
LY14, FYY14, FLYY15, TL15] for more information. Very recently, Fu and
Zhao [FZ16] obtained some endpoint estimates for the discrete version of
Littlewood-Paley g-function. We refer the reader to the survey [YYF13]
and the monograph [YYH13] for more developments on harmonic analysis
in this setting.
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The main purpose of this article is to establish the boundedness of the
continuous version of Littlewood-Paley g-function on several function spaces
over non-homogeneous metric measure spaces.

Definition 1.1. A metric measure space (X , d, µ) is said to be upper dou-
bling, if µ is a Borel measure on X and there exist a dominating function
λ : X × (0,∞)→ (0,∞) and a positive constant C(λ), depending on λ, such
that, for each x ∈ X , r → λ(x, r) is non-decreasing and, for all x ∈ X and
r ∈ (0,∞),

(1.3) µ(B(x, r)) ≤ λ(x, r) ≤ C(λ)λ(x, r/2).

Remark 1.1.

(i) Evidently, if a measure µ satisfies the measure doubling condition
(1.1) or the polynomial growth condition (1.2), then it has the upper
doubling property (1.3). In the former case, we take the dominating
function λ(x, r) := µ(B(x, r)) for all x ∈ X and r ∈ (0,∞); in the
latter one, we take λ(x, r) := C0r

κ for all x ∈ Rn and r ∈ (0,∞).
(ii) For (X , d, µ) and λ as in Definition 1.1, it was proved in [Hy10]

that there exists another dominating function λ̃ such that λ̃ ≤ λ,
C
(λ̃)
≤ C(λ) and, for all x, y ∈ X with d(x, y) ≤ r,

(1.4) λ̃(x, r) ≤ C
(λ̃)
λ̃(y, r).

The following notion of geometrically doubling can be found in [CW71,
pp.66-67] and is also known as metrically doubling (see [He01, p.81]).

Definition 1.2. A metric space (X , d) is said to be geometrically doubling, if
there exists some N0 ∈ N+ := {1, 2, . . .} such that, for any ball B(x, r) ⊂ X
with x ∈ X and r ∈ (0,∞), there exists a finite ball covering {B(xi, r/2)}i
of B(x, r) such that the cardinality of this covering is at most N0.

What might also be noted is that spaces of homogeneous type are ge-
ometrically doubling, which was proved by Coifman and Weiss in [CW71,
pp.66-68].

A metric measure space (X , d, µ) is called a non-homogeneous metric
measure space, if it is upper doubling and (X , d) is geometrically doubling.
Based on Remark 1.1(ii), through the whole article, we always assume that
(X , d, µ) is a non-homogeneous metric measure space with the dominating
function λ satisfying (1.4).

Now, we introduce the continuous version of Littlewood-Paley g-function
on (X , d, µ).

Definition 1.3. Let ε1 ∈ (0, 1], ε2 ∈ (0,∞) and λ be a dominating function.
The kernel Dt(x, y) with t ∈ (0,∞) is a measurable function from X ×X to
C that satisfies the following estimates: there exists a positive constant C
such that, for all t ∈ (0,∞) and x, x′, y ∈ X with d(x, x′) ≤ (t+ d(x, y))/2,
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(A1) |Dt(x, y)| ≤ C 1

λ(x, t) + λ(y, t) + λ(x, d(x, y))

[
t

t+ d(x, y)

]ε2
;

(A2)∣∣Dt(x, y)−Dt(x
′, y)

∣∣ ≤ C 1

λ(x, t) + λ(y, t) + λ(x, d(x, y))

[
t

t+ d(x, y)

]ε2
×
[
d(x, x′)

t+ d(x, y)

]ε1
;

(A3) Property (A2) also holds with the roles of x and y interchanged;

(A4)

∫
X
Dt(x, y)dµ(x) = 0 =

∫
X
Dt(x, y)dµ(y).

The Littlewood-Paley g-function g(f) associated with Dt(x, y) is defined by
setting, for all suitable f and x ∈ X ,

(1.5) g(f)(x) :=

{∫ ∞
0

∣∣∣∣∫
X
Dt(x, y)f(y)dµ(y)

∣∣∣∣2 dtt
}1/2

.

In the space of homogeneous type, if we take λ(x, t) = µ(B(x, t)), then
g(f) as in (1.5) is just the Littlewood-Paley g-function introduced by Han
et al. [HMY06]. To establish the boundedness of the operator g, throughout
this paper, we always assume that g is bounded on L2(µ) and the dominating
function λ as in Definition 1.1 satisfies the following weak reverse doubling
condition introduced by Fu et al. [FYY14]. In what follows, let diam(X ) :=
supx,y∈X d(x, y).

Definition 1.4. The dominating function λ as in Definition 1.1 is said to
satisfy the weak reverse doubling condition if, for all r ∈ (0, 2 diam(X )) and
a ∈ (1, 2 diam(X )/r), there exists a constant C(a) ∈ [1,∞), depending only
on a and X , such that, for all x ∈ X ,

λ(x, ar) ≥ C(a)λ(x, r),(1.6)
∞∑
k=1

1

C(ak)
<∞.(1.7)

The organization of this paper is as follows. Section 2 is devoted to
recalling the notions of the (α, β)-doubling ball and the discrete coefficient

K̃
(ρ),p
B,S . Moreover, we establish some estimates for the Littlewood-Paley g-

function g(f), which will be used in the next sections. In section 3, by
using the Calderón-Zygmund decomposition, we prove the boundedness of
g from L1(µ) into L1,∞(µ) (see Theorem 3.1 below). In section 4, we show

that g is bounded from the space R̃BMO(µ) into the space R̃BLO(µ) (see
Theorem 4.1 below). To this end, we establish a new characterization of the

space R̃BLO(µ) (see Lemma 4.5 below), which is of independent interest.
In section 5, via the boundedness criteria proved in [LL18], we establish the
boundedness of g on the Hardy spaces Hp with p ∈ (0, 1] (see Theorems 5.1
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and 5.2 and Corollary 5.2 below). The proof of the case of p = 1 is standard,
and we borrow some ideas from the proof of [FLYY15, Theorem 4.8] to deal
with the case of p ∈ (0, 1). As a corollary, we obtain the boundedness of g
on Lq(µ) with q ∈ (1,∞).

For convenience, we make some conventions on notation. Throughout
this paper, C stands for a positive constant independent of the main pa-
rameters, but they may vary with different contexts. Moreover, constants
with subscripts also denote positive constants. Concretely, constant like C(α)

depends on the parameter α; constant like C0 does not change in different
occurrences. For two real-valued functions f and g, we write f . g, if
f ≤ Cg; we write f ∼ g, if f . g . f . Given any q ∈ (0,∞), q′ := q/(q− 1)
means its conjugate index. For any subset E ⊂ X , χE denotes its character-
istic function. A ball B := B(xB, rB) ⊂ X has positive and finite measure,
where xB ∈ X and rB ∈ (0,∞) denote its center and radius, respectively.
Furthermore, for any τ ∈ (0,∞), τB := B(xB, τrB). Finally, we write
N+ := {1, 2, 3...}, N := N+ ∪ {0}, ν := log2C(λ) with C(λ) as in Definition
1.1 and n0 := log2N0 with N0 as in Definition 1.2.

We would like to express our sincere thanks to Jie Chen, Yu Yan and
Haoyuan Li for several helpful discussions and valuable suggestions. We
also wish to express our thanks to the referee for her/his careful reading and
many valuable comments which improved the presentation of the article.

2. Preliminaries

In this section, we first recall some necessary notions and notation. Al-
though the assumption concerning the measure doubling condition (1.1)
do not strictly suit all balls in the non-homogeneous metric measure space
(X , d, µ), there still exist lots of balls having the following (α, β)-doubling
property introduced in [Hy10].

Definition 2.1. Let α, β ∈ (1,∞). The ball B ⊂ X is said to be (α, β)-
doubling, if µ(αB) ≤ βµ(B).

Remark 2.1. The following statements were proved by Hytönen in [Hy10,
Lemma 3.3].

(i) Let (X , d, µ) be upper doubling with β > αν . Then, for any ball
B ⊂ X , there exists some j ∈ N such that αjB is (α, β)-doubling.

(ii) Let (X , d) be a geometrically doubling space equipped with a non-
negative Borel measure µ which is finite on all bounded sets. Let
β > αn0 . Then, for µ-almost every x ∈ X , there exist arbitrary
small (α, β)-doubling balls centered at x. Furthermore, the radii of
these balls may be chosen to be of the form α−jr for j ∈ N+ and any
preassigned number r ∈ (0,∞).
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In what follows, for any α ∈ (1,∞) and ball B, B̃α denotes the smallest
(α, βα)-doubling ball of the form αjB with j ∈ N, where

(2.1) βα := α3(max{n0,ν}) + (max{5α, 30})n0 + (max{3α, 30})ν .

In particularly, for any ball B ⊂ X , we use B̃ to denote the smallest (6, β6)-
doubling ball of the form 6jB with j ∈ N.

Now we recall the definition of the discrete coefficient K̃
(ρ),p
B,S introduced

by Bui and Duong in [BD13] when p = 1 and by Fu et. al in [FLYY15]
when p ∈ (0, 1]. Before this, we first give an assumption: when we speak
of a ball B in (X , d, µ), it is understood that it comes with a fixed center
and radius, although these in general are not uniquely determined by B as
a set; see [He01, pp.1-2]. In other words, for any two balls B,S ⊂ X , if
B = S, then xB = xS and rB = rS . Thus, if B ⊂ S ⊂ X , then rB ≤ 2rS ,

which guarantees the definition of K̃
(ρ),p
B,S make sense (see [FLYY15] for more

details).

Definition 2.2. For any ρ ∈ (1,∞) , p ∈ (0, 1] and any two balls B ⊂ S ⊂
X , let

K̃
(ρ),p
B,S :=

1 +

N
(ρ)
B,S∑

k=−blogρ 2c

[
µ(ρkB)

λ(xB, ρkrB)

]p
1/p

,

here and hereafter, for any a ∈ R, bac represents the biggest integer which is

not bigger than a, and N
(ρ)
B,S is the smallest integer satisfying ρN

(ρ)
B,SrB ≥ rS .

Remark 2.2.

(i) We simply denote K̃
(ρ),1
B,S by K̃

(ρ)
B,S . It is easy to see that

K̃
(ρ)
B,S ∼ 1 +

N
(ρ)
B,S+blogρ 2c+1∑

k=1

µ(ρkB)

λ(xB, ρkrB)
.

(ii) The following coefficient KB,S , introduced by Hytönen in [Hy10], can
be deemed to be the continuous version of the discrete coefficient
K̃

(ρ)
B,S .

KB,S := 1 +

∫
(2S)\B

dµ(x)

λ(xB, d(x, xB))

Obviously, KB,S . K̃
(ρ)
B,S . However, it is unclear whether KB,S ∼

K̃
(ρ)
B,S . In particular, for (Rn, | · |, µ) with µ as in (1.2), KB,S ∼ K̃(ρ)

B,S .
Moreover, if the dominating function λ satisfies the weak reverse

doubling condition, then KB,S ∼ K̃(ρ)
B,S ; see [FYY14].

The following properties of K̃
(ρ),p
B,S were proved in [FLYY15].
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Lemma 2.1. Let (X , d, µ) be a non-homogeneous metric measure space,
p ∈ (0, 1] and ρ ∈ (1,∞).

(i) For all balls B ⊂ R ⊂ S,

[K̃
(ρ),p
B,R ]p ≤ C(ρ)[K̃

(ρ),p
B,S ]p, [K̃

(ρ),p
R,S ]p ≤ c̃(ρ,p,ν)[K̃

(ρ),p
B,S ]p

and
[K̃

(ρ),p
B,S ]p ≤ [K̃

(ρ),p
B,R ]p + c(ρ,p,ν)[K̃

(ρ),p
R,S ]p,

where C(ρ) is a positive constant depending on ρ, c(ρ,p,ν) and c̃(ρ,p,ν)
are positive constants depending on ρ, p and ν.

(ii) Let α ∈ [1,∞). For all balls B ⊂ S with rS ≤ αrB, [K̃
(ρ),p
B,S ]p ≤ C(α,ρ),

where C(α,ρ) is a positive constant depending on α and ρ.
(iii) There exists a positive constant C(ρ,ν), depending on ρ and ν, such

that, for all balls B, K̃
(ρ),p

B,B̃ρ
≤ C(ρ,ν). Moreover, letting α, β ∈ (1,∞),

B ⊂ S be any two concentric balls such that there exists no (α, β)-
doubling ball in the form of αkB with k ∈ N, satisfying B ⊂ αkB ⊂ S,
then there exists a positive constant C(α,β,ν), depending on α, β and

ν, such that K̃
(ρ),p
B,S ≤ C(α,β,ν).

(iv) For any ρ1, ρ2 ∈ (1,∞), there exist positive constants c(ρ1,ρ2,ν) and
C(ρ1,ρ2,ν), depending on ρ1, ρ2 and ν, such that, for all balls B ⊂ S,

c(ρ1,ρ2,ν)K̃
(ρ1),p
B,S ≤ K̃(ρ2),p

B,S ≤ C(ρ1,ρ2,ν)K̃
(ρ1),p
B,S .

At the end of this section, we present the following lemma which will be
used frequently in the rest of this paper.

Lemma 2.2. Let (X , d, µ) be a non-homogeneous space, and g be as in
Definition 1.3. Assume that f ∈ L1

loc(µ) and there exists a ball B ⊂ X such
that supp(f) ⊂ B. For any x 6∈ 2B,

(i) if f has the vanishing moment, that is,
∫
X f(y)dµ(y) = 0, then

(2.2) g(f)(x) .
∫
B

|f(y)|
λ(x, d(x, y)

[
rB

d(x, y)

]ε1
dµ(y),

where ε1 ∈ (0, 1] is as in Definition 1.3;
(ii) if λ satisfies the weak reverse doubling condition, then

(2.3) g(f)(x) .
∫
B

|f(y)|
λ(x, d(x, y))

dµ(y).

Proof. To prove (i), we use the regular conditions of Dt(x, y) in Definition

1.3 (A2) and (A3). This, together with the assumption that

∫
X
f(y)dµ(y) =

0 and the Minkowski inequality, shows that

g(f)(x) =

{∫ ∞
0

∣∣∣∣∫
B

[Dt(x, y)−Dt(x, xB)]f(y)dµ(y)

∣∣∣∣2 dtt
}1/2
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≤
∫
B

{∫ ∞
0
|Dt(x, y)−Dt(x, xB)|2dt

t

}1/2

|f(y)|dµ(y)

.
∫
B

{∫ d(x,y)

0

∣∣∣∣ 1

λ(x, d(x, y))

[
t

d(x, y)

]ε2 [d(xB, y)

d(x, y)

]ε1∣∣∣∣2 dtt
}1/2

× |f(y)|dµ(y)

+

∫
B

{∫ ∞
d(x,y)

∣∣∣∣ 1

λ(x, d(x, y))

[
d(xB, y)

t

]ε1∣∣∣∣2 dtt
}1/2

|f(y)|dµ(y)

≤
∫
B
|f(y)| (rB)ε1

λ(x, d(x, y))[d(x, y)]ε1+ε2

[∫ d(x,y)

0
t2ε2−1dt

]1/2
dµ(y)

+

∫
B
|f(y)| (rB)ε1

λ(x, d(x, y))

[∫ ∞
d(x,y)

t−2ε1−1dt

]1/2
dµ(y)

.
∫
B

|f(y)|
λ(x, d(x, y))

[
rB

d(x, y)

]ε1
dµ(y).

To prove (ii), we use the size condition of Dt(x, y) in Definition 1.3 (A1).
From this, the Minkowski inequality, (1.6) and (1.7), we deduce that

g(f)(x) =

{∫ ∞
0

∣∣∣∣∫
B
Dt(x, y)f(y)dµ(y)

∣∣∣∣2 dtt
}1/2

≤
∫
B

{∫ ∞
0
|Dt(x, y)|2dt

t

}1/2

|f(y)|dµ(y)

.
∫
B

{∫ d(x,y)

0

∣∣∣∣ 1

λ(x, d(x, y))

[
t

d(x, y)

]ε2∣∣∣∣2 dtt
}1/2

|f(y)|dµ(y)

+

∫
B

{∫ ∞
d(x,y)

∣∣∣∣ 1

λ(x, t)

∣∣∣∣2 dtt
}1/2

|f(y)|dµ(y)

=

∫
B

1

λ(x, d(x, y))(d(x, y))ε2

[∫ d(x,y)

0
t2ε2−1

dt

t

]1/2
|f(y)|dµ(y)

+

∫
B

{∫ ∞
d(x,y)

dt

[λ(x, t)]2t

}1/2

|f(y)|dµ(y)

.
∫
B

|f(y)|
λ(x, d(x, y))

dµ(y)

+

∫
B

{ ∞∑
n=0

∫ 2n+1d(x,y)

2nd(x,y)

dt

[λ(x, t)]2t

}1/2

|f(y)|dµ(y)
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.
∫
B

|f(y)|
λ(x, d(x, y))

dµ(y) +
∞∑
n=0

1

C(2n)

∫
B

|f(y)|
λ(x, d(x, y))

dµ(y)

.
∫
B

|f(y)|
λ(x, d(x, y))

dµ(y),

where C(1) = 1. This completes the proof of Lemma 2.2. �

3. Boundedness of g from L1(µ) into L1,∞(µ)

Theorem 3.1. Let (X , d, µ) be a non-homogeneous space and g be as in
Definition 1.3. Assume that the dominating function λ satisfies the weak
reverse doubling condition. If g is bounded on L2(µ), then g is bounded
from L1(µ) into L1,∞(µ).

In order to prove Theorem 3.1, we first present the Calderón-Zygmund
decomposition from [BD13].

Lemma 3.1. Let f ∈ L1(µ) and ` ∈ (0,∞) (` > `0 := γ0[µ(X )]−1‖f‖L1(µ)

if µ(X ) < ∞, where γ0 is any fixed positive constant satisfying that γ0 >

max{C3 log2 6
(λ) , 63n}, C(λ) is as in (1.3)). Then

(i) there exists an almost disjoint family {6Bj}j of balls such that {Bj}j
is pairwise disjoint,

1

µ(62Bj)

∫
Bj

|f(x)|dµ(x) >
`

γ0
for all j,

1

µ(62ηBj)

∫
ηBj

|f(x)|dµ(x) ≤ `

γ0
for all j and all η ∈ (2,∞),

and

|f(x)| ≤ ` for µ− almost every x ∈ X \ (
⋃
j

6Bj);

(ii) for each j, let Sj be a (3×62, C
log2(3×62)+1
(λ) )-doubling ball of the family

{(3 × 62)kBj}k∈N+ and ωj := χ6Bj/(
∑
k

χ6Bk). Then, there exists a

family {ϕj}j of functions such that, for each j, supp(ϕj) ⊂ Sj, ϕj
has a constant sign on Sj,∫

X
ϕj(x)dµ(x) =

∫
6Bj

f(x)ωj(x)dµ(x),

∑
j

|ϕj(x)| ≤ γ` for µ− almost every x ∈ X ,

where γ is some positive constant, depending only on (X , µ), and
there exists a positive constant C, independent of f , ` and j, such
that, it holds true that
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‖ϕj‖L∞(µ)µ(Sj) ≤ C
∫
X
|f(x)ωj(x)|dµ(x)

Proof of Theorem 3.1. Let f ∈ L1(µ) and ` ∈ (0,∞). To obtain the
desired conclusion, we only need to prove that

(3.1) µ({x ∈ X : g(f)(x) > 2`}) . 1

`
‖f‖L1(µ) .

Let γ0 be a positive constant as in Lemma 3.1. Apparently (3.1) holds true
when µ(X ) <∞ and ` ∈ (0, γ0 ‖f‖L1(µ) [µ(X )]−1].

For other cases, we apply Calderón-Zygmund decomposition to |f | at the
level ` with the same notation as in Lemma 3.1. Let F := X\(

⋃
j

62Bj).

Decompose f as f = a+ b, where

a := χFf +
∑
j

ϕj and b :=
∑
j

bj :=
∑
j

(ωjf − ϕj).

Now, we can transform the problem of proving (3.1) into certifying that

(3.2) µ({x ∈ X : g(a)(x) > `}) . 1

`
‖f‖L1(µ)

and

(3.3) µ({x ∈ X : g(b)(x) > `}) . 1

`
‖f‖L1(µ) .

From Lemma 3.1, it is easy to see that ‖a‖L∞(µ) . ` and ‖a‖L1(µ) . ‖f‖L1(µ).

This, together with the L2(µ)-boundedness of g, enables us to derive (3.2).
On the other hand, it follows from Lemma 3.1(i) that

µ

⋃
j

62Bj

 . 1

`
‖f‖L1(µ) .

Thus, to prove (3.3), we are only required to prove that

(3.4) µ({x ∈ F : g(b) > `}) . 1

`
‖f‖L1(µ) .

Since g is non-negative and sublinear, we have

µ({x ∈ F : g(b)(x) > `})

≤ 1

`

∫
F
g

∑
j

bj

 (x)dµ(x)

≤ 1

`

∑
j

[∫
X\(2Sj)

g(bj)(x)dµ(x) +

∫
(2Sj)\(62Bj)

g(bj)(x)dµ(x)

]

=:
1

`

∑
j

(Hj,1 + Hj,2) .
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We first give the conclusion as below, which will be repeatedly used af-
terward. When x 6∈ 2B and y ∈ B, d(x, y) ∼ d(x, xB). This, together with
(1.1) and Remark 1.1(ii), implies that, for any x 6∈ 2B and y ∈ supp(f) ⊂ B,

(3.5) λ(x, d(x, y)) ∼ λ(y, d(x, y)) ∼ λ(y, d(x, xB)) ∼ λ(xB, d(x, xB)).

By Lemma 3.1, we see that
∫
X bj(y)dµ(y) = 0 and supp(bj) ⊂ Sj . From

this, together with (2.2), (3.5), (1.3) and Lemma 3.1(ii), we deduce that

Hj,1 .
∫
Sj

|bj(y)|dµ(y)

∫
X\(2Sj)

1

λ(xSj , d(x, xSj ))

[
rSj

d(x, xSj )

]ε1
dµ(x)

≤
∫
X
|bj(y)|dµ(y)

×

{ ∞∑
n=1

∫
(2n+1Sj)\(2nSj)

1

λ(xSj , d(x, xSj ))

[
rSj

d(x, xSj )

]ε1
dµ(x)

}

.
∫
X
|bj(y)|dµ(y)

[ ∞∑
n=1

1

2nε1
µ(2n+1Sj)

λ(xSj , 2
nrSj )

]

≤
∫
X
|ωj(y)f(y)|dµ(y) +

∫
X
|ϕj(y)|dµ(y)

≤
∫
6Bj

|f(y)|dµ(y) + ‖ϕj‖L∞(µ)µ(Sj) .
∫
6Bj

|f(y)|dµ(y).

To deal with Hj,2, write

Hj,2 .
∫
(2Sj)\(62Bj)

g(ωjf)(x)dµ(x) +

∫
(2Sj)\(62Bj)

g(ϕj)(x)dµ(x)

=: H
(1)
j,2 + H

(2)
j,2 .

Considering that x ∈ (2Sj)\(62Bj) and supp(ωjf) ⊂ 6Bj , then, by (2.3),
(3.5), Remark 2.2(ii) and Lemma 2.1, we gain that

H
(1)
j,2 .

∫
6Bj

|ωj(y)f(y)|dµ(y)

∫
(2Sj)\(62Bj)

1

λ(xBj , d(x, xBj ))
dµ(x)

≤
∫
6Bj

|f(y)|dµ(y)K̃
(6)
62Bj ,Sj

.
∫
6Bj

|f(y)|dµ(y).

Due to the assumption that Sj is a (3 × 62, C
log2(3×62)+1
(λ) )-doubling ball,

we have µ(2Sj) ≤ µ(3 × 62Sj) . µ(Sj), which, together with the Hölder
inequality, the L2(µ)-boundedness of g and Lemma 3.1(ii), shows that

H
(2)
j,2 ≤

∫
2Sj

g(ϕj)(x)dµ(x) ≤

{∫
2Sj

[g(ϕj)(x)]2dµ(x)

}1/2

[µ(2Sj)]
1/2

.

{∫
Sj

|ϕj(x)|2dµ(x)

}1/2

[µ(2Sj)]
1/2 ≤ ‖ϕj‖L∞(µ) [µ(Sj)µ(2Sj)]

1/2
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. ‖ϕj‖L∞(µ) µ(Sj) .
∫
6Bj

|f(x)|dµ(x).

Combining the estimates for Hj,1 and Hj,2 yields that

µ({x ∈ F : g(b)(x) > `}) . 1

`

∑
j

∫
6Bj

|f(y)|dµ(y) .
1

`
‖f‖L1(µ),

which implies that (3.4) holds true. Then we finish the proof of Theorem
3.1. �

4. Boundedness of g from R̃BMO(µ) into R̃BLO(µ)

To state our result in this section, we first recall the definitions of the space

R̃BMO(µ) and the space R̃BLO(µ); see [FYY14] and [YYF13], respectively.

Definition 4.1. Let ρ ∈ (1,∞) and γ ∈ [1,∞). A function f ∈ L1
loc(µ) is

said to be in the space R̃BMO(µ), if there exist a positive constant C and a
number fB for any ball B such that, for all balls B,

1

µ(ρB)

∫
B
|f(y)− fB|dµ(y) ≤ C

and, for all balls B ⊂ S,

|fB − fS | ≤ C[K̃
(ρ)
B,S ]γ .

Moreover, the norm of f in R̃BMO(µ) is defined to be the minimal constant
C as above and denoted by ‖f‖

R̃BMO(µ)
.

Definition 4.2. Let η, ρ ∈ (1,∞), and βρ be as in (2.1). A real-valued

function f ∈ L1
loc(µ) is said to be in the space R̃BLO(µ), if there exists a

non-negative constant C such that, for all balls B,

1

µ(ηB)

∫
B

[
f(y)− essinf

B̃ρ
f

]
dµ(y) ≤ C

and, for all (ρ, βρ)-doubling balls B ⊂ S,

essinf
B

f − essinf
S

f ≤ CK̃(ρ)
B,S .

Moreover, the R̃BLO(µ) norm of f is defined to be the minimal constant C
as above and denoted by ‖f‖

R̃BLO(µ)
.

Remark 4.1.

(i) If we replace K̃
(ρ)
B,S by KB,S in Definitions 4.1 and 4.2, we then

give the spaces RBMO(µ) and RBLO(µ), which were introduced by
[Hy10] and [LY11], respectively.

(ii) It is a straightforward consequence of the definitions that R̃BLO(µ) ⊂
R̃BMO(µ).
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(iii) It is pointed out in [FYY14] that the space R̃BMO(µ) is independent
of the choices of ρ ∈ (1,∞) and γ ∈ [1,∞). Moreover, the space

R̃BLO(µ) is independent of the choices of η, ρ ∈ (1,∞); see [YYF13].

Theorem 4.1. Let (X , d, µ) be a non-homogeneous space and g be as in Def-
inition 1.3. Assume that the dominating function λ satisfies the weak reverse

doubling condition. If g is bounded on L2(µ), then for all f ∈ R̃BMO(µ),
g(f) is either infinite everywhere or finite µ-almost everywhere. More pre-
cisely, if g(f) is finite at some point x0 ∈ X , then g(f) is finite µ-almost
everywhere, and ‖g(f)‖

R̃BLO(µ)
≤ C ‖f‖

R̃BMO
(µ), where C is a positive

constant independent of f .

To prove Theorem 4.1, we first recall some useful lemmas related to the

space R̃BMO(µ) as below. Lemmas 4.1 and 4.2 are showed in [LWY17],
and the former one provides an equivalent characterization of the space

R̃BMO(µ). Lemma 4.3 was proved in [CL17, Lemma 2.6].

Lemma 4.1. Let η, ρ ∈ (1,∞) and βρ be as in (2.1). The following state-
ments are equivalent:

(i) f ∈ R̃BMO(µ);
(ii) there exists a positive constant C such that, for all balls B,

(4.1)
1

µ(ηB)

∫
B

∣∣f(y)−m
B̃ρ

(f)
∣∣ dµ(y) ≤ C

and, for all (ρ, βρ)-doubling balls B ⊂ S,

|mB(f)−mS(f)| ≤ CK̃(ρ)
B,S ,

where above and in what follows, mB(f) denotes the mean of f over
B, namely,

mB(f) :=
1

µ(B)

∫
B
f(y)dµ(y).

Moreover, the infimum constant C is equivalent to ‖f‖
R̃BMO(µ)

.

Lemma 4.2. Let (X , d, µ) be a non-homogeneous space, f ∈ R̃BMO(µ),
η ∈ (1,∞) and p ∈ [1,∞). There exists a positive constant C such that, for
any ball B ⊂ X ,[

1

µ(ηB)

∫
B
|f(x)− fB|pdµ(x)

]1/p
≤ C ‖f‖

R̃BMO(µ)
,

where fB is as in Definition 4.1.

Corollary 4.1. Let (X , d, µ) be a non-homogeneous space, f ∈ R̃BMO(µ),
η ∈ (1,∞) and p ∈ [1,∞). Then there exists a positive constant C such
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that, for any ball B ⊂ X ,[
1

µ(ηB)

∫
B
|f(x)−mB(f)|pdµ(x)

]1/p
≤ C ‖f‖

R̃BMO(µ)
.

Proof. Let fB be as in Definition 4.1. It then follows from the Minkowski
inequality, the Hölder inequality with p ∈ (1,∞) and Lemma 4.2 that[

1

µ(ηB)

∫
B
|f(x)−mB(f)|pdµ(x)

]1/p
≤
[

1

µ(ηB)

∫
B
|f(x)− fB|pdµ(x)

]1/p
+

[
1

µ(ηB)

∫
B
|fB −mB(f)|pdµ(x)

]1/p
. ‖f‖

R̃BMO(µ)
+

[
1

µ(ηB)

∫
B
|fB −mB(f)|pdµ(x)

]1/p
≤ ‖f‖

R̃BMO(µ)
+

{
1

µ(ηB)

∫
B

[
1

µ(B)

∫
B
|f(y)− fB|dµ(y)

]p
dµ(x)

}1/p

≤ ‖f‖
R̃BMO(µ)

+

{
1

µ(B)

∫
B

1

µ(ηB)

∫
B
|f(y)− fB|pdµ(y)dµ(x)

}1/p

. ‖f‖
R̃BMO(µ)

+ ‖f‖
R̃BMO(µ)

. ‖f‖
R̃BMO(µ)

,

which completes the proof of Corollary 4.1. �

Lemma 4.3. Let f ∈ R̃BMO(µ) and ρ ∈ (1,∞). Then, for all two balls
B ⊂ S ⊂ X , we have

|m
B̃ρ

(f)−m
S̃ρ

(f)| . K̃(ρ)
B,S ‖f‖R̃BMO(µ)

Now we show a new equivalent characterization of the space R̃BLO(µ). To
this end, we need the following technical lemma (see also [FYY12, Lemma
3.13]), whose proof is parallel to that of [T01ma, Lemma 9.3] with a slight
modification. We omit the details here.

Lemma 4.4. Let ρ ∈ (1,∞). Assume that there exists a positive constant
P0 (big enough), depending on C(λ) from (1.3) and βρ as in (2.1), such that,
if x0 ∈ X is some fixed point and {fB}B3x0 is a collection of numbers, for

all (ρ, βρ)-doubling balls B ⊂ S with x0 ∈ B such that K̃
(ρ)
B,S ≤ P0, which

satisfies

|fB − fS | ≤ C(x0),

then there exists a positive constant C, depending only on C(λ), βρ and P0

such that, for all doubling balls B ⊂ S with x0 ∈ B,

|fB − fS | ≤ CK̃(ρ)
B,SC(x0).
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Lemma 4.5. Let ρ ∈ (1,∞), γ ∈ [1,∞) and βρ be as in (2.1). The following
statements are equivalent:

(i) f ∈ R̃BLO(µ);
(ii) there exists a non-negative constant C1 satisfying that, for all (ρ, βρ)-

doubling balls B,

(4.2)
1

µ(B)

∫
B

[
f(y)− essinf

B
f

]
dµ(y) ≤ C1

and, for all (ρ, βρ)-doubling balls B ⊂ S,

(4.3) mB(f)−mS(f) ≤ C1K̃
(ρ)
B,S .

(iii) there exists a non-negative constant C2 satisfying (4.2) such that, for
all (ρ, βρ)-doubling balls B ⊂ S,

(4.4) |mB(f)−mS(f)| ≤ C2[K̃
(ρ)
B,S ]γ .

Moreover, the minimal constants C1 and C2 as above are equivalent
to ‖f‖

R̃BLO(µ)
.

Proof. The equivalence of (i) and (ii) can be proved by an argument similar
to that used in [LY11, Proposition 2.3]. Thus, we only need to verify the
equivalence of (ii) and (iii).

We first claim that (ii) is equivalent to (iii) with γ = 1. In fact, if (iii) holds
true with γ = 1, then from the fact that mB(f)−mS(f) ≤ |mB(f)−mS(f)|,
it is easy to see that (ii) holds true. To prove (ii) implies (iii) with γ = 1,
notice that

mB(f) ≥ essinf
B

f for any B and essinf
B

f ≥ essinf
S

f for any B ⊂ S,

which, together with (4.2) and (4.3), show that

|mB(f)−mS(f)|(4.5)

≤
∣∣∣∣mB(f)− essinf

B
f

∣∣∣∣+

∣∣∣∣essinf
B

f − essinf
S

f

∣∣∣∣+

∣∣∣∣essinf
S

f −mS(f)

∣∣∣∣
=

[
mB(f)− essinf

B
f

]
+

[
essinf
B

f − essinf
S

f

]
+

[
mS(f)− essinf

S
f

]
≤ 2C1 +

[
essinf
B

f − essinf
S

f

]
≤ 2C1 +

[
essinf
B

f −mB(f)

]
+ [mB(f)−mS(f)]

+

[
mS(f)− essinf

S
f

]
≤ 2C1 + C1K̃

(ρ)
B,S + C1 . K̃

(ρ)
B,S .

Hence, (iii) with γ = 1 holds true, which implies that our claim is valid.
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Now we show that (iii) is independent of γ ∈ [1,∞). In fact, if (4.4) holds
true for γ = 1, then it holds true for γ ∈ (1,∞). Assume that (4.4) holds
true for γ ∈ (1,∞). Let x ∈ X , and let B ⊂ S be any two (ρ, βρ)-doubling

balls with x ∈ B such that K̃
(ρ)
B,S ≤ P0, where P0 is as in Lemma 4.4. Then

|mB(f)−mS(f)| ≤ C[K̃
(ρ)
B,S ]γ ≤ CP γ0 := C(x),

which, together with Lemma 4.4, implies that, for all (ρ, βρ)-doubling balls
B ⊂ S with x ∈ B,

|mB(f)−mS(f)| ≤ CC(x)K̃
(ρ)
B,S .

This yields that (4.4) holds true for γ = 1. Combining the above estimates,
we conclude that (iii) is independent of γ ∈ [1,∞), which, together with our
claim, completes the proof of Lemma 4.5. �

Proof of Theorem 4.1. Let f ∈ R̃BMO(µ) and B ⊂ S be two (ρ, βρ)-
doubling balls. According to Remark 4.1(iii), without loss of generality, we
chose ρ = 6. To prove Theorem 4.1, we first claim that there exists a positive
constant C such that

(4.6)
1

µ(B)

∫
B
g(f)(x)dµ(x) ≤ inf

y∈B
g(f)(y) + C ‖f‖

R̃BMO(µ)
.

To prove (4.6), we decompose f as

f = [f −m5B(f)]χ5B + [f −m5B(f)]χX\(5B) +m5B(f)

=: f1 + f2 +m5B(f).

The vanishing condition of Dt implies that, for any x, y ∈ B,

g(f)(x) ≤ g(f1)(x) + g(f2)(x) + g(m5B(f))(x)

= g(f1)(x) + g(f2)(x)

= g(f1)(x) + [g(f2)(x)− g(f2)(y)] + g(f2)(y).

Notice that B is (6, β6)-doubling. By the Hölder inequality, the L2(µ)-
boundedness of g and Corollary 4.1, we have

1

µ(B)

∫
B
g(f1)(x)dµ(x)(4.7)

≤ 1

[µ(B)]1/2

{∫
X

[g(f1)(x)]2 dµ(x)

}1/2

.
1

[µ(6B)]1/2

{∫
5B

[f1(x)]2 dµ(x)

}1/2

=
1

[µ(6B)]1/2

{∫
5B
|f(x)−m5B(f)|2 dµ(x)

}1/2

. ‖f‖
R̃BMO(µ)

.
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To estimate g(f2)(y), for any y ∈ B, write

g(f2)(y) ≤

{∫ rB

0

∣∣∣∣∫
X
Dt(y, z)f2(z)dµ(z)

∣∣∣∣2 dtt
}1/2

+

{∫ ∞
rB

...

}1/2

=: I1(y) + I2(y).

For I1(y), observe that y ∈ B and supp(f2) ⊂ X\(5B). From the Minkowski
inequality, (A1) of Dt, (3.5), (4.1) and (1.3), we deduce that

I1(y) .
∫
X\(5B)

{∫ rB

0

∣∣∣∣ 1

λ(z, d(y, z))

[
t

d(y, z)

]ε2∣∣∣∣2 dtt
}1/2

|f2(z)|dµ(z)

.
∫
X\(5B)

1

λ(xB, d(z, xB))

[
rB

d(z, xB)

]ε2
|f2(z)|dµ(x)

.
∞∑
n=1

1

5nε2λ(xB, 5nrB)

∫
(5n+1B)\(5nB)

|f(z)−m5B(f)| dµ(z)

≤
∞∑
n=1

1

5nε2λ(xB, 5nrB)

{∫
5n+1B

∣∣∣f(z)−m
5̃n+1B

(f)
∣∣∣dµ(z)

+

∫
5n+1B

∣∣∣m
5̃n+1B

(f)−mB(f)
∣∣∣ dµ(z)

+ µ(5n+1B) |mB(f)−m5B(f)|
}

.
∞∑
n=1

n

5nε2
µ(6× 5n+1B)

λ(xB, 5nrB)
‖f‖

R̃BMO(µ)
. ‖f‖

R̃BMO(µ)
,

where in the second to the last inequality, we use the facts that

|mB(f)−m5B(f)| ≤ 1

µ(B)

∫
B
|f(x)−m5B(f)|dµ(x)(4.8)

.
1

µ(6B)

∫
5B
|f(x)−m5B(f)|dµ(x)

. ‖f‖
R̃BMO(µ)

,

and ∣∣∣m
5̃n+1B

(f)−mB(f)
∣∣∣ . K̃(6)

B,5n+1B
‖f‖

R̃BMO(µ)
. n‖f‖

R̃BMO(µ)
,

which can be inferred from Lemmas 4.3 and 2.1.
On the other hand, for I2(y), through the vanishing moment of Dt and

the Minkowski inequality, it is easy to see that

I2(y) =

{∫ ∞
rB

∣∣∣∣∫
X
Dt(y, z)[f(z)− f1(z)−m5B(f)]dµ(z)

∣∣∣∣2 dtt
}1/2
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≤

{∫ ∞
rB

∣∣∣∣∫
X
Dt(y, z)f(z)dµ(z)

∣∣∣∣2 dtt
}1/2

+

{∫ ∞
rB

∣∣∣∣∫
X
Dt(y, z)f1(z)dµ(z)

∣∣∣∣2 dtt
}1/2

=: I2,1(y) + I2,2(y).

Clearly, I2,1(y) ≤ g(f)(y). Besides this, an argument analogous to that used
in (2.3), together with (1.4), (1.3) and Corollary 4.1, shows that, for y ∈ B,

I2,2(y) .
∫
5B

|f1(z)|
λ(y, rB)

dµ(z) .
∫
5B

|f(z)−m5B(f)|
λ(xB, rB)

dµ(z) . ‖f‖
R̃BMO(µ)

.

Combining the estimates for I1(y) and I2(y), we conclude that there exists
a positive constant C1 such that, for any y ∈ B,

(4.9) g(f2)(y) ≤ g(f)(y) + C1 ‖f‖R̃BMO(µ)
.

By the Minkowski inequality, some arguments parallel to those used in
(2.2) and the estimate for I1(y), we have that, for any x, y ∈ B,

g(f2)(x)− g(f2)(y)(4.10)

=

{∫ ∞
0

∣∣∣∣∫
X
Dt(x, z)f2(z)dµ(z)

∣∣∣∣2 dtt
}1/2

−

{∫ ∞
0

∣∣∣∣∫
X
Dt(y, z)f2(z)dµ(z)

∣∣∣∣2 dtt
}1/2

≤

{∫ ∞
0

∣∣∣∣∫
X

[Dt(x, z)−Dt(y, z)]f2(z)dµ(z)

∣∣∣∣2 dtt
}1/2

.
∫
X\(5B)

1

λ(xB, d(z, xB))

[
rB

d(z, xB)

]ε1
|f2(z)|dµ(z)

≤
∞∑
n=1

1

5nε1λ(xB, 5n+1rB)

∫
(5n+1B)\(5nB)

|f(z)−m5B(f)| dµ(z)

. ‖f‖
R̃BMO(µ)

.

Now, combining the estimates for (4.7), (4.9) and (4.10) yields that there
exists a positive constant C2 such that, for any y ∈ B,

1

µ(B)

∫
B
g(f)(x)dµ(x) ≤ g(f)(y) + C2 ‖f‖R̃BMO(µ)

,

which implies that (4.6) holds true. Based on (4.6), if there exists some

x0 ∈ X satisfying g(f)(x0) < ∞, then, for any f ∈ R̃BMO(µ) and any
(6, β6)-doubling ball B ⊂ X with x0 ∈ B,

1

µ(B)

∫
B
g(f)(x)dµ(x) ≤ g(f)(x0) + C ‖f‖

R̃BMO(µ)
<∞.
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That is to say, g(f) is finite µ-almost everywhere, furthermore,

(4.11)
1

µ(B)

∫
B

[g(f)(x)− essinf
B

g(f)]dµ(x) ≤ C ‖f‖
R̃BMO(µ)

.

In this case, by Lemma 4.5, to prove Theorem 4.1, we also need to prove
that, for all (6, β6)-doubling balls B ⊂ S,

(4.12) |mB(g(f))−mS(g(f))| .
[
K̃

(6)
B,S

]2
‖f‖

R̃BMO(µ)
.

Write

f = [f −m5B(f)]χ5B + [f −m5B(f)]χ(5S)\(5B)

+ [f −m5B(f)]χX\(5S) +m5B(f)

:= f1 + f3 + f4 +m5B(f).

By the vanishing condition of Dt, we know that, for any x ∈ B and y ∈ S,

g(f)(x) ≤ g(f1)(x) + g(f3)(x) + g(f4)(x) + g(m5B(f))(x)

= g(f1)(x) + g(f3)(x) + [g(f4)(x)− g(f4)(y)] + g(f4)(y).

Let N1 := N
(6)
5B,5S + blog6 2c+ 1 with N

(6)
5B,5S as in Definition 2.2. Notice

that x ∈ B and supp(f3) ⊂ (5S)\(5B). An argument similar to that used
in proof of (2.3), together with (3.5), (4.1), Lemma 4.3, (1.3), Lemma 2.1,
(4.8) and Remark 2.2(i), gives us that

g(f3)(x)(4.13)

.
∫
(5S)\(5B)

|f3(z)|
λ(x, d(x, z))

dµ(z) =

∫
(5S)\(5B)

|f(z)−m5B(f)|
λ(xB, d(z, xB))

dµ(z)

≤
N1∑
n=1

∫
(5n+1B)\(5nB)

|f(z)−m5B(f)|
λ(xB, d(z, xB))

dµ(z)

≤
N1∑
n=1

1

λ(xB, 5nrB)

[∫
(5n+1B)\(5nB)

|f(z)−m
5̃n+1B

(f)|

+ |m
5̃n+1B

(f)−mB(f)|dµ(z)

+ µ(5n+1B)|mB(f)−m5B(f)|
]

.
N1∑
n=1

[
µ(2× 5n+1B)

λ(xB, 5nrB)
+ K̃

(6)
B,5n+1B

µ(5n+1B)

λ(xB, 5nrB)

]
‖f‖

R̃BMO(µ)

.
[
K̃

(6)
B,S

]2
‖f‖

R̃BMO(µ)
.

We now deal with g(f4)(y). For any y ∈ S, write

g(f4)(y) ≤

{∫ rS

0

∣∣∣∣∫
X
Dt(y, z)f4(z)dµ(z)

∣∣∣∣2 dtt
}1/2

+

{∫ ∞
rS

...

}1/2
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=: J1(y) + J2(y).

Similar to the estimate for I1(y), we have

J1(y) .
∫
X\(5S)

1

λ(xS , d(z, xS))

[
rS

d(z, xS)

]ε2
|f4(z)|dµ(z)

.
∞∑
n=1

1

5nε2λ(xS , 5nrS)

∫
(5n+1S)\(5nS)

|f(z)−m5B(f)| dµ(z)

≤
∞∑
n=1

1

5nε2λ(xS , 5nrS)

{∫
5n+1S

∣∣∣f(z)−m
5̃n+1S

(f)
∣∣∣ dµ(z)

+

∫
5n+1S

∣∣∣m
5̃n+1S

(f)−m
5̃n+1B

(f)
∣∣∣ dµ(z)

+

∫
5n+1S

∣∣∣m
5̃n+1B

(f)−mB(f)
∣∣∣ dµ(z)

+ µ(5n+1S) |mB(f)−m5B(f)|
}

.
∞∑
n=1

µ
(
6× 5n+1S

)
5nε2λ(xS , 5nrS)

[
1 + K̃

(6)
5n+1B,5n+1S

+ K̃
(6)
B,5n+1B

]
‖f‖

R̃BMO(µ)

. K̃(6)
5B,5S ‖f‖R̃BMO(µ)

∞∑
n=1

n

5nε2
. K̃(6)

B,S ‖f‖R̃BMO(µ)
.

For J2(y), notice that f4 = f − f1 − f3 − m5B(f). Thus, through the
vanishing moment of Dt, it is easy to see that, for y ∈ S,

J2(y) =

{∫ ∞
rS

∣∣∣∣∫
X
Dt(y, z)[f(z)− f1(z)− f3(z)−m5B(f)]dµ(z)

∣∣∣∣2 dtt
}1/2

≤

{∫ ∞
rS

∣∣∣∣∫
X
Dt(y, z)f(z)dµ(z)

∣∣∣∣2 dtt
}1/2

+

{∫ ∞
rS

∣∣∣∣∫
X
Dt(y, z)f1(z)dµ(z)

∣∣∣∣2 dtt
}1/2

+

{∫ ∞
rS

∣∣∣∣∫
X
Dt(y, z)f3(z)dµ(z)

∣∣∣∣2 dtt
}1/2

=: J2,1(y) + J2,2(y) + J2,3(y).

Obviously, J2,1(y) ≤ g(f)(y) and J2,2(y) ≤ g(f1)(y). By some argument
similar to that used in J1(y), we conclude that

J2,3(y)

.
∫
(5S)\(5B)

|f(z)−m5B(f)|
λ(xS , rS)

dµ(z)
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≤
∫
5S

|f(z)−m
5̃S

(f)|+ |m
5̃S

(f)−mB(f)|+ |mB(f)−m5B(f)|
λ(xS , rS)

dµ(z)

. K̃(6)
B,S ‖f‖R̃BMO(µ)

.

It then follows that there exists a positive constant C3 such that, for any
y ∈ S,

J2(y) ≤ g(f)(y) + g(f1)(y) + C3K̃
(6)
B,S ‖f‖R̃BMO(µ)

,

which, together with the estimate for J1(y), implies that there exists a pos-
itive constant C4 such that, for any y ∈ S,

(4.14) g(f4)(y) ≤ g(f)(y) + g(f1)(y) + C4K̃
(6)
B,S‖f‖R̃BMO(µ)

.

Similar to the estimates for (4.10) and J1(y), we see that, for any x ∈ B
and y ∈ S,

g(f4)(x)− g(f4)(y)(4.15)

≤

{∫ ∞
0

∣∣∣∣∫
X

[Dt(x, z)−Dt(y, z)]f4(z)dµ(z)

∣∣∣∣2 dtt
}1/2

.
∫
X\(5S)

1

λ(xS , d(z, xS))

[
rS

d(z, xS)

]ε1
|f4(z)|dµ(z)

≤
∞∑
n=1

1

5nε1λ(xS , 5n+1rS)

∫
(5n+1S)\(5nS)

|f(z)−m5B(f)| dµ(z)

. K̃(6)
B,S ‖f‖R̃BMO(µ)

.

From (4.13), (4.14) and (4.15), we deduce that there exists a positive
constant C5 such that, for any x ∈ B and y ∈ S,

g(f)(x)− g(f)(y) ≤ g(f1)(x) + g(f1)(y) + C5

[
K̃

(6)
B,S

]2
‖f‖

R̃BMO(µ)
.

On the other hand, an argument analogous to (4.7) shows that

1

µ(S)

∫
S
g(f1)(y)dµ(y) . ‖f‖

R̃BMO(µ)
.

It then follows from the above two estimates and (4.7) that

mB(g(f))−mS(g(f)) =
1

µ(S)

1

µ(B)

∫
S

∫
B

[g(f)(x)− g(f)(y)]dµ(x)dµ(y)

.
[
K̃

(6)
B,S

]2
‖f‖

R̃BMO(µ)
,

which, together with an argument similar to that used in (4.5) and (4.11),
yields that (4.12) holds true, and then completes the proof of Theorem
4.1. �
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5. Boundedness of g on the Hardy space Hp(µ) with
p ∈ (0, 1]

We begin with the definitions and some boundedness criteria of the atomic

Hardy space H̃p,q,γ
atb,ρ(µ) and the molecular Hardy space H̃p,q,γ,ε

mb,ρ (µ); see [FLYY15]

and [LL18], respectively.

Definition 5.1. Let ρ ∈ (1,∞), 0 < p ≤ 1 ≤ q ≤ ∞, p 6= q, and γ ∈ [1,∞).
A function b in L2(µ) when p ∈ (0, 1) and in L1(µ) when p = 1 is called a
(p, q, γ, ρ)λ-atomic block if

(i) there exists a ball B such that supp(b) ⊂ B;

(ii)

∫
X
b(x)dµ(x) = 0;

(iii) for any j ∈ {1, 2}, there exist a function aj supported on a ball
Bj ⊂ B and a number λj ∈ C such that b = λ1a1 + λ2a2 and

(5.1) ‖aj‖Lq(µ) ≤ [µ(ρBj)]
1/q−1[λ(xB, rB)]1−1/p[K̃

(ρ),p
Bj ,B

]−γ .

Moreover, let |b|
H̃p,q,γ

atb,ρ(µ)
:= |λ1|+ |λ2|.

A function f is said to belong to the space H̃p,q,γ
atb,ρ(µ) if there exists a

sequence of (p, q, γ, ρ)λ-atomic blocks, {bi}∞i=1, such that f =
∑∞

i=1 bi in
L2(µ) when p ∈ (0, 1) and in L1(µ) when p = 1, and

∞∑
i=1

|bi|p
H̃p,q,γ

atb,ρ(µ)
<∞.

Moreover, define

‖f‖
H̃p,q,γ

atb,ρ(µ)
:= inf


[ ∞∑
i=1

|bi|p
H̃p,q,γ

atb,ρ(µ)

]1/p ,

where the infimum is taken over all possible decompositions of f as above.

The atomic Hardy space H̃p,q,γ
atb,ρ(µ) is then defined as the completion of

H̃p,q,γ
atb,ρ(µ) with respect to the p-quasi-norm ‖ · ‖p

H̃p,q,γ
atb,ρ(µ)

.

Definition 5.2. Let ρ ∈ (1,∞), 0 < p ≤ 1 ≤ q ≤ ∞, p 6= q, γ ∈ [1,∞) and
ε ∈ (0,∞). A function b in L2(µ) when p ∈ (0, 1) and in L1(µ) when p = 1
is called a (p, q, γ, ε, ρ)λ-molecular block if

(i)

∫
X
b(x)dµ(x) = 0;

(ii) there exist some ball B := B(xB, rB), with xB ∈ X and rB ∈ (0,∞),

and some constants M̃,M ∈ N+ such that, for all k ∈ N and j ∈
{1, · · · ,Mk} with Mk := M̃ if k = 0 and Mk := M if k ∈ N+, there
exist functions mk,j supported on some balls Bk,j ⊂ Uk(B) for all

k ∈ N, where U0(B) := ρ2B and Uk(B) := ρk+2B \ ρk−2B with
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k ∈ N+, and λk,j ∈ C such that b =
∑∞

k=0

∑Mk
j=1 λk,jmk,j in L2(µ)

when p ∈ (0, 1) and in L1(µ) when p = 1,

‖mk,j‖Lq(µ) ≤ ρ
−kε[µ(ρBk,j)]

1/q−1[λ(xB, ρ
k+2rB)]1−1/p(5.2)

× [K̃
(ρ),p

Bk,j ,ρk+2B
]−γ

and

|b|p
H̃p,q,γ,ε

mb,ρ (µ)
:=

∞∑
k=0

Mk∑
j=1

|λk,j |p <∞.

A function f is said to belong to the space H̃p,q,γ,ε
mb,ρ (µ) if there exists a

sequence of (p, q, γ, ε, ρ)λ-molecular blocks, {bi}∞i=1, such that f =
∑∞

i=1 bi
in L2(µ) when p ∈ (0, 1) and in L1(µ) when p = 1, and

∞∑
i=1

|bi|p
H̃p,q,γ,ε

mb,ρ (µ)
<∞.

Moreover, define

‖f‖
H̃p,q,γ,ε

mb,ρ (µ)
:= inf


[ ∞∑
i=1

|bi|p
H̃p,q,γ,ε

mb,ρ (µ)

]1/p ,

where the infimum is taken over all possible decompositions of f as above.

The molecular Hardy space H̃p,q,γ,ε
mb,ρ (µ) is then defined as the completion

of H̃p,q,γ,ε
mb,ρ (µ) with respect to the p-quasi-norm ‖·‖p

H̃p,q,γ,ε
mb,ρ (µ)

.

Remark 5.1.

(i) It was pointed out in [FLYY15] that H̃p,q,γ
atb,ρ(µ) ⊂ H̃p,q,γ,ε

mb,ρ (µ) in the

sense that there exists a map T from H̃p,q,γ
atb,ρ(µ) to H̃p,q,γ,ε

mb,ρ (µ) such

that, for any f ∈ H̃p,q,γ
atb,ρ(µ), there is a unique element f̃ ∈ H̃p,q,γ,ε

mb,ρ (µ)

satisfying T (f) = f̃ and ‖f̃‖
H̃p,q,γ,ε

mb,ρ (µ)
. ‖f‖

H̃p,q,γ
atb,ρ(µ)

.

(ii) When p = 1, it was proved in [FYY14] that H̃1,q,γ
atb,ρ(µ) = H̃1,q,γ,ε

mb,ρ (µ)

and they are independent of the choices of ρ, q, γ and ε. Thus, in

what follows, we denote H̃1,q,γ
atb,ρ(µ) simply by H̃1(µ).

(iii) When p ∈ (0, 1), it is unclear whether the similar properties of

H̃p,q,γ
atb,ρ(µ) and H̃p,q,γ,ε

mb,ρ (µ) as in (b) still hold true.

The following two boundedness criteria, respectively for the sublinear
operator and the non-negative sublinear operator, on the Hardy spaces were
proved in [LL18].

Lemma 5.1. Let ρ, q ∈ (1,∞), γ ∈ [1,∞) and T be a sublinear operator
bounded from L1(µ) into L1,∞(µ). If there exists a positive constant C such
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that, for all (1, q, γ, ρ)λ-atomic blocks b,

‖Tb‖L1(µ) ≤ C|b|H̃1,q,γ
atb,ρ(µ)

,

then T is extended to be a bounded sublinear operator from H̃1(µ) to L1(µ).

Lemma 5.2. Let ρ ∈ (1,∞), 0 < p < 1 ≤ q ≤ ∞, γ ∈ [1,∞) and ε ∈ (0,∞).
Let T be a non-negative sublinear operator. Assume that T is bounded on
L2(µ).

(i) If there exists a positive constant C such that, for all (p, q, γ, ε, ρ)λ-
molecular blocks b,

‖T (b)‖Lp(µ) ≤ C|b|H̃p,q,γ,ε
mb,ρ (µ)

,

then T is extended to be a bounded operator from H̃p,q,γ,ε
mb,ρ (µ) to Lp(µ).

(ii) If there exists a positive constant C such that, for all (p, q, γ, ρ)λ-
atomic blocks b,

‖T (b)‖Lp(µ) ≤ C|b|H̃p,q,γ
atb,ρ(µ)

,

then T is extended to be a bounded operator from H̃p,q,γ
atb,ρ(µ) to Lp(µ).

We first consider the boundedness of g on the Hardy space H̃1(µ).

Theorem 5.1. Let (X , d, µ) be a non-homogeneous space and g be as in
Definition 1.3. Assume that the dominating function λ satisfies the weak
reverse doubling condition. If g is bounded on L2(µ), then g is bounded

from H̃1(µ) into L1(µ).

Proof. By Remark 5.1(ii), without loss of generality, we choose ρ = 2, q = 2

and γ = 1. Let b =

2∑
j=1

λjaj be an arbitrary (1, 2, 1, 2)λ-atomic block. For

any j ∈ {1, 2}, supp(aj) ⊂ Bj ⊂ B, where Bj , B are as in Definition 5.1.
Applying Lemma 5.1, we only need to prove that

‖g(b)‖L1(µ) . |b|H̃1,2,1
atb,2(µ)

.

Write∫
X
g(b)(x)dµ(x) =

∫
X\(2B)

g(b)(x)dµ(x) +

∫
2B
g (λ1a1 + λ2a2) (x)dµ(x)

≤
∫
X\(2B)

g(b)(x)dµ(x)

+

2∑
j=1

|λj |

{∫
(2B)\(2Bj)

g(aj)(x)dµ(x)

+

∫
2Bj

g(aj)(x)dµ(x)

}
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=: K0 +
2∑
j=1

|λj | (Kj
1 + Kj

2).

For K0, notice that x ∈ X\(2B), supp(b) ⊂ B, and

∫
X
b(y)dµ(y) =

0. This, together with (2.2), (3.5), (1.3), the Hölder inequality and (5.1),
implies that

K0 .
∫
B
|b(y)|dµ(y)

∫
X\(2B)

1

λ(xB, d(x, xB))

[
rB

d(x, xB)

]ε1
dµ(x)(5.3)

≤
∫
B
|b(y)|dµ(y)

×

{ ∞∑
n=1

∫
(2n+1B)\(2nB)

1

λ(xB, d(x, xB))

[
rB

d(x, xB)

]ε1
dµ(x)

}

.
∫
B
|b(y)|dµ(y)

[ ∞∑
n=1

1

2nε1
µ(2n+1B)

λ(xB, 2nrB)

]
≤ ‖b‖L1(µ) . |b|H̃1,2,1

atb,2(µ)
.

To estimate Kj
1, notice that, for any fixed j ∈ {1, 2}, x ∈ (2B)\(2Bj),

supp(aj) ⊂ Bj , and λ satisfies the weak reverse doubling condition. It then
follows from (2.3), (3.5), Remark 2.2(ii), the Hölder inequality and (5.1)
that

Kj
1 .

∫
(2B)\(2Bj)

dµ(x)

λ(xBj , d(x, xBj ))

∫
X
|aj(y)| dµ(y)(5.4)

. K̃(2)
Bj ,B
‖aj‖L1(µ) ≤ 1.

On the other hand, for Kj
2 with any fixed j ∈ {1, 2}, from the Hölder in-

equality, the L2(µ)-boundedness of g and (5.1), we deduce that

Kj
2 ≤

{∫
2Bj

[g(aj)(x)]2 dµ(x)

}1/2

[µ(2Bj)]
1/2(5.5)

.

{∫
X

[aj(x)]2 dµ(x)

}1/2

[µ(2Bj)]
1/2

= ‖aj‖L2(µ) [µ(2Bj)]
1/2 ≤ 1.

Combining the estimates for (5.3), (5.4) and (5.5) yields that∫
X
g(b)(x)dµ(x) . |b|

H̃1,2,1
atb,2(µ)

+
2∑
j=1

|λj | . |b|H̃1,2,1
atb,2(µ)

,

which completes the proof of Theorem 5.1. �

Theorem 4.1 tells us that g is bounded from the Lebesgue space L∞(µ)

into the space R̃BMO(µ). From this, together with Theorem 5.1 and the
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following interpolation lemma for sublinear operator, we obtain the bound-
edness of g on the Lebesgue spaces Lq(µ) with q ∈ (1,∞). We mention that
the interpolation lemma can be proved by using some arguments similar to
those used in the proof of [LY12, Theorem 1.1]. We omit the details here.

Lemma 5.3. Suppose that T is a sublinear operator bounded from L∞(µ)

into the space R̃BMO(µ) and from H̃1(µ) into L1,∞(µ). Then T is extended
to be a bounded operator on Lq(µ) for every q ∈ (1,∞).

Corollary 5.1. Let (X , d, µ) be a non-homogeneous space and g be as in
Definition 1.3. Assume that the dominating function λ satisfies the weak
reverse doubling condition. If g is bounded on L2(µ), then g is extended to
be a bounded operator on Lq(µ) for every q ∈ (1,∞).

At the end of this section, we establish the boundedness of g on the Hardy
spaces Hp with p ∈ (0, 1). Recall that ν := log2C(λ), where C(λ) is as in
Definition 1.1.

Theorem 5.2. Let ρ ∈ (1,∞), γ ∈ [1,∞),
ν

ν + ε1
< p < 1 < q <∞, where

ε1 ∈ (0, 1] is as in Definitions 1.3. Let (X , d, µ) be a non-homogeneous
space and g be as in Definition 1.3. Assume that the dominating function λ
satisfies the weak reverse doubling condition. If g is bounded on L2(µ), then

g is bounded from the molecular Hardy space H̃p,q,γ,ε1
mb,ρ (µ) into Lp(µ).

With some proof completely analogous to that in [FLYY15, Corollary
4.9], we establish the following corollary and omit the details here.

Corollary 5.2. Under the same assumption as in Theorem 5.2, g is bounded

from the atomic Hardy space H̃p,q,γ
atb,ρ(µ) into Lp(µ).

Proof of Theorem 5.2. For the sake of simplicity, we choose ρ = 2, γ = 1,

and assume that M̃ = M in Definition 5.2. Our argument can be expanded
to general cases via some slight modifications. Let b =

∑∞
k=0

∑M
j=1 λk,jmk,j

be an arbitrary H̃p,q,1,ε1
mb,2 (µ)-molecular block, where, for any k ∈ N and j ∈

{1, 2, ...,M}, supp(mk,j) ⊂ Bk,j ⊂ Uk(B). According to Lemma 5.2(i), it is
sufficient to prove that

‖g(b)‖Lp(µ) . |b|H̃p,q,γ,ε1
mb,ρ (µ)

.

Write

‖g(b)‖pLp(µ) ≤
∞∑
n=0

∫
Un(B)

∣∣∣∣∣∣g
 ∞∑
k=0

M∑
j=1

λk,jmk,j

 (x)

∣∣∣∣∣∣
p

dµ(x)

≤
4∑

n=0

∫
Un(B)

∣∣∣∣∣∣g
 ∞∑
k=0

M∑
j=1

λk,jmk,j

 (x)

∣∣∣∣∣∣
p

dµ(x)
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+
∞∑
n=5

∫
Un(B)

∣∣∣∣∣∣g
n−5∑
k=0

M∑
j=1

λk,jmk,j

 (x)

∣∣∣∣∣∣
p

dµ(x)

+
∞∑
n=5

∫
Un(B)

∣∣∣∣∣∣g
 n+4∑
k=n−4

M∑
j=1

λk,jmk,j

 (x)

∣∣∣∣∣∣
p

dµ(x)

+
∞∑
n=5

∫
Un(B)

∣∣∣∣∣∣g
 ∞∑
k=n+5

M∑
j=1

λk,jmk,j

 (x)

∣∣∣∣∣∣
p

dµ(x)

=: L0 + L1 + L2 + L3.

Using the Hölder inequality and (5.2), we obtain the following estimate
for mk,j with k ∈ N and j ∈ {1, · · · ,M},

(5.6) ‖mk,j‖pL1(µ)
.
[
2kε1K̃

(2),p

Bk,j ,2k+2B

]−p[
λ(xB, 2

k+2rB)
]p−1

.

To estimate L2, write

L2 .
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p
∫
Un(B)

|g(mk,j)(x)|pdµ(x)

.
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p
[∫

Un(B)\(2Bk,j)
|g(mk,j)(x)|pdµ(x)

+

∫
2Bk,j

|g(mk,j)(x)|pdµ(x)

]

=
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p
∫
Un(B)\(2Bk,j)

|g(mk,j)(x)|pdµ(x)

+
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p
∫
2Bk,j

|g(mk,j)(x)|pdµ(x) := L2,1 + L2,2.

For L2,1, notice that x ∈ Un(B)\(2Bk,j) and supp(mk,j) ⊂ Bk,j . By (2.3),
(3.5), the Hölder inequality, (5.6), Remark 2.2(ii), Lemma 2.1 and (1.3), we
see that

L2,1 .
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p

×
∫
Un(B)\(2Bk,j)

[
1

λ(xBk,j , d(x, xBk,j ))

∫
Bk,j

|mk,j(y)|dµ(y)

]p
dµ(x)

=
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p ‖mk,j‖pL1(µ)
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×
∫
Un(B)\(2Bk,j)

[
1

λ(xBk,j , d(x, xBk,j ))

]p
dµ(x)

≤
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p ‖mk,j‖pL1(µ)

×

[∫
(2n+2B)\(2Bk,j)

dµ(x)

λ(xBk,j , d(x, xBk,j ))

]p [
µ(2n+2B)

]1−p
≤
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p
 K̃

(2),p
Bk,j ,2n+2B

2kε1K̃
(2),p

Bk,j ,2k+2B

p [ µ(2n+2B)

λ(xB, 2k+2B)

]1−p

.
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p 2−pkε1 .
M∑
j=1

∞∑
k=1

k+4∑
n=5

|λk,j |p 2−pkε1

.
M∑
j=1

∞∑
k=0

k2−pkε1 |λk,j |p .
∞∑
k=0

M∑
j=1

|λk,j |p = |b|p
H̃
p,q,γ,ε1
mb,ρ (µ)

.

On the other hand, the Hölder inequality, together with Corollary 5.1,
(5.2) and (1.3), shows that

L2,2 ≤
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p
{∫

2Bk,j

[g(mk,j(x))]q dµ(x)

}p/q
[µ(2Bk,j)]

1−p/q

.
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p ‖mk,j‖pLq(µ) [µ(2Bk,j)]
1−p/q

.
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p
 1

2kε1K̃
(2),p

Bk,j ,2k+2B

p [ µ(2k+3B)

λ(xB, 2k+2rB)

]1−p

.
∞∑
n=5

n+4∑
k=n−4

M∑
j=1

|λk,j |p 2−pkε1 . |b|p
H̃
p,q,γ,ε1
mb,ρ (µ)

.

Combining the estimates for L2,1 and L2,2, we have

L2 . |b|H̃p,q,γ,ε1
mb,ρ (µ)

.

Now we deal with L3. For any x ∈ Un(B) and y ∈ Bk,j ⊂ Uk(B) with
k ≥ n+ 5, we have d(x, y) ≥ 2n+2rB ≥ d(x, xB) ≥ 2n−2rB, which, together
with (1.3) and (3.5), implies that

λ(x, d(x, y)) ≥ λ(x, d(x, xB)) ∼ λ(xB, d(x, xB)) ≥ λ(xB, 2
n−2rB).
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This, together with an argument similar to that used in the estimate for
(2.3), (5.6) and (1.3), shows that

L3 ≤
∞∑
n=5

∫
Un(B)

∣∣∣∣∣∣
∞∑

k=n+5

M∑
j=1

|λk,j |g(mk,j)(x)

∣∣∣∣∣∣
p

dµ(x)

.
∞∑
n=5

∞∑
k=n+5

M∑
j=1

|λk,j |p
∫
Un(B)

|g(mk,j)(x)|pdµ(x)

.
∞∑
n=5

∞∑
k=n+5

M∑
j=1

|λk,j |p‖mk,j‖pL1(µ)

∫
Un(B)

[
1

λ(xB, 2n−2rB)

]p
dµ(x)

.
∞∑
n=5

∞∑
k=n+5

M∑
j=1

|λk,j |p
 1

2kε1K̃
(2),p

Bk,j ,2k+2B

p

× 1

[λ(xB, 2k+2rB)]1−p
µ(2n+2B)

[λ(xB, 2n−2rB)]p

.
∞∑
n=5

∞∑
k=n+5

M∑
j=1

|λk,j |p2−pkε1
1

[λ(xB, 2n+2rB)]1−p
µ(2n+2B)

[λ(xB, 2n+2rB)]p

.
M∑
j=1

∞∑
k=10

k−5∑
n=5

|λk,j |p2−pkε1

.
M∑
j=1

∞∑
k=10

k2−pkε1 |λk,j |p .
∞∑
k=0

M∑
j=1

|λk,j |p = |b|
H̃
p,q,γ,ε1
mb,ρ (µ)

.

We now turn to estimate L1. Write

L1 =
∞∑
n=5

∫
Un(B)

∣∣∣∣∫ ∞
0

∣∣∣∣∫
X
Dt(x, y)

×

n−5∑
k=0

M∑
j=1

λk,jmk,j(y)

 dµ(y)

∣∣∣∣∣∣
2

dt

t

∣∣∣∣∣∣
p/2

dµ(x)

≤
∞∑
n=5

∫
Un(B)

∣∣∣∣∫ ∞
0

∣∣∣∣∫
X

[Dt(x, y)−Dt(x, xB)]

×

n−5∑
k=0

M∑
j=1

λk,jmk,j(y)

 dµ(y)

∣∣∣∣∣∣
2

dt

t

∣∣∣∣∣∣
p/2

dµ(x)

+

∞∑
n=5

∫
Un(B)

∣∣∣∣∫ ∞
0

∣∣∣∣∫
X
Dt(x, xB)
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×

n−5∑
k=0

M∑
j=1

λk,jmk,j(y)

 dµ(y)

∣∣∣∣∣∣
2

dt

t

∣∣∣∣∣∣
p/2

dµ(x)

=: L1,1 + L1,2.

Notice that, for any x ∈ Un(B) and y ∈ Bk,j ⊂ Uk(B) with k ≤ n− 5, we
have d(x, y) ≥ 2n−3rB ≥ 2−5d(x, xB) ≥ 2−52n−2rB, which, together with
(1.3) and (3.5), implies that

λ(x, d(x, y)) & λ(x, d(x, xB)) ∼ λ(xB, d(x, xB)) ≥ λ(xB, 2
n−2rB).

From this, together with an argument similar to the estimate for (2.2), (5.6)
and (1.3), we conclude that, for any p ∈ ( ν

ν+ε1
, 1),

L1,1 .
∞∑
n=5

n−5∑
k=0

M∑
j=1

|λk,j |p

×
∫
Un(B)

{∫
Bk,j

|mk,j(y)|
λ(x, d(x, y))

[
d(y, xB)

d(x, y)

]ε1
dµ(y)

}p
dµ(x)

.
∞∑
n=5

n−5∑
k=0

M∑
j=1

|λk,j |p‖mk,j‖pL1(µ)

×
∫
2n+2B

{
1

λ(xB, 2n−2rB)

[
2k+2rB
2n−2rB

]ε1}p
dµ(x)

.
∞∑
n=5

n−5∑
k=0

M∑
j=1

|λk,j |p
 2−kε1

K̃
(2),p

Bk,j ,2k+2B

µ(2n+2B)

λ(xB, 2n−2rB)

[
2k+2

2n−2

]ε1
p

×
{

µ(2n+2B)

λ(xB, 2k+2rB)

}1−p

.
∞∑
n=5

n−5∑
k=0

M∑
j=1

|λk,j |p2−pnε1 [C(λ)]
(n−k)(1−p)

=

∞∑
n=5

n−5∑
k=0

M∑
j=1

|λk,j |p2−(1−p)νk2[(1−p)ν−pε1]n

.
∞∑
k=0

M∑
j=1

|λk,j |p = |b|
H̃
p,q,γ,ε1
mb,ρ (µ)

.

Furthermore, by the vanishing moment of b, an argument similar to the
estimate of (2.3), (3.5), (5.6) and (1.3), we have

L1,2 =

∞∑
n=5

∫
Un(B)

∣∣∣∣∫ ∞
0

∣∣∣∣∫
X
Dt(x, xB)
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×

b(y)−
∞∑

k=n−4

M∑
j=1

λk,jmk,j(y)

 dµ(y)

∣∣∣∣∣∣
2

dt

t

∣∣∣∣∣∣
p/2

dµ(x)

=
∞∑
n=5

∫
Un(B)

∣∣∣∣∫ ∞
0

∣∣∣∣∫
X
Dt(x, xB)

×

 ∞∑
k=n−4

M∑
j=1

λk,jmk,j(y)

 dµ(y)

∣∣∣∣∣∣
2

dt

t

∣∣∣∣∣∣
p/2

dµ(x)

.
∞∑
n=5

∞∑
k=n−4

M∑
j=1

‖mk,j‖pL1(µ)

∫
Un(B)

[
1

λ(xB, 2n−2rB)

]p
dµ(x)

≤
∞∑
n=5

∞∑
k=n−4

M∑
j=1

|λk,j |p
 1

2kε1K̃
(2),p

Bk,j ,2k+2B

p [ µ(2n+2B)

λ(xB, 2k+2rB)

]1−p

.
∞∑
n=5

∞∑
k=n−4

M∑
j=1

|λk,j |p 2−pkε1

.
M∑
j=1

∞∑
k=1

k+4∑
n=5

|λk,j |p 2−pkε1 . |b|p
H̃
p,q,γ,ε1
mb,ρ (µ)

.

It then follows from the estimates for L1,1 and L1,2 that

L1 . |b|H̃p,q,1,ε1
mb,2 (µ)

.

Using some argument used in the estimates for L1 and L2, we obtain that

L0 . |b|H̃p,q,1,ε1
mb,2 (µ)

.

Combining all the estimates for L0 to L3, we finish the proof of Theorem
5.2. �
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