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A remark on the group structure of
elliptic curves in towers of finite fields

John Cullinan

Abstract. Let l be an odd prime, let F be a finite field of characteristic
different from l and let A and B be l-isogenous elliptic curves defined
over F. We study how the group structures of A(L) and B(L) vary in
finite extensions L/F and prove that if the cardinality of the groups
A(F) and B(F) are divisible by l and if A(F) and B(F) are isomorphic,
then so are A(L) and B(L) for all finite extensions L of F.
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1. Introduction

Let F be a finite field and let E1 and E2 be ordinary, isogenous, elliptic
curves defined over F such that the isogeny E1 → E2 is also defined over
F . Because the curves are F -isogenous, by [8, Thm. 1] they have the same
number of L-rational points for every finite extension L/F . The basic ques-
tion we seek to address here is the following. Suppose E1(F ) and E2(F ) are
isomorphic as groups. Under what conditions are E1(L) and E2(L) isomor-
phic as groups in a non-trivial finite extension L/F? We show (roughly)
the only obstruction to the groups being isomorphic over L comes from the
F -rational points of order dividing the degree of the isogeny between E1 and
E2. We explain all of this in detail below.

This problem has been addressed previously in [9] and (building on those
results) in [2]. Our results can be viewed as generalizing these two. Their
main results are algorithms for determining when the groups E1(L) and
E2(L) are isomorphic for a given finite extension L/F and can be summa-
rized as follows. The Frobenius endomorphism of each curve has the same
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representation as an element in an imaginary quadratic field K, though the
endomorphism rings need not be isomorphic; writing π for Frobenius, set

π = a+ b
√
DK ∈ K,

for a, b ∈ Z. Then, given a degree n = [L : F ], write (a + b
√
DK)n =

an + bn
√
DK for an, bn ∈ Z. Depending on the prime divisors of the an and

bn, they determine whether E1(L) and E2(L) are isomorphic. As an extreme
example, in [9, Appendix] the author provides an explicit triple (E1, E2, F )
such that E1(L) ' E2(L) for every finite extension L/F yet E1 and E2 are
not isomorphic as elliptic curves. Another such example is given in [2, §3].
We will show in Section 4 below how to easily generate such examples.

The crux of this general question lies in the endomorphism rings of the
elliptic curves. Our main reference is the following theorem of Lenstra which
relates the group structure of E to that of its endomorphism ring. We quote
the theorem here:

Theorem [5, Thm. 1]. Let k be a finite field, let E be an elliptic curve over
k, and put R = Endk E. Let π ∈ R be the Frobenius endomorphism of E.
Further, let l be a finite field extension of k, and denote by n = [l : k] its
degree.

(a) Suppose that π 6∈ Z. Then R has rank 2 over Z, and there is an
isomorphsim E(l) ' R/R(πn − 1) of R-modules.

(b) Suppose that π ∈ Z. Then R has rank 4 over Z, we have E(l) '
Z/Z(πn−1)⊕Z/Z(πn−1) as abelian groups, and this group has, up
to isomorphism, exactly one left R-module structure. Furthermore,
one has E(l)⊕ E(l) ' R/R(πn − 1) as R-modules.

Remark. We focus exclusively on the case of ordinary elliptic curves, so we
will not use Part (b) of Lenstra’s theorem. Moreover, we use the notation
F for his k and L for his l. We thus write

E(L) =
Endk(E)

(πn − 1)
.(1)

In the aforementioned examples of [9] and [2], the elliptic curves E1 and
E2 are distinct orders in an imaginary quadratic field, yet the quotients
Endk(E1)/(π

n − 1) and Endk(E2)/(π
n − 1) are isomorphic for all positive

integers n. Our approach in this note is to relate the degree of the isogeny
between E1 and E2 to the group structures in towers.

We now set and fix our notation for the remainder of the paper. Fix
an odd prime ` and suppose that the characteristic of F is different from
`. Let E1 and E2 be `-isogenous elliptic curves defined over F such that
the isogeny is defined over F as well. We first show that in every finite
extension L/F the prime-to-` parts of the groups E1(L) and E2(L) are
isomorphic, so it suffices to compare the `-Sylow subgroups. Assuming the
`-Sylow subgroups of E1(F ) and E2(F ) are non-trivial, we show that if
Syl`(E1(F )) ' Syl`(E2(F )) then E1(L) ' E2(L) for all finite extensions
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L/F . In other words, our result can be taken as a certificate for checking
whether the groups E1(L) and E2(L) are isomorphic: perform a base-field
extension (possibly trivial) so that E1(F ) and E2(F ) acquire an `-torsion
point. Then if Syl`(E1(F )) ' Syl`(E2(F )), we have E1(L) ' E2(L) for all
finite extensions L/F (the converse of this statement is trivial):

Theorem 1. Let ` be an odd prime, F a finite field of characteristic different
from `, and E1 and E2 ordinary, `-isogenous, elliptic curves defined over F .
Then

(1) the prime-to-` parts of the groups E1(L) and E2(L) are isomorphic
for every finite extension L/F , and

(2) E1(L) ' E2(L) for all finite extensions L/F if and only if the `-
Sylow subgroups of E1(F ) and E2(F ) are isomorphic and non-trivial.

The interesting examples raised by Theorem 1 are those curves which
have distinct endomorphism rings but, in view of Lenstra’s structure theo-
rem, have isomorphic groups of rational points. We obtain our results by
exploiting the structure of the `-isogeny volcano VE , viewing the curves E1

and E2 as adjacent vertices. In the next section we review the relevant back-
ground on elliptic curves. We then split the proof of Theorem 1 over the
following two sections, focusing first on the prime-to-` part of the groups
and then on the `-Sylow subgroups.

Acknowledgments. We would like to thank Andrew Sutherland for helpful
email discussions and Keith Conrad for pointing us to the proof of Lemma 2.
We would also like to thank the anonymous referee for a careful reading of
the draft and detailed comments which improved the exposition and content
of the paper.

2. Ordinary endomorphism rings

Here we recall some background information on endomorphism rings of
elliptic curves; for more details see [1]. We also make use of the language of
isogeny volcanoes and refer to [7] for the relevant background and definitions.

The endomorphism ring End(E) of an ordinary elliptic curve E over a
finite field F of cardinality q is an order O in an imaginary quadratic number
field K. Let u be the conductor of O ⊂ OK . Writing π for the Frobenius
endomorphism of E (viewed as an element of O) we have the representation,
following the notation of [1]:

π =
t+ v

√
DK

2
,

where DK is the discriminant of OK , v is the conductor of Z[π] ⊂ OK , and t
is the trace of π, all subject to the relation 4q = t2− v2DK . Let DO denote
the discriminant of O and Dπ the discriminant of Z[π]. Then the orders
satisfy the containments

Z[π] ⊂ O ⊂ DK ,
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and the discriminants are related by DO = u2DK and Dπ = v2DK , where
u | v and uniquely determines O.

If E1 and E2 are ordinary, F -isogenous, elliptic curves defined over F with
endomorphism rings O1 and O2, then they have the “same” π viewed as an
element of OK . Moreover, because E1 and E2 are isogenous over F , the
groups E1(L) and E2(L) have the same cardinality for all finite extensions
L/F [8, Thm. 1]. However, it might not be the case that O1 = O2. In the
special case where the degree of the isogeny is a prime number `, we have
the following theorem of Kohel which we will use extensively in the following
sections (in the statement of the theorem O denotes the endomorphism ring
of E):

Theorem [4, Prop. 21]. Let E/k be an ordinary elliptic curve over the finite
field k. Let ϕ : E → E′ be an isogeny of prime degree ` different from the
characteristic of k. Then O contains O′ = End(E′) or O′ contains O in K
and the index of one in the other divides `.

Using the notation of our paper, if the isogeny E1 → E2 has prime degree
`, then either O1 = O2, [O1 : O2] = `, or [O2 : O1] = `. In each case we say
the isogeny E1 → E2 is horizontal, descending, or ascending, respectively.
In terms of the `-volcano VE , the vertices along the crater are joined by
horizontal isogenies, while those on the volcanoside are related by ascending
or descending isogenies; vertices on the floor of the volcano only admit as-
cending isogenies. With a view toward the group structures of `-isogenous
curves, we recall [6, Thm. 3] which determines the `-Sylow subgroups of the
vertices of VE . Since we use their conventions in Section 4, we remind the
reader that the authors in [6] label an `-volcano as follows: the vertices are
partitioned into levels V0, . . . , Vh with the crater at level V0 and the floor at
level Vh; the vertices on the floor correspond to curves with cyclic `-Sylow
subgroup.

Theorem [6, Thm. 3]. Let E be an elliptic curve over Fq of order m with
ν = ν`(m) ≥ 1. Then the volcano VE satisfies:

(1) The `-Sylow subgroup of the curves on the floor is Z/`νZ.
(2) If ν is odd, the `-Sylow subgroup of the curves on the i-th level is

Z/`ν−iZ× Z/`iZ.
(3) If ν is even, the `-Sylow subgroup of the curves on the i-th level is

Z/`ν−iZ×Z/`iZ for 1 ≤ i ≤ ν/2. Moreover, for the rest of levels (if

any) until reaching the crater, the structure is Z/`ν/2Z× Z/`ν/2Z.

If ν is even and the height h is greater than ν, the authors in [6] refer to
the level ν/2 (as in Case (3)) as the stability level. We go further and call
the levels between the crater and the stability level the stability zone. We
split our study of the group structures of isogenous curves over the next two
sections, beginning with the prime-to-` part of the group. We will make use
of [6, Thm. 3] in Section 4 when we consider the `-Sylow subgroups.
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3. A ring-theoretic lemma

The main result of this section is a lemma on the quotients of orders in
an algebraic number field. We then apply the result to the case of endomor-
phism rings of elliptic curves over finite fields.

Lemma 2. Let K be an algebraic number field and let O1 ⊂ O2 be orders in
K with [O2 : O1] = m ≥ 1. Let x ∈ O1 be non-zero. Then, the prime-to-m
parts of the finite groups O1/xO1 and O2/xO2 are isomorphic.

Proof. For non-zero x ∈ O1, there is a ring homomorphism

ϕ : O1/xO1 → O2/xO2.

Both rings have size |NK/Q(x)|. Viewing O1/xO1 and O2/xO2 as abelian
groups, we will show ϕ is an isomorphism between the subgroups of elements
of order relatively prime to m. It suffices to prove for each prime p not
dividing m that the map ϕ defines an isomorphism between the subgroups
of elements with p-power order (it obviously maps one such subgroup to
the other). Since the groups O1/xO1 and O2/xO2 have equal size, their
subgroups of elements of p-power order have equal size. So it suffices to
show the natural map between these p-subgroups is surjective.

In addition to ϕ, consider the additive map

ψ : (O2/xO2)[p
∞]→ (O1/xO1)[p

∞],

where ψ(a mod xO2) = ma mod xO1 (which is well-defined since mO2 ⊂
O1). Then ϕ(ψ(t)) = mt for all t ∈ (O2/xO2)[p

∞]. Multiplication by m on
the p-group (O2/xO2)[p

∞] is an automorphism, so ϕ is surjective. �

Corollary 3. Let E1 and E2 be ordinary, `-isogenous, elliptic curves over
a finite field F . Then the prime-to-` parts of the groups E1(L) and E2(L)
are isomorphic for every finite extension L/F .

Proof. Since E1 and E2 are ordinary, their endomorphism rings O1 and O2

are orders in a quadratic number field. For i ∈ {1, 2}, the group structure
of Ei(L) is isomorphic (as groups) to that of Oi modulo the principal ideal
(πn − 1), where π is the Frobenius endomorphism of Ei and n = [L : F ].
Finally, by [4, Prop. 21], because the Ei are `-isogenous the rings Oi satisfy
O1 = O2, [O2 : O1] = `, or [O1 : O2] = `. The corollary now follows from
Lemma 2. �

In light of Corollary 3, it suffices to focus on how the `-Sylow subgroups
of the Ei(L) vary in extensions L/F .

4. The `-Sylow subgroup

We continue with the setup from the previous sections but now restrict
to the case where the characteristic of F does not equal ` so that we may
apply the results of [3] and [6]. If the `-Sylow subgroups of the Ei(F ) are
trivial, then by Corollary 3 the groups E1(F ) and E2(F ) are isomorphic.
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Since the extension F (E[`])/F is an (abelian) extension with Galois group
a subgroup of GL2(Z/`), the Ei can only acquire an `-torsion point in an
extension L/F such that [L : F ] | `(` − 1). Therefore, for any extension
L/F with [L : F ] coprime to `(` − 1) the groups E1(L) and E2(L) will be
isomorphic. We therefore reduce to the case where the `-Sylow subgroups of
the Ei(F ) are non-trivial and consider separately the cases where they have
odd versus even `-divisibility. We write ν`(m) for the `-adic valuation of an
integer m.

Before continuing with the main results of this section, we recall the re-
sults of [3, Props. 4.1 & 4.2] which we will make use of several times below.
We summarize the relevant portions as follows:

Let ` be an odd prime and q a power of a prime different from `. Let
E/Fq be an elliptic curve and suppose E[`∞](Fq) ' Z/`n1Z×Z/`n2Z with
n1 ≥ 1. Then

(1) The smallest extensionK of Fq such that E[`∞](K) is not isomorphic
to E[`∞](Fq) is Fq` , and

(2) If n2 ≥ 1 then E[`∞](Fq`) ' Z/`n1+1Z× Z/`n2+1Z.

Proposition 4. Let ` be odd. Suppose E1 and E2 are ordinary, `-isogenous,
elliptic curves defined over a finite field F of characteristic different from `
with ν`(#Ei(F )) odd. Then, either E1(L) ' E2(L) for all finite extensions
L/F , or E1(L) 6' E2(L) for all finite extensions L/F .

Proof. By Corollary 3, the groups E1(F ) and E2(F ) are isomorphic if and
only if their `-Sylow subgroups are. Since ν`(#Ei(F )) is odd, we apply [6,
Thm. 3], part (2): all vertically isogenous curves have non-isomorphic `-
Sylow subgroups and all horizontally isogenous curves (tautologically) have
isomorphic `-Sylow subgroups. Since the isogeny E1 → E2 is defined over F ,
whether it is horizontal or vertical is unchanged when performing a base-field
extension. Moreover, since the Ei are ordinary, all F -endomorphisms are
defined over F [5, §4] and so the endomorphism rings of Lenstra’s structure
theorem (1) remain unchanged under base-field extensions as well.

Now compare the groups E1(L) and E2(L) for any finite extension L/F .
If E1 and E2 are horizontally isogenous over F , then they are horizontally
isogenous over L and hence the groups E1(L) and E2(L) are isomorphic. If
the curves are vertically isogenous, then the subgroups E1(F ) and E2(F )
are non-isomorphic whence E1(L) and E2(L) are non-isomorphic. �

Proposition 5. Let ` be odd and ν`(#Ei(F )) > 0 be even. If E1 and
E2 represent adjacent vertices on the volcano VE with least one of the Ei
outside of the stability zone, then for all L/F the groups E1(L) and E2(L)
are not isomorphic. If E1 and E2 are both within the stability zone, then
E1(L) ' E2(L) for all extensions L/F .

Proof. If one of E1 or E2 is outside the stability zone, or if both E1 and E2

are on the crater, then the same argument as in the proof of Proposition 4
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applies here to get the desired conclusion. We are left with the case when
E1 and E2 are inside the stability zone, but at least one of the Ei is not on
the crater so that the Ei are vertically isogenous.

Because E1 and E2 both lie in the stability zone, the `-Sylow subgroups
of E1(F ) and E2(F ) are isomorphic and we can write

E1[`
∞](F ) ' E2[`

∞](F ) ' Z/`n1Z× Z/`n2Z,

with n1, n2 ≥ 1. Now apply [3, Props. 4.1 & 4.2]: if L/F is a field extension
with [L : F ] coprime to `, then it cannot have a subfield of `-power degree
over F , hence the `-Sylow subgroups of the Ei(L) are isomorphic to those
of Ei(F ). Since the prime-to-` parts of the Ei(L) are isomorphic, it follows
that E1(L) ' E2(L).

If ord`([L : F ]) = k, then by repeated applications of [3, Props. 4.1 & 4.2]
we have

E1[`
∞](L) ' E2[`

∞](L) ' Z/`n1+kZ× Z/`n2+kZ,

and so we have E1(L) ' E2(L) in this case as well. �

Together, Corollary 3 and Propositions 4 and 5 constitute a proof of Theo-
rem 1.

Remarks.

(1) The case where the `-adic valuation of the Ei(F ) is odd is less in-
teresting because either the Ei(F ) are non-isomorphic (and hence
all base extensions are non-isomorphic), or the endomorphism rings
coincide; by Lenstra’s structure theorem the groups are isomorphic
in all towers over F .

(2) As an alternate proof of Proposition 5 that would avoid the con-
nection with volcanoes, we could have combined the criterion of [2,
Thm. 2.7] with the results [3, Props. 4.1 & 4.2] to determine when
the groups E1(L) and E2(L) are non-isomorphic. The key observa-
tion is that the quantity ‘e’ of [2, Thm. 2.7] divides ` − 1 but must
also be a power of ` by [3, Props. 4.1 & 4.2]. A short argument
would complete the proof.

(3) When ` = 2, [3, Props. 4.1 & 4.2] do not necessarily apply, as evi-
denced by the following example, generalized from [3, Ex. 4.4]. Let
F = F257 and L = F2572 . Set

E1 : y2 = x3 + 90x+ 101

E2 : y2 = x3 + 196x+ 159.
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Note that E2 = E1/〈(−10, 0)〉 so E1 → E2 is a 2-isogeny. Then one
can check that

E1(F )[2∞] = Z/2Z× Z/2Z and E1(L)[2∞] = Z/22Z× Z/24Z,

E2(F )[2∞] = Z/2Z× Z/2Z and E2(L)[2∞] = Z/23Z× Z/23Z.

(4) Recall [2, Ex. 3.2]: Let q = 3329, F = Fq, and consider the three
elliptic curves

E0 : y2 = x3 + 99x

E1 : y2 = x3 + x+ 72

E2 : y2 = x3 + x+ 192.

They show E0(Fqn) ' E1(Fqn) if and only if 4 - n, E1(Fqn) '
E2(Fqn) if and only if 4 - n, and E0(Fqn) ' E2(Fqn) for all n. The
endomorphism rings are given respectively byO0 = Z[i], O1 = Z[25i]
and O2 = Z[5i].

We reconsider this example now in light of our results. None of
the Ei have Fq-rational 5-torsion and only achieve 5-torsion after
a base extension of degree 4. Thus ν = 0 for the Ei(Fq) and one
can check that the Ei(Fq) are cyclic of order 3226. Over Fq4 we check

• E0(Fq4) ' E2(Fq4) ' Z/1040Z + Z/118092375440Z

• E1(Fq4) ' Z/208Z + Z/590461877200Z,

so that for Ei(Fq4) we have ν = 2. The `-volcano has height 2 and
we see that that E0 lies on the crater because it has maximal endo-
morphism ring, and the 5-isogenies E0 → E2 → E1 are descending;
note that E1 lies on the floor since its 5-Sylow subgroup is cyclic.

The curves E0 and E2 lie in the stability zone of this volcano
and since E0(Fq4) ' E2(Fq4), it follows from Proposition 5 that
E0(Fq4k) ' E2(Fq4k) for all positive integers k. Moreover, this shows
that E0(L) ' E2(L) for all L in the tower

Fq ⊂ Fq4 ⊂ Fq8 ⊂ · · · ⊂ Fq4k ⊂ · · ·
If M/Fq is an extension that does not lie in this tower, then the
Ei(M) will have trivial 5-Sylow subgroup and by Corollary 3 the
groups E0(M) and E2(M) will be isomorphic. It follows that over all
finite extensions K/F the groups E0(K) and E2(K) are isomorphic.

On the other hand, a similar argument shows that E1(L) and
E2(L) are never isomorphic for any finite extension L/Fq4 because
E1 lies outside the stability zone. If M/Fq is an extension that does
not lie in the tower above Fq4 then the 5-Sylow subgroups of E1(M)
and E2(M) are trivial and so E1(M) ' E2(M) by Corollary 3 again.
Together, this recovers the results of [2, Ex. 3.2].
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This gives another example of the type introduced by Wittman
in [9, Appendix], since the endomorphism rings of E1 and E0 are
distinct (in his example, the isogeny in question has degree 2). It
is now easy to generalize this to create new examples of curves over
finite fields with distinct endomorphism rings that nonetheless have
isomorphic groups of rational points in towers.

(5) As stated, Propositions 4 and 5 do not apply in the case of 2-
isogenies, a difficulty which has already been alluded to in [2, Thm. 2.7].
It would be interesting to obtain an analog of Propositions 4 and 5
in the case of 2-isogenies.
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