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Automatic continuity of ∗-representations
for discrete twisted C∗-dynamical systems

Leonard T. Huang

Abstract. In this paper, we prove that every ∗-representation for a
discrete twisted C∗-dynamical system (G,A, α, ω) (on a C∗-algebra) is
automatically contractive with respect to the L1-norm on Cc(G,A).
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1. Introduction

Given a C∗-dynamical system A = (G,A, α) with a Haar measure µ
assumed on G, equip the vector space Cc(G,A) of compactly-supported
continuous A-valued functions on G with a ∗-algebraic structure by defining
a convolution ?A and an involution ∗A as follows:

∀f, g ∈ Cc(G,A) : f ?A g
df
=

G → A

x 7→
∫
G
f(y)αy

(
g
(
y−1x

))
dµ(y)

;

f∗A
df
=

{
G → A

x 7→ ∆G

(
x−1

)
· αx

(
f
(
x−1

)∗)}.
We may then turn (Cc(G,A), ?A ,

∗A ) into a normed ∗-algebra with a norm
‖·‖A ,1 on Cc(G,A) defined by

∀f ∈ Cc(G,A) : ‖f‖A ,1
df
=

∫
G
‖f(x)‖A dµ(x).
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We call ‖·‖A ,1 the L1-norm for A .

A ∗-representation for A is now a pair (C, π) consisting of a C∗-algebra
C and an algebraic ∗-homomorphism π from (Cc(G,A), ?A ,

∗A ) to C, and
we may define the crossed-product C∗-algebra C∗(A ) as the completion of
(Cc(G,A), ?A ,

∗A ) for a norm ‖·‖A ,u on Cc(G,A) — called the universal
norm for A — defined by

∀f ∈ Cc(G,A) :

‖f‖A ,u
df
= sup

({
‖π(f)‖C

∣∣∣∣ (C, π) is a ∗-representation for A that is
contractive with respect to ‖·‖A ,1 and ‖·‖C

})
.

As far as we know, all treatments of crossed-product C∗-algebras (e.g. [3])
assume the contractivity condition in order to enforce that ‖·‖A ,u is actually
well-defined.

We can therefore ask: Is a ∗-representation for a C∗-dynamical system
automatically contractive with respect to ‖·‖A ,1 and ‖·‖C? We know of no
counterexamples, and we have been unable to find anything relevant to this
problem in the literature.

We hope to advertise the problem by showing that every ∗-representation
for a discrete C∗-dynamical system is automatically contractive. Actually,
we will prove a stronger result: Every ∗-representation for a discrete twisted
C∗-dynamical system is automatically contractive.

For every C∗-algebra A, we will adopt the following notation:

• Aut(A) denotes the group of ∗-automorphisms on A.
• M(A) denotes the multiplier C∗-algebra of A.
• U(A) denotes the group of unitary elements of A.

2. Twisted C∗-dynamical systems

Definition 2.1 ([1]). A twisted C∗-dynamical system is a 4-tuple (G,A, α, ω)
with the following properties:

(1) G is a locally compact Hausdorff topological group, with a Haar measure
µ on G tacitly assumed.

(2) A is a C∗-algebra.
(3) α is a strongly continuous map from G to Aut(A), i.e.,{

G → A
x 7→ αx(a)

}
is a continuous map for each a ∈ A.

(4) ω is a strictly continuous map from G×G to U(M(A)), i.e.,{
G×G → A
(x, y) 7→ aω(x, y)

}
and

{
G×G → A
(x, y) 7→ ω(x, y)a

}
are continuous maps for each a ∈ A.

(5) αe = IdA, and ω(e, r) = 1M(A) = ω(r, e) for all r ∈ G.
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(6) αr ◦ αs = Ad(ω(r, s)) ◦ αrs for all r, s ∈ G, i.e.,

∀m ∈M(A) : αr(αs(m)) = ω(r, s)αrs(m)ω(r, s)∗.

Here, α denotes the map from G to Aut(M(A)) that assigns to each
r ∈ G the unique ∗-automorphism on M(A) that extends αr.

(7) αr(ω(s, t))ω(r, st) = ω(r, s)ω(rs, t) for all r, s, t ∈ G.

If G is discrete, then we call (G,A, α, ω) a discrete twisted C∗-dynamical
system.

For the rest of this paper, A = (G,A, α, ω) is a twisted C∗-dynamical
system.

Remark 2.1. Our definition of a twisted C∗-dynamical system differs from
that in [1], which merely assumes that α : G → Aut(A) is strongly Borel-
measurable and ω : G × G → U(M(A)) is strictly Borel-measurable. Such
generality is not needed in our setting because we are only interested in
continuous maps.

Definition 2.2 ([1]). Define a convolution ?A and an involution ∗A on
Cc(G,A) by

∀f, g ∈ Cc(G,A) :

f ?A g
df
=

G → A

x 7→
∫
G
f(y)αy

(
g
(
y−1x

))
ω
(
y, y−1x

)
dµ(y)

;

f∗A
df
=

{
G → A

x 7→ ∆G

(
x−1

)
· ω
(
x, x−1

)∗
αx

(
f
(
x−1

)∗)}.
Note: (Cc(G,A), ?A ,

∗A ) is thus a ∗-algebra.

Definition 2.3. A ∗-representation for A is a pair (C, π), where C is a
C∗-algebra and π is an algebraic ∗-homomorphism from (Cc(G,A), ?A ,

∗A )
to C.

3. The main result

For the rest of this paper, A is a discrete twisted C∗-dynamical system.
The goal of this section is to establish the main result, stated as follows.

Theorem 3.1. A ∗-representation (C, π) for A is automatically contractive
with respect to ‖·‖A ,1 and ‖·‖C .

By Haar’s Theorem, the only Haar measures on G are positive scalar
multiples of the counting measure c. For k ∈ R>0, the measure k · c gives
rise to the following rules for convolution and involution via Definition 2.2:

∀f, g ∈ Cc(G,A) :
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f ?A g
df
=


G → A

x 7→ k ·
∑
y∈G

f(y)αy
(
g
(
y−1x

))
ω
(
y, y−1x

);

f∗A
df
=

{
G → A

x 7→ ω
(
x, x−1

)∗
αx

(
f
(
x−1

)∗)}.
Note that because G is discrete, it is unimodular, i.e., ∆G ≡ 1.

It can be easily shown that different (Cc(G,A), ?A ,
∗A ), equipped with

different Haar measures on G, are all ∗-isomorphic. We thus only need to
prove Theorem 3.1 for the case k = 1, i.e., for the counting measure c, which
we henceforth assume.

Before proving Theorem 3.1, we require a definition and a lemma.

Definition 3.1. For each a ∈ A and r ∈ G, define the function a • δr in
Cc(G,A) by

∀x ∈ G : (a • δr)(x)
df
=

{
a if x = r;

0A if x ∈ G \ {r}.

Lemma 3.1. The following identities hold:

(1) (a • δr) ?A (b • δs) = aαr(b)ω(r, s) • δrs for all a, b ∈ A and r, s ∈ G.
(2) (a • δr)∗A = ω

(
r−1, r

)∗
αr−1(a∗) • δr−1 for all a ∈ A and r ∈ G.

(3) (a • δe) ?A (b • δe) = ab • δe for all a, b ∈ A.
(4) (a • δe)∗A = a∗ • δe for all a ∈ A.

Proof. It suffices to prove (1) and (2), because (3) and (4) are simply direct
consequences.1

Let a, b ∈ A and r, s ∈ G. Then we have for all x ∈ G that

[(a • δr) ?A (b • δs)](x) =
∑
y∈G

(a • δr)(y)αy
(
(b • δs)

(
y−1x

))
ω
(
y, y−1x

)
= aαr

(
(b • δs)

(
r−1x

))
ω
(
r, r−1x

)
=

{
aαr(b)ω(r, s) if x = rs;

0A if x ∈ G \ {rs}
= [aαr(b)ω(r, s) • δrs](x);

(a • δr)∗A (x) = ω
(
x, x−1

)∗
αx

(
(a • δr)

(
x−1

)∗)
=

{
ω
(
r−1, r

)∗
αr−1(a∗) if x = r−1;

0A if x ∈ G \
{
r−1
}

=
[
ω
(
r−1, r

)∗
αr−1(a∗) • δr−1

]
(x).

This completes the proof. �

1To prove (3) and (4), we require the normalizations in Property (5) of Definition 2.1.
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Proof of Theorem 3.1. We will omit A as a subscript to ease notation.
Let a ∈ A and r ∈ G. By Lemma 3.1, we have

(a • δr)∗ ? (a • δr) =
[
ω
(
r−1, r

)∗
αr−1(a∗) • δr−1

]
? (a • δr)

= ω
(
r−1, r

)∗
αr−1(a∗)αr−1(a)ω

(
r−1, r

)
• δr−1r

= ω
(
r−1, r

)∗
αr−1(a∗)αr−1(a)ω

(
r−1, r

)
• δe

=
[
ω
(
r−1, r

)∗
αr−1(a∗) • δe

]
?
[
αr−1(a)ω

(
r−1, r

)
• δe
]

=
[
ω
(
r−1, r

)∗
αr−1(a)∗ • δe

]
?
[
αr−1(a)ω

(
r−1, r

)
• δe
]

=
([
αr−1(a)ω

(
r−1, r

)]∗ • δe) ? [αr−1(a)ω
(
r−1, r

)
• δe
]

=
[
αr−1(a)ω

(
r−1, r

)
• δe
]∗
?
[
αr−1(a)ω

(
r−1, r

)
• δe
]
.

Applying π to both ends and then using the C∗-norm identity yields

‖π(a • δr)‖C =
∥∥π(αr−1(a)ω

(
r−1, r

)
• δe
)∥∥
C
. (3.1)

By Lemma 3.1 again, we have[
αr−1(a)ω

(
r−1, r

)
• δe
]
?
[
αr−1(a)ω

(
r−1, r

)
• δe
]∗

=
[
αr−1(a)ω

(
r−1, r

)
• δe
]
?
([
αr−1(a)ω

(
r−1, r

)]∗ • δe)
=
[
αr−1(a)ω

(
r−1, r

)
• δe
]
?
[
ω
(
r−1, r

)∗
αr−1(a)∗ • δe

]
= αr−1(a)ω

(
r−1, r

)
ω
(
r−1, r

)∗
αr−1(a)∗ • δe

= αr−1(a)αr−1(a)∗ • δe
(
As ω

(
r−1, r

)
is unitary.

)
= [αr−1(a) • δe] ? [αr−1(a)∗ • δe]
= [αr−1(a) • δe] ? [αr−1(a) • δe]∗.

Applying π to both ends and then using the C∗-norm identity again yields∥∥π(αr−1(a)ω
(
r−1, r

)
• δe
)∥∥
C

= ‖π(αr−1(a) • δe)‖C . (3.2)

As a ∈ A and r ∈ G are arbitrary, we see from (3.1) and (3.2) that

∀a ∈ A, ∀r ∈ G : ‖π(a • δr)‖C = ‖π(αr−1(a) • δe)‖C . (3.3)

Now, define for each r ∈ G a linear map ρr : A→ Cc(G,A) by

∀a ∈ A : ρr(a)
df
= αr−1(a) • δe.

Notice that Lemma 3.1 also gives us the following relations:

∀a, b ∈ A, ∀r ∈ G : ρr(ab) = αr−1(ab) • δe
= αr−1(a)αr−1(b) • δe
= [αr−1(a) • δe] ? [αr−1(b) • δe]
= ρr(a) ? ρr(b);

ρr(a
∗) = αr−1(a∗) • δe
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= αr−1(a)∗ • δe
= ρr(a)∗.

Hence, ρr is an algebraic ∗-homomorphism from A to (Cc(G,A), ?,∗ ) for all
r ∈ G, which makes π ◦ ρr an algebraic ∗-homomorphism from A to C. As
any algebraic ∗-homomorphism from one C∗-algebra to another is already
contractive, we have

∀a ∈ A, ∀r ∈ G : ‖π(αr−1(a) • δe)‖C = ‖(π ◦ ρr)(a)‖C ≤ ‖a‖A. (3.4)

Combining (3.3) and (3.4) thus gives us

∀a ∈ A, ∀r ∈ G : ‖π(a • δr)‖C ≤ ‖a‖A. (3.5)

Finally, let f ∈ Cc(G,A). Then

‖π(f)‖C =

∥∥∥∥∥π
(∑
r∈G

f(r) • δr

)∥∥∥∥∥
C

=

∥∥∥∥∥∑
r∈G

π(f(r) • δr)

∥∥∥∥∥
C

≤
∑
r∈G
‖π(f(r) • δr)‖C

≤
∑
r∈G
‖f(r)‖A (By (3.5).)

= ‖f‖1.
Therefore, π is automatically contractive with respect to ‖·‖1 and ‖·‖C . �

Let us now describe an important corollary of Theorem 3.1. Recall that
a covariant representation of A is defined as a triple (ρ, u, C) with the
following properties:

(1) C is a C∗-algebra.
(2) ρ is a non-degenerate ∗-homomorphism from A to M(C).
(3) u is a function from G to U(M(C)).
(4) ρ(αr(a)) = u(r)ρ(a)u(r)∗ for all r ∈ G and a ∈ A.
(5) u(r)u(s) = ρ(ω(r, s))u(rs) for all r, s ∈ G.

These properties allow us to define an associated ∗-homomorphism Πρ,u,C

from (Cc(G,A), ?A ,
∗A ) to M(C) by

∀f ∈ Cc(G,A) : Πρ,u,C(f)
df
=
∑
r∈G

ρ(f(r))u(r).

It is well-known that (M(C),Πρ,u,C) is a non-degenerate ∗-representation
for A .

Conversely, every non-degenerate ∗-representation for A having the form
(M(C), π) for some C∗-algebra C (called a multiplier ∗-representation for
A ), that is assumed to be bounded with respect to ‖·‖A ,1 and ‖·‖M(C), arises
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from a covariant representation of A in the manner above. Theorem 3.1 says
that the boundedness assumption is unnecessary, so we obtain the following
algebraic result.

Corollary 3.1. There is a one-to-one correspondence between the class of
covariant representations for A and the class of multiplier ∗-representations
for A .

Covariant representations play a significant role in the theory of twisted
crossed products (see [2]), which suggests the usefulness of Corollary 3.1.

Remark 3.1. If π is merely an algebraic homomorphism that does not
respect the involution ∗A , then continuity may fail spectacularly. Consider
A =

(
Z,C, α0, ω0

)
, where α0 and ω0 denote, respectively, the trivial action

and the trivial multiplier. Suppose that Z is equipped with the counting
measure. Then the map

Cc(Z) → C
f 7→

∑
n∈Z

f(n)en


is an unbounded algebraic homomorphism from (Cc(Z), ?A ) to C, because
‖δn‖A ,1 = 1 for all n ∈ Z but lim

n→∞
en = ∞. It clearly does not respect the

involution ∗A .

4. Conclusions

The proof of the main result does not apply to other classes of locally
compact Hausdorff groups, such as the abelian ones or the compact ones.
One might work first on group C∗-algebras instead of more general twisted
C∗-dynamical systems. Hopefully, the Peter-Weyl Theorem for compact
groups and the Fourier transform for abelian groups could find a use, as
they exploit the structure of these groups.
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