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The Khovanov homology of
3-strand pretzels, revisited

Andrew Manion

Abstract. We compute the reduced Khovanov homology of 3-stranded
pretzel links. The coefficients are the integers with the “even” sign
assignment. In particular, we show that the only homologically thin,
non-quasi-alternating 3-stranded pretzels are P (−p, p, r) with p an odd
integer and r greater than or equal to p (these were shown to be homo-
logically thin by Starkston and Qazaqzeh).
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1. Introduction

The purpose of this paper is to present a computation of the reduced
Khovanov homology (introduced in [6]) of all 3-strand pretzel links. There
have been several computations of Khovanov homology for partial families
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Figure 1. The pretzel knot P (−3, 4, 5).

of pretzel knots (see Starkston [10], Suzuki [11], Qazaqzeh [8]), and one by
the author [7] computing the unreduced homology over Q for all 3-strand
pretzels. Whereas [7] used the unoriented skein exact sequence in Khovanov
homology, this paper will use a shorter and more conceptual argument rely-
ing on Bar-Natan’s cobordism formulation of Khovanov homology for tangles
(see [2]). We will determine the reduced homology over Z, with the standard
(“even”) sign assignment.

One caveat is required: the reduced Khovanov homology of links with
multiple components depends on which component has the basepoint. For
2- and 3-component 3-stranded pretzel links (those P (p, q, r) where two or
three of {p, q, r} are even), we will only do the computation with one partic-
ular choice of basepoint. One could apply the same method with the other
basepoint choices, but the details would be different enough that we decided
not to write them up.

The usual diagram of the pretzel knot P (−3, 4, 5) is shown in Figure 1.
We will use the equivalent diagram in Figure 6. The general 3-strand preztel
link is P (p, q, r) where p, q, and r are arbitrary integers. Up to mirroring,
though, we may assume that at most one of {p, q, r} is negative. If none
are negative, then the link is alternating and its Khovanov homology is
determined by its signature and Jones polynomial, by a result of Lee from
[12]. So we will restrict attention to P (−p, q, r) with {p, q, r} positive. We
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may even assume q ≤ r for convenience, because of the symmetry of 3-
stranded pretzels.

For some choices of p, q, and r, P (−p, q, r) is quasi-alternating, and the
same argument applies as with alternating links. Hence we may restrict
attention to non-quasi-alternating pretzel links. Results of Champanerkar-
Kofman in [4] and Greene in [5] imply that these are P (−p, q, r) with p, q, r
all positive, p ≤ q, r (or p ≤ q ≤ r), and p ≥ 2. (Note that a simple isotopy
of the standard diagram for P (−1, q, r) yields an alternating diagram.)

The formula for the bigraded Khovanov homology of these links takes a
bit of work to write down. Complicating matters is the issue of orientations;
to get the right gradings, we must decide on the relative orientations of
components of P (−p, q, r) when it is a multi-component link. To avoid
cluttering the introduction, we will state a simpler formula here. Recall the
δ-grading on Khovanov homology; we will define it as δ = q/2−h, where q is
the quantum grading and h is the homological grading. (In [9], Rasmussen
defines it as q− 2h; the 1/2 is a matter of preference.) With this collapse of
the gradings, Khovanov homology becomes a singly-graded theory.

The link P (−p, q, r) is a knot when at most one of {p, q, r} are even. We
need not consider the case of “only r even” separately from the case of “only
q even,” since these cases are interchanged by the symmetry of pretzel knots
(here we’re not requiring q ≤ r). Below we state the δ-graded formula for
knots; this has the advantage that we do not need to mention orientations
at all.

Theorem 1.1. Let p, q, r be as above, such that P (−p, q, r) is a non-quasi-
alternating knot (for links, see Theorem 2.6). Let Hδ be the reduced Kho-
vanov homology of the knot P (−p, q, r) in grading δ.

• If p, q, r are all odd, then H0 = Zp2−1 and H−1 = Z(q−p)(r−p)−1. All
other Hδ are 0.
• If p is even, then H q+r

2
= Zp2 and H q+r

2
−1 = Z(q−p)(r−p). All other

Hδ are 0.
• If q is even, then H−p+r

2
= Zp2−1 and H−p+r

2
−1 = Z(q−p)(r−p)−1 in

δ = −p+r
2 − 1. All other Hδ are 0.

When p is odd and p = q or p = r, the formula gives a −1 in the lower
δ-grading. This should be interpreted as a 0, with a 1 added to the rank of
the higher δ-grading.

In the course of proving this theorem (or rather Theorem 2.6 for links), we
will see how the bigraded homology could be computed without any more
real work. In fact, we will ignore gradings throughout most of the paper,
and then deduce them at the end when needed.

1.1. Homological thinness. Starkston in [10] and Qazaqzeh in [8] were
interested in the class of homologically thin, non-quasi-alternating pretzel
knots. Starkston conjectured, and Qazaqzeh proved, that all P (−p, p, r)
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pretzel knots with p odd and r ≥ p are homologically thin but not quasi-
alternating. Our results here (e.g. Theorem 2.6) imply that these are the
only homologically thin, non-quasi-alternating 3-column pretzel links. All
other non-QA ones (including, e.g. P (−p, p, r) with p even and r ≥ p) are
homologically thick. The same result could be deduced from the unreduced
homology calculated in [7], but this paper’s emphasis on the δ-grading makes
it easier to see.

1.2. Acknowledgments. The author would like to thank Zoltán Szabó
for many helpful discussions during the course of this work.

2. Khovanov homology computation.

We will use Bar-Natan’s dotted cobordism formulation of Khovanov ho-
mology in this section; see Section 11.2 of [2]. In particular, if T is a tangle
diagram, then its Khovanov chain complex is an object of the category
Kom(Mat(Cob3

·/l)).

2.1. Local preliminaries. The computation will use a lemma about the
formal dotted-cobordism complex associated to a series of n half-twists.
Effectively, the lemma is Proposition 25 of Khovanov’s original paper [6],
interpreted in the language of dotted cobordisms. We will give a proof here,
to keep this paper as self-contained as possible.

First, though, we recall a fact about dotted cobordism pictures. Let D
be a crossingless tangle diagram. If D contains a complete circle c, then D
is isomorphic in the category Mat(Cob3

·/l) to D′ ⊕ D′, where D′ is D with

c removed. This “delooping” isomorphism is written down by Bar-Natan in
[3]; the proof consists of a diagram, reproduced here for convenience (with
a few modifications) in Figure 2.

Whenever we apply a delooping isomorphism to remove a circle, one of
the two resulting summands will have a dot in the lower-right corner and
one will not. The dot indicates the element whose q-grading is shifted by −1
rather than +1. The maps F and G in Figure 2 are inverses of each other,
proving the delooping isomorphism.

The lemma we need is the following:

Lemma 2.1. The (formal) Khovanov chain complex of the positive n-half-
twisted strand on the left side of Figure 3 is homotopy equivalent to the
dotted-cobordism complex on the right side of Figure 3.

Remark 2.2. We have ignored gradings in Lemma 2.1 because it’s not neces-
sary for our purposes to keep track of them now. We will be able to deduce
them later given our knowledge of the boundary map. However, due to
signs, it is still important to order of the crossings. We order the crossings
in the n-half-twisted strand from bottom to top, and on the right side of the
diagram, we show how the first few generators are labelled.
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F G

Figure 2. Bar-Natan’s delooping isomorphism, taken from [3].

+ +
_ _

n

n

[00 . . . 0] [10 . . . 0]

Figure 3. Simplification of Kh(positive n-twisted tangle).
There are n boxes (and n−1 maps) in the section labeled on
the right. The final sign is − for n even and + for n odd.

Proof of Lemma 2.1. We will induct on n; the case n = 1 is true by the
definition of the formal complex for a single crossing. Assume the lemma
is true for n − 1; then we can use the induction hypothesis to replace the
formal complex for the n-twisted strand by the one shown at the top of
Figure 4. Delooping to get rid of the complete circles, we get the complex
at the bottom of Figure 4.

Now we simplify using Gaussian elimination, as described in this context
by Bar-Natan in [3]. Whenever we see an invertible matrix coefficient in the
differential, we remove the two corresponding generators, and add in some
“zig-zag” terms. Suppose the invertible coefficient is a, from generator g1
to generator g2 (write a : g1 → g2 for convenience). Whenever we have
b : h → g2 and c : g1 → k, we must add −c ◦ a−1 ◦ b to the coefficient from
h to k. Then the resulting complex with g1 and g2 removed is homotopy
equivalent to the original one.
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− id

− id − id − id − id

n− 1

n− 1

Figure 4. Inductive step of Lemma 2.1.

+ +- -

n

n

[11 . . . 1] [01 . . . 1]

Figure 5. The negative analogue of Figure 3.

The edges labelled a1, . . . , an−1 all represent identity cobordisms with
positive sign; we eliminate them in order, starting with a1. Each elimina-
tion has one negative sign from the edges and another from the elimination
formula, so the dotted maps in Figure 4 get positive signs. The result is the
complex we want. �
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p

q r

1
2

3

Figure 6. The pretzel knot P (−3, 4, 5) (or (−p, q, r) in general).

Taking the mirror image of this lemma gives us:

Corollary 2.3. The (formal) Khovanov chain complex of the negative n-
half-twisted strand on the left side of Figure 5 is homotopy equivalent to the
dotted-cobordism complex on the right side of Figure 5.

Strictly speaking, the global sign on any edge could turn out to be the
opposite of the one depicted in Figure 5. But, up to isomorphism of com-
plexes, we may assume the signs are as shown. Note that if we labelled the
crossings in the n-half-twisted strand “up to down” rather than “down to
up,” we would get some complex that looks identical except for global signs
on the edges (the relative signs on each edge are required by d2 = 0). So by
the same logic, the result is independent of this choice up to isomorphism.

2.2. Diagrams and orientations. Consider the pretzel link P (−p, q, r),
with a diagram D and basepoint drawn as in Figure 6. Order the crossings
so that those in the p-strand come first, then those in the q-strand, then
those in the r-strand. Within each strand, the crossings should be ordered
from one end to the other; as noted above, it doesn’t matter which end is
which.

Since the Khovanov homology of links depends on relative orientations
between the components, we need to be able to specify these orientations.
We will do this here, although it will not be needed until we fix absolute
gradings at the end.

There are three arrows in Figure 6, labelled 1, 2, and 3 (the directions are
chosen somewhat arbitrarily to agree with the example in that diagram).
We will say a pretzel link has orientation + + + if its orientations agree
with the three arrows, or − + + if they disagree at position 1 but agree at
2 and 3, etc. Since Khovanov homology is invariant under overall change
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Pattern n+ n−

++ r p+ q
+− p+ q + r 0
−+ p q + r
−− q p+ r

Table 1. Values for n+, the number of positive crossings in
the diagram, and n−, the number of negative crossings, given
the orientation pattern.

of orientation, we may fix once and for all a + in the third column, i.e.
our links will always be oriented in agreement with arrow 3. Then we may
simply write ++, −+, etc. for the orientation of the link at positions 1 and
2.

When P (−p, q, r) is a knot, the orientations at positions 1 and 2 are fixed.
If q is even (and p and r are odd), like in Figure 6, the orientation is ++.
If only p is even, the orientation is +−. If only r is even, the orientation is
−−. Finally, if p, q, and r are all odd, the orientation is −+.

When P (−p, q, r) is a two-component link, two out of the four orientation
patterns are possible (depending on the parity of p, q, and r). When it is a
three-component link, all four patterns are possible.

If we know the orientation pattern of the link, we can deduce the number
of positive and negative crossings; these will arise in the grading formulas.
We summarize them in Table 1 for convenience.

2.3. Computation of the complex. We now analyze the formal dotted-
cobordism Khovanov complex of D. The tangle complex of each of the
three twisted strands of D may be simplified using Lemma 2.1. The formal
complex of D is then homotopy equivalent to the cube shown in Figure 7,
with (p + 1)(q + 1)(r + 1) generators. Our goal will be to simplify this
cube even further, using delooping and elimination, until we understand the
differential completely.

While the resolution diagrams in Figure 7 and subsequent figures omit
the basepoint for convenience, there should always be a basepoint on each
diagram as indicated in Figure 6. This basepoint causes many cube differ-
entials to be zero; those marked zero in Figure 7 are zero because they have
a dot on the basepoint component.

2.3.1. Columns in the cube. We start by thinking of the cube as made
up of vertical columns. Consider the columns which are not on either of
the two “back walls” of the cube as drawn in Figure 7. We will consider
these columns one at a time, starting with the one closest to the viewer in
Figure 7.

The left side of Figure 8 shows any of these columns. According to the
discussion above, we can choose (once and for all) to make the signs on



1084 ANDREW MANION

+

-

-

p+ 1

q + 1 r + 1

= 0

= 0

= 0

[1 . . . 1, 0 . . . 0, 0 . . . 0]

[1 . . . 1, 0 . . . 0, 1 . . . 1]

Figure 7. Chain complex homotopy equivalent to
Kh(P (−p, q, r)), where (p, q, r) = (−2, 3, 4) in the pic-
ture. All of the arrows should have labels; only some are
shown for convenience. We have also shown the crossings-
label of two generators to indicate the general pattern. The
generator [0 . . . 0, 0 . . . 0, 0 . . . 0] is precisely the corner of the
cube obscured to the viewer.

the p-columns as depicted. (This corresponds to choosing different global
signs on various edges in Corollary 2.3.) We then apply delooping to get the
column on the right of Figure 8.

2.3.2. Paths. We want to see what happens when we simplify each (non-
back-wall) column by applying Gaussian elimination to the maps marked
− id in Figure 8. We will get a complex like the one in Figure 9. It has
two “walls” and a “floor”; note that we have applied delooping to the top
vertices on each wall. In this diagram, when a circle is delooped, we depict
it as a dashed circle in each resulting generator. There is a dot on one of
the two dashed circles.

The arrows in Figure 9 all represent components of the differential. For
visual clarity, some grid lines are also shown in Figure 9, but they do not
represent components of the differential; only the arrows with a direction
contribute to the differential.
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-

-

- -

-
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0

0

0

0

− id

− id

− id

− id

− id

Figure 8. A vertical column of the cube, not on the back
walls. The red arrows on the right are meant to suggest the
zig-zag maps which result from cancelling circled pairs of
generators.

There are more differentials like the red ones, based at each wall gen-
erator except for the column where the walls intersect. These arrows all
point at floor generators, and they are due to zig-zag maps arising from the
eliminations we did in the columns.

Such a component, arising from repeated eliminations, looks like a path of
arrows. The colored paths on the left of Figure 10 are examples. The paths
must start and end in the positive x- or y-direction, and must alternate
such “horizontal” steps (always positive) with vertical steps down (via the
eliminated identity components in the interior columns). Paths starting on
the left wall must start in the y-direction, and paths starting on the right
wall must start in the x-direction.
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(= 0)

Figure 9. The cube after doing eliminations of all non-back-
wall columns. All arrows represent components of the differ-
ential; there are more differentials like the red arrows that
are not shown.

Each horizontal step in the path is ± id, except for steps outward from the
very tops of the walls. These top steps are join maps before delooping; after,
the “top” component is± id and the “bottom” one is±(dotted id). However,
none of the dotted-id maps can contribute to nonzero maps remaining after
elimination, because they (eventually) put a dot on the basepoint. Hence
the only nonzero red arrows come from paths with each step ± id.

Let w be a (remaining) wall generator and f be a floor generator. Then
dw contains n copies of f where n is the signed count of paths from w to f .

2.3.3. Signs on paths. To actually compute n, we need to pin down the
signs on the paths. It is easiest to do this with an example. In Figure 10,
there is one path connecting w to f and three paths connecting w′ to f ′.
These paths are marked with various colors. There is also a pattern drawn
in orange at the right of Figure 10. To compute the sign of a path, project
it down to the floor of the cube and walk along it backwards (starting from
the floor generator). Start with a + sign. On the first step (and all odd-
numbered steps), the sign flips if the path traverses a black edge. On the
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positive x
positive y

w

f

f ′

w′

Figure 10. On the left: paths which contribute to the dif-
ferential. In this diagram, (p, q, r) = (3, 4, 5). On the right:
pattern of positive signs (orange) and negative signs (black)
on the bottom layer of the cube.

second step (and all even-numbered steps), the sign flips if the path traverses
an orange edge. The resulting sign is the sign of the path. (Equivalently, we
draw the opposite of the orange pattern every other level, and then always
flip on black edges.)

For instance, the path from f back up to w goes B, O, B, O (where B
denotes a black edge and O denotes an orange edge), so its sign is + after
four flips. The red path from f ′ back up to w′ goes B, B, O, B, so it gets −
after one flip. The blue path (O B O B) gets + (zero flips), and the green
path (O B B B) gets − (one flip).

To see why these signs are correct, note that the orange pattern is just
the standard pattern of positive signs in a double complex. In the full triple
complex we are considering, the vertical arrows are all negative and the
pattern of positive horizontal signs switches every vertical layer. But every
time we eliminate a vertical arrow in a column simplification, the negative
sign on the arrow cancels the negative sign from the Gaussian elimination.
Thus the sign on the resulting arrow is just the product of the signs on its
horizontal components, and this pattern continues to hold even after many
cancellations. Hence the signs on the paths are as described.

Remark 2.4. Note for future purposes that when two paths “differ by a
cube,” as the red/blue paths or the blue/green paths are related, then they
have the opposite sign. To see why this is true, color everything with an
orange/black pattern which flips every level, so sign flips are always black
edges (as mentioned above). Consider (e.g.) the cube spanned by the red
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and blue paths, and the squares on the top and bottom of this cube. These
squares each have a “source” vertex with two outgoing edges and a “sink”
vertex with two incoming edges. Since the pattern is such that every square
has an odd number of orange/black edges, the outgoing edges match color
precisely when the incoming edges don’t. Furthermore, the outgoing edges
match color on the top iff the outgoing edges match on the bottom, and the
same is true for incoming edges.

Now, the difference between the red and blue paths has two outgoing
edges, two incoming edges, and two vertical edges which are positive. If the
outgoing edges match, the incoming edges don’t, so the total sign difference
is −1, and similarly if the incoming edges match. Thus any paths differing
like the red and blue paths must differ in sign.

2.3.4. Cancelling more differentials. Figure 11 shows the complex of
Figure 9 from the top and rotated a bit clockwise. For now we will assume
p + 2 ≤ q, r; this is the generic case. Later we can look back and see what
happens when q = p or q = p+ 1 (without loss of generality we may assume
q ≤ r).

No paths are long enough to hit the floor generators circled with a 1 in
Figure 11, so these generators survive to homology. There are (q−p−1)(r−
p− 1) of them. We want to determine which other floor generators survive
to homology.

First, look at the blue differentials in Figure 9. No other arrows have the
same tip as these, so they may all be cancelled without picking up extra
zig-zag maps. The purple arrows are almost like the blue ones, except for
the presence of black arrows with the same tip as the purple ones. If we
wanted, we could still cancel these and pick up some extra maps, but instead
we will leave them be for now; later we will be able to cancel them without
extra maps.

After cancelling the blue arrows, nearly all of the second-to-top-row wall
generators are gone. Now consider the uncircled dots in the leftmost column
of Figure 11. Each gets matched up with a wall generator in the leftmost wall
column, via arrows like the three red arrows on the far left of Figure 9. Each
arrow counts only one path, so it is automatically ± id. The leftmost dot
lying in the circle “2” would get matched with the missing generator from
the second-to-top row. Cancelling arrows, we see that all the uncircled dots
die but the circled dot survives to homology. No extra maps are generated
because no other arrows share a tail with any of the cancelled arrows.

Having dealt with the leftmost column, we move inward and do the same
thing with the next one. All the dots marked 2 (resp. 3) survive to homology,
and uncircled dots in their columns (resp. rows) do not.

With the dots marked 5 and 6, all we can say right now is that they are
potentially homology generators. To see why, look at the dot marked f1.
This dot is the first to get hit by two wall generators w1 (from the north wall)
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(1)

(2)

(3)

(4)

(5)

(6)

f1

f2

w1 w3 w5

w6

w4

w2

wall

wall

r + 1

q + 1

Figure 11. Top-down view of the remaining generators, for
(p, q, r) = (3, 7, 9). The pattern of positive signs on the bot-
tom layer is also shown (in orange) for convenience.

and w2 (from the east wall), i.e. it is the first place where our cancellation
process runs into complications.

To determine what happens here, we want to identify the maps from w1

to (5) and from w2 to (6). The parity of p becomes important here:

Proposition 2.5. If p is even, the maps w1 → (5) and w2 → (6) are zero.
If p is odd, these maps are ± id.

Proof. Without loss of generality, consider w1 → (5). There are p paths
contributing to this matrix coefficient, and they are arranged in a sequence
like the red/blue/green paths in Figure 10. As noted in Remark 2.4, since
each path in the sequence differs from the next by a cube, the signs alternate
along the sequence. Hence the total sum is 0 if p is even and ±1 if p is
odd. �

If p is even, we can choose (arbitrarily) to cancel the arrow from w1 to f1,
and we pick up no extra maps from w2 to (5) or (6). Hence both (5) and (6)
survive to homology. If p is odd, we can still cancel the same arrow; we get
an additional map from w2 to (5), but this just means w2 dies in homology
and a rank 1 summand of 〈(5), (6)〉 survives.

The picture looks similar if we move one step up and to the right. If p is
even, then the wall generator w3 hits only one of the dots in circle 4, and
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w4 hits the other one. The maps have coefficient ±1, so neither dot in (4)
survives to homology.

If p is odd, we have to be careful with signs. Using the sign algorithm
discussed above, the path from w3 to the bottom dot in (4) gets p+ 1 plus
signs, for a net +. The path from w4 to the left dot in (4) gets p+ 1 minus
signs, for a net + as well. The paths from w3 to the left dot in (4) have signs
−, +, . . ., −, so the net sign is −. Finally, the paths from w4 to the bottom
dot in (4) also have signs −, +, . . ., − for a net −. To make it easier for the
reader to follow these calculations, the sign pattern is overlaid in Figure 11
for convenience (only the orange edges are shown, to avoid cluttering the
diagram). The picture looks qualitatively the same for all odd p, so checking
what happens when p = 3 yields the general pattern.

Now that we know these signs, the homology is easy; the wall generators

contribute a Z summand, and the floor generators contribute Z2

(1,−1)
∼= Z.

Finally, consider the dot marked f2. If p is odd, this dot gets hit by both
w5 and w6, so it does not survive to homology. However, if p is even, the
maps from w5 and w6 to f2 are zero, so f2 survives to homology.

The rest of the floor generators do not contribute (generators at the bot-
toms of the walls are excluded from being floor generators). Indeed, the
process of cancelling these generators using red arrows from the walls pro-
ceeds without needing to consider non-straight-line paths.

At this point, we can look back at the purple arrows on the walls in
Figure 9; they no longer share tails with any other nonzero arrows, so we
can cancel them just like we did the blue arrows.

2.3.5. Remaining cases. Counting everything up, we have found (q −
p)(r− p) surviving floor generators if p is even and (q − p)(r− p)− 1 if p is
odd. We obtained this formula assuming p+ 2 ≤ q, r, but at this point it is
not too difficult to look back and see what happens in the remaining cases.

First suppose q = p+ 1. In Figure 11, the missing “features” are the dots
circled 1, 6, and 3. If p is even, the dot circled 5 survives to homology, and
there are r− p surviving floor generators in total. This number agrees with
our existing formula, so we do not need to modify it.

If p is odd, (5) does not survive to homology. There are r−p−1 surviving
floor generators if r > p + 1, and 1 if r = p + 1. Thus the only case where
the formula needs modification is when r = p+ 1; there the formula would
give 0 surviving generators instead of the correct number 1.

Now suppose q = p. If p is odd, our formula predicts −1 floor generators,
so clearly it needs modification. But each circled floor generator gets hit
by a corresponding wall generator, by an arrow parallel to the one from w1

to (5). These arrows are nonzero by the argument of Proposition 2.5, and
they can be cancelled one at a time. Hence no floor generators survive to
homology, and we just need to change the −1 to a 0.
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If p is even, the formula requires more drastic modification. The quantity
(r−p)(q−p) is zero, but the generators (2), (5), and f2 survive to homology,
for a total of 1 if r = q = p and r − p if r > q − p.

2.4. Relative gradings. In fact, the floor generators we have found in
homology are all in the lowest possible δ-grading of Kh(P (−p, q, r)), and
they comprise the entire homology in this grading. We can see this by
analyzing the relative gradings of various generators in the complex.

Any time we deloop, the two resulting summands differ by 2 in the q-
grading; the summand without the dot is 2 steps higher. The summands
have the same homological grading. Also, nonzero components of the differ-
ential must preserve the q-grading and increase the homological grading by
one. These two facts will be all we need to determine the relative gradings of
the generators. The second fact holds before and after any eliminations; we
will be sloppy and not always identify which stage of the elimination process
contains the nonzero component in the differential (it should be clear from
context).

In terms of the grading δ = q/2 − h, two summands from a delooping
differ in δ-grading by 1, and the differential decreases δ-grading by 1. For
simplicity, we will focus on the δ-grading here.

In the internal columns (right side of Figure 8), there are only two δ-
gradings, say g and g+ 1; the generators on the left have grading g+ 1, and
those on the right have grading g. This observation follows immediately
from the two properties stated above; note that g is the same from column
to column because of the differential components connecting the columns.
All the floor generators (i.e. those surviving after cancellation of the identity
maps in the column) have δ-grading g. In particular, this is true for the
homology generators we have found so far.

Now look at generators on the walls (except those in the column where
the walls intersect). All wall generators not on top of the walls have nonzero
components of their differential on floor generators (because of the zig-zag
maps). Hence all these generators must lie in δ-grading g+1. The top nodes
on the walls contribute two generators each; the higher one’s differential hits
a floor generator, so the δ-gradings of these two generators are again g and
g+ 1. Note that all the ones in grading g do not survive to homology (they
die when the blue and purple differentials in Figure 9 are cancelled).

Finally, in the column where the walls intersect, all nodes contribute two
generators except the top node which contributes four. In the two-generator
nodes, the δ-gradings are g+2 and g+1 because the black arrows are nonzero.
In the four-generator node, the gradings are g + 2, g + 1, and g, and the
generator in grading g gets cancelled with the blue arrows.

We have now isolated the homology in δ-grading g; except in the special
cases, it is Z(q−p)(r−p) if p is even and Z(q−p)(r−p)−1 if p is odd. It is also
not hard to see what happens between gradings g + 2 and g + 1. Consider
the grading-g + 2 generators in the two-generator nodes of Figure 9. Each
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has two nonzero black arrows pointing to generators on the walls. As long
as at least one of these wall generators still exists on each level after the
cancellations we have done, the grading-g + 2 generators do not survive to
homology. But all of the wall generators still exist except for one of the two
on the very bottom level (depending on which one we chose to cancel). So
we can cancel each grading-g + 2 generator with a wall generator using a
black arrow.

All the remaining generators are in δ-grading g + 1, so we can conclude
our complex has no more differentials. We just need to count generators to
determine the rest of the homology; at no point has any torsion appeared, so
the homology is free. The count of generators is easy if we only care about
the δ-graded theory; for the bigradings, we refer the reader to the appendix.

To count the generators in grading g + 1, first consider the generic case
(p+2 ≤ q, r). Note that we started with qr+q+r+1 generators in grading
g (qr from the floor generators and q+r+1 from the top layer). There were
(p+ 1)(r+ 1) + (p+ 1)(q+ 1)− p wall generators in grading g+ 1 and p+ 1
generators in grading g+2. If p is even, (q−p)(r−p) of the floor generators
survive to homology, so (qr+q+r+1)−(q−p)(r−p) cancellations occurred
between gradings g+ 1 and g. None of the grading-g+ 2 generators survive,
so p+ 1 cancellations occurred between gradings g + 2 and g + 1. Thus the
remaining number of generators in grading g + 1 is

(p+ 1)(r + 1) + (p+ 1)(q + 1)− p
− ((qr + q + r + 1)− (q − p)(r − p))− (p+ 1)

= p2,

after some simplifying. If, instead, p is odd, then one fewer floor generator
survives to homology. Hence there is one more cancellation between gradings
g + 1 and g, and only p2 − 1 generators remain in grading g + 1.

In summary, in the generic case, if p is even the δ-graded homology is

Z(q−p)(r−p)
(g) ⊕ Zp

2

(g+1). If p is odd, it is Z(q−p)(r−p)−1
(g) ⊕ Zp

2−1
(g+1).

For the special cases, if p is odd and q = r = p + 1, one extra floor
generator survives to homology. Hence we also have an extra generator in

grading g + 1, and the homology is Z(q−p)(r−p)
(g) ⊕ Zp

2

(g+1) (like in the generic

case of p even), which simplifies to Z(g) ⊕ Zp
2

(g+1).

If p is odd and q = p, the answer is similar. Since the generic formula
undershot the homology in grading g by 1 (by having −1 rather than 0),
it also undershot the homology in grading g + 1 by 1. So the homology is

Zp
2

(g+1).

If p is even and q = p, we understated the homology in grading g by a
larger amount: r− p for r > p or 1 for r = p. Hence, if r > p, the homology

is Zr−p(g) ⊕ Zp
2+r−p

(g+1) . If r = p = q, it is Z(g) ⊕ Zp
2+1

(g+1)
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2.5. Absolute gradings. All we need to do to finish the δ-graded com-
putation is to identify g. We will do this by computing the grading of the
grading-g generator in the top (4-generator) node in Figure 9. No deloop-
ings were performed in the making of this generator, so its q-grading is not
affected by any of the delooping shifts. Its dot-degree is −2, and its pattern
of crossing resolutions is [1 . . . 1, 0 . . . 0, 0 . . . 0] which has weight p. Hence
its q-grading is −2 + p + n+ − 2n−. The numbers n+ and n− of positive
and negative crossings can be computed from the orientation of the link and
Table 1.

Similarly, the homological grading of this generator is p − n−. Hence
its δ-grading g is q/2 − h = (−2 − p + n+)/2. We have completed the
computation of the δ-graded Khovanov homology of P (−p, q, r), which we
state as a theorem (to be compared with Theorem 1.1):

Theorem 2.6. Let p, q, and r be positive integers with p ≤ q ≤ r. Let Hδ be
the reduced Khovanov homology of P (−p, q, r) in grading δ (with basepoint
chosen as in Figure 6).

• If p is even and p+ 1 ≤ q, r, then H−p+n+
2

= Zp2 and H−2−p+n+
2

=

Z(q−p)(r−p). All other Hδ are 0.
• If p is odd, p + 1 ≤ q, and p + 2 ≤ r, then H−p+n+

2

= Zp2−1 and

H−2−p+n+
2

= Z(q−p)(r−p)−1. All other Hδ are 0.

• If p is odd and q = r = p+1, then H−p+n+
2

= Zp2 and H−2−p+n+
2

= Z.

All other Hδ are 0.
• If p is even, q = p, and r > p, then H−p+n+

2

= Zp2+r−p and

H−2−p+n+
2

= Zr−p. All other Hδ are 0.

• If p is even and p = q = r, then H−p+n+
2

= Zp2+1 and H−2−p+n+
2

=

Z. All other Hδ are 0.
• If p is odd and q = p, then H−p+n+

2

= Zp2. All other Hδ are 0.

The values of n+ and n− depend on the orientation of the link P (−p, q, r)
and can be computed from Table 1.

3. Appendix.

Here we wrap up some loose ends, computing the bigraded homology and
making some remarks on the unreduced version.

3.1. Bigradings. We already have a reference point for the absolute bi-
gradings, computed in Section 2.5. We only need to compute the relative
bigradings. Since we know the δ-gradings, we may focus on the homological
grading and use it to compute the q-grading later. This grading is actu-
ally much simpler to compute; every “forward” step in the cube (vertically
upwards or horizontally out) increases homological grading by 1, regardless
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of whether there are nonzero differentials connecting the generators. So we
can just look through the homology generators we have found, note where
they are in the cube, and deduce their homological gradings.

For the lower δ-grading (−2 − p + n+)/2, all the homology generators
are on the floor of the cube in Figure 9. Hence the homological gradings
correspond to the diagonals of slope −1 in the square of Figure 11. The dot
marked f2 has homological grading p more than the homological grading of
the generators we considered before, which was p−n−. Hence we can start at
f2, with h-grading 2p−n−, and count dots in subsequent lower diagonals to
get the homological grading of generators in this δ-grading. This grading can
be used along with δ to obtain the q-grading; in particular, the q-grading of
f2 is 2(δ+h) = −2−p+n++4p−2n−, which simplifies to −2+3p+n+−2n−.

For convenience, we will write down the formulas more explicitly. Each of
the circled groups of dots in Figure 11 potentially contributes a term to the
Khovanov homology, which we will describe by its Poincaré polynomial PKh
(over Q, say) because it is free. We will write the formal variables in this
Poincaré polynomial by Q and H, to avoid confusion with the q we already

have. Let φp,q,r(x) =
∑(r−p)+(q−p)−4

n=0 cnx
n, where the sequence cn is defined

by the pattern

(1,2, 3, . . . , (q − p− 2),

(q − p− 1), (q − p− 1), . . . , (q − p− 1),

(q − p− 2), . . . , 2, 1)

and there are r − q + 1 instances of q − p− 1 on the middle line.

Proposition 3.1. The dots in Figure 11 represent the following possible
contributions to the polynomial PKh(P (−p, q, r)); whether these summands
appear in the formula depends on whether the dots survive to homology.
(Here, and in the rest of the paper, sums indexed from 0 to a negative number
should be interpreted as empty.)

• The dots in circle (1) contribute

a1 := Q6+3p+n+−2n−H2p−n−+4φp,q,r(Q
2H)

• The dots in circle (2) contribute

a2 := Q4+3p+n+−2n−H2p−n−+3
r−p−3∑
n=0

(Q2H)n.

• The dots in circle (3) contribute

a3 := Q4+3p+n+−2n−H2p−n−+3
q−p−3∑
n=0

(Q2H)n.

• The dots in circle (4) each contribute Q3p+n+−2n−H2p−n−+1.
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w1
w3

w5

w2
w4

w6

(1)

(2)
(3)

(4)

(5)

f2

f1

Figure 12. Generators remaining in δ-grading (−p+ n+)/2.

• The dots in circles (5) and (6) each contribute

Q2+3p+n+−2n−H2p−n−+2.

• The dot f2 contributes Q−2+3p+n+−2n−H2p−n−.

Before we go through and total up the contributions for each case of
P (−p, q, r), we will analyze the bigradings in the higher δ-grading (−p +
n+)/2. Figure 12 shows the relevant generators, after cancelling all arrows.
Dots marked with an x have been cancelled, while unmarked dots contribute
to homology. Their contributions to PKh are summarized below; before
stating the formulas, though, we make another definition. Given a positive
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integer k, let ψ(k) =
∑2k

n=0 cnx
n, where cn is defined by the pattern

(1, 1, 2, 2, . . . ,(k/2− 1), (k/2− 1),

k/2, k/2, k/2,

(k/2− 1), (k/2− 1), . . . , 1, 1)

if k is even and

(1, 1, 2, 2, . . . ,(k − 1)/2, (k − 1)/2,

(k + 1)/2,

(k − 1)/2, (k − 1)/2, . . . , 1, 1)

if k is odd.

Proposition 3.2. The dots in Figure 12 represent the following contribu-
tions to the polynomial PKh(P (−p, q, r)); for w1 through w6, whether their
summands appear depends on the parity of p (with a few special cases).

• The dots in circle (1) contribute

b1 := Q−p+n+−2n−H−n−

p−2∑
n=0

(Q2H)n +Qp+n+−2n−Hp−n− .

• The dots in circle (2) contribute

b2 := Q4+p+n+−2n−H2+p−n−

p−4∑
n=0

(Q2H)n.

• The dots in circle (3) contribute

b3 := Q2+p+n+−2n−H1+p−n−

p−3∑
n=0

(Q2H)n.

• The dots in circle (4) contribute

b4 := Q6−p+n+−2n−H3−n−ψp−2(Q
2H).

• The dots in circle (5) contribute

b5 := Q4−p+n+−2n−H2−n−ψp−2(Q
2H).

• The dots w1 and w2 each contribute Q2+3p+n+−2n−H1+2p−n−.
• The dots w3 and w4 each contribute Q3p+n+−2n−H2p−n−.
• The dots w5 and w6 each contribute Q−2+3p+n+−2n−H−1+2p−n−.

Generically, when p is even, both w5 and w6 contribute to homology,
while both w3 and w4 die. (If p is 2, however, w5 coincides with an X in
Figure 12, so it does not count.)A rank-one summand of {w1, w2} survives
to homology. When p is odd, both {w5, w6} and {w3, w4} contribute rank-1
summands, and both w1 and w2 die.

For the special cases: when p is odd and q = r = p + 1, then w1, w3,
and w5 contribute to homology. If p is even, q = p, and r > p, then w3 and
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all the dots in the line to its left in Figure 11 survive, while if r = p = q
then only w4 survives. If p is odd and q = p, then (besides w4 and w6)
the farthest-left dot on the top line of Figure 11 survives. (Note that we
have stopped saying “rank-1 summand,” for convenience, choosing instead
to pick arbitrarily which generator survives in some cases.)

We are ready to state the formula for the bigraded reduced Khovanov
homology of P (−p, q, r). There will be several cases, and we will use the
polynomials ai and bi from Proposition 3.1 and Proposition 3.2 respectively.

Theorem 3.3. Let p, q, and r be positive integers with p ≤ q ≤ r. The re-
duced (even) Khovanov homology of P (−p, q, r) in grading δ (with basepoint
chosen as in Figure 6) is free over Z. Let PKh be its Poincaré polynomial
over Q; then PKh is given by the following formulas when p ≥ 3. (Sums
from 0 to a negative number are taken to be empty, as before.)

When p = 2, note that each case of “p even” in the formula has a term
of the form 2Q−2+3p+n+−2n−H−1+2p−n−. The coefficient 2 here should be
replaced with a 1 when p = 2, because the dot w5 is missing from the count
of generators.

• If p is even and p+ 2 ≤ q, r, then

PKh =
3∑

n=1

ai +
5∑

n=1

bi + 2Q2+3p+n+−2n−H2p−n−+2

+Q−2+3p+n+−2n−H2p−n− +Q2+3p+n+−2n−H1+2p−n−

+ 2Q−2+3p+n+−2n−H−1+2p−n− .

• If p is odd and p+ 2 ≤ q, r, then

PKh =
3∑

n=1

ai +
5∑

n=1

bi +Q2+3p+n+−2n−H2p−n−+2 +Q3p+n+−2n−H2p−n−+1

+Q3p+n+−2n−H2p−n− +Q−2+3p+n+−2n−H−1+2p−n− .

• If p is even, q = p+ 1, and r > q, then

PKh = a2 +
5∑

n=1

bi +Q2+3p+n+−2n−H2p−n−+2 +Q−2+3p+n+−2n−H2p−n−

+Q2+3p+n+−2n−H1+2p−n− + 2Q−2+3p+n+−2n−H−1+2p−n− .

• If p is odd, q = p+ 1, and r > q, then

PKh = a2 +

5∑
n=1

bi +Q3p+n+−2n−H2p−n−+1

+Q3p+n+−2n−H2p−n− +Q−2+3p+n+−2n−H−1+2p−n− .
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• If p is even and r = q = p+ 1, then

PKh =
5∑

n=1

bi +Q−2+3p+n+−2n−H2p−n−

+Q2+3p+n+−2n−H1+2p−n− + 2Q−2+3p+n+−2n−H−1+2p−n− .

• If p is odd and r = q = p+ 1, then

PKh =

5∑
n=1

bi +Q3p+n+−2n−H2p−n−+1

+Q3p+n+−2n−H2p−n− +Q−2+3p+n+−2n−H−1+2p+n−

+Q2+3p+n+−2n−H1+2p−n− .

• If p is even, q = p, and r > p+ 1, then

PKh = a2 +

5∑
n=1

bi +Q−2+3p+n+−2n−H2p−n− +Q2+3p+n+−2n−H2p−n−+2

+Q2+3p+n+−2n−H1+2p−n−

r−p−1∑
n=0

(Q2H)n

+Q3p+n+−2n−H2p−n−

+ 2Q−2+3p+n+−2n−H−1+2p−n− .

• If p is even, q = p, and r = p+ 1, then

PKh =

5∑
n=1

bi +Q−2+3p+n+−2n−H2p−n−

+Q2+3p+n+−2n−H1+2p−n− +Q3p+n+−2n−H2p−n−

+ 2Q−2+3p+n+−2n−H−1+2p−n− .

• If p is even and p = q = r, then

PKh =
5∑

n=1

bi +Q−2+3p+n+−2n−H2p−n−

+ 2Q3p+n+−2n−H2p−n− + 2Q−2+3p+n+−2n−H−1+2p−n− .

• If p is odd and q = p, then

PKh =
5∑

n=1

bi

+Q−2+3p+n+−2n−H−1+2p−n− +Q3p+n+−2n−H2p−n−

+Q3p+n+−2n−+2(r−p)H2p−n−+(r−p).

The values of n+ and n− depend on the orientation of the link P (−p, q, r)
and can be computed from Table 1.
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Proof. The proof consists of carefully looking at Figure 11 and Figure 12
and counting up the contributing generators. To save space, and since we
have already indicated how to do this counting, we will omit a more detailed
proof here. �

3.2. Unreduced homology. Although we focused on the reduced Kho-
vanov homology in this paper, it would not be too difficult to use this com-
putation to obtain the unreduced homology. The Lee spectral sequences on
reduced and unreduced homology, together with the exact sequence relating
two copies of the reduced homology with the unreduced homology, give lots
of information about the unreduced homology given the reduced version. In
the examples the author computed, this information was enough to deter-
mine the unreduced homology. As described in [7], the unreduced homology
consists only of knight’s-move pairs and exceptional pairs (see Bar-Natan
[1]); while [7] works only over Q, the integral unreduced homology ends up
having copies of Z2 as expected in the knight’s-move pairs and is free oth-
erwise. We will forego a more rigorous discussion because it would lengthen
the paper without necessarily adding more insight.
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