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Reducibility and unitary equivalence
for a class of truncated Toeplitz operators

on model spaces

Yufei Li, Yixin Yang and Yufeng Lu

Abstract. In this paper we give a necessary and sufficient condition
for the reducibility of a truncated Toeplitz operator on model spaces
induced by a Blaschke product with two zeros. If the truncated Toeplitz
operator is reducible, its restriction on a non-trivial reducing subspace
is unitarily equivalent to another truncated Toeplitz operator induced
by z.
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1. Introduction

Let L2(T) and L∞(T) denote the usual Lebesgue spaces on the unit circle
T. Let H2 denote the Hardy space on the open unit disk D and H∞ denote
the space of bounded analytic function on D. For ϕ in L∞(T), the Toeplitz
operator Tϕ on H2 is defined by

Tϕf = P (ϕf),

where P is the orthogonal projection on L2(T) with range H2.
To each non-constant inner function θ we associate the model space

K2
θ = H2 	 θH2,
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which is a reproducing kernel Hilbert space whose kernel is given by

kθλ(z) =
1− θ(λ)θ(z)

1− λz
, λ, z ∈ D.

The truncated Toeplitz operator on K2
θ with symbol ϕ ∈ L∞(T) is the

operator Aϕ defined by
Aϕf = Pθ(ϕf),

where Pθ is the orthogonal projection on L2(T) with range K2
θ . Truncated

Toeplitz operators on model spaces have been formally introduced by Sara-
son in [9] and this area has undergone vigorous development during the past
several years; see [1, 4, 5] and references therein.

Let T be a bounded linear operator on a Hilbert space H. A closed
subspace M of H is called a reducing subspace of T if TM ⊂ M and
T ∗M ⊂M . If T has a proper reducing subspace, we say that T is reducible.
The classification of invariant subspaces or reducing subspaces of various
operators on function space has proven to be a very rewarding research
problem in analysis. A lot of nice and deep work on the reducing subspaces
of multiplication operators on the Bergman space induced by finite Blaschke
products can be found in [11, 7, 3, 6].

It is well known that Az is irreducible, see for example [5]. However,
Ronald G. Douglas and C. Foias [2] showed that Az2 is reducible if and only
if either

(1) θ(z) ≡ θ(−z), z ∈ D
or there exists a λ ∈ D such that

(2) θ(z) = ϕλ(z)u(z),

where ϕλ(z) = λ−z
1−λz and u ∈ H∞ satisfies

u(z) ≡ u(−z), z ∈ D.
If θ satisfies (1), we call θ an even function for convenience. Therefore, we
see that reducing subspaces of truncated Toeplitz operators display different
pictures when compared to the case of Toeplitz operators on the Bergman
space.

The main result of this paper is to give a necessary and sufficient condition
for the reducibility of Aθϕ, where ϕ is a Blaschke product with two zeros.

The proof is function theoretical and interesting by itself. If Aθϕ is reducible,

the restriction of Aθϕ on a proper reducing subspace is unitarily equivalent

to Aφz for some inner function φ and we give a complete description of such
inner functions φ. We need more concepts and notations to state the results.

The space K2
θ carries a natural conjugation (an isometric, conjugate-

linear, involution, see [9]) defined by Cf = θzf . Then we write

k̃θλ(z) = (Ckθλ)(z) =
θ(z)− θ(λ)

z − λ
.
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In particular, k̃θ0 = T ∗z θ. Let Mθ and Mθ denote the multiplication operators

on L2(T) induced by θ and θ, respectively. We have

Pθ = P −MθPMθ.

Set Qθ = MθPMθ. Then Qθ is the orthogonal projection on L2(T) with

range θH2. If it is necessary to specify the inner function θ, we will write
Aθϕ instead of Aϕ. It is clear that A∗ϕ = Aϕ. In particular, if ϕ ∈ H∞, K2

θ is
an invariant subspace for T ∗ϕ. It follows that A∗ϕ = T ∗ϕ |K2

θ
. For ϕ,ψ ∈ H∞,

it is known that T ∗ψT
∗
ϕ = T ∗ϕψ. Thus A∗ψA

∗
ϕ = A∗ϕψ and AϕAψ = Aϕψ.

For λ ∈ D, let ϕλ be the Blaschke factor defined by

ϕλ(z) =
λ− z
1− λz

, z ∈ D.

In what follows, we will assume that dimK2
θ ≥ 2, which will be used through-

out the paper. The hyperbolic metric on D is defined by

ρ(z, ω) =
1

2
log

1 + |ϕz(ω)|
1− |ϕz(ω)|

, z, ω ∈ D.

The hyperbolic metric is invariant under the action of the disk automor-
phisms. For any two points z and ω in D, the geodesic between z and ω is
of minimum length between z and ω in the hyperbolic metric. Furthermore,
given any two different points z and ω in D, there exists a unique circle
γ through z and ω that is perpendicular to the unit circle. The geodesic
between z and ω is then the arc of γ between z and ω that lies inside D.
Now given two points a and b in D, there exists a unique geodesic

γ : (−∞,+∞) 7→ D

such that γ(0) = a and γ(1) = b. The point γ(12) will be called the geodesic
midpoint between a and b (see [11] or [12] for more detail).

Definition 1.1. For λ in C, we write

M θ
λ = span

{
T ∗z2n+1θ + λT ∗z2n+2θ) : n ≥ 0

}
.

If λ =∞, then we define

M θ
∞ = span

{
T ∗z2n+2θ : n ≥ 0

}
.

We can now state the main results of the paper.

Theorem 1.2. Let ϕ = ϕλ0ϕλ1 be a Blaschke product with two zeros λ0
and λ1 in D. Let p be the geodesic midpoint between λ0 and λ1. Then Aθϕ is

reducible on K2
θ if and only if θ ◦ ϕp satisfies either (1) or (2). Moreover,

if Aθϕ is reducible and M is a proper reducing subspace of Aθϕ, then

(1) if θ ◦ϕp is even, then there is ω ∈ Ĉ, where Ĉ = C∪ {∞}, such that

M =
{√

ϕ′p (f ◦ ϕp) : f ∈M θ◦ϕp
ω

}
;



932 YUFEI LI, YIXIN YANG AND YUFENG LU

(2) if θ ◦ ϕp = ϕλu, where λ ∈ D and u (u ∈ H∞) is even, we have

M =
{√

ϕ′p (f ◦ ϕp) : f ∈M θ◦ϕp
λ

}
,

or

M =

{√
ϕ′p (f ◦ ϕp) : f ∈M θ◦ϕp

− 1
λ

}
.

Theorem 1.3. Let ϕ, p be defined as above. If Aθϕ is reducible and M is

any proper reducing subspace of Aθϕ, then there is an inner function φ such

that Aθϕ |M is unitarily equivalent to Aφz . Moreover,

(1) if θ ◦ ϕp(z) = u(z2) for some inner function u, then φ(z) = u ◦ ϕ0 ◦
ϕ−a(z);

(2) if θ ◦ ϕp(z) = ϕλ(z)u(z2) for some λ ∈ D and some inner function
u, then either φ(z) = (ϕλ2u) ◦ϕ0 ◦ϕ−a(z) or φ(z) = u ◦ϕ0 ◦ϕ−a(z),
where a = ϕ2

p(λ0).

Since Az is irreducible, it follows from the Theorem 1.3 that the proper
reducing subspaces mentioned in Theorem 1.2 are all minimal.

2. Reducing subspaces of Az2

Using model theory for C0 operators (see [10]), Douglas and Foias have
given a necessary and sufficient condition for the reducibility of Az2 . The
purpose of this section is to present a function theoretic proof of the re-
ducibility of Az2 . Moreover, as a result of this analysis, we obtain a complete
description of the reducing subspaces of Az2 .

To start with, we need some new notations.

Definition 2.1. For ϕ in L∞(T), define

Xϕ : θH2 7→ K2
θ , Xϕf = Pθϕf,

Yϕ : K2
θ 7→ θH2, Yϕf = Qθϕf,

and

Dϕ : θH2 7→ θH2, Dϕf = Qθϕf.

In particular, if ϕ ∈ H∞, then Dϕf = ϕf for f ∈ θH2 and Xϕ = 0.
Therefore, we have the following decomposition for Tz2 :

Tz2 =

(
Az2 0
Yz2 Dz2

)
K2
θ

θH2.

Lemma 2.2. For any nonnegative integer n and f ∈ K2
θ , we have

Aznf = znf −
n∑
k=1

〈Azn−kf, k̃θ0〉zk−1θ.
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Proof. It can be seen in [8, pp.3] for n = 1. Now for any nonnegative integer
n, since {zkθ : k ≥ 0} is an orthonormal basis for θH2 and H2 = K2

θ ⊕ θH2,
it follows that for any f ∈ K2

θ ,

Aznf = znf −
∞∑
k=0

〈znf, zkθ〉zkθ

= znf −
n−1∑
k=0

〈znf, zkθ〉zkθ

= znf −
n−1∑
k=0

〈zn−kf, θ〉zkθ.

Note that k̃θ0 = T ∗z θ. So we have

Aznf = znf −
n∑
k=1

〈zn−kf, k̃θ0〉zk−1θ,

as desired. �

Proposition 2.3. Suppose dimK2
θ ≥ 2. Then

Yz2 = θ ⊗A∗zk̃θ0 + zθ ⊗ k̃θ0
and dim(Yz2K

2
θ ) = 2.

Proof. For any f ∈ K2
θ , by Lemma 2.2, we have

Yz2f = (Tz2 −Az2)f

= 〈f,A∗zk̃θ0〉θ + 〈f, k̃θ0〉zθ

= (θ ⊗A∗zk̃θ0 + zθ ⊗ k̃θ0)f.

To prove dim(Yz2K
2
θ ) = 2, observe that

dim(Yz2K
2
θ ) ≤ 2.

If dim(Yz2K
2
θ ) < 2, then there exist λ1, λ2 ∈ C, not all zeros, such that for

every f ∈ K2
θ ,

〈Yz2f, λ1θ + λ2zθ〉 = 0,

that is,

〈f, λ1A∗zk̃θ0 + λ2k̃
θ
0〉 = 0.

Therefore,

λ1A
∗
zk̃
θ
0 + λ2k̃

θ
0 = 0.

Recall that k̃θ0 is a cyclic vector of A∗z (see [9, Lemma 2.3]). It follows that
dimK2

θ ≤ 1. This is a contradiction and the proof is complete. �

Lemma 2.4. If M is a proper reducing subspace of Az2, then for any f ∈M
and g ∈M⊥ = K2

θ 	M we have 〈Yz2f, Yz2g〉 = 0.
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Proof. Since both M and M⊥ are proper reducing subspaces of Az2 , it
follows from the fact T ∗z2 |K2

θ
= A∗z2 that

〈Yz2f, Yz2g〉 = 〈(Tz2 −Az2)f, (Tz2 −Az2)g〉
= 〈z2f, z2g〉 − 〈Tz2f,Az2g〉 − 〈Az2f, Tz2g〉+ 〈Az2f,Az2g〉
= −〈f,A∗z2Az2g〉 − 〈A

∗
z2Az2f, g〉

= 0.

�

Lemma 2.5. If M is a proper reducing subspace of Az2, then dim(Yz2M) =
1.

Proof. By Proposition 2.3 and Lemma 2.4, it suffices to prove that for any
proper reducing subspace M of Az2 we have dim(Yz2M) 6= 0. Otherwise,
assume that dim(Yz2M) = 0. Then for any f ∈M ,

Yz2f = 〈f,A∗zk̃θ0〉θ + 〈f, k̃θ0〉zθ = 0,

which implies that 〈f,A∗zk̃θ0〉 = 0 and 〈f, k̃θ0〉 = 0. Hence both A∗zk̃
θ
0 and k̃θ0

are in M⊥. Moreover, since M⊥ reduces A∗z2 , we have

A∗z2n+1 k̃
θ
0, A∗z2n k̃

θ
0 ∈M⊥

for all nonnegative integer n. Since k̃θ0 is a cyclic vector for A∗z (see [9,
Lemma 2.3]), it follows that M⊥ = K2

θ and hence M = {0}. This is a
contradiction. �

If Az2 is reducible and M is a proper reducing subspace of Az2 , it follows
from Proposition 2.3 and Lemma 2.5 that there exist λ1, λ2 ∈ C, not all
zeros, such that

(3) Yz2M = span {λ1zθ + λ2θ} .

Similarly, since M⊥ is also the proper reducing subspace of Az2 , there exist
λ3, λ4 ∈ C, not all zeros, such that

(4) Yz2M
⊥ = span {λ3zθ + λ4θ} .

Moreover, Lemma 2.4 yields

(5) λ1λ3 + λ2λ4 = 0.

Clearly, λ1 6= 0 or λ3 6= 0. Without loss of generality, we assume that
λ1 6= 0. By (5), λ4 6= 0, since if λ4 = 0, then λ3 = 0, this is impossible. Let
ω = λ2/λ1. Together, (3), (4) and (5) give that{

Yz2M = span{zθ + ωθ},
Yz2M

⊥ = span{−ωzθ + θ}.
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Again, from Lemma 2.4, it follows that{
〈Yz2f,−ωzθ + θ〉 = 0, f ∈M,

〈Yz2g, zθ + ωθ〉 = 0, g ∈M⊥.

A calculation shows that{
〈f,−ωk̃θ0 +A∗zk̃

θ
0〉 = 0, f ∈M,

〈g, k̃θ0 + ωA∗zk̃
θ
0〉 = 0, g ∈M⊥.

This implies that {
k̃θ0 + ωA∗zk̃

θ
0 ∈M,

−ωk̃θ0 +A∗zk̃
θ
0 ∈M⊥.

Therefore,

M ⊃M θ
ω, M

⊥ ⊃M θ
− 1
ω

.

Note that for each nonnegative integer k,{
A∗
z2k
k̃θ0 = 1

1+|ω|2A
∗
z2k

(k̃θ0 + ωA∗zk̃
θ
0)− ω

1+|ω|2A
∗
z2k

(−ωk̃θ0 +A∗zk̃
θ
0),

A∗
z2k+1 k̃

θ
0 = ω

1+|ω|2A
∗
z2k

(k̃θ0 + ωA∗zk̃
θ
0) + 1

1+|ω|2A
∗
z2k

(−ωk̃θ0 +A∗zk̃
θ
0).

Thus we have

(6) A∗zk k̃
θ
0 ∈M θ

ω +M θ
− 1
ω

for all nonnegative integer k. Furthermore, since k̃θ0 is a cyclic vector of A∗z,
we get that

(7) M = M θ
ω, M

⊥ = M θ
− 1
ω

.

Proposition 2.6. Az2 is reducible on K2
θ if and only if there exists ω ∈

C ∪ {∞} such that for all nonnegative integers m and n,

〈A∗z2n(k̃θ0 + ωA∗zk̃
θ
0), A∗z2m(−ωk̃θ0 +A∗zk̃

θ
0)〉 = 0.

Proof. For the case ω =∞, the equations

〈A∗z2n(k̃θ0 + ωA∗zk̃
θ
0), A∗z2m(−ωk̃θ0 +A∗zk̃

θ
0)〉 = 0, n,m ≥ 0

mean that

〈A∗z2n+1 k̃
θ
0, A

∗
z2m k̃

θ
0〉 = 0, n,m ≥ 0,

which is the same as the case ω = 0. Therefore we only need to prove the
case ω ∈ C.

As shown above, we have proved the necessity of the proposition. For the
sufficiency, let

N1 = M θ
ω, N2 = M θ

− 1
ω

.

It is not hard to see that Ni 6= {0} for i = 1, 2, since if not, then k̃θ0 +

ωA∗zk̃
θ
0 = 0 or −ωk̃θ0 + A∗zk̃

θ
0 = 0. Since k̃θ0 is cyclic vector of A∗z, we have

that dimK2
θ ≤ 1 and this is a contradiction.
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Since for any nonnegative integers m and n,

〈A∗z2n(k̃θ0 + ωA∗zk̃
θ
0), A∗z2m(−ωk̃θ0 +A∗zk̃

θ
0)〉 = 0,

we conclude that N1 ⊥ N2. Moreover, (6) and the fact that k̃θ0 is a cyclic
vector of A∗z give that N1⊕N2 = K2

θ . Clearly, both N1 and N2 are invariant
subspaces of A∗z2 . Therefore, Az2 is reducible. �

Proposition 2.6 can be improved as follows.

Corollary 2.7. Az2 is reducible on K2
θ if and only if there is a complex

number ω, |ω| ≤ 1, such that for any nonnegative integers m and n,

(8) 〈T ∗z2n+2(z + ω)θ, T ∗z2m+2(−ωz + 1)θ〉 = 0.

Proof. Sufficiency is obvious. Conversely, if Az2 is reducible on K2
θ , then by

Proposition 2.6, there is λ ∈ C∪ {∞} such that for all nonnegative integers
m and n,

〈T ∗z2n+2(z + λ)θ, T ∗z2m+2(−λz + 1)θ〉 = 0.

Case 1: if |λ| ≤ 1, then the proof is complete.
Case 2: if |λ| > 1, then let ω = − 1

λ
(ω = 0 if λ =∞) and |ω| < 1. Hence

〈T ∗z2n+2(−ωz + 1)θ, T ∗z2m+2(z + ω)θ〉 = 0,

for all nonnegative integers m and n. This proves the desired result. �

To deal with equation (8), we need the following lemma.

Lemma 2.8. Let θ(z) =
∑∞

k=0 akz
k be an inner function. Then for any

positive integer n,
∞∑
k=0

akak+n = 0.

Proof. It follows easily from the fact that 〈znθ, θ〉 = 0 for any positive
integer n. �

Now we can characterize the inner functions θ such that (8) is valid.

Proposition 2.9. Let ω ∈ D. We have that

(1) if |ω| = 1, then (8) is valid if and only if θ is even.
(2) if |ω| < 1, then (8) is valid if and only if θ is even or θ = ϕωu, where

u ∈ H∞ is even.

Proof. Let ω ∈ D and

θ(z) =

∞∑
k=0

akz
k.

For convenience, let

A(n,m) =
∞∑
k=0

ak+nak+m.
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Now assume that (8) is valid, that is, for all nonnegative integers m and
n,

〈T ∗z2n+2(z + ω)θ, T ∗z2m+2(−ωz + 1)θ〉 = 0.

From Taylor expansion, it follows that this formula is equivalent to

− ωA(2n+ 1, 2m+ 1)− ω2A(2n+ 2, 2m+ 1)

+A(2n+ 1, 2m+ 2) + ωA(2n+ 2, 2m+ 2) = 0,

which can be written as

(9) − ωa2n+1a2m+1 − ω2A(2n+ 2, 2m+ 1) +A(2n+ 1, 2m+ 2) = 0.

Interchanging m with n and taking conjugates, we get

(10) − ωa2n+1a2m+1 − ω2A(2n+ 1, 2m+ 2) +A(2n+ 2, 2m+ 1) = 0.

(9) + ω2 × (10) gives that

(11) − ωa2n+1a2m+1 + (1− |ω|2)A(2n+ 1, 2m+ 2) = 0.

Replace m by m− 1. Then

(12) − ωa2n+1a2m−1 + (1− |ω|2)A(2n+ 1, 2m) = 0.

Similarly, ω2 × (9) + (10) gives that

(13) − ωa2n+1a2m+1 + (1− |ω|2)A(2n+ 2, 2m+ 1) = 0.

Combining (12), (13) and the fact that

A(2n+ 2, 2m+ 1) = A(2n+ 1, 2m)− a2n+1a2m,

we obtain

(14) a2n+1(−ωa2m−1 + (1− |ω|2)a2m + ωa2m+1) = 0, n ≥ 0

for m > 0. For (13), in particular, the condition m = 0 and Lemma 2.8
yield

(15) a2n+1(ωa1 + (1− |ω|2)a0) = 0, n ≥ 0.

For (1), since |ω| = 1, by (11), we conclude that

−ωa2n+1a2m+1 = 0

for all nonnegative integers m and n. Let m = n. Then a2n+1 = 0 for any
n, which implies that θ is even. Conversely, if θ is even, then clearly, (9) is
valid and hence (8) is valid. Thus (1) is proved.

Now we consider (2) and let |ω| < 1.
Case I: a2n+1 = 0 for all nonnegative integers n, then θ is even.
Case II: There is a nonnegative integer n such that a2n+1 6= 0. Then (14)

and (15) give

(16)

{
−ωa2t−1 + (1− |ω|2)a2t + ωa2t+1 = 0, for t ≥ 1,

(1− |ω|2)a0 + ωa1 = 0,
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which can be written as

(17)


ω(a2t−1 + ωa2t) = a2t + ωa2t+1, for t ≥ 1,

−(ωa2t−1 − a2t) = ω(ωa2t − a2t+1), for t ≥ 1,

a0 + ωa1 = |ω|2a0.

((17) will be used in section 4).
In what follows, we shall show that in this case, θ = ϕωu for some even

inner function u. Write

(18) θ(z) = θ1(z
2) + zθ2(z

2), z ∈ D.

Obviously,

θ1(z) =
θ(
√
z) + θ(−

√
z)

2
, z ∈ D

and

θ2(z) =

{
θ(
√
z)−θ(−

√
z)

2
√
z

, 0 6= z ∈ D
θ′(0), z = 0.

Then (16) is equivalent to

−ωzθ2 + (1− |ω|2)θ1 + ωθ2 = 0, z ∈ D.

This can be written as

θ(z)(z + ω)(1− ωz)− θ(−z)(ω − z)(1 + ωz) = 0.

Since |ω| < 1, we have

θ(z)ϕ−ω(z) = θ(−z)ϕω(z).

If ω = 0, then θ(z) + θ(−z) = 0 and hence θ is an odd inner function. If
0 < |ω| < 1, then θ(ω) = 0 and let θ = ϕωu for some inner function u, we
can check that u is even.

For the other direction, assume that θ is even or θ = ϕωu, where u ∈ H∞
is even and |ω| < 1.

If θ is even. It is easy to check that (9) is valid and hence (8) is valid.
If θ = ϕωu, where u ∈ H∞ is even and |ω| < 1. Obviously, u is an inner

function and K2
u ⊂ K2

θ , then we have

T ∗z θ =
θ − θ(0)

z

=
ϕωu− ωu+ ωu− ωu(0)

z

= −1− |ω|2

1− ωz
u+ T ∗z u.

(19)

Similarly,

T ∗z2θ = −(1− |ω|2)( ωu

1− ωz
+ T ∗z u) + ωT ∗z2u.
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Therefore,

(20) T ∗z θ + ωT ∗z2θ = −(1− |ω|4) u

1− ωz
+ ω|ω|2T ∗z u+ ω2T ∗z2u,

and

(21) − ωT ∗z θ + T ∗z2θ = −T ∗z u+ ωT ∗z2u.

Note that

T ∗z
u

1− ωz
=

ωu

1− ωz
+ T ∗z u.

Hence for any nonnegative integer n,

T ∗z2n
u

1− ωz
=

ω2nu

1− ωz
+

2n−1∑
k=0

ω2n−1−kT ∗zk+1u

=
ω2nu

1− ωz
+
n−1∑
j=0

ω2n−2j−2T ∗z2j+2(ωz + 1)u.

(22)

When u is even, for each ω ∈ D, it follows fromTaylor expansion that

〈T ∗z2n+2(−z + ω)u, T ∗z2m+2(ωz + 1)u〉 = 0,

for all nonnegative integers m and n. Hence (20)-(22) and the fact u
1−ωz ∈

uH2 yield that

〈T ∗z2n+2(z + ω)u, T ∗z2m+2(−ωz + 1)u〉 = 0,

for all nonnegative integers m and n. This completes the proof of proposi-
tion. �

We are now ready to state the main result of this section.

Theorem 2.10. Az2 is reducible on K2
θ if and only if θ satisfies either (1)

or (2). Moreover, if Az2 is reducible and M is a proper reducing subspace
of Az2, then

(1) if θ is even, there is ω ∈ Ĉ (Ĉ = C ∪ {∞}) such that M = M θ
ω.

(2) if θ = ϕλu, where u ∈ H∞ is even and λ ∈ D, then M = M θ
λ or

M = M θ
− 1
λ

.

Proof. This follows from Corollary 2.7, Proposition 2.9, and (7). �

3. Reducing subspaces of Aθ
ϕλ0

ϕλ1

In this section, by using Theorem 2.10, we will prove the Theorem 1.2.
For λ ∈ D, recall that ϕλ is defined by

ϕλ(z) =
λ− z
1− λz

, z ∈ D.

If we set

Uϕλ : K2
θ → K2

θ◦ϕλ , Uϕλf =
√
ϕ′λ(f ◦ ϕλ),

√
ϕ′λ(z) = i

√
1− |z|2

1− λz
,
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then a calculation (for example, see [1, Proposition 4.1]) shows that Uϕλ is
a unitary transformation and for g ∈ K2

θ◦ϕλ ,

U∗ϕλg =
√

(ϕ−1λ )′(g ◦ ϕ−1λ )

=
√
ϕ′λ(g ◦ ϕλ).

(23)

Furthermore, if ϕ ∈ L∞,

UϕλA
θ
ϕU
∗
ϕλ

= Aθ◦ϕλϕ◦ϕλ .

In particular,

UϕλA
θ
ϕλ
U∗ϕλ = Aθ◦ϕλz .

To prove Theorem 1.2, we need the following lemma.

Lemma 3.1. Let ϕ : D → D be an analytic function. Then any reducing
subspace of Aθϕ is also a reducing subspace of Aθϕλ◦ϕ.

Proof. Let X be a reducing subspace of Aθϕ. By Taylor expansion for ϕλ,

each invariant subspace of Aθϕ is also invariant under Aθϕλ◦ϕ. This means that

both X and X⊥ are invariant under Aθϕλ◦ϕ and the proof is complete. �

We will now prove Theorem 1.2.
If λ1 = −λ0, then the geodesic midpoint between λ0 and λ1 is 0, so p = 0

and

ϕ(z) = −ϕλ20(z2), z2 = ϕλ20(−ϕ(z)).

By Lemma 3.1, Aθϕ and Aθz2 have the same reducing subspaces.
Now for any λ0 and λ1, define φ = ϕ ◦ ϕp. By Lemma 9 of [11], there

exists a unimodulus constant c such that

φ = ϕ ◦ ϕp = cϕϕp(λ0)ϕϕp(λ1).

Since p is the geodesic midpoint between λ0 and λ1 and the hyperbolic
metric is invariant under disk automorphisms (see [12, pp.67]), the geodesic
midpoint between ϕp(λ0) and ϕp(λ1) is ϕp(p) = 0. It is well known that
any geodesic through the origin is a diameter. Hence ϕp(λ0) = −ϕp(λ1).
As shown above, A

θ◦ϕp
φ and A

θ◦ϕp
z2

have the same reducing subspaces. By

Theorem 2.10, we conclude that A
θ◦ϕp
φ is reducible on K2

θ◦ϕp if and only if

θ ◦ ϕp satisfies either (1) or (2). Furthermore,

Case I: if θ ◦ ϕp is even, the proper reducing subspace M of A
θ◦ϕp
φ is of

the form M
θ◦ϕp
ω for some ω ∈ Ĉ.

Case II: if θ ◦ ϕp = ϕλu, where u ∈ H∞ is even and λ ∈ D, then A
θ◦ϕp
φ

has only two proper reducing subspaces which are M
θ◦ϕp
λ and M

θ◦ϕp
− 1
λ

.

Recall that

UϕpA
θ
ϕU
∗
ϕp = A

θ◦ϕp
ϕ◦ϕp = A

θ◦ϕp
φ .
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It follows that Aθϕ is reducible on K2
θ if and only if A

θ◦ϕp
φ is reducible on

K2
θ◦ϕp . Moreover,

Case I: θ ◦ ϕp is even. The proper reducing subspace M of Aθϕ is

U∗ϕpM
θ◦ϕp
ω =

{√
ϕ′p(f ◦ ϕp) : f ∈M θ◦ϕp

ω

}
,

for some ω ∈ Ĉ.
Case II: θ ◦ ϕp = φλu, where u (u ∈ H∞) is even and λ ∈ D . Then Aθϕ

has only two proper reducing subspaces:

U∗ϕpM
θ◦ϕp
λ =

{√
ϕ′p(f ◦ ϕp) : f ∈M θ◦ϕp

λ

}
,

and

U∗ϕpM
θ◦ϕp
− 1
λ

=

{√
ϕ′p(f ◦ ϕp) : f ∈M θ◦ϕp

− 1
λ

}
.

This completes the proof of Theorem 1.2.

4. Unitary equivalence

In this section, we shall prove Theorem 1.3 which rests on the following
proposition.

Proposition 4.1. Let ϕ = ϕaϕ−a for some a ∈ D. If Aθϕ is reducible and

M is a reducing subspace of Aθϕ, Then there is an inner function φ such that

Aθϕ |M is unitarily equivalent to Aφ−ϕa2
.

Proof. It suffices to show that there is an inner function φ such that

(Aθϕ)∗ |M is unitarily equivalent to (Aφ−ϕa2
)∗. First of all, note that ϕ is

even, so let ϕ and θ have Taylor expansions

ϕ(z) =

∞∑
k=0

c2kz
2k, qquadθ(z) =

∞∑
k=0

akz
k, z ∈ D.

Clearly,

−ϕa2(z) = ϕ(
√
z) =

∞∑
k=0

c2kz
k.

It follows from the proof of Theorem 1.2 that Aθϕ and Aθz2 have the same

reducing subspaces. Therefore, by Theorem 2.10, Aθϕ is reducible if and only

if θ satisfies either (1) or (2), and the reducing subspaces of Aθϕ are of the
following form:

(1) if θ is even, then there is ω ∈ Ĉ = C ∪ {∞} such that M = M θ
ω.

(2) if θ = ϕλu, where u (u ∈ H∞) is even and λ ∈ D, then M = M θ
λ or

M = M θ
− 1
λ

.
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For an inner function φ, write

F θω =

{
T ∗z2(z + ω)θ, ω ∈ C,
T ∗z2θ, ω =∞,

Gφω =

{
(1 + |ω|2)

1
2T ∗z φ, ω ∈ C,

T ∗z φ, ω =∞.

Then for each nonnegative integer n, we define

(24) Uω : (Aθz2n)∗F θω 7→ (Aφzn)∗Gφω.

We claim that if the map Uω from M θ
ω to K2

φ, defined densely as in (24),
is an isometry, then it is a unitary such that

Uω(Aθϕ)∗U∗ω = (Aφ−ϕa2
)∗.

In fact, we see that Uω is a unitary by the facts that {(Aθz2n)∗F θω : n ≥ 0} is

dense in M θ
ω and {(Aφzn)∗Gφω : n ≥ 0} is dense in K2

φ.

Note that ϕ is analytic on a neighborhood of D. Formal series manipula-
tion gives that

Uω((Aθϕ)∗((Aθz2n)∗F θω)) =
∞∑
k=0

c2kUω((Aθz2k+2n)∗F θω)

=
∞∑
k=0

c2k(A
φ
zk+n

)∗Gφω

= (Aφ−ϕa2
)∗(Aφzn)∗Gφω,

which implies

Uω(Aθϕ)∗U∗ω = (Aφ−ϕa2
)∗.

Thus the claim is proved.
To end the proof, by the above claim, it suffices to construct an inner

function φ such that Uω is an isometry.
Case I: θ is even. Then we set

φ(z) = θ(
√
z), z ∈ D.

For each nonnegative integer n,

(Aθz2n)∗F θω(z) =

{
T ∗z2n+1θ + ωT ∗z2n+2θ, ω ∈ C,
T ∗z2n+2θ, ω =∞,

=


∞∑
k=0

a2n+2k+2z
2k+1 + ω

∞∑
k=0

a2n+2k+2z
2k, ω ∈ C,

∞∑
k=0

a2n+2k+2z
2k, ω =∞,

(25)



REDUCIBILITY AND UNITARILY EQUIVALENCE FOR TTO 943

and

(Aφzn)∗Gφω(z) =

{
(1 + |ω|2)

1
2T ∗zn+1φ, ω ∈ C,

T ∗zn+1φ, ω =∞,

=


(1 + |ω|2)

1
2

∞∑
k=0

a2n+2k+2z
2k, ω ∈ C,

∞∑
k=0

a2n+2k+2z
2k, ω =∞,

(26)

which implies that

(27) 〈(Aθz2n)∗F θω , (A
θ
z2m)∗F θω〉 = 〈(Aφzn)∗Gφω, (A

φ
zm)∗Gφω〉, for m,n ≥ 0,

and therefore Uω is an isometry.
Case II: θ = ϕλu, where u ∈ H∞ is even and λ ∈ D. Then Aθϕ has only

two proper reducing subspaces M θ
λ and M θ

− 1
λ

.

For M θ
λ , we set

φ(z) = λθ1(z) + zθ2(z)

= ϕλ2(z)u(
√
z), z ∈ D.

(28)

Obviously, φ is inner. Note that for z ∈ D, by (17), we obtain

(Aθz2n)∗F θλ(z) =
∞∑
k=0

a2n+1+kz
k + λ

∞∑
k=0

a2n+2+kz
k

=
∞∑
k=0

(a2n+1+k + λa2n+2+k)z
k

=
∞∑
k=0

(a2n+1+2k + λa2n+2+2k)z
2k

+
∞∑
k=0

(a2n+2+2k + λa2n+3+2k)z
2k+1

=
∞∑
k=0

(a2n+1+2k + λa2n+2+2k)z
2k

+ λ
∞∑
k=0

(a2n+1+2k + λa2n+2+2k)z
2k+1.

(29)

A simple calculation shows that

(Aφzn)∗Gφλ(z) = (1 + |λ|2)
1
2T ∗zn+1(zθ2 + λθ1)(z)

= (1 + |λ|2)
1
2

∞∑
k=0

(a2n+1+2k + λa2n+2+2k)z
k.

This means that (27) is also valid.
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For M− 1
λ

, define

φ(z) = u(
√
z), z ∈ D.

Clearly, φ is inner.
Case 1): λ = 0. Then θ = −zu. It follows that for all nonnegative integers

n,

(30) (Aθz2n)∗F θ∞ =
∞∑
k=0

a2n+3+2kz
2k+1,

and

(31) (Aφzn)∗Gφ∞ = −
∞∑
k=0

a2n+3+2kz
k.

Combining (30) with (31), it is not hard to see that (27) is valid.
Case 2): 0 < |λ| < 1. A routine computation shows that

φ(z) = u(
√
z)

=
−λzθ2(z) + θ1(z)

λ
, z ∈ D.

For z ∈ D, combining (17) with (29) (λ is replaced by − 1
λ

), we have

(Aθz2n)∗F θ− 1
λ

(z) =
∞∑
k=0

(a2n+1+2k −
1

λ
a2n+2+2k)z

2k

− 1

λ

∞∑
k=0

(a2n+1+2k −
1

λ
a2n+2+2k)z

2k+1.

On a different note,

(Aφzn)∗Gφ− 1
λ

(z) = (1 +
1

|λ|2
)
1
2T ∗zn+1(

−λzθ2(z) + θ1(z)

λ
)(z)

= −(1 +
1

|λ|2
)
1
2
λ

λ

∞∑
k=0

(a2n+1+2k −
1

λ
a2n+2+2k)z

k, z ∈ D.

Therefore, (27) is valid and thus we complete the proof of Proposition 4.1.
�

We proceed to prove Theorem 1.3.
Let p be the geodesic midpoint between λ0 and λ1. By the proof of the

Theorem 1.2, there exists a unimodulus constant c such that

ϕ ◦ ϕp = cϕϕp(λ0)ϕ−ϕp(λ0),

which leads to

UϕpA
θ
ϕU
∗
ϕp = A

θ◦ϕp
ϕ◦ϕp = cA

θ◦ϕp
ϕϕp(λ0)ϕ−ϕp(λ0)

.
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Therefore, Aθϕ |M is unitarily equivalent to A
θ◦ϕp
ϕϕp(λ0)ϕ−ϕp(λ0)

|UϕpM which is

unitarily equivalent to Aψ−ϕ(ϕp(λ0))
2

for some inner function ψ by Proposition

4.1.
Let

a = (ϕp(λ0))
2

and

φ = ψ ◦ ϕ0 ◦ ϕ−a.
Note that

−ϕa ◦ ϕ0 ◦ ϕ−a(z) = z.

It follows from

Uϕ−aUϕ0A
ψ
−ϕaU

∗
ϕ0
U∗ϕ−a = Aψ◦ϕ0◦ϕ−a

z = Aφz

that Aθϕ |M is unitarily equivalent to Aφz and Theorem 1.3 is proved.
Acknowledgements We would like to express our sincere thanks to the

referees whose comments considerably improved the original version of the
paper.
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