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ABSTRACT. In previous work [4], the author claimed a characterization for
F¢(n) and lower asymptotic bounds for Conj;(n) when G is a finitely generated
nilpotent group. However, a counterexample to the characterization of Fg(n)
for finitely generated nilpotent groups was communicated to us by Khalid Bou-
Rabee which also had consequences to the lower asymptotic bound provided for
Conjg(n). The purpose of this note to explain what is incorrect in [4] along with
the counterexample provided to us. We will also explain what remains correct in
[4] and how we obtain weaker lower bounds for Fy (n) and Conjy (n) which are
found in the author’s thesis and a forthcoming preprint.
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1. Introduction

The following is found in [4]. The numbering and any unexplained terminology
is also taken from [4].

Theorem 1.1. Let N be an infinite, finitely generated nilpotent group. Then there
exists a Yrp(N) € N such that Fg(n) ~ (log(n))WRF(N) . Additionally, one may com-
pute Yrr(N) given a basis for ¥.(N/T(N)) where c is the step length of N/T (N).

Theorem 1.8(ii). Let N be an infinite, finitely generated nilpotent group. Suppose
that N is not virtually abelian. There exists a Wy pwer(N) € N such that nYeover(N) <

Conjy (n). Additionally, one can compute Wi ,er(N) given a basis for ¥.(N/T(N))
where c is the step length of N/T (N).
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Khalid Bou-Rabee provided an example of a torsion free, finitely generated
nilpotent group G where Theorem 1.1 predicts Fg(n) &~ (log(n))’, but where it
can be shown that Fg(n) < (log(n))*. Thus, the asymptotic lower bound produced
for Fy(n) in [4, Theorem 1.1] is incorrect. Upon inspection of the original article, it
turns out that [4, Proposition 4.10] is false which we provide counterexamples for.
Since the proof of Theorem 1.8(ii) relied on this proposition, its proof is incomplete
as well.

2. A counterexample to [4, Proposition 4.10] and [4, Theorem 1.1]
The following group was communicated to us by Khalid Bou-Rabee:
G ={xywzuv|ley) = [wd =1 [w =3 =,
[,z =v,[y,w] =v ', uand v are central }.
The following proposition was one of the main tools from [4].

Proposition 4.10. Let N be a torsion free, finitely generated nilpotent group with
a cyclic series {Hi}l}i}\p and a compatible generating subset {x,}iij\{) Let ¢ : N —
Q be a surjective group morphism to a finite p-group where p > B(N,H;,{x;}).
Suppose that ¢([xz]) # 1 for all [xz] € W(N,H;,{x;}) NZ(N). Also, suppose that
©(x;) # 1 for x; € Z(N) and @(x;) # @(x;) for all x;,x; € Z(N) where i # j. Then
o(x;) # 1 for 1 <t < h(N) and @(x;) # @(x;) for 1 <i < j < h(N). Finally,
0] > p"™.

The following proposition produces infinitely many primes p in such a way
that there exists a surjective group morphism vy, : G — Q, to a finite p-group
Q,, satisfying the hypotheses of Proposition 4.10 and where |Q,| = p*, and since
Proposition 4.10 predicts |Q,| = p°, we have a collection of counterexamples for
Proposition 4.10. Before starting, we introduce some notation. Let

E={pecP|4divides p—1}.
For p € E, we let {a,,b,} be the two distinct solutions to the equation T’ +1=

0 mod p. Finally, we let A, and B,, be the normal closures of the subgroups (x“ y)
and <be y> in G, respectively.

Proposition 2.1. If p € E, then m,(A,)NZ(G/GP?) ~F, and 7t,(B,) N Z(G/GV") =
F,. Moreover, |G/GF -A,| =|G/GP - B,| = p* and Z(G/GP -A,) 2 Z(G/GP - B),) =
F,. We also have that 1t,(A,) N7,(B,) = {1} and (7,(A,),7,(B))) = Z(G/GP).
Finally, 7tgr.a,(u),Tgr.a,(v), Tr.8, (1), Gr.8,(v) # 1. Additionally, 7gr.a,(u)
Gr-A, (v) and nGr-B, (u) #* TCGP*B],(V)-

Proof. For the first statement, it is sufficient to prove that |G/G” - A,| = p* and
that Z(G/G?) Nrm(A,) = F,. By direct calculation, we have that A, NZ(G) =
(u v=" v . Since (u% v=") "% = u= (@) y4% = v mod GP, we have T (Ap)N
Z(G/GP) = (m,(uv®r)) = F,. Since G/G” - A, is generated by the set {¥,w,Z,v}
where each element has order p, the second paragraph after [3, Definition 8.2]
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implies that |G/G? - A,| = p*. Subsequently, Z(G/G”-A,) = F,. For the next
statement, we note that 7, (A,) = (uv*) and 7,(B,,) = (uvPr). Suppose for a con-
tradiction that there exists a natural number ¢ such that (uv%)* = uv*» mod G”.
Since (uv®)’ = u’v'%, we must have that £ = 1 mod p and £ a, = b, mod p.
Since {a, = a, mod p, we have that a, = b, mod p which is a contradiction.
In particular, 7,(A,) N 7,(B,) = {1}; hence, (7,(A)),7,(By)) =F, xF,. Since
Z(G/GP) =T, xF,, it follows that (7,(A,),7,(B,)) = Z(G/GP). The remaining
two statements are evident. g

Proposition 2.2. Fs(n) = (log(n))*.

Proof. Let g € G\ {1} such that |[g|s <n. If 7,,)(g) # 1, then [1, Corollary 2.3]
implies there exists a surjective group morphism ¢ : G/ (G) — P to a finite group
such that [P| < Cj log(Cy n) for some constant C; > 0 and where @(7y,)(g)) # 1.
Thus, Dg(g) < Cj log(Cy n). Hence, we assume that g = u®v®. Since ||u®||, |[v®|| <
n, [2, 3.B2] implies that there exists a constant C, > 0 such that ||, |0, | < Cy n?.
We may without loss of generality assume that a, # 0. Chebotarev’s Density The-
orem and the Prime number theorem imply that there exists a prime p € E such
that p 1 a, and where p < C; log(Cs n) for some constant C3 > 0. Proposition
2.1 implies that either 7Gr.4,(g) # 1 or Tgr.p,(g) # 1. In either case, we have

Dq(g) < (Ca)* (log(Can))* . Hence, Fg(n) 3 (log(n))*. O

3. Correct results from [4] and current state of affairs

The following theorems remain correct in [4]. The reason being is that do not
in anyway rely on [4, Proposition 4.10]; in fact, they rely on completely different
techniques.

Theorem 1.7. Let N be a finitely generated nilpotent group. Then there exists a
k € N such that Conjy(n) =< n*.

By applying [4, Proposition 4.4] and [4, Proposition 6.1], we have the following
theorem.

Theorem 3.1. Let N be an infinite finitely generated nilpotent group. There exists
a constant Yrr(N) € N such that Fy(n) 3 (log(n))WRF(N) .

We finish by noting that the author was able to recover [4, Theorem 1.8(ii)] and
was able to obtain asymptotic lower bounds for Fy(n) in his thesis in the discussion
outline below (see [5] for any unexplained terminology). We provide lower bounds
for Fy(n) with the following theorem (see [5, Theorem 1.2]).

Theorem 3.2. If N is an infinite, finitely generated nilpotent group such that N /T (N)
has step length ¢ > 1, then there exists a natural number dimgp (N) > ¢+ 1 and

where (log(n)) ™) < Ry (7).

To produce a lower asymptotic bound for Fy (n), we need to construct a sequence

of elements {x;};”, such that the order of the minimal finite group Q; where there
exists a surjective group morphism y; : N — Q; such that y;(x;) # 1 has order
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approximately (log(|lx;|))4™®* ™) n order to find this sequence, we introduce a
notion of I ,-dimension associated to any primitive element x € \/¥.(N), denoted
dimg,(N,x), which measures the difficulty of separating x from the identity in a
finite p-group. If we let Ey ,; = { pEP] dimp, (N,x)=1i } we see that there exists
a minimal index iy such that |Ey ;| = c. We denote this as dimgpy(N,x), and
observe that this value captures the complexity of separating powers of x from the
identity in finite p-groups as we vary the prime number. By maximizing the value
dimgpy (N, x) over all such primitive elements, we obtain the value dimggr (N). For
any primitive element x € /¥, (N) where dimggL (N, x) = dimgpr, (N), there exist a
sequence of natural numbers {m;}; , such that the desired sequence of elements is
given by {x"}” .

We obtain lower asymptotic bounds for Conjy(n) with the following theorem
(see [5, Theorem 1.8])

Theorem 3.3. If N is an infinite, non-virtually abelian, finitely generated nilpo-
tent group where N'TW has step length c, then there exists a natural number
dimconj(N) > ¢+ 1 and where n'¢=Ddimeai(N) < Conjy (n).

For the lower bounds of Conjy(n), we need to find an infinite sequence of non-
conjugate elements x; and y; such that the minimal finite group Q; where there
exists a surjective group morphism y; : N — Q; such that y;(x;) and y;(y;) are non-
conjugate has order approximately (max{||x;]|, |[yi|)“™™). In order to construct
this sequence, we use the concept of admissible 4-tuples. Admissible 4-tuples
(g,m,a,b) contain the data of a primitive element in g € \/7¥:(N), a natural number
m, and elements a € ¥._1(N) and b € N such that g" = [a,b]. The structure of
conjugacy classes in the integral Heisenberg group imply that we may introduce a
[F,-dimension to (g,m,a,b), denoted dimcon ¥, (g,m,a,b), that measures the diffi-
culty of separating the conjugacy classes of a” [a, b] and a” [a, b]? in finite p-groups
when [a,b] ¢ N?. Observe that there exists a maximal index 1 < iy < h(N) such that
|LCw,(g.m,a,0),io | = o~ We denote this value as dimcon;(g,m,a,b), and we obtain the
value dimcopj(N) by maximizing the value dimconj(g,m,a,b) over all such admis-
sible 4-tuples. The admissible 4-tuples (g,m,a,b) which attain this maximum give
us the necessary sequence of non-conjugate elements via a” [a, b] and a” [a, b]? for

pE LCN7(g,m,a,b),io'
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