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The homotopy groups of
L,T(m)/(p!Z1*2, vy) for m > 1
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ABSTRACT. Let T'(m) be the Ravenel spectrum charaterized by the
BP,-homology as BP.[t1, -+ ,tm]. Let T(m)/(v1) be the cofiber of map
vy and T(m)/(p",v1) the cofiber of T'(m)/(v1)’s self-map p*. In this
paper we determine the homotopy groups of LQT(m)/(p[%]+2, v1) for
m > 1 by the Adams-Novikov spectral sequence.
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1. Introduction
Let T'(m) be the Ravenel spectrum charaterized by the BP,-homology as
BP,T(m) = BP,[t1, - ,tm| C BP,BP.

T(m) is a connective p-local ring spectrum. 7°(0) is the p-local sphere spec-
trum, and there are maps

Sty = T(0) = T(1) = T(2) - --- — BP.

The map T(m) — BP is an equivalence below dimension 2p™*! —3. Let Lo
be the Bousfield localization functor with respect to vy 'BP, (see [Rav84]).
The homotopy group m.(L2T(m)) can be explored by the Adams-Novikov
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spectral sequence. Furthermore, one can apply the chromatic spectral se-
quence to determine the Es-term

Extpp, gp(BPs, BP.(L2T'(m))).
Let T'(m)/(v1) be the cofiber of self map
o1 : D2 (m) = T(m)

and T'(m)/(p) the cofiber of p : T(m) — T'(m). For m = 1, the homotopy
groups 7, (LoT(1)/(v1)) and 7. (L2T'(1)/(p)) indicates two ways to compute
T«(LoT(1)). At the prime 2, Shimomura [Shi95] computed the homotopy
group 7, (L2T'(1)/(2)). The first author [Wan07] separately with Nakai and
Shimomura [NS07] determined the homotopy group m,(L2T(1)/(v1)). They
also proved that the Adams-Novikov spectral sequence for 7.(L2T(1)) has a
horizontal vanishing line at the F4-terms. For the odd prime cases, Wang,
Liu and Yuan [LWY10] determined 7, (L27'(1)/(v1)). But it seems to be too
difficult to work out 74(L2T'(1)) from both ways.

For m > 1, let T(m)/(p",v1) be the cofiber of

" T(m)/(vr) = T(m)/(vy).
We have the following commutative diagram

k41

T(m)/(v1) =—= T (m)/(v1) —= T(m)/(p*+1, v1)
b l
T(m)/(v1) ——T(m)/(v1) —T(m)/(p"**, v1)
The 3 x 3 lemma concludes that the fiber of

T(m)/(P**,v1) — T(m)/(p",v1)
is the cofiber of
p:T(m)/(v1) — T(m)/(v1).
Thus, we can obtain a cofiber sequence

T(m)/(p,v1) 2 T(m)/ (P, v1) — T(m) /(5 m).  (L1)

At the prime 2, the homotopy groups m,(L2T'(m)/(v1)) and 7. (LT (m))
are discussed in [ISO8], [IST10]. In this paper, we study the homotopy
groups of LQT(m)/(p[%HQ,vl) for odd primes, which is an important step

to understand the homotopy groups m,(L2T'(m)/(v1)) and 7. (LT (m)).

2. Statement of results

Let B, (2)x = E(2)«[vs, - Umt2]. A BP.-module structure on E,,(2).
can be induced by f. : BP. — E;,(2)« where f, sends v; to v; for i < m+ 2
and to 0 for i > m + 2. Let E,,(2) be the spectrum which represents the
Landweber homology theory

Bn(2)4(X) = Em(2). ©pp. BP.(X).
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Then
The Hopf algebroid structure of (BP,, BP,BP) implies the one on
(Em(2)x, Em(2)«Em(2)).
Similar to the change-of-rings theorem (see [Mor78, Rav86])
it )t
Extpp gp(BP. M) = EXtSE(z) B2 )(E(2)*7E(2)* ® M)
For an I>-nil vy 1BP*BP—(:omodule M, we have
EXt%ZD*BP(BP*vM) EXtSEf,L(Q) Em(2)(E (2)x, Em(2)« @ M).
Let

F(Q, m) = Em(2) [tm+1, trm42, - ] KBP, Em(2)*
For E,,(2).(T(m) A X), noted that
(

En(2)«(T(m) AX) = En(2)«[tr, - tm] @p, Em(2)+(X)
= Em(2)*Em(2)DF(2,m)Em(2)*(X)’

we can obtain the change-of-rings theorem

Exty o). g @) (Bm(2)ss B (2)+(T(m) A X))
= Bxtly o (Bn(2)er En(2).(X)).
In this paper, we will work on the Hopf algebroid (E,,(2)x, F(Q m)).
Let MY = E,,(2)./(p,v1) and let L(k,1) = E,(2)./(p*,v1). Denote

the module Extr, m) (Em(2)«, M) by H*(M) for short. The short exact
sequence

k
0— M2 L(k+1,1) — L(k,1) — 0.
induces a long exact sequence
k
o HSMY B HOL(k +1,1) — HL(k, 1) —> H*T MY —
Ravenel (see [Rav86, Corollary 6.5.6]) proves that
H*MS = Z/p[UQ y U3, Um+2] ® E[herlv hm+17 hm+27 hm+2]

Here hi corresponds to tf] . Since (; and (» are representatives of h}n 415
hl 49, Tespectively (see Lemma 3.3, 3.4). Thus we conclude that

H**MONZ/p[U2 y U3, - Um+2]®E[hm+1’ m+2’<—1’<—2]

Based on H *Mg, we compute H*L(k, 1) by Bockstein spectral sequence. To
state our results, we decompose the module H *Mg with respect to k(1 <
k < [Z]+1). H*M? is the direct sum of following modules

(Co(k) © I1(k) © C1(k) @ I3(k)) @ E(¢1),
(Co(k) ® Co(k) ® I3(k) @ C3(k) @ (k) @ Ly(k) ® Ca(k).
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In these modules, let ¢ = min{n+1,/41} and g2 = min{n+1,1+1,[F]+1},
0 < n,l < oo. For convenience, sp” = 0 (tp! = 0) if n = oo (I = c0).
Otherwise, p t 5,5 > 0(pft,t > 0). In sp” —1 (tpt —1), pt s, 5 >0

(ptt,t>0). Let D = Z[Uét,vg,-" , U] and D/pF = Z/pk[vét,vg,--- U

Define conditions A, B, C as follows:

C: I<[%]<n

Furthermore, we will use the following notations for convenience.
T P o _ 3 yo—p
ti = tm+i7 Ci,j = Cm+i,j7 Vi = Um—+i, h hm+z7 b =b

~

T Tk 1k = . _om
ti = lomyi, b =Dbypyy Cij = Comyij, wW=p

Co(k) = Cj(k) @ G (k) @ CF (k)

Ch(k) = D/p{B" 010 <1 < n < oo, q1 < k)
C2(k) = D/p{t"" 010 < n <1 < oo, q1 < k)
C3(

k) = D/p{o{" o | @1 > K}
L(k) = I} (k) @ T3 (k)

I (k) = D/p{& 8% 0910 < 1 < n < 00, q1 < K}
12(k) = D/p{&?" 5 190 < n <1 < 00, q1 < K}

l
Co(k) = CL(k)® C¥(k) @ C3 (k) ® C{(k

) )
CL(k) = D/p{B" 3 "9 0 < n <1< 00, q1 < k}
C2(k) = D/p{o" “ W5 R0 < 1 < n < 00, q1 < k}
Ci (k) = D/p{o" 0 W a1 > k)
Ci(k) = D/p{vf’ "o h°|q1 > k}

C5 (k) = D/p{07" 0 G| A, g2 < I}
CP (k) = D/p{ﬁip o ol Bygp < k)
Cl(k) = D/p{o{"" 0 2| C. g2 < K}
C(k) = D/p{0" 0 Cal g2 > K}

13(k) = D/p{v3 ‘“;p TR a1 < K}

m+1

m]-

(2.1)
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(k) = I3 (k )eamk)eafé”(k)

13(k) = D/p{5;? pl<1<2|A 42 < k)
I3 (k) = D/p{t{"" '8y h¢a| B.gp < K}
I3(k) = D/p {fpnAtp 71h 2G2| Cyq2 < k}
Ca(k) = @2, C (k)

Cy ZD/P{ C1C2!B ¢ < k}

D/p{“spwp (1G] C,q2 < K}

= D/p{o{"”" T WGl A, g2 < k)
C3 = D/p{o}?" '} PG| Cgo < K

= D/p{e"" *1h 02l A, g2 < k)

= D/p{o" 0 G| B, gz < k)
— D/p{&?" T T RRY) g > K}
CS = D/p{v?" 0" Cl(2| q2 >k}
= D/p{o" "GRG g > k)
CIO — D/p{o" 5 TG go > K}
I3(k) = @, I3 (k)

I3(k) = D/p{o" 0P B Bgp < k)
I3(k) = D/p{@\fpnﬁp h3GG|Cge < KY
B3(k) = D/p{o" 0P R Col A, g2 < k)
I3(k) = D/p{@" 0 RGO, g < k)
I3(k) = D/p{o" o T RY1Col A, g2 < k)
(k) = D/p{oy" o T RIRYG| B, gz < k)

Ca(k) = @f_,C5(k)

C(k) = D/p{B" "0 BYC1Ga| C. g2 < I}
(k) = D/p{o" 5% GGl B, g2 < k)
(k) = D/p{o" "o T RIRYG| A, g2 < k)
(k) =

D/p{E" T R Gol g2 > K}
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C3(k) = D/p{wp "o "h3C1Gol ga > K}

CS(k) = D/p{@" o T hhSCal g2 > k)
(k) = I} (k) @ I (k) © I3 (k)

INk) = D/p{5" 5% T ROR9C1 G| C, g < K}

I2(k) = D/p{5" 5% R0 ol B, g < k)
(k) = D/p{o" o T ORYG Gl A, ga < K}

Ca(k) = D/p{o" o RS Gl 4o > K}

Based on the modules above, we introduce the following submodules of

H*L(k,v1), 1 <k < [2] +2.
Co(k) = Cj (k) © C3 (k) @ C§ (k)
(k) = D/p o o /p 0 < U< n < oo,q1 < k)
CR(k) = D/p" Mo o /p" 10 < n <1 < oo, < K}
)= D/pH @ W oM @ > k)

Cl(k) = Cl(k) ® C(k) ® C3(k) @ C1(k)

(k) = D/p" o o T RS 0 < n < U< oo, q1 < K

2(k) = D/ R 0 < U< < 0o,qr < b
C3(k) = D /"o o 1Y o a1 > k)

(k) = D/ T T RS oM @ > k)
(:Co(k) = &F5C1 (k)

P(k) = D/ E G S o /plE I A, g0 < K}

S(k) = D/ G 0 G /p | Byas < k)
5{(1{) =D/p l+1{Asp”AtplC2/pz+1’C o < k)

T (k) = D/p"”{“spwp G/Pf| @2 > K}
Ca(k) = 2, Ch(k)

Cy = D/p" T B3 3 ClCQ/Pn+1| B,q < k}

C3 = D/p "5 C1€2/pl+1| C,q2 <k}

— D/plE G S R /pl 5 1Y A, g2 < k)
02 D/lerl{ASp" 1Atp €2/pl+1‘ C q2 k}
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D/p +1{’\SP ,\tp hOCQ/p[ ]+1|A 0 < k‘}
= D/p" O 0 T RYG/pY B, g2 < k)
= D/p" e T T RORY " | gn > k)
= D/p*{o vy "o G1G2/P" g2 > Kk}
= D/pH " T B M a2 > k)
C3° = D/p* {575 "o T RYG p 42 > k)

Cs(k) = @i, C5(k)

D/pl—i-l{/\Sp - pl’HOCIQ/pl—i-l’ Cogo <k}
C3(k) = D/p" o o T h3G G/ By g < K}

/p [ ]+1{’~5p"—1~5p —lhoh C2/P +1]A @ < k)
= D/ T WG/ 42 > k)

=D/p {/\Spn/\tp R3¢1G/p") g2 > K}

= D/ @ 0 T RIS Ga /0 a2 > K}

Ca(k) = D/p* (" 0~ RORSC1Go /p" 42 > k)

The modules C;(k) (0 < i < 4) and CgCo(k:) form basic building blocks of
H*L(k,v1). Noted that the first non-trivial Adams-Novikov differential is
dop—1 and for s > 4 Extyp gp(BPy, BP,LyT(m)/(p*,v1)) = 0, we con-
clude that the Adams-Novikov spectral sequence for 7. (LT (m)/(p*,v1))
collapses. Thus

@)
wWw
—~ —~ —~ —~ —~
N— N— N— S N— N—
b

H*L(k,v1) = 7, (LT (m)/ (p*, v1)).
The main theorem of this paper is as follows.

Theorem 2.1. If 1 < k <[] +2, then the homology group H*L(k,v1) and
the homotopy group (LT (m)/(p*,v1)) are isomorphic to the direct sum

of
(Cotk) & Cu(k)) ® Blci]
and
(2Co(k) @ Ca(k) ® Cs(k) ® Ca(k)
As a special case, if k = [%§] + 2, we can obtain the following corollary.
Corollary 2.2. The homology group H*L([%§] + 2,v1) and then the homo-
topy group m(LaT(m)/(plZ1+2 v1)) are isomorphic to the direct sum of

(Co (121 +2) & Ca((7] +2)) © B[]
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and

GCo (2] +2) @ Co (2] +2) © Cs (2] +2) @ C (2] +2).

3. Some elements in the cobar complex

The structure maps ng and A of (E,,(2).,I'(2,m)) are induced from those
of (BPy, BP,BP). Let v; be the Hazewinkel’s generators. In (BP,, BP.BP),
ngr and A are defined as follows:

nr(ma) =Y mgt?, (3.1)

i+j=n
S miA() =Y mat? @ (3.2)
i+j=n i+j+k=n
n—1 )
U =pmn — > _mvh_, (3.3)
=1

Furthermore, for the map A, we have the following lemma

Lemma 3.1. In the Hopf algebroid (BPy, BP,BP), for k> —1,n > 0,

n—1 )
AT =30 e S e ik (3.4)
i=1 i+j=n
where bt =0, bX (n > 1,k > 0) can be defined inductively by
n—1
k+1 . k+1 itk+1 k41
pbl = "o o ST @t AP . (3.5)
i=1 i+j=n

Furthermore, for all k > 1, we have
bF = (FHP  mod (p). (3.6)

To prove this lemma, recall some basic notations and properties of A first.
Let I = (i1,42, -+ ,%m,) be a finite (possibly empty) sequence of positive
integers. Let |I| = m and ||| = Y_4;. Given sequences I and J, let I.J
denote the sequence (i1, - ,4m,j1, - ,Jjn). Then we have [I.J| = |I| + |J|
and ||[IJ| = ||I|| + ||J||. For each sequence I, there is a symmetric integral
polynomial of degree pl!ll in any number of variables satisfying

(1) wg =
(2) Let K = (k‘l, ko, .- ,]{Zm), K" = (k‘l—|—k‘2, oo ,k‘m), K" = (k‘Q, oo ,km)
k1
WK = %(wKu — whem) (3.7)

(3)
Sl =3 Py (3.8)

IJ=K
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(4) Let w, = wy(x1,22,---) be the symmetric integral polynomial of
degree p™ such that

n . n—j
wo = E z; and E ¥ = E p7w§.) .
t t

Then
P

wr = wiy mod (p). (3.9)

Define vy by vy = 1 and vy = v;, (vp)* where a = p™ and I' = (ig,i3,- - ).
Let M, = {t; ® tﬁli |0 < i< n}and let

Ap =M, U U {UJwJ(An—HJH)}'
|J|>0

From Theorem 4.3.13 in Ravenel [Rav86], one can obtain

Aty) = wy(Ay). (3.10)
Our proof of Lemma 3.1 is based on Equation (3.10).
Proof of Lemma 3.1. Let K = (k), Equation (3.8) implies

k k
W) = % (Z xy —wy ) (3.11)
Let b% (k > 0,n > 1) be defined as

k+1
=> 0w (Bnoy))- (3.12)
J

This definition is equivalent to Equation (3.5). By induction on n. For
n=1,

b =1 (1@#’“1 el (et +h e

= Wp41)(A ZUJ W17y (D17 by (3.11)

From n < m to n =m.

pbk, = pZUJ W(t1,7) (Am—jgy) by (3.12)

=p Z UJ w(k+1,J)(Am—|\JH) + pw(k41)(Am)

|J|>0
m—l1 k+1 m_1 k+1 k+1

_ D D D

=D D>V gy Wkt B )+ D DV gy Wi (B
=1 J =1 J

3 o - A" by @1)

i+j=m
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ph+1 pith+l k41
—'§: Do Wi W) (B )

/

n Z P k+1 'z+k+1 A(tm)karl

i+j=m

m—l k41 i+k+1
=> 0 > Wi (Do)

i—1 7

k+1 itk k1

+Y T E T —Ata)? T by (3.7)

i+j=m

m—! s k1 Rt k

7 1

=3 W R YT @ — Alty)? T by (3.12)

=1 i+j=m

This completes the proof of equivalence of two definitions.
Next, we will prove Equation (3.4). By induction, if k = —1,

A(tn) = wp(An)

= Zti ®t§ + Z v w s (An_j))

i+j=n |J]>0
n—1 .
=3 ) va iy B ) + Y@t T =(,J)
i=1 J' i+j=n
n—1 ) )
= 2 v 2 W Baign) + 2t @8
=1 J i+j=n

:nzvlbl L Zt@tp by (3.12)

i+j=n
If k>0
A = (wy(An))"" by (3.10)
k+1 i+k+1 k+1 - k1
=Dt e+ W (Bay) — (L)
i+j=n |J|>0
by (3.11)

k+1

pht k+1
= ZZU”/ wi; g1y (Bnim ) = Pwigs1)(An)

=1 J

k-1 i+k+1 .
+ E th ot J = (i,J")
i+j=n
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= Z d o :;/1 (w(k—i-l—‘ri,J’)(An—i—HJ’II)

=1 J

z+k+1
- pw(k+1,i,J’)(An—z‘—HJ’H)) Pwiiy (An) + Y 1 -
1+j=n
b

y (3.7)

phtl pitk+1
= Z Ui v Wi (Bpior))
JI

k+1
va (1.7 Wt1,3,07) (Bnim 7)) = Pw(et1) (An)

[(¢,J)|>0
+3 T e by (3.7)
i+j=n
A pht1 k+1 i+k+1
_ Z oP bR bl th ® by (3.12)

i+j=n

This proves Equation (3.4) for £ > 0.
For the final claim, the equation

IT1=11]
wy = |pI| mod (p)

implies that
k+1
b= v wigr,n (D)

171 =1T]+k
= Z ﬁ]l—i—l (An,”J”) mod (p)
J
k—1\p p” ’
O = Do wien (Bnyy)
J

(Z o w \ﬂl e 1(An—J)> mod (p)
J

k+1 [ T=J|+k
2wl (Baopy)  mod (p)
J

This completes the proof. O

Based on these formulas, we can compute ng and A in (E,,(2).,'(2,m)).
With the notations defined in Equation (2.1), their structures are shown in
the lemma below.

Lemma 3.2. In the Hopf algebroid (Epm(2)«,1'(2,m)), nr(vi) (1 <k <m+
5) and A(t5) (j = 0) are given as follows:
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(vk)
(v1)

Nr(%2) = By + pty mod (v1)
(03) =03 + vgtAfQ — 05t 4+ ptz mod (p?,v1)
(Vy) = V4 + v3tAipg + vgfgz — Bt
- vg%?g + pty mod (p?,v1)

N N 2 3~ 4 —~
nr(Vs) = U5 + UQ??? — 'Ug “t3 + ’04?{) — intl

3 2.~ . —~
+ 1)3?2[) — Ug “ty — voliz 2 + pts mod (pQ, 1)
—m—1
A=t @1+ 1@t! ﬁiv?jb”j-_l
n n n (2 n—
=2

—pbi—t (form+1<n

n

2m+1) mod (v1)
1w

<
o L
A =t @1+10t +1 otff
m+1 ~
J g . o S
"'va errL+Jg2ji — pby ' mod (v1)
=2

=i N =i j i+1
AR =W e1+10t +T o
i, 2 A
J J Jq - 5
+E @t ) WP I — pbh Tt mod (vy)
=2

where

2

=R - 2 o 2
plza = (U3 4+ vat] — vh“1)P" —

2 4 3 2
L ET e

Thus in I'(2,m)

2 o~ o~
%\f = vgwtl — pts mod (p2,vl)

212%02 = U§2w%\2 - vgvg%_p?f + U‘gw%\l — pts mod (p2, v1) (3.13)
Vot = ol Ty — 0B 0T — ufl + ol '
—pts mod (p?,v1)
Proof. From Equations (3.1) and (3.3), we have nr(v;) (1 < k < m + 5)
by induction. In I'(2,m), if i > m + 3, then v; = 0. Thus from nr(vs3),

nr(vs4) and nr(Vs), we can obtain the equivalence relations in (3.13). In the
computations, noted that 32 =0 mod (p?,v1).
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The computations of A are directly from Lemma 3.1. O

Apply the structure map of ng and A in (E,,(2)«,I'(2,m)), we can con-
struct two elements (;, (o with the following properties. The proofs are
shown in Section 5.

Lemma 3.3. In the cobar complex QF(2 m)(Em(Q)*/(p[%]-ﬁ-?,vl)), there is a
cocycle (1 for each m.

= tY 4+ ifm s even,
! tr - ifm s odd.

Lemma 3.4. In the cobar complex Q%@ m)(Em(2)*)/(p[%]+2,v1)), there is
a cochain (2. If m is even, then

=1+, di=p" el
If m is odd, then
=T+, do=pFME e

4. The connecting homomorphisms
Recall that the short exact sequence
0— MY p—k>L(k+1,1) — L(k,1) = 0
induces a long exact sequence
— HMO 2 H*L(k +1,1) — H**L(k, 1) > HT* M9 —

Let g1 = min{n+1,/4+1} and g2 = min{n+1,l+1,[F]41}. The connecting
homomorphisms of this long exact sequence will be explored.

Lemma 4.1. For the connecting homomorphism & : HOL(k,1) — H*MY,
we have that

(1) In Ci(k)

~sp™ ~tpt
5o [ Y2 = t5"D /¢pl 17
0\ " 2

/\sp /\tp
Uy Yy Aspnthp
do P = 50 t.

(2) In C(k)

(3) In C3(k), 8o = 0.
Proof. If ¢g; < k, it is a direct computation from
A@") =sp o

d(At ) —tpl+1’¢p 4 mod (vy).



1136 XIANGJUN WANG AND ZIHONG YUAN

If ¢ >k, in H' MY, we obtain that

O

From Lemma 4.1, It is concluded that the cokernel of dy is Ci(k) &
G1Co(k) @ (2Co (k).

Lemma 4.2. The connecting homomorphism &, : H'L(k,1) — H?MY
acts on the sub-modules C1(k) @ (2Cy(k) as:

(1) In Ci(k) l
~sp" ~tpt—17
v t n_ I_ 4~ ~

. <1p712+12> =507 0y o,

In C2(k)

/\spnflf\tpl’\
v Uy 11 n_ gyl 1~ ~
(51 (112> = ﬁ}fp 2)2p tltg.

(2) In CP(k)

~sp™ ~tpt

v v sp™ 1

01 (1])[’;]2“@) =" (G
(3) In CY(R) l
~Sp™ ~tp

01 (Ul 2 CQ) = 50,7 _lf)éplh@.

(4) In G (k)

(5) In C3(k), Ci(k) and C3(k), 6, = 0.

Proof. From

o~

d(@\fp”) = Sanrl@\lSPn—ltl 4+ .. ,
! ! ~
A0 = tp! 1oy BT mod (vy)
we conclude that for s # 0, t # 0
AT ) =0,

d(@épl_lfg—i—---) =0  mod (v1).

(4.1)

This implies the equations in (1). Equations in (2)-(4) are concluded from
Equation (4.1) and mod (pl21+2 v))

dCa = pls Y @ P (m is even)
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dCa = pE P @1 (m is odd).

Ifqr >k
¢ ! 1/\ n_¢ l_l/\
(51 </\19p UZP ) q1 k(s < 117 ,02;0 t?) -0
p‘h
/\sp flx\tp ~sp"—1~tptp
51< ) Pk, (”1 vy ’52> —0
plh
If o > k
Asp Atp ”Atp
pQ2

O

Lemma 4.3. The connecting homomorphism 6o : H2L(k,1) — H3MY is:

(1) In C3(k)
5o (W) = Sﬁpnflagpl?lClCz
In C2(k) l
5 (W) — 7" 0 001G
(2) In C3(k)

sspt—1stpl
RN n_1¢
) 1 2 — /\Sp pt
2 < p[%}+1 1 1<1<2

In C4(k)

flf\t
5 /\ip p t1<2 t/\sp —1Atp 1%\%\ C
2 pl+1 = Vg 10262.

(3) In C3(k)
/\sp"Atp -
t ~sp™ ) o~
& <1[2"‘]+12C2> =70 GG
In CS(k)

~sp" ~tpt—17
5y (U2 t22) _ geroigni-ipg
2 pn+1 1 Uy 10262

(4) In Ci(k) (7 <i < 10), 6, =0.

Proof. Noted that d(¢1) = 0 mod (plZ1+2 v1). It is obvious by similar
discussions in proofs of Lemma 4.1 and 4.2. O

Lemma 4.4. The connecting homomorphism 83 : H3L(k,1) — H4Mg 18:
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(1) In Ci (k)

/\Spn—lf\tpl/\
v U t1<1C2 n_ 1 gpl—1-~ -~
1 2 __ 4Sp ip'—1
03 ( S =ty vy hitaGiCe

(2) In C3(k)

/\Spn/\tpl ~
5 V1 Uy — 1t2¢1C2 . /\sp”—l/\tpl—l%\?
3 P =sv; Uy tit2Cie

(3) In C§(k)

/\Spn—l/\tpl—l/\/\

e =v; vy titaiCe

(4) In Ci(k) (4 <i<6), 53 =0.
Proof. It is obvious. O

Lemma 4.5. The connecting homomorphism 04 : H*L(k,1) — HMY is
zero.

Proof. Since H° MY = 0, it is clear that &, = 0.

Proof of Theorem 2.1. From the connecting homomorphisms 6; (0 < @ <
4), The following exact sequences can be constructed.

0 — Co(k) = Co(k + 1) — Co(k) 2% I (k) — 0

0— C1(k) = Cri(k+1) = Ci(k) 2 I8(k) = 0
1

0 — 1Co(k) = (1Co(k + 1) = GCo(k) 25 (1L (k) — 0
0 — (2Co(k) = CCy(k +1) = (Co(k) 2 I3(k) — 0
0— GCi(k) — Clél(k' +1) — Clél(k) &, CiI3(k) =0
0 — Cy(k) = Co(k +1) = Colk) 2 I3(k) — 0

0 — Cs(k) — Cs(k +1) — C3(k) 2 I(k) — 0
0— C4(l<:) — 54(]{ + 1) — 64(]@) 6—4> 0

From the structure of H* MY
HOMY = Cy(k)
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H'M3 = I (k) ® Ci(k) © GCo(k) @ G2Co(k)
H2MY = I5(k) @ G1I (k) © GC1(k) @ I5(k) ® Ca(k)
H> My = I3(k) @ C3(k)
HAMY = I4(k) @ Cy(k)
It is easy to prove that
coker dg = C1(k) & (1Co(k) & (2Co(k)
coker 81 = (1C1 (k) @ Ca(k)
coker 9 = C3(k)
coker 03 = Cy(k)

Consequently, we can construct p-torsion submodules B*(k) of H*L(k, 1)

B°(k) = Co(k)

B! (k) = C1(k) & (1 Co(k) & (2C(k)
B*(k) = Ca(k) & GC1 (k)

B3 (k) = Cs(k)

B(k) = Cy(k)

Bi(k) =0(i > 4)

such that the following diagram is commutative

o H* MY B(k+1) B3 (k) HH MY ——

L, L,

e HMY T HL(k + 1,1) —— HYL(k, 1) 2= HTIMY) —

Thus from the Bockstein spectral sequence (see [MiRW77], Remark 3.11),
we conclude that

H*L(k,1) 2 ((Cok) & Ca(k) © E[G)])
® (:Co(k) ® Cok) © Cs(k) @ Ca(k)

5. Differentials of Bi and }\L%

In this section, we will prove Lemma 3.3 and Lemma 3.4. The construc-
tions of elements (; and (» are based on a collection of elements ¢;; =
Cmtij (1 <i<m+3,5>1).

1 —tAf], Coj = ?5]7
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Chj = ZU pg(kk 10 ”+j+P() 12? B<k<m+3).

where
g(k‘) = [@] ) (

The leading item of ¢; ; is related to 11, t

- 0 j is even,
j =

|- [1£1].

= [k
(12,12, D

1 jisodd.
Lemma 5.1. For k> 1,5 > 1, we have
N ?fj mod (p,vi,ve — 1) k is odd,
Chj = _
! gﬂ mod (p,v1, vy — l,ﬂo,tl) k is even.

Proof. From Equation (3.13), we have

2 o~
%\f =t; mod (p,vi,va — 1)
/\p2 o~
t2 =19 Ugtl + U3 tl mod (p, V1,V — 1)
=1ty mod (p,vl,vg—l,%\f,%\l)

Thus, if £ =1, then
c1j = tAfj = tAfj mod (p,vy,v2 — 1)
If k is odd and 3 < k < m + 3, then from the definition of ¢, j,

Ckj = Ch—22+; mod (p,vz —1)

By induction, mod (p,v1,ve — 1)

~ ~ J+k—1 J
Ckj = Clj+k—1 = %\{) = ?{)
If kK =2, then
—~ J J
2, — ?p

2 E%\én mod (p71)17v2_17%\{97%\1)
+ 3, from the definition of ¢ ;,
. J .
Chj = VY Ch—2.24+j + vg Cr—33+; mod (p)
= Ck—2,24; mod (p,vi,v2 — 1,?1”,?1) (k — 3 is odd)
By induction, mod (p,v1,ve — 1,tAf,?1)
~ —~ j+k—2 J
s = o a =T =1

This completes the proof.

Define j as following.

(5.1)
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Apply Lemma 3.2, we can obtain the differentials of ¢; ; mod (vy).
dey; ="M (1 <k <m+1),
A(ag) = P I 4 P2 ) i
_ 213 g 7t

A7) = s

9

+ pI(m+3)—2[ (5 )Comi14j + d(@g’)a,m+2+j]
(m+3)—1 (fpj

g AR 4
Vel Y1y off ).

_pg

2 Y j+1 2 i
d(Ca,5) = —psi? ®%\f ¢ +p5+1b% ! +p° ld(vf )C125 145>
=~ 2 3
d(cz1) = —p PP @ty + B 2t!Y) mod (p*T2,v1),
Ifm=2s—1
2 j j+1 =i EETIP NN
(o) =—p't7 @t <+ p W 4 p (DY )Er 20y,
= 2 3
d(Cz1) =—-p*(tf @13 “ + 8 @) mod (p**', v),

We will construct ¢; from ;\6\2’1 and construct (o from /Ac\371, respectively.
Before the construction, a technical lemma will be proved first.

Lemma 5.2. Let i,j,k be integers in {0,1}. There exists a non-negative
integer N depending on 1, 5,k such that

J k
™Y ®tA1p+z'
is a coboundary in the cobar complex Qo ) (Em(2)+/ (PN T, v1)).

Proof. In the following, the underlined elements with the same subscripts
amount to zero.

(1) @t et @ty 50 t)
d(-3t)) =t o1,
d(=311") =1 @#f  mod (p)
d(—3t3) =ta @t mod (vy)
d(—3t;7) =t} @5 mod (p,v1)
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d(D12) = pty @ b

d@t]") =ph @t +700-pbi
d(pvy "5rt}) = pPvy it} — poibt,

+ pQ U;p/ﬁl/gg 5

Then
~ 3 o~ —~ 3
A1t + pv, "0it3) = phy @ 1) mod (p?)

2
=pob “Pt @t mod (p% v1)

20 s 3 o~
Let a = v} P “ (0117 + puy P01tY). Thus

d(a) Ep%\l ®ff mod (p2,v1).

d@1t} ) = ph @ 15 +poib3

d(poy POitE) = —piby, — puy PuhBiby, mod (p°)

02 e 2 —p p~
d(—pvy ? pvgvlfg)zp%pvgvl/l;% mod (p?).

These imply that ptAl ® %’]3 is a coboundary modulo (p?). Furthermore,
~ 3 ~ 2,1~ 2
pti @t =pt1 @ (vh “ —veh TP

+ vy WEH)P mod (p?, 1)

From (1) and (3), pt1®t1, pt1®t7 mod (p?, v1) are coboundaries. Hence
we can find an element ay such that

d(az) = pt; @2 mod (p?,v1)

(5) @i, b2 @8]
By similar discussions in (3) and (4), we can obtain as, a4 such that

d(a3) EptAg ®;f\1p mod (p2,v1),
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d(as) = pt2 @) mod (p?,v1).

(6) 7 @ 8
It will be proved in Lemma 3.4.

O

Based on this lemma, we will finish the constructions of (7, (s and prove
Lemma 3.3 and Lemma 3.4.

Proof of Lemma 3.4. If m = 2s, [§] + 2 = s 4 2. Equation (5.2) implies
that mod (p**2, vy, v — 1)

=~ 2 3

d(Cs1) = —p T (# 0B+t @t )
2

=PI el +i o)

From Equation (3.13),

?p g ty — v3v2 “TPEP Bt mod (p, )

Thus, by induction, t?@%j “is a linear combination of ?{3@%\2, %\f ®tAf, ?iu ®tAl
with coefficients in Z/p[ve, v3]. This implies that there exists an element (o
such that

d(G) =p Y @t mod (p°2, 1)

Furthermore, (»’s leading item is same as the one of %371, which is f{)
If m = 2s—1, [#]+2 = s+1. Equation (5.2) shows that mod (p***, vy, va—

)

2 3
Al et +i ot
2
= el +i o)

d(cs1)

By similar discussions as the case m = 2s, we have an element (o with a
leading item %\f and

d(() = p°tf ® 13 mod (p**',v1)
This completes the proof. O

Proof of Lemma 3.3. If m = 2s, then [] + 2 = s + 2. Equation (5.2)
implies the differential of cay,423 is as follows

4
d(B3) = —p T @ T 4 p 1B 4 5 (@ e 2s 44

Since d(ﬁfg) = 0 mod (p?), we can obtain the following equivalence rela-
tion modulo (p**2,v1). The underlined elements with the same subscripts
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amount to zero.
=~ 3 4 =
d(Cr3) = —p'tY @ +p*H103

= T @i +p 8} by (3.13)

R (5.3)
svéVerw—ltAf?’ ®f

=-p

. R ~
+ps+lvév+p wop 1?1’) ®t3, +p8+15§3 by (3.13)
Here N is the unique integer which satisfies
4
e = 75 mod (p,v1).

Let a1 = vévﬂ’w IAP nr(v1) and ag = v, tsnr(V

d(—p*~tar) = prop PO EY ®Zg-—mnRaa>
d(—p’ag) = PSUNHM - 1[10??? ®tA15 +v b177R( )4
— pb3nr(T1)]

d(p* oy PtP) = —p* oy P (v b2 + v gf -+ vp/l;zs”)

A

-p™ @W%@%“+%®b“ (5.4)

FE R 4 py; ’fbD

2s+2__ ~
s+132 s-i-lUéV-‘rp D 15{3 ® 1

—-p —Pp

1 N+ et —p—1z

- P

s+1( b Apggsﬂ) 4.

Here - -- is a linear combination of items tl ® t2, ?f R ta, flp ® %\f, ?f Q1.
Thus it is a coboundary modulo (p**!,v1). Apply Equation (5.2), it is not
difficult to check that mod (p**!,v1)

+1 N+p25+1_p_1/\0 ~
Ty b3nr(v1)

s+1( b Ap’b\25+2)

p

are coboundaries. Consequently, we have an element « such that
d(a) =0 mod (p*2,v1)

The leading term of « is same as the leading term of ;\0\2 .3, which is fg
Next, if m = 2s — 1 (s > 1), then [] + 1 = s + 1. Equation (5.2) implies
that mod (p**1,vy)

= 3 3
d(Ca3) = —p°t] @] +p8+132 + p (0 2048 (5.5)
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Since d(@fs) =0 mod (p?), we can obtain

~ 3 3
d(Ta3) = —p*t] @t7° mod (p**, )

_ S N’\p®%\p s+1
)

(5.6)
=—p'vy t; ®t; mod (p

’Ul)
Here N is the unique integer which satisfies

3
%\lp = vé\/%\f mod (p7 Ul)'

Since .
(=20 B) = p o) T @ B

2 s N72
Let 8 =23 — B olt;7. We have

B E:\C\Q,g mod (p), d(8)=0 mod (pS'H,vl)

From Lemma 5.1, 5 has a leading item f{’
Let 4 = aif m =2s and (1 = 8 if m = 2s — 1. It is obvious that (3
satisfies all assumptions of Lemma 3.3. This completes the proof. O
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