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Genus theory and governing fields

Christian Maire

Abstract. In this note we develop an approach to genus theory for a
Galois extension L/K of number fields by introducing some governing
field. When the restriction of each inertia group to the (local) abelian-
ization is annihilated by a fixed prime number p, this point of view
allows us to estimate the genus number of L/K with the aid of a sub-
space of the governing extension generated by some Frobenius elements.
Then given a number field K and a possible genus number g, we derive
information about the smallest prime ideals of K for which there exists a
degree p cyclic extension L/K ramified only at these primes and having g
as genus number.
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1. Introduction

1.1. Let us start to recall a vague principle of genus theory in abelian
extensions L/K of number fields: “the more L/K is ramified, the larger the
class group of L must be”. The reason is the following one: as we shall
see, the genus field of L/K is related to the ray class field Km of K for a
certain modulus m built over the set of ramification of L/K; usually the
ramification of LKm/K is absorbed in L/K, thus by class field theory the
class group Cl(L) of L maps onto Gal(LKm/L), and this last one “grows
with m”.

Let us introduce the objects more precisely. Let L/K be a Galois extension
of number fields. Denote by KH (resp. LH) the Hilbert class field of K
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(resp. of L), and consider ML/K/K the maximal abelian extension of K

inside LH/K. The compositum K∗ := LML/K is called the genus field of the
extension L/K, and the quantity g∗ = g(L/K)∗ = [K∗ : L] its genus number.
Let Lab = ML/K∩L be the maximal abelian subextension of L/K. Then the
relation

g∗ =
|Cl(K)|
[Lab : K]

· [ML/K : KH ]

shows that, when the class group of K is known, it is easy to pass from
g := g(L/K) = [ML/K : KH ] to g∗.

Since the 1950’s, genus theory has been studied and developed by many
authors. But let us simply mention the initial works of Hasse [9], Leopoldt
[13], Fröhlich [3], Furuta [4], Razar [17], etc. For a more recent development,
see [5, Chapter IV, §4] for example.

The aim of this note is to develop a new point of view of genus theory
in L/K by introducing some governing extension F/K thanks to Kummer
duality. We then obtain that g(L/K) is related to the kernel of a morphism
ΘS involving some Frobenius elements in Gal(F/K). The quantity g(L/K)
is more directly connected to ΘS , so in what follows we consider g instead
of g∗.

Our work has been inspired by the book of Gras [5, Chapter V], by [7],
by [8], and by [16, §5].

1.2. To simplify the presentation of our first result, take a prime number
p > 2 and let L/K be a tamely ramified abelian extension where all the
inertia groups are annihilated by p. Denote by S = {p1, · · · , ps} the set of

ramification of L/K. Put K′ = K(µp) and F = K′( p

√
O×K), where O×K is the

group of units of the ring of integers OK of K: the number field F is the
governing field of our study. For each prime ideal p ∈ S, choose a prime
ideal P in OK′ above p and put σp := σP, the Frobenius element at P in
Gal(F/K′). Consider the morphism ΘS defined as follows:

ΘS : (Fp)s −→ Gal(F/K′)

(a1, · · · , as) 7→
s∏
i=1

σaipi .

Typically, our point of view allows us to obtain the following:

Theorem 1.1. Under the above assumptions, one has g(L/K) = # ker(ΘS).

In Section 3.4 we give a more general version of Theorem 1.1, but the
one here shows clearly the flavor of our work: some relationship between the
genus number of L/K and some Frobenius elements in a governing extension.

Before we present the next result, let us introduce more notation. If K is
a number field, let (rK,1, rK,2) be its signature and put rK = rK,1 + rK,2 −
1+ δK,p, where δK,p = 1 or 0 according µp ⊂ K or not, where µp is the group
of pth roots of unity.
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Definition 1.2. Let p be a prime number and let S be a finite set of places
of K. A degree p cyclic extension L/K is called S-totally ramified if S is
exactly the set of ramification of L/K.

One also obtains:

Theorem 1.3. Let K be a number field. Let s ≥ 1 and k ≥ 1 be two
integers such that s − rK ≤ k ≤ s, and let p be a prime number. Then
there exist infinitely many sets S of places of K with |S| = s, such that there
exists a degree p cyclic extension L/K, S-totally ramified, with g(L/K) = pk.
Moreover, assuming GRH,

(i) when p is fixed, a such set S can be chosen such that the absolute
norm of each p ∈ S is O(s log s).

(ii) when s is fixed, a such set S can be chosen such that the absolute
norm of each p ∈ S is O(p2rK+2(log p)2).

1.3. This note contains four sections. In §2 we recall well-know results in
genus theory. In §3 we present and develop the main idea of this note: to
connect the genus number of a Galois extension L/K, where the restriction
of each inertia group to the abelianization of the local extension is anni-
hilated by a fixed prime number p, to the kernel of some morphism ΘS

involving some Frobenius elements; when the extension L/K is abelian and
the ramification is tame, we recover Theorem 1.1. In the last section we
prove Theorem 1.3.

We introduce some additional notation before proceeding to the next
section. Let p be a prime number. For every finitely generated Z-module
A, we denote by dpA := dimFp Fp ⊗A, the p-rank of A.

We fix an algebraic closure Q of Q. If K is a number field and v|` (possibly
` = ∞) a place of K, we denote by Kv the completion of K at v. We then
also fix an embedding ιv of Q in Q` such that ιv(K)Q` = Kv; if L/K is an
extension of number fields we put Lv := ιv(L)Q`.

If Kv is a local field, we denote by vKv the normalized valuation of Kv,
and by UKv = {x ∈ Lv, vKv(x) > 0} the groups of units of Kv. When there
is no possible confusion, we write v for the valuation and Uv for the units.

If Kv = R or C, we put Uv = K×v .

Acknowledgments. The author thanks Georges Gras for encouragement
and constructive observations, Philippe Lebacque for stimulating exchanges,
and the anonymous referee for the careful reading of the paper.

2. Genus theory: basic results

2.1. Genus field and ray class field. Let L/K be a Galois extension of
number fields of set of ramification T . For a place v of K, denote by Dv :=
Gal(Lv/Kv) the local Galois group at v, and consider Dab

v = Gal(Labv /Kv) the
abelianization of Dv, where here Labv /Kv is the maximal abelian subextension
of Lv/Kv. Let Iv := I(Lv/Kv) ⊂ Dv be the inertia subgroup, and Iabv :=
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I(Labv /Kv) be the restriction of Iv to Labv . If v is an archimedean place, one
always has Iv = Dv ' Dab

v .
Let Wv ⊂ Uv := UKv be the kernel of the Artin map ArtLv/Kv

: Uv −→ Iabv .
Of course, Wv = NLv/Kv

ULv , where NLv/Kv
is the norm map of Lv/Kv.

Clearly, Wv = Uv when v is unramified in L/K.
Denote by Km the ray class field of K corresponding by the global Artin

map to the group of idèles W :=
∏
v Wv.

Let S := {v ∈ T, Iabv 6= {1}} be the set of places v of K for which Iabv is not
trivial. Put US :=

∏
v∈S Uv and WS =

∏
v∈S Wv. The following proposition

may be found in [4, Proposition 1]:

Proposition 2.1. One has ML/K = Km. Moreover,

Gal(Km/K
H) ' US/ιS(O×K)WS ,

where ιS is the natural embedding.

Proof. One has ML/K ⊂ Km. Indeed, take a place v of K and ε ∈Wv. Then
ε is a norm in Lv/Kv of some unit ε0 in Lv. As ML/KL/L is unramified at
v, the unit ε0 is a norm in the local extension (ML/K)vLv/Lv, and then ε
is a norm in (ML/K)vLv/Kv, which implies that Art(ML/K)v/Kv

(ε) is trivial.

Then the global Artin map of the extension ML/K/K vanishes on W, and
thus ML/K ⊂ Km by maximality of Km.

Moreover KmL/L is an unramified abelian extension. Indeed, for every
place v of K, the local Artin symbol indicates that Uv/Wv � I((Km)v/Kv)
and that Iabv = I(Lv/Kv)

ab ' Uv/Wv. By the property of the Artin symbol,
one then has I(Labv (Km)v/Kv) ' Uv/Wv, thus I(Labv (Km)v/L

ab
v ) = {1} and

(Km)vLv/Lv is unramified. By maximality of ML/K one deduces that Km ⊂
ML/K, and finally that ML/K = Km.

By class field theory one has

Gal(Km/K
H) '

∏
v

Uv/ι(O×K)W ' UT /ιT (O×K)WT ,

where ι : O×K →
∏
v Uv is the natural embedding. To conclude, observe that

for v ∈ T\S, Uv = Wv, and then UT /WT ' US/WS . �

2.2. Formula and exact sequence in genus theory. If L/K is a Galois
extension, denote by O×K ∩ NL/K the units O×K of OK that are local norms
in L/K.

Theorem 2.2. Let L/K be a Galois extension of number fields of set of
ramification T . One has

(i) the genus formula:

g(L/K) =

∏
v∈T

#Iabv

(O×K : O×K ∩NL/K)
,
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(ii) the genus exact sequence:

1 −→ O×K/O
×
K ∩NL/K −→

∏
v∈T

Iabv −→ Gal(ML/K/K
H) −→ 1.

For the proof of Theorem 2.2, see for example [5, Chapter IV, §4]. See
also [14].

Corollary 2.3. Let L/K be a Galois extension where all the Iabv are anni-
hilated by a fixed prime number p. Then Gal(ML/K/K

H) is of exponent p.

Remark 2.4. Let us recall at least two applications of the genus exact se-
quence:

(i) the construction of number fields having an infinite Hilbert p-class
field tower (see for example [18]);

(ii) the study of Greenberg’s conjecture for totally real number fields (see
for example the recent work of Gras [6]).

Remark 2.5. For genus theory in more general contexts see for example [5,
Chapter IV, §4], [11, Chapter III, §2] or [14].

3. Kummer theory and governing field

Let L/K be a Galois extension of set of ramification T . We keep the
notations of §2 (see also the last few paragraphs of Section 1).

From now on, we assume that all the inertia groups Iabv are annihilated by
a fixed prime number p.

Put S := {v ∈ T, Iabv 6= {1}} and let us write S = Sta0 ∪ Swi0 ∪ S∞, where
Sta0 is the set of finite places of S coprime to p (called tame places), Swi0 is the
set of places S dividing p (called wild places), and S∞ contains the ramified
archimedean places. In particular S∞ = ∅ when [L : K] is odd. Observe
that by hypothesis, for v ∈ Sta0 , the local field Kv contains the p-roots of the
unity. Put

s = #S∞ + #Sta0 +
∑
v∈Swi

0

dpI
ab
v .

Remark 3.1. Following Section 2.1, for each place v of K one has Upv ⊂Wv;
for v ∈ Sta0 ∪ S∞ one even has Wv = Upv .

3.1. Governing field. Fix now ζ ∈ Q, a primitive pth root of the unity,
and put µp = 〈ζ〉.

Let us consider the number fields K′ = K(ζ) and F = K′( p

√
O×K): the

field F is the governing field of our study. First, we give an upper bound for
the absolute value of the discriminant dF of F.

Proposition 3.2. One has

|dF| ≤ |dK|(p−1)prK · p[K:Q](p−1)(4prK−3).
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Proof. Observe that F/K is unramified outside p. For a better readability of
the proof, we change a little bit the principle of notations for local extensions
followed since the beginning. Let v|p be a wild place of K, and let w|v be a
place of K′ above v. Denote by w the normalized valuation of K′w, and by
ew (respectively fw) the absolute ramification index (resp. inertia degree)
of w.

Let us start to recall that the w-valuation of the conductor of a local
degree p cyclic extension Lw/K

′
w is less than 1 + 2ew (indeed, every unit

ε ∈ K′w such that w(ε − 1) ≥ 1 + 2ew is a pth power). By the conductor-
discriminant formula (see for example [15, Chapter VII, §12, Theorem 11.9])
we get

w(disc(Fw/K
′
w)) ≤ (1 + 2ew)(prK − 1).

Hence by the discriminants formula in a tower of number fields (see for
example [15, hapter III, §2, Corollary 2.10]), we finally obtain

|dF| ≤ |dK′ |[F:K′] · p
∑

w|p(1+2ew)fw(prK−1) ≤ |dK′ |prK · p3(p−1)(prK−1)[K:Q],(1)

where here the sum is taken over the places w of K′ above p.
The extension K′/K is tamely ramified (the v-valuation of the conductor

is ≤ 1) and then

|dK′ | = |dK|[K
′:K] · p

∑
v|p fv

∑
w|v f(w/v)(e(w|v)−1) ≤

(
|dK| · p[K:Q]

)p−1
,(2)

where the sum is taken over the wild places v of K, and e(w|v) = ew/ev
(resp. f(w|v) = fw/fv) is the ramification index (resp. inertia degree) of v
in K′/K.

Inequalities (1) and (2) then allow us to conclude. �

If M is a Fp-module, put M∨ := hom(M, µp). Let

ψ : (O×K/(O
×
K)p)∨ → Gal(F/K′)

be the isomorphism issue from Kummer duality. Let us recall how this
isomorphism works: for χ ∈ (O×K/(O

×
K)p)∨ one associates the element σχ :=

ψ(χ) ∈ Gal(F/K′) defined as follows:

σχ( p
√
ε) = χ(ε) · p

√
ε.

For more details see for example [5, Chapter I, §6, exercice 6.2.2].

3.2. Tame places and Frobenius elements. Let us take v ∈ Sta0 . As
before (see the last few paragraphs of Section 1), we fix an embedding ιv :
Q ↪→ Qp such that ιv(K)Qp = Kv. Observe that Kv = K′v. Let us denote by
σv (= σvK′ ) the Frobenius of vK′ in Gal(F/K′).

Let N(vK′) be the order of the residue field of K′v. Take now ζv ∈ Uv such

that ζ
(N(vK′ )−1)/p
v = ιv(ζ) and consider the generator χv of (Uv/Upv )∨ defined

by χv(ζv) = ζ. Thanks to ιv, the character χv can be viewed as an element
of (O×K/(O

×
K)p)∨.

Proposition 3.3. One has ψ(χv ◦ ιv) = σv.
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Proof. Put σ = ψ(χv ◦ ιv) and take ε ∈ O×K. Let av(ε) ∈ Fp such that

ιv(ε)Upv = ζ
av(ε)
v Upv . Then by Kummer theory,

σ( p
√
ε)/ p
√
ε = χv(ιv(ε)) = ζav(ε).

But by definition, the Frobenius element σv satisfies the property:

σv(
p
√
ε)/ p
√
ε ≡ ε(N(vK′ ))−1)/p (mod vK′)·

Here a ≡ b (mod vK′) means that vK′(a− b) > 0. Hence

ιv

(
σv(

p
√
ε)/ p
√
ε
)
≡ ιv(ζav(ε)) (mod vK′),

which shows that σ( p
√
ε) = σv( p

√
ε). �

Remark 3.4. If we choose another embedding ιv′ : Q ↪→ Q` (instead of ιv),
then by Kummer duality and by the property of the Artin symbol, one has
σv′ = σav for some a ∈ F×p .

3.3. The other places.

3.3.1. Wild places. Here now take v|p. Recall that Iv ' (Z/pZ)av . By
the Artin map and by Kummer duality, one has

I∨v ' (Uv/Wv)
∨ ↪→ (Uv/Upv )∨ .

Then take an Fp-basis {χ(i)
v , i = 1, · · · , av} of (Uv/Wv)

∨. For i = 1, · · · , av,
consider σ

(i)
v ∈ Gal(F/K′) defined as follows: for ε ∈ O×K put

σ(i)
v ( p
√
ε) = χ(i)

v (ιv(ε)) · p
√
ε.

3.3.2. Infinite places. Take p = 2 and let v be a real place of K. Here
Uv/U2

v ' R×/R×,+. Then for ε ∈ O×K put

σv(
√
ε) = sign(ιv(ε))

√
ε,

where sign(ιv(ε)) is the sign of the embedding ιv(ε) of ε in Kv. Of course
σv = σχv , where χv is the non trivial character of Uv/U2

v .

3.4. Key map and main result. Let ΘS be the linear map

ΘS : (US/WS)∨ → Gal(F/K′)

defined as follows:

(i) for v ∈ Sta0 ∪ S∞, put ΘS(χv) = σv,

(ii) for v ∈ Swi0 , put ΘS(χ
(i)
v ) = σ

(i)
v .

While fixing an isomorphism Gal(F/K′) ' FrKp we see that ΘS is a linear
map from Fsp to FrKp .

Theorem 3.5. Under the assumptions of section 3, the Artin map induces
the isomorphism ker(ΘS) ' Gal(Km/K

H)∨.
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Proof. Let us start with the exact sequence (see Proposition 2.1)

1 −→ ιS(O×K/(O
×
K)p) −→ US/WS −→ Gal(Km/K

H) −→ 1

and take its Kummer dual to obtain

1 // Gal(Km/K
H)∨ // (US/WS)∨ //

��

(ιS(O×K/(O
×
K)p)∨

� _

��

// 1

Gal(F/K′) (O×K/(O
×
K)p)∨.

'
ψ

oo

Observe that

(US/WS)∨ '
∏

v∈Sta
0 ∪S∞

(Uv/Upv )∨
∏
v∈Swi

0

(Uv/Wv)
∨ .

Thus, by Proposition 3.3 and sections 3.3.1 and 3.3.2, the induced map from
(US/WS)∨ to Gal(F/K′) is exactly ΘS . Hence we get:

Gal(Km/K
H)∨ ' ker

(
(US/WS)∨

ΘS−→ Gal(F/K′)
)
.

The proof is complete. �

Corollary 3.6. One has g(L/K) = # ker(ΘS). In particular,

s− rK ≤ dpGal(ML/K/K
H) ≤ s.

Proof. This is a consequence of Theorem 3.5 and Proposition 2.1. �

Observe that Theorem 1.1 is a consequence of Corollary 3.6.

3.5. Examples.

3.5.1. Imaginary quadratic fields. Take p = 2 and let L/Q be an imag-
inary quadratic extension of discriminant d. The field F = Q(

√
−1) is the

governing field and, thanks to S∞ = {v∞}, the map ΘS is onto. Then
g(L/Q) = 2s and g∗ = 2s−1, where s is the number of primes dividing d.

3.5.2. Real quadratic fields. Take p = 2 and let L/Q be a real quadratic
extension of discriminant d. Here S∞ = ∅ and F = Q(

√
−1) is the governing

field. Then ΘS is the zero map if and only if every odd prime ` dividing
d is congruent to 1(mod 4); in this case g = 2s. Otherwise ΘS is onto and
g = 2s−1, where s is the number of primes dividing d.

3.5.3. Cubic fields. As studied in [1] and [2], the situation where p = 3,

K = Q(µ3) and L = K( 3
√
d), d ∈ Z≥1, is also interesting to describe. Indeed

in this case the governing extension is the extension Q(µ9)/Q(µ3). Here
s− 2 ≤ d3Gal(K∗/L) ≤ s− 1, and to have the exact value of d3Gal(K∗/L),
one needs to determine: (i) the number s of prime ideals p in OK ramified
in L/K, and (ii) if the map ΘS is trivial or not (here d3Im(ΘS) ≤ 1). And
these two conditions are characterized by the congruences in Z/9Z of the
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prime numbers ` that divide d. Typically, if there exists a prime number `|d,
` 6= 3, such that 3 divides the order of ` in (Z/9Z)×, then Im(ΘS) ' F3.

4. Proof of Theorem 1.3

Let s, k ∈ Z>0 such that s− rK ≤ k ≤ s. Put n = s− k.

First, one has to enlarge the governing field F = K′( p

√
O×K) by considering

the number field
F̃ := F( p

√
a1, · · · , p

√
ah),

where the ai’s are such that aiOK = api ∈ Cl(K) and the family {a1, · · · , ah}
forms an Fp-basis of Cl(K)[p] (the classes annihilated by p). One has [F̃ :

K′] = prK+h. Let us fix an Fp-basis (ei)i=1,··· ,rK of

Gal(F̃/K′( p
√
a1, · · · , p

√
ah)) ' (Fp)rK

and complete this basis to an Fp-basis (ei)i=1,··· ,rK+h of Gal(F̃/K′) ' (Fp)rK+h.
By the Chebotarev density theorem, let S = {v1, · · · , vs} be a set of s differ-

ent tame places of K such that the Frobenius elements σvi ∈ Gal(F̃/K′) ⊂
Gal(F̃/K) of vi satisfy:

(a) σv1 = −(e1 + · · ·+ en);
(b) for i = 2, · · · , n+ 1, σvi = ei−1;
(c) for i = n+ 2, · · · , s, σvi = 0,

when n ≥ 1. When n = 0, choose the vi’s such that σvi = 0, i = 1, · · · , s.

Observe that

s∑
i=1

σvi = 0. Then by a result of Gras-Munnier [7, Theo-

rem 1.1] (see also [5, Chapter V, §2, Corollary 2.4.2]), there exists a de-
gree p cyclic extension L/K, S-totally ramified. Moreover, by the choice of
the ei’s and the vi’s the morphism ΘS , with value in Gal(F/K′), is of rank n.

Then Gal(ML/K/K) ' (Fp)s−n = (Fp)k by Corollary 3.6, which proves (i)
of Theorem 1.3.

Before we prove (ii) of Theorem 1.3, let us make the following observation:

Lemma 4.1. One has log |d
F̃
| ≤ 2|Cl(K)| log |dF|.

Proof. Adapt Proposition 3.2. �

Remark 4.2. Obviously one has F̃ = F for p� 0.

The second point (ii) is a consequence of an effective version of the Cheb-
otarev density theorem under GRH (see for example [12, Theorem 1.1] or
[19, §2.5, Theorem 4]). Observe first that when n > 1 or when p > 2,
all the Frobenius elements of (a) and (b) are in different conjugacy classes.
(When n = 1 and p = 2, the Frobenius of v1 and of v2 are in the same
conjugacy class, see the next to solve the problem). We can be certain
that there exist such primes (associated to places vi) with norm of order
O
(
(log |d

F̃
|)2
)

= O
(
(log |dF|)2

)
.
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For the places vn+2, · · · , vs, we need the following two lemmas.

Lemma 4.3. Given m ∈ Z≥1, there exist m prime ideals p1, · · · , pm in OK

that split totally in F̃/K, all having absolute norm less than CK,pm(logm),
where CK,p is some constant depending on K and on p.

Proof. For x ≥ 2 let

π(x) =
∣∣∣{prime ideals p ⊂ OK, |OK/p| ≤ x, p splits totally in F̃/K}

∣∣∣ .
Then the effective Chebotarev density theorem under GRH indicates that
π(x) ≥ A(x), where

A(x) =
1

[F̃ : K]

(
x

log(x)
− Cx1/2(log |d

F̃
|+ [F̃ : Q] log x)

)
,

C being some absolute constant. Then, by Lemma 4.1 and Proposition 3.2,
taking

x0 = CK,pm(logm),

for some constant CK,p depending on K and on p we are certain that A(x0) ≥
m and we are done. �

Lemma 4.4. Given m ∈ Z≥1, there exist m prime ideals p1, · · · , pm in OK

that split totally in F̃/K, all having absolute norm less than

CK,mp
2rK+2(log p)2,

where CK,m is some constant depending on K and on m.

Proof. Observe that F̃/K is unramified outside p. Let ` be a prime num-

ber coprime to the set of ramification of F̃/Q and such that ` ≥ m. By
Bertrand’s postulate, this ` can be taken less than CK · m, where CK is

some constant depending on K. Put N = Q(µ`) and N0 = NF̃. The ex-

tension N0/F̃ is of degree `− 1, and |dN0 | ≤ |dF̃
|`−1|dN|[F̃:Q]. Let us choose

now m prime ideals p1, · · · , pm in OK, all unramified in N0/K, such that

their Frobenius in Gal(N0/F̃) ⊂ Gal(N0/K) are in some different conjugacy
classes: by the Chebotarev density theorem (under GRH), the pi’s can be
choosen of norm smaller than C(log |dN0 |)2, where C is some absolute con-
stant. Hence by Lemma 4.1, for i = 1, · · · ,m, we obtain that the N(pi)’s
are smaller than

C
(
`prK+1|Cl(K)|[K : Q] log(p4`|dK|2/[K:Q])

)2
≤ CK,mp

2rK+2(log p)2.

Finally to conclude, observe that each pi splits totally in F/K. �
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