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Groupoid actions on C∗-correspondences

Valentin Deaconu

Abstract. Let the groupoid G with unit space G0 act via a repre-
sentation ρ on a C∗-correspondence H over the C0(G0)-algebra A. By
the universal property, G acts on the Cuntz-Pimsner algebra OH which
becomes a C0(G0)-algebra. The action of G commutes with the gauge
action on OH, therefore G acts also on the core algebra OT

H.
We study the crossed product OH o G and the fixed point algebra

OGH and obtain similar results as in [5], where G was a group. Under
certain conditions, we prove that OH oG ∼= OHoG, where HoG is the
crossed product C∗-correspondence and that OGH ∼= Oρ, where Oρ is the
Doplicher-Roberts algebra defined using intertwiners.

The motivation of this paper comes from groupoid actions on graphs.
Suppose G with compact isotropy acts on a discrete locally finite graph
E with no sources. Since C∗(G) is strongly Morita equivalent to a
commutative C∗-algebra, we prove that the crossed product C∗(E)oG is
stably isomorphic to a graph algebra. We illustrate with some examples.
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1. Introduction

Group actions provide important bridges between dynamical systems and
C∗-algebras via the crossed product construction. In this paper, we consider
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groupoids acting on fibered spaces and on directed graphs. Under certain
conditions, these actions can be extended to the graph C∗-correspondence
and we obtain interesting results about the associated Cuntz-Pimsner alge-
bras.

Given a group G acting on a C∗-correspondence H over a C∗-algebra A
via ρ : G → LC(H), in [5] we studied the fixed point algebra OGH and the
crossed product OHoG, with applications to group actions on graphs. The
Doplicher-Roberts algebra Oρ was defined from intertwiners (ρm, ρn), where
ρn = ρ⊗n is the tensor power representation of G on the balanced tensor
product H⊗n. We proved that in certain cases Oρ is isomorphic to OGH and
strongly Morita equivalent to OH oG.

In this paper, we obtain similar results for groupoid actions, under some
extra assumptions. We first recall the machinery associated with groupoid
actions on spaces, on other groupoids, on graphs, on C0(X)-algebras and on
C∗-correspondences. If G is a locally compact amenable groupoid with Haar
system acting on a C∗-correspondence H and JH is the Katsura ideal, we
assume that JHoG ∼= JHoG in order to obtain the isomorphism OHoG ∼=
OHoG as in [11]. We illustrate with some examples, including self-similar
actions on the path space of a finite graph and actions on Hermitian vector
bundles.

As an application, if G with compact isotropy groups acts on a discrete
locally finite graph E with no sources, we prove that C∗(E) o G is stably
isomorphic to the C∗-algebra of a graph. Since the action of G commutes
with the gauge action of T on C∗(E), the groupoid G also acts on the core
AF-algebra C∗(E)T and C∗(E)T oG ∼= (C∗(E) oG)T is an AF-algebra.

2. Groupoid actions on spaces

Let’s assume that G is a second countable locally compact Hausdorff
groupoid with unit space G0 and range and source maps r, s : G→ G0. The
set of composable pairs is denoted G2 and the set of g ∈ G with s(g) =
u, r(g) = v is denoted Gvu. We first recall the definition of a groupoid action
on a space given in [24]:

Definition 2.1. A topological groupoid G is said to act (on the left) on a
locally compact space X, if there are given a continuous, open surjection
p : X → G0, called the anchor or momentum map, and a continuous map

G ∗X → X, write (g, x) 7→ g · x,
where

G ∗X = {(g, x) ∈ G×X | s(g) = p(x)},
that satisfy

i) p(g · x) = r(g) for all (g, x) ∈ G ∗X,
ii) (g2, x) ∈ G ∗X, (g1, g2) ∈ G2 implies (g1g2, x), (g1, g2 · x) ∈ G ∗X and

g1 · (g2 · x) = (g1g2) · x,
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iii) p(x) · x = x for all x ∈ X.

We should mention that recently, many authors assume that p : X → G0

is not necessarily open (see [4] for example).
The action is free if g ·x = x for some x implies g = p(x). The set of fixed

points is defined as

XG = {x ∈ X : g · x = x for all g ∈ Gp(x)
p(x)},

where

Guu = {g ∈ G : s(g) = r(g) = u}
is the isotropy group at u ∈ G0.

Remark 2.2. Note that the set XG is fibered over G0 via the restriction of
the map p. It is the largest subset of X on which G acts trivially, in the sense
that for any u, v ∈ G0 and for any g, h ∈ Gvu, the elements g, h induce the
same maps between the fibers p−1(u) and p−1(v). If G has trivial isotropy,
then XG = X.

For x ∈ X, its stabilizer group is

G(x) = {g ∈ G : g · x = x},
which is a subgroup of Guu where u = p(x). The set of orbits

G ∗ x = {g · x : g ∈ G, s(g) = p(x)}
is denoted by X/G.

Remark 2.3. The fibered product G∗X has a natural structure of groupoid,
called the semi-direct product or action groupoid and is denoted by GnX,
where

(GnX)2 = {((g1, x1), (g2, x2)) | x1 = g2 · x2},
with operations

(g1, g2 · x2)(g2, x2) = (g1g2, x2), (g, x)−1 = (g−1, g · x).

The source and range maps of GnX are

s(g, x) = (s(g), x) = (p(x), x), r(g, x) = (r(g), g · x) = (p(g · x), g · x),

and the unit space (GnX)0 may be identified with X via the map

i : X → GnX, i(x) = (p(x), x).

The projection map

π : GnX → G, π(g, x) = g

is a covering of groupoids, see [8].

Example 2.4. A groupoid G with open range and source maps acts on its
unit space G0 by g · s(g) = r(g). Notice that g · u = u for all g ∈ Guu, in
particular (G0)G = G0.
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If there is only one orbit in G0/G, the groupoid is called transitive. For ex-
ample, let the group R act on R/Z by translation. Then the action groupoid
Rn R/Z with unit space R/Z ∼= T and isotropy Z is transitive.

A transitive groupoid with discrete unit space is of the form G0×K×G0

where K is the isotropy group.

3. Groupoid actions on groupoids

The notion of a groupoid action on another groupoid was defined in [3] in
the algebraic case. In the topological context, we give the following definition
(see [1], page 122).

Definition 3.1. We say that a topological groupoid G acts on another
topological groupoid H if there are a continuous open surjection p : H → G0

and a continuous map G ∗H → H, write (g, h) 7→ g · h where

G ∗H = {(g, h) ∈ G×H | s(g) = p(h)}
such that

i) p(g · h) = r(g) for all (g, h) ∈ G ∗H,
ii) (g2, h) ∈ G ∗H, (g1, g2) ∈ G2 implies (g1g2, h) ∈ G ∗H and

(g1g2) · h = g1 · (g2 · h),

iii) (h1, h2) ∈ H2 and (g, h1h2) ∈ G ∗ H implies (g, h1), (g, h2) ∈ G ∗ H
and

g · (h1h2) = (g · h1)(g · h2),

iv) p(h) · h = h for all h ∈ H.

Remark 3.2. If G acts on H, then in particular G acts on the unit space H0

via the restriction p0 := p |H0 : H0 → G0 and we have p = p0◦r = p0◦s. Using
the fact that h = hs(h) = r(h)h, we deduce that we also have s(g·h) = g·s(h)
and r(g · h) = g · r(h).

For example, a Γ-sheaf as in [15] is given by an étale groupoid Γ acting
on a group bundle A over Γ0. In this case p0 is the identity.

Remark 3.3. If the groupoid G acts on H via p, then the triple (H,G0, p)
becomes a continuous field of groupoids in the terminology of [19], which
determines a continuous C∗-bundle. If we do not assume p to be open, we
just get an upper semicontinuous C∗-bundle.

When G0 is discrete, the groupoid H is a disjoint union of groupoids
Hu = p−1(u) for u ∈ G0.

The fixed point groupoid HG is defined as

HG = {h ∈ H : g · h = h for all g ∈ Gp(h)
p(h)}.

Remark 3.4. If G is transitive, then HG is non-empty if and only if p : H →
G0 has invariant sections, i.e. continuous maps σ : G0 → H0 such that
p(σ(u)) = u for all u ∈ G0 and such that σ commutes with the actions of G
on H and on G0, i.e. g · σ(u) = σ(g · u).
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Proof. Indeed, if σ is an invariant section, then for u ∈ G0 and h = σ(u) ∈
H0 we have g · h = g · σ(u) = σ(u) = h for all g ∈ Guu. Conversely, given
a ∈ (HG)0 with p0(a) = u we define σ : G0 → H0 by σ(v) = g · a for some
g ∈ Gvu and g · a is independent of the choice of g. �

The crossed product groupoid G n H is defined as follows. As a set,
GnH = G ∗H with multiplication

(g1, h1)(g2, h2) = (g1g2, (g
−1
2 · h1)h2),

when this makes sense, i.e. when r(g2) = s(g1) = p(h1), s(g2) = p(h2) and
g−1

2 · s(h1) = r(h2). The inverse is given by

(g, h)−1 = (g−1, g · h−1).

It is easy to check that the multiplication is associative and that

s(g, h) = (s(g), s(h)), r(g, h) = (r(g), g · r(h)).

The unit space of GnH can be identified with H0, and we have an extension
of groupoids

H
i→ GnH

π→ G,

where i(h) = (p(h), h) and π(g, h) = g. The map π is a fibration of
groupoids, see [8] or [4]. Indeed, given g ∈ G and u ∈ H0 = (G o H)0

with s(g) = p(u), choose h ∈ H with s(h) = u. Then (g, h) ∈ G o H
satisfies s(g, h) = s(h) = u and π(g, h) = g.

Remark 3.5. In [8] it was proved that a continuous open surjective homo-
morphism π : G→ H of étale groupoids with amenable kernel gives rise to
a Fell bundle E over H such that C∗r (E) is isomorphic to C∗r (G). As was
observed in [4], the Fell bundle is saturated only if π is a fibration. Unfor-
tunately, this hypothesis was omitted in the main result of [8]. The authors
of [4] also remove the condition that the groupoids are étale, considering
the more general case of locally Hausdorff locally compact groupoids with
Hausdorff unit spaces and with Haar systems.

In particular, when the groupoid G acts on H, we can apply the results

of [4] to the fibration GnH π→ G and obtain a saturated Fell bundle E over
G such that

C∗r (E) ∼= C∗r (GnH) ∼= C∗r (H) oG.

4. Groupoid actions on graphs

Inspired from the notion of groupoid actions on groupoids, we define
now the concept of groupoid actions on graphs. Let E = (E0, E1, r, s) be a
topological graph, i.e. E0, E1 are locally compact spaces with r, s : E1 → E0

continuous maps and s a local homeomorphism.
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Definition 4.1. We say that a topological groupoid G acts on E if G acts
on both spaces E0, E1 in a compatible way. This means that there is a
continuous open surjection p : E0 → G0 such that p ◦ r = p ◦ s : E1 → G0

and there are continuous maps G ∗ E0 → E0, G ∗ E1 → E1 such that the
conditions in Definition 2.1 are satisfied and such that

s(g · e) = g · s(e), r(g · e) = g · r(e)

for e ∈ E1 and g ∈ G.

Remark 4.2. Since p and s are open, it follows that p ◦ s : E1 → G0 is open.
The action of G can be extended to the set of finite paths E∗ =

⊔
k≥0E

k,

where Ek is the set of paths of length k, by

g · (e1e2 · · · ek) = (g · e1)(g · e2) · · · (g · ek)

and similarly to the set of infinite paths E∞. If G0 is discrete, note that
since p ◦ r = p ◦ s, the graph E is a union of graphs Eu for u ∈ G0.

Example 4.3. Let E be the graph

v1

a1

a2

a3 v2

b1

b2

b3

The transitive groupoid G with unit space G0 = E0 = {v1, v2} and
isotropy S3 acts on E by permutations. In this case (E0)G = E0 but
(E1)G = ∅.

We recall now the definition of a self-similar action of a groupoid on
the path space of a graph as in [18], which will provide more examples of
groupoid actions on graphs.

Definition 4.4. (Self-similar actions) Suppose E is a finite graph with no
sources. Let vE∗ denote the set of finite paths ending at v. We define the
graph

TE =
⊔
v∈E0

vE∗

to be the union of rooted trees (also called forest) with the set of vertices
T 0
E = E∗ and with the set of edges

T 1
E = {(µ, µe) : µ ∈ E∗, e ∈ E1, s(µ) = r(e)}.

The set Iso(E∗) of partial isomorphisms vE∗ → wE∗ for v, w ∈ E0 becomes
a groupoid. A self-similar action of a groupoid G with G0 = E0 on E∗
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is given by a homomorphism G → Iso(E∗) such that for every g ∈ G and
e ∈ s(g)E1 there exists a unique h ∈ G denoted also by g |e such that

g · (eµ) = (g · e)(h · µ) for all µ ∈ s(e)E∗.

Proposition 4.5. A self-similar action of a groupoid G on the path space
E∗ of a finite graph E as above determines an action of G on the graph TE
as in Definition 4.1.

Proof. Indeed, the vertex space T 0
E is fibered over G0 = E0 via the map

µ 7→ r(µ). For (µ, µe) ∈ T 1
E we set s(µ, µe) = µe and r(µ, µe) = µ. Since

r(µe) = r(µ), the edge space T 1
E is also fibered over G0. The action of G on

T 1
E is given by

g · (µ, µe) = (g · µ, g · (µe)) when s(g) = r(µ).

Since
s(g · (µ, µe)) = s(g · µ, g · (µe)) = g · (µe) = g · s(µ, µe),
r(g · (µ, µe)) = r(g · µ, g · (µe)) = g · µ = g · r(µ, µe),

the actions on T 0
E and T 1

E are compatible.
�

Example 4.6. Let E be the graph

v w

c

b

d

a

with forest
TE

v w

a d

aa
...

ad
...

db
...

dc
...

b c

ba
...

ca
...

bd
...

cd
...

Consider the groupoid G with unit space G0 = {v, w} and generators g, h
where g ∈ Gwv , h ∈ Gvw such that

g · a = c, g |a= v, g · d = b, g |d= h,

h · b = a, h |b= v, h · c = d, h |c= g.

These conditions are also presented as

g · aµ = cµ, g · dµ = b(h · µ), h · (bµ) = aµ, h · cµ = d(g · µ),



GROUPOID ACTIONS ON C∗-CORRESPONDENCES 1027

and they determine uniquely an action of G = 〈g, h〉 on the graph TE .

Proposition 4.7. Suppose E is a discrete locally finite graph with no sources.
If the groupoid G acts on E via a map p : E0 → G0, then G acts on the
path groupoid GE of E.

Proof. Recall that

GE = {(x, k, y) ∈ E∞ × Z× E∞ : ∃N with xi = yi−k for i ≥ N}
with operations

(x,m, y) · (y, n, z) = (x,m+ n, z), (x, k, y)−1 = (y,−k, x)

and that the unit space G0
E can be identified with E∞. There is a map

π0 : E∞ → G0 induced by p : E0 → G0 and for g ∈ G and (x, k, y) ∈ GE
with s(g) = π0(x) = π0(y) we define

g · (x, k, y) = (g · x, k, g · y).

It is routine to check that this action satisfies all the properties of Definition
3.1. Continuity is proved using cylinder sets. In particular, since E0 and
G0 are discrete, the groupoid GE is a disjoint union of groupoids GEu for
u ∈ G0. �

5. Groupoid actions on C∗-algebras and C∗-correspondences

Let X be a locally compact Hausdorff space. Recall that a C∗-algebra A is
a C0(X)−algebra if there is a non-degenerate homomorphism ϕ : C0(X)→
ZM(A), where ZM(A) denotes the center of the multiplier algebra of A.

This means that ϕ(C0(X))A = A, i.e. there is an approximate unit {fi} in
C0(X) such that lim

i
‖ϕ(fi)a− a‖ = 0 for all a ∈ A. Sometimes we write fa

instead of ϕ(f)a.
Given a C0(X)-algebra A, for each x ∈ X we can define the fiber Ax as

A/IxA where

Ix = {f ∈ C0(X) : f(x) = 0}.
Denote the quotient map A → Ax by πx. It is known that the canonical
map

A→
∏
x∈X

Ax, a 7→ (πx(a))x∈X

is injective and that the fibers Ax give rise to an upper semicontinuous C∗-
bundle A over X such that A ∼= Γ0(A), the algebra of continuous sections
vanishing at infinity, see Theorem C.26 in [29].

Definition 5.1. We say that the topological groupoid G with unit space
G0 acts on a C∗-algebra A if A is a C0(G0)-algebra and for each g ∈ G there
is a ∗-isomorphism αg : As(g) → Ar(g) such that if (g1, g2) ∈ G2 we have
αg1g2 = αg1 ◦ αg2 and for a fixed a, the map g 7→ αg(a) is norm continuous.
We also write g · a for αg(a).
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Remark 5.2. An action of a groupoid G on a C∗-algebra A can be understood
as an isomorphism of C0(G)-algebras α : s∗A → r∗A such that αg1g2 =
αg1 ◦ αg2 for all (g1, g2) ∈ G2. Here the pull backs s∗A and r∗A become
C0(G)-algebras such that (s∗A)g = As(g) and (r∗A)g = Ar(g). It can also
be understood as a functor from the small category G to the category of
C∗-algebras as in [22].

Remark 5.3. If the groupoid G with Haar system λ acts on A, then one can
define the crossed product AoG and the reduced crossed product Aor G
by completing the ∗-algebra Γc(G, r

∗A) of continuous sections with compact
support in the appropriate norms (see [25] for example).

Recall that for f, f ′ ∈ Γc(G, r
∗A), we define

f ∗ f ′(g) :=

∫
G
f(h)αh(f ′(h−1g))dλr(g)(h), f∗(g) = αg(f(g−1)∗).

The fixed point algebra AG is defined as the C0(G0)-algebra with fibers

AGx = {a ∈ Ax : g · a = a for all g ∈ Gxx}.

Example 5.4. If the groupoid G acts on the locally compact space X, then
C0(X) becomes in a natural way a C0(G0)-algebra and G acts on C0(X) by
(g · f)(x) = f(g−1 · x) such that C0(X) o G ∼= C∗(G nX) and C0(X)G =
C0(X/G).

Example 5.5. Groupoid actions on elementary C∗-bundles over G0 satisfying
Fell’s condition appear in the context of defining the Brauer group Br(G),
see [16].

Example 5.6. If the groupoid G with discrete unit space acts on the groupoid
H, then G acts on C∗(H), which is a C0(G0)-algebra in a natural way.

Indeed, the map p0 : H0 → G0 determines a homomorphism ϕ : C0(G0)→
ZM(C∗(H)) and the fibers of C∗(H) are C∗(Hu) for u ∈ G0.

Let A be a C0(X)-algebra and let H be a Hilbert A-module. We define
the fibers Hx := H⊗AAx, for each x ∈ X. Then Hx becomes a Hilbert Ax-
module with the usual operations. The set Iso(H) of C-linear isomorphisms
Hx → Hy becomes a groupoid with unit space X, sometimes called the
frame groupoid.

Remark 5.7. For T ∈ LA(H), let Tx ∈ LAx(Hx) be T ⊗ 1Ax , where 1Ax is
the identity map. This gives a map LA(H) → LAx(Hx) and T is totally
determined by the family (Tx)x∈X . The identification H = HA defines a
homomorphism C0(X) → ZLA(H) which takes a function f ∈ C0(X) into

the operator ξ 7→ ξf . Since HC0(X) = H, this homomorphism induces
a structure of C0(X)-algebra on KA(H) with fibers KAx(Hx). In general,

C0(X)LA(H) 6= LA(H), so that LA(H) may not be a C0(X)-algebra.

Definition 5.8. Let A,B be C0(X)-algebras and let H be a Hilbert A-
module. We say that H is a C0(X)-C∗-correspondence from B to A if there
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is a ∗-homomorphism φ : B → LA(H) such that

φ(fb)(ξa) = φ(b)(ξfa) for all f ∈ C0(X), a ∈ A, b ∈ B, ξ ∈ H.

Sometimes we write bξ for φ(b)ξ.

Remark 5.9. Since φ(IxB) ⊂ H(IxA), the homomorphism φ decomposes
into a family of homomorphisms φx : Bx → LAx(Hx) and each fiber Hx
becomes a Bx–Ax C

∗-correspondence, see Definition 4.1 in [21].

Definition 5.10. Let G be a topological groupoid acting on the C0(G0)-
algebras A and B. We say that G acts on the C0(G0)-C∗-correspondence
H from B to A if there is a homomorphism ρ : G → Iso(H) such that
g 7→ ρ(g)ξ is norm continuous and such that the following compatibility
conditions are satisfied:

〈ρ(g)ξ, ρ(g)η〉r(g) = g · 〈ξ, η〉s(g),

for ξ, η ∈ Hs(g) and

ρ(g)(ξa) = (ρ(g)ξ)(g · a), ρ(g)(bξ) = (g · b)(ρ(g)ξ)

for ξ ∈ Hs(g), a ∈ As(g) and b ∈ Bs(g).

Remark 5.11. The action of G on H induces a ∗-isomorphism of LA(H)
given by

(g · T )(ξ) = ρ(g)T (ρ(g−1)ξ)

where T ∈ LAs(g)(Hs(g)) and an action of G on the C0(G0)-algebra KA(H)
via

g · θξ,η = θρ(g)ξ,ρ(g)η,

where for ξ, η ∈ Hs(g) we have θξ,η(ζ) = ξ〈η, ζ〉.
It is easy to check that the left multiplication φ : B → LA(H) is G-

equivariant. Indeed,

(g · φ(b))(ξ) = ρ(g)(φ(b)(ρ(g−1)ξ) = φ(g · b)(ρ(g)ρ(g−1)ξ) = φ(g · b)(ξ).

Example 5.12. IfG is a locally compact groupoid with Haar system {λu}u∈G0 ,
then G acts on the C∗-correspondence over C0(G0) with fibers L2(Gu, λu)
via the left regular representation.

6. Crossed products and Cuntz-Pimsner algebras

In this section we assume that G is a locally compact groupoid with Haar
system {λx}x∈G0 . We make some extra assumptions in order to obtain
similar results as in [11] for the case of amenable groupoid actions on C∗-
correspondences. We begin with the definition of the crossed product C∗-
correspondence, given in the following Proposition.
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Proposition 6.1. Suppose the locally compact groupoid G with Haar system
acts on the C0(G0)-C∗-correspondence H as in Definition 5.10. Then the
completion of Γc(G, r

∗H), the continuous sections with compact support,
becomes a C∗-correspondence HoG from BoG to AoG called the crossed
product, using the inner product

〈ξ, η〉(g) =

∫
G
h · 〈ξ(h−1), η(h−1g)〉s(h)dλ

r(g)(h),

and the multiplications

(ξf1)(g) =

∫
G
ξ(h)h · (f1(h−1g))dλr(g)(h),

(f2ξ)(g) =

∫
G
f2(h)ρ(h)ξ(h−1g)dλr(g)(h),

where ξ, η ∈ Γc(G, r
∗H), f1 ∈ Γc(G, r

∗A) and f2 ∈ Γc(G, r
∗B)

Proof. The verification of the Hilbert module axioms for HoG are routine
calculations. For example 〈ξ, ηf〉 = 〈ξ, η〉f because

〈ξ, ηf〉(g) =

∫
G
h · 〈ξ(h−1), (ηf)(h−1g)〉s(h)dλ

r(g)(h) =

=

∫
G
h · 〈ξ(h−1),

∫
G
η(t)t · (f(t−1h−1g)dλs(h)(t)〉s(h)dλ

r(g)(h)

and

(〈ξ, η〉f)(g) =

∫
G
〈ξ, η〉(t)t · (f(t−1g))dλr(g)(t) =

=

∫
G

(∫
G
h · 〈ξ(h−1), η(h−1t)〉s(h)dλ

r(g)(h)

)
t · (f(t−1g))dλr(g)(t) =

=

∫
G
h · 〈ξ(h−1),

∫
G
η(h−1t)(h−1t) · f(t−1g)dλr(g)(t)〉s(h)dλ

r(g)(h) =

=

∫
G
h · 〈ξ(h−1),

∫
G
η(u)u · f(u−1h−1g)dλs(h)(u)〉s(h)dλ

r(g)(h).

The left multiplication provides a ∗-homomorphism

B oG→ LAoG(HoG),

so HoG becomes a C∗-correspondence from B oG to AoG. �

Lemma 6.2. If the groupoid G acts on a C0(G0)-C∗-correspondence H over
the C0(G0)-algebra A, then there is an isomorphism

κ : KAoG(HoG)→ KA(H) oG

given by

κ(θξ,η)(u) =

∫
G
θξ(h),ρ(u)η(u−1h)dλ

r(u)(h),

where ξ, η ∈ Γc(G, r
∗H).
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Proof. Indeed, since θξ,η(ζ) = ξ〈η, ζ〉 for ζ ∈ Γc(G, r
∗H), we have

(θξ,η(ζ))(g) =

∫
G
ξ(h)h · (〈η, ζ〉(h−1g))dλr(g)(h) =

=

∫
G
ξ(h)h ·

(∫
G
t · 〈η(t−1), ζ(t−1h−1g〉s(t)dλs(h)(t)

)
dλr(g)(h) =

=

∫
G
ξ(h)

∫
G
〈ρ(u)η(u−1h), ρ(u)ζ(u−1g)〉r(u)dλ

r(g)(u)dλr(g)(h) =

=

∫
G

(∫
G
θξ(h),ρ(u)η(u−1h)dλ

r(u)(h)

)
(ρ(u)ζ(u−1g))dλr(g)(u)

and the map u 7→
∫
G
θξ(h),ρ(u)η(u−1h)dλ

r(u)(h) belongs to Γc(G, r
∗KA(H)).

For θξ,η ∈ KAoG(H o G) a rank one operator with ξ, η ∈ Γc(G, r
∗H) we

define

κ(θξ,η)(u) =

∫
G
θξ(h),ρ(u)η(u−1h)dλ

r(u)(h),

which extends to a linear bijection κ : KAoG(H oG) → KA(H) oG. Since
θ∗ξ,η = θη,ξ and θξ1,η1θξ2,η2 = θξ1〈η1,ξ2〉,η2 a computation shows that

κ(θ∗ξ,η) = κ(θξ,η)
∗, κ(θξ1,η1θξ2,η2) = κ(θξ1,η1)κ(θξ2,η2)

and κ is a ∗-isomorphism. �

Theorem 6.3. Let G be a locally compact groupoid with Haar system that
acts on a C0(G0)-C∗-correspondence H over the C0(G0)-algebra A.

Then the Katsura ideal JH is G-invariant and there is an action of G on
the Cuntz-Pimsner algebra OH which becomes a C0(G0)-algebra with fibers
OHx where x ∈ G0.

Proof. If φ : A → LA(H) defines the left action, recall that the Katsura
ideal JH is equal to φ−1(KA(H)) ∩ (kerφ)⊥. Since φ is G-equivariant, both
ideals φ−1(KA(H)) and (kerφ)⊥ are G-invariant, hence JH is G-invariant.

A representation of H in a C0(G0)-algebra B is a pair (π, t) where π :
A → B is a C0(G0)-homomorphism and t : H → B is linear such that we
have

t(a · ξ) = π(a)t(ξ), π(〈ξ, η〉) = t(ξ)∗t(η)

for all a ∈ A and ξ, η ∈ H. Note that in particular t(ξf) = t(ξ)f for ξ ∈ H
and f ∈ C0(G0).

Moreover, if t(1) : KA(H)→ B is given by

t(1)(θξ,η) = t(ξ)t(η)∗,

then (π, t) is covariant if

t(1)(φ(a)) = π(a) for all a ∈ JH.
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The Cuntz-Pimsner algebra OH is generated by a universal covariant rep-
resentation (πA, tH) in the sense that for any other covariant represen-
tation (π, t) in a C0(G0)-algebra B there is a unique ∗-homomorphism
π × t : OH → B such that

(π × t) ◦ πA = π and (π × t) ◦ tH = t.

Since A is a C0(G0)-algebra and each Hx is a C∗-correspondence over Ax,
using Remark 5.7 it follows that OH becomes a C0(G0)-algebra with fibers
OHx . The non-degenerate homomorphism C0(G0) → ZM(OH) is defined
using the universal property and is given by

f · πA(a) = πA(fa), f · tH(ξ) = tH(ξf) for f ∈ C0(G0), a ∈ A, ξ ∈ H.

The action of G on the Cuntz-Pimsner algebra OH is defined using

g · πA(a) = πA(g · a) for a ∈ As(g),

g · tH(ξ) = tH(ρ(g)ξ) for ξ ∈ Hs(g).
In particular, the ideal JH is a C0(G0)-algebra with fibers JHx . �

Theorem 6.4. Let G be a locally compact amenable groupoid with Haar
system that acts on a C0(G0)-C∗-correspondence H over the C0(G0)-algebra
A. Assume that JHoG ∼= JH oG. Then there are maps

µ : AoG→ OH oG, µ(f)(g) = πA(f(g)) for f ∈ Γc(G, r
∗A)

and

τ : Γc(G, r
∗H)→ OH oG, τ(ξ)(g) = tH(ξ(g))

which induce an isomorphism

OHoG ∼= OH oG.

Proof. First, let’s verify that τ(ξ)∗τ(η) = µ(〈ξ, η〉). Indeed,

τ(ξ)∗τ(η)(g) =

∫
G
τ(ξ)∗(h)h · (τ(η)(h−1g))dλr(g)(h) =

=

∫
G
h · ((τ(ξ)(h−1))∗τ(η)(h−1g))dλr(g)(h) =

=

∫
G
h · (tH(ξ(h−1))∗tH(η(h−1g)))dλr(g)(h) =

=

∫
G
h · πA(〈ξ(h−1), η(h−1g)〉s(h))dλ

r(g)(h) =

= πA

(∫
G
h · 〈ξ(h−1), η(h−1g)〉s(h)dλ

r(g)(h)

)
= µ(〈ξ, η〉)(g),

and τ exends to HoG.
Similarly, we have that τ(fξ) = µ(f)τ(ξ), hence the pair (µ, τ) is a rep-

resentation of HoG in OH oG.
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Since JHoG ∼= JH o G, it follows as in Corollary 2.9 of [11] that (µ, τ)

is covariant. Indeed, since τ (1)(θξ,η)(g) = t
(1)
H (κ(θξ,η)(g)) where κ is as in

Lemma 6.2, for b ∈ JHoG we have

τ (1)(κ−1(ψ(b)))(g) = t
(1)
H (ψ(b)(g)) = t

(1)
H (φ(b(g))) = πA(b(g)) = µ(b)(g),

where ψ : AoG → LAoG(H oG) is induced by φ : A → LA(H). The pair
(µ, τ) induces a ∗-homomorphism

µ× τ : OHoG → OH oG.

Since the images of µ and τ generate OHoG, the map µ is injective, and
there exists a gauge action on OH o G, by Theorem 6.4 in [14] it follows
that the map µ× τ is an isomorphism. �

Example 6.5. Let G be a groupoid with compact unit space X. Then G acts
on C(X) in the usual way, (gf)(x) = f(g−1x). A (locally trivial) complex
vector bundle p : E → X is called a G-bundle if G acts on E by linear maps
Es(g) → Er(g), where Ex = p−1(x). The groupoid G acts on Γ(E), the space
of continuous sections ξ : X → E , by

(gξ)(x) = g(ξ(g−1x)).

If E is Hermitian and G acts by isometries, then the space Γ(E) has a nat-
ural structure of C∗-correspondence over C(X), where the left and right
multiplications are given by

(fξ)(x) = (ξf)(x) = f(x)ξ(x).

Since

g(fξ)(x) = g(fξ)(g−1x) = g(f(g−1x)ξ(g−1x)) =

= f(g−1x)gξ(g−1x) = (gf)(gξ)(x),

the groupoid G acts on the Cuntz-Pimsner algebra OΓ(E) which is a contin-
uous field of Cuntz algebras (see [28]). It would be interesting to determine
OΓ(E) oG in some particular cases.

Corollary 6.6. If the groupoid G acts on a graph E as in Definition 4.1,
then G acts on the graph C∗-correspondence HE and on the graph algebra
C∗(E) = OHE which becomes a C0(G0)-algebra. The gauge action on C∗(E)
commutes with the action of G and therefore the action of G on C∗(E)
restricts to an action of G on the core algebra C∗(E)T.

Proof. Indeed, the action of G on E determines an action on C0(E0) and
an action on Cc(E

1) via

(g · f)(x) = f(g−1x), ρ(g)ξ(e) = ξ(g−1e).

These actions satisfy the compatibility conditions in Definition 5.10 for A =
B = C0(E0) and for H = HE . We use Theorem 6.3 to get an action of G
on C∗(E), which becomes a C0(G0)-algebra.
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Recall that the gauge action γ is defined by

γ(z)f = f and γ(z)ξ = zξ for f ∈ C0(E0), ξ ∈ Cc(E1), z ∈ T.

The gauge action is extended to C∗(E) using the universal property and we
have

ρ(g)(zξ) = zρ(g)ξ,

so the action of G can be restricted to the fixed point algebra C∗(E)T. �

Example 6.7. The transitive groupoid G in Example 4.3 acts on the graph
C∗-correspondence H = C3 ⊕ C3 over A = C ⊕ C. It follows that G acts
on the graph algebra OH ∼= O3 ⊕O3 and on OT

H
∼= M3∞ ⊕M3∞ . The fixed

point algebra OGH is isomorphic whith OS3
3 ⊕O

S3
3 .

Example 6.8. A self-similar action as in Definition 4.4 determines an action
of G on the graph C∗-algebra C∗(TE). Since C∗(TE) is strongly Morita
equivalent with C0(∂TE) in an equivariant way (see section 4 in [17]), it
follows that C∗(TE) o G is strongly Morita equivalent with C0(∂TE) o G.
Note that TE is a union of trees which in general are not the universal cover
of the graph E.

7. Doplicher-Roberts algebras

The Doplicher-Roberts algebras (denoted by OG in [9]) were introduced to
construct a new duality theory for compact Lie groups G which strengthens
the Tannaka-Krein duality. Let TG denote the representation category whose
objects are tensor powers of the n-dimensional representation ρ of G defined
by the inclusion G ⊆ U(n) in some unitary group U(n) and whose arrows are
the intertwiners. The C∗-algebra OG is identified in [9] with the fixed point
algebra OGn , where On is the Cuntz algebra. If σG denotes the restriction
to OG of the canonical endomorphism of the Cuntz algebra, then TG can
be reconstructed from the pair (OG, σG). Subsequently, Doplicher-Roberts
algebras were associated to any object ρ in a strict tensor C∗-category, see
[10].

Consider now a groupoid G acting on a C∗-correspondence H over the
C0(G0)-algebra A as in Definition 5.10 via the homomorphism ρ : G →
Iso(H). Since the balanced tensor power H⊗n is fibered over G0 with fibers
H⊗nx , it follows that KA(H⊗n,H⊗m) has fibers KAx(H⊗nx ,H⊗mx ).

Consider the tensor powers ρn : G → Iso(H⊗n) and define the set of
intertwiners (ρm, ρn) with fibers

(ρm, ρn)x = {T ∈ KAx(H⊗nx ,H⊗mx ) | Tρn(g) = ρm(g)T}.

We identify (ρm, ρn) with a subset of (ρm+r, ρn+r) via T 7→ T ⊗ Ir, where
Ir : H⊗r → H⊗r is the identity map. After this identification, it follows that

the linear span 0Oρ of
⋃

m,n≥0

(ρm, ρn) has a natural multiplication given by
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composition: if S ∈ (ρm, ρn) and T ∈ (ρp, ρq), then the product ST is

(S ⊗ Ip−n) ◦ T ∈ (ρm+p−n, ρq) if p ≥ n,
or

S ◦ (T ⊗ In−p) ∈ (ρm, ρq+n−p) if p < n.

The adjoint of T ∈ (ρm, ρn) is T ∗ ∈ (ρn, ρm).
From Theorem 4.2 in [10], it follows that the C∗-closure of 0Oρ is well

defined, obtaining the Doplicher-Roberts algebra Oρ associated to the ho-
momorphism ρ : G→ Iso(H).

Theorem 7.1. Let H be a C0(X)-C∗-correspondence over a C0(X)-algebra
A which is full and finite projective, and assume that the left multiplication
A → LA(H) is injective. If G is a groupoid with G0 = X acting on A and
on H via ρ : G→ Iso(H) as in Definition 5.10, then the Doplicher-Roberts
algebra Oρ is isomorphic to the fixed point algebra OGH.

Proof. SinceH is finite projective, it is known that LA(H) ∼= KA(H). More-
over, the Cuntz-Pimsner algebra OH is isomorphic to the C∗-algebra gen-

erated by the span of
⋃

m,n≥0

KA(H⊗n,H⊗m) after we identify T with T ⊗ I,

(see Proposition 2.5 in [12]). This isomorphism preserves the C0(X)-algebra
structures.

The groupoid G acts on KA(H⊗n,H⊗m) by

(g · T )(ξ) = ρm(g)T (ρn(g−1)ξ)

and the fixed point algebra is (ρm, ρn). Indeed, for a fixed x ∈ X and g ∈ Gxx
we have g · T = T if and only if Tρn(g) = ρm(g)T .

It follows that 0Oρ ⊆ OH and that Oρ is isomorphic to OGH. �

Corollary 7.2. Let E be a topological graph such that HE is full and fi-
nite projective and the left multiplication of C0(E0) is injective. If G is a
groupoid acting on E as in Definition 4.1 inducing a homomorphism ρ : G→
Iso(HE), then Oρ ∼= C∗(E)G.

Example 7.3. The Doplicher-Roberts algebra for the groupoid action in Ex-
ample 4.3 is isomorphic with OS3

3 ⊕O
S3
3 .

8. Compact isotropy groupoid actions on graphs

Suppose the groupoid G with compact isotropy groups acts on a discrete
locally finite graph E. It follows that G0 is also discrete. It is known that
in this case C0(E0) o G is strongly Morita equivalent with a commutative
C∗-algebra C0(X) with X at most countable.

If we denote by {px}x∈X the minimal projections in C0(X), recall that the
isomorphism classes of separable nondegenerate C∗-correspondences H over
C0(X) determine a discrete graph. More precisely, the ∗-homomorphism
φ : C0(X) → L(H) will define an incidence matrix (axy)x,y∈X where axy =
dimφ(px)Hpy. (see Theorem 1.1 in [13]).
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We recall now the following result from [23]:

Lemma 8.1. Suppose C and D are strongly Morita equivalent C∗-algebras
with C–D imprimitivity bimodule Z.

If H is a C∗-correspondence over C, then N = Z∗ ⊗C H ⊗C Z is a C∗-
correspondence over D such that OH and ON are strongly Morita equivalent.

Theorem 8.2. Let E be a locally finite discrete graph with no sources and
let G be a groupoid with compact isotropy groups acting on E. Then the
crossed product C∗(E) o G is strongly Morita equivalent to a graph C∗-
algebra, where the number of vertices is the cardinality of the spectrum of
C0(E0) oG.

Proof. The idea is to decompose the C∗-correspondence HE o G over the
C∗-algebra C0(E0)oG, which is strongly Morita equivalent with a commu-
tative C∗-algebra.

Let C0(E0) oG ∼=
N⊕
i=1

Mn(i), where N ∈ N ∪ {∞} and Mn(i) denotes the

set of n(i)× n(i) matrix algebras. Consider now the graph with N vertices
and at each vertex vi we assign the C∗-algebra Mn(i). If pi is the unit in
Mn(i), whenever pi(HE o G)pj 6= 0, we decompose this as a direct sum of
minimal Mn(i)–Mn(j) C

∗-correspondences. Since C–C C∗-correspondences
are Hilbert spaces, a minimal Mn(i)–Mn(j) C

∗-correspondence is of the form
Mn(i),n(j), the set of rectangular matrices with n(i) rows and n(j) columns,
with the obvious bimodule structure and inner product. This decomposition
determines the number of edges between vj and vi.

Since in this case JHE = C0(E0) and JHE oG ∼= JHEoG, we deduce from
Theorem 6.4 that

OHEoG ∼= OHE oG ∼= C∗(E) oG.

It follows that C∗(E) o G is isomorphic to the C∗-algebra of a graph of
(minimal) C∗-correspondences (see [6]), hence strongly Morita equivalent to
a graph C∗-algebra.

Note that in this case C∗(E) is the C∗-algebra of a groupoid GE and that
C∗(E) oG = C∗(GE oG)

�

Corollary 8.3. If G acts on E as above, then G acts on the AF-core C∗(E)T

and C∗(E)T oG ∼= (C∗(E) oG)T is an AF-algebra.
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