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Effective separability of finitely generated
nilpotent groups

Mark Pengitore

ABSTRACT. We give effective proofs of residual finiteness and conju-
gacy separability for finitely generated nilpotent groups. In particular,
we give precise effective bounds for a function introduced by Bou-Rabee
that measures how large the finite quotients that are needed to separate
nonidentity elements of bounded length from the identity which im-
proves the work of Bou-Rabee. Similarly, we give polynomial upper and
lower bounds for an analogous function introduced by Lawton, Louder,
and McReynolds that measures how large the finite quotients that are
needed to separate pairs of distinct conjugacy classes of bounded word
length using work of Blackburn and Mal’tsev.
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Part I. Introduction

We say that I' is residually finite if for each nontrivial element v € T’
there exists a surjective homomorphism to a finite group ¢ : I' — @ such
that ¢(v) # 1. Mal’tsev [28] proved that if I' is a residually finite finitely
presentable group, then there exists a solution to the word problem of I'. We
say that I' is conjugacy separable if for each nonconjugate pair of elements
~v,m € I there exists a surjective homomorphism to a finite group ¢ : I' = @
such that ¢(v) and ¢(n) are not conjugate. Mal’tsev [28] also proved that
if I is a conjugacy separable finitely presentable group, then there exists a
solution to the conjugacy problem of I'.

Residual finiteness, conjugacy separability, subgroup separability, and
other residual properties have been extensively studied and used to great
effect in resolving important conjectures in geometry, such as the work of
Agol on the Virtual Haken conjecture [1]. Much of the work in the litera-
ture has been to understand which groups satisfy various residual proper-
ties. For example, free groups, polycyclic groups, finitely generated nilpotent
groups, surface groups, and fundamental groups of compact, orientable 3-
manifolds have all been shown to be residually finite and conjugacy separable
[3, 14, 18, 19, 34, 37]. Recently, there have been several papers that have
made effective these separability properties for certain classes of groups. The
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main purpose of this article is to improve on the effective residual finiteness
results of [4] and establish effective conjugacy separability results for the
class of finitely generated nilpotent groups.

1. Main results

To state our results, we require some notation. For two nondecreasing
functions f,g : N — N, we write f < g if there exists a C' € N such that
f(n) < Cg(Cn) for all n € N. We write f ~ g when f < g and g < f.
For a finitely generated nilpotent group I', we denote T'(I") to be the normal
subgroup of finite order elements. For a finitely generated group I', we
denote I'; as the i-th step of the lower central series.

1.1. Effective residual finiteness. For a finitely generated group I' with
a finite generating subset S, [4] (see also [35]) introduced a function Fr g(n)
on the natural numbers that quantifies residual finiteness. Specifically, the
value of Fr g(n) is the maximum order of a finite group needed to distinguish
a nonidentity element from the identity as one varies over nonidentity ele-
ments in the n-ball. Numerous authors have studied the effective behavior
of Fr g(n) for a wide collection of groups (see [4, 5, 6, 7, 10, 21, 32, 35]).

As we will see in Subsection 2.2.1, the dependence of Fr g(n) on S is mild;
subsequently, we will suppress the dependence of Fr on the generating subset
in this subsection.

For finitely generated nilpotent groups, Bou-Rabee [4, Thm 0.2] proved
that Fr(n) < (log(n))"™ where h(T) is the Hirsch length of I'. Our first
result establishes the precise effective behavior of Fr(n).

Theorem 1.1. Let I" be an infinite, finitely generated nilpotent group. There
exists a Yrr(I') € N such that

Fr(n) ~ (log(n))* @

Additionally, one can compute Yrp (L) given a basis for (I'/T(T')). where ¢
is the step length of T'/T(T).

Given the nature of the study of the effective behavior of residual finiteness
for some finitely generated group I', we must study the upper bounds and
lower bounds of Fr(n) separately. However, the necessary tools used in
the calculation of both bounds are developed in Part II. In the next few
paragraphs, we describe the tools developed in these sections and how they
are applied to the study of Fr(n) when I' is an infinite, finitely generated
nilpotent group.

63 introduces admissible quotients of a torsion-free, finitely generated
nilpotent group which are associated to central, nontrivial elements. These
admissible quotients are the main tool of use in the evaluation of the upper
and lower bounds for Theorem 1.1. This section develops properties of ad-
missible quotients associated to nontrivial, central elements and introduces
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the idea of a maximal admissible quotient. These maximal admissible quo-
tients capture the complexity of residual finiteness of torsion-free, finitely
generated nilpotent groups. In particular, the Hirsch length of a maximal
admissible quotient is a global invariant of a torsion-free, finitely generated
nilpotent group I' and is equal to the value ¢Yrp(T).

84 is devoted to developing tools that allow us to reduce the study of
residual finiteness of an infinite, finitely generated nilpotent group I' to the
study of residual finiteness of a maximal admissible quotient (I'/T'(T"))/A of
r/T(T).

64 and §5 allow us to give an overall strategy for the upper and lower
bounds for Fr(n) when T' is an infinite, finitely generated nilpotent group.
We first demonstrate that Fr(n) is equivalent to Fr py(n). That allows
us to assume that the nilpotent group in consideration is torsion-free. For
the upper bound, we then proceed by induction on the step length of I'
which reduces us to the consideration of elements who have powers that
are in the last nontrivial step of the lower central series. If v € T' is a
nontrivial, central element with admissible quotient I'/A, associated to ~,
we have, by construction, that the image of -y is nontrivial in I'/A. Then, via
the Prime Number Theorem, we demonstrate that there exists a surjective
homomorphism to a finite group ¢ : I'/A, — @ such that ¢(v) # 1 and
where

Q| < (log([|y]|s))" /A

We finish by observing that if I'/A is a maximal admissible quotient, then
h(I'/A,) < h(I'/A) for all central, nontrivial elements v € I'. As an im-
mediate consequence, the effective behavior of Fr(n) is bounded above by
(log(n))¥rr D),

For the lower bound, we show that the elements that realize the lower
bound for Fr(n) are central elements v satisfying v # 1 mod A where I'/A
is a maximal admissible quotient of I'. Thus, we need to study surjective
homomorphisms to finite groups ¢ : I' — @ with ¢(y) # 1. We first demon-
strate that the study of the given homomorphism may be reduced to the
study of the homomorphism 7o : I'/A — Q/¢(A) where 7 : Q — Q/p(A)
is the natural projection and where 7o¢ : I'/A — Q/p(A) is the homo-
morphism induced by mo ¢ : I' = Q/p(A). We then introduce necessary
conditions on the homomorphism 7 6 @ so that |Q/@(A)| > p?rF() . In par-
ticular, we use the Prime Number Theorem to pick a sequence of elements
{7} C T such that the order of the minimal finite group that separates ~;
from the identity is bounded below by C(log(C|ly||))¥#F () for some C' € N.

65 gives a preview of the techniques used for the proof of Theorem 1.1
by explicitly calculating Fy,,, ,(z)(n) where Hopmy1(Z) is the (2m + 1)-
dimensional integral Heisenberg group. In particular, we use the techniques
and tools developed in the previous sections.

The following is a consequence of the proof of Theorem 1.1.



EFFECTIVE SEPARABILITY OF F.G. NILPOTENT GROUPS 87

Corollary 1.2. Let I' be a finitely generated nilpotent group. Then
Fr(n) ~ (log(n))" ™"
if and only if h(Z(T'/T(I"))) = 1.

We now introduce some terminology. Suppose that G is a connected,
simply connected nilpotent Lie group with Lie algebra g. We say that G
is Q-defined if g admits a basis with rational structure constants. The
Mal’tsev completion of a torsion-free, finitely generated nilpotent group I' is
a connected, simply connected, Q-defined nilpotent Lie group G such that
I" embeds into as a cocompact lattice.

The next theorem demonstrates that the effective behavior of Fr(n) is an
invariant of the Mal’tsev completion of I'/T'(T).

Theorem 1.3. Suppose that I'1 and s are two infinite, finitely generated
nilpotent groups such that 'y /T(T'1) and T'e/T(I'y) have isomorphic Mal’tsev
completions. Then Fr,(n) = Fp,(n).

The proof of Theorem 1.3 follows from an examination of a cyclic series
that comes from a refinement of the upper central series and its interaction
with the topology of the Mal’tsev completion.

Since the 3-dimensional integral Heisenberg group embeds into every in-
finite, nonabelian nilpotent group, Theorem 1.1, Theorem 1.3, [4, Thm 2.2],
and [4, Cor 2.3] allow us to characterize R? within the collection of con-
nected, simply connected, Q-defined nilpotent Lie groups by the effective
behavior of residual finiteness of a cocompact lattice.

Corollary 1.4. Let G be a connected, simply connected, Q-defined nilpotent
Lie group. Then G is Lie isomorphic to RY™S) if and only if

Fr(n) 3 (log(n))’
where I' C G is any cocompact lattice.

For the last result of this section, we need the following. We say that
a group I is drreducible if there is no nontrivial splitting of I' as a direct
product.

Theorem 1.5.

(i) For each ¢ € N, there exists a m(c) € N satisfying the following.
For each ¢ € N, there exists an irreducible, torsion-free, finitely
generated nilpotent group T' of step length ¢ and h(I") > £ such that

Fr(n) < (log(n))™.

(ii) Suppose that £ # 2. There exists an irreducible, torsion-free, finitely
generated nilpotent group I'y such that

Fr,(n) ~ (log(n))".



88 MARK PENGITORE

(iii) Suppose 2 < ¢1 < cg are natural numbers. For each { € N, there
exist irreducible, torsion-free, finitely generated nilpotent groups I'y
and Ay of step lengths c1 and co, respectively, such that

Fr,(n),Fa,(n) ~ (log(n))’ mcthetl)

(iv) For natural numbers ¢ > 1 and m > 1, there exists an irreducible,
torsion-free, finitely generated nilpotent group I' of step length c
such that

(log(n))™ = Fr(n).

For Theorem 1.5(i), we consider free nilpotent groups of fixed step length
and increasing rank. We make use of central products of filiform nilpotent
groups for Theorem 1.5(ii)—(iv).

Using Theorem 1.5, we are able to relate the constant ¢¥rp(I") with well
known invariants of I' when I' is a finitely generated nilpotent group. The-
orem 1.5(i) implies that ¢¥gp(I") does not depend on the Hirsch length of T
Similarly, Theorem 1.5(iv) implies that there is no upper bound in terms of
step length of T for ¢¥grp(I'). On the other hand, the step size of ' is not
determined by ¢¥rp(I") as seen in Theorem 1.5(iii).

1.2. Effective conjugacy separability. We now turn our attention to
the study of effective conjugacy separability. Lawton—Louder—McReynolds
[25] introduced a function Conjp g(n) on the natural numbers that quan-
tifies conjugacy separability. To be precise, the value of Conjp g(n) is the
maximum order of the minimal finite quotient needed to separate a pair of
nonconjugate elements as one varies over nonconjugate pairs of elements in
the n-ball. Since the dependence of Conjp ¢(n) on S is mild (see Lemma 2.1),
we will suppress the generating subset throughout this subsection.

The only previous work on the effective behavior of Conjp(n) is due to
Lawton—Louder—-McReynolds [25]. They demonstrate that if T" is a surface
group or a finite rank free group, then Conj(n) < n™ [25, Cor 1.7]. In this
subsection, we initiate the study of the effective behavior of Conjp(n) for
the collection of finitely generated nilpotent groups.

Our first result is the calculation of Conjy, . (z)(n) where Hoyi1(Z) is
the (2m + 1)-dimensional integral Heisenberg group.

Theorem 1.6. Conjy, . (z)(n) = n2mtl
For general nilpotent groups, we establish the following upper bound for
Conjp(n).

Theorem 1.7. Let I' be a finitely generated nilpotent group. Then there
exists a k € N such that
Conjp(n) < n*.

Blackburn [3] was the first to prove conjugacy separability of finitely gen-
erated nilpotent groups. Our strategy for proving Theorem 1.7 is to effec-
tivize [3].
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For the same class of groups, we have the following lower bound which
allows us to characterize virtually abelian groups within the class of finitely
generated nilpotent groups. Moreoever, we obtain the first example of a
class of groups for which the effective behavior of Fr(n) and Conjp(n) are
shown to be dramatically different.

Theorem 1.8. Let I' be an infinite, finitely generated nilpotent group.
(i) If T contains a normal abelian subgroup of index m, then

log(n) = Conjp(n) < (log(n))™.

(ii) Suppose that T is not virtually abelian. There exists a Prower(I') € N
such that
n¥rower(l) < Conjp(n).
Additionally, one can compute Yrower(I') given a basis for (I'/T'(T")).
where ¢ is the step length of T'/T(T).

The proof of Theorem 1.8(i) is elementary. We prove Theorem 1.8(ii) by
finding an infinite sequence of nonconjugate elements {7;,n;} such that the

order of the minimal finite group that separates the conjugacy classes of ~;

and 7; is bounded below by C'n; Lower (M) g0 some €' € N where 1vills, lmills =

n; for some finite generating subset S using tools from §3 and §5.
We have the following theorem which is similar in nature to Theorem 1.3.

Theorem 1.9. Let I and A be infinite, finitely generated nilpotent groups
of step size greater than or equal to 2, and suppose that T'/T(T) and A/T(A)
have isomorphic Mal’tsev completions. Then

nd)Lower(F) j CODJA(TL) and nQ,//Lower(A) j COHJF(n)'

We apply Theorem 1.8 to construct nilpotent groups that help demon-
strate the various effective behaviors that the growth of conjugacy separa-
bility may exhibit.

Theorem 1.10. For natural numbers ¢ > 1 and k > 1, there exists an
irreducible, torsion-free, finitely generated nilpotent group I' of step length c
such that

nk < Conjp(n).

Theorem 1.10 implies that the conjugacy separability function does not
depend of the step length of the nilpotent group. We consider central prod-
ucts of filiform nilpotent groups for Theorem 1.10.
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2. Background

We will assume the reader is familiar with finitely generated groups, Lie
groups, and Lie algebras.

2.1. Notation and conventions. We let lem{ry,...,r,} be the lowest
common multiple of {r1,...,r,} C Z with the convention that lem(a) = |a|
and lem(a,0) = 0. We let ged(ry, ..., ) be the greatest common multiple
of {r1,...,7m} € Z with the convention that gcd(a,0) = |al.

We denote ||v||s as the word length of v with respect to the finite gen-
erating subset S and denote the identity of I' as 1. We denote the order
of v as an element of I" as Ordp(v) and denote the cardinality of a group
I' as |I'|. We write v ~ n when there exists an element g € I" such that
g '~ g =mn. For a normal subgroup A < T, we set ma : I' = I'/A to be the
natural projection and write ¥ = wa(y) when A is clear from context. For
a subset X C I', we denote (X) to be the subgroup generated by X. For
any group I', we let I'* =T\ {1}.

We define the commutator of v and 5 as [y,n7] = v~! n~! v7. We denote
the m-fold commutator of not necessarily distinct elements {y;}7, C I" as
[Y1,---,Ym] With the convention that

[’Y17 e a’Ym] = [[717 o 7’Ym—l])’)/m]'

We denote the center of I as Z(I') and the centralizer of v in I" as Cr (7).
We define T; to be the i-th term of the lower central series and Z¢(T) to be
the i-th term of the upper central series. For v € I'*, we denote Height(~y)
as the minimal j € N such that 721y (7) # 1.

We define the abelianization of I' as I'y, with the associated projection
given by ., = mp ). For m € N, we define I'"* = (4 |y € T) .

When given a basis X = {Xi}?i:nfk(g) for g, we denote

dimpg (g) dimg (g)
Yo oaXil = ) ol
i=1 i=1

X
For a Lie algebra g with a Lie ideal h, we define 7, : g — g/b to be the
natural Lie projection.

For a R-Lie algebra g, we denote Z(g) to the center of g, g; to be the i-th
term of the lower central series, and Z%(g) to be the i-th term of the upper
central series.

For A € g, we define the map ad4 : g — g to be given by

ada(B) = [A, B).

Denote the m-fold Lie bracket of not necessarily distinct elements {A4;};"; C
g as [A1,..., Ay] with the convention that

(A, A = [[A1 -, Am1], Ap).
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2.2. Finitely generated groups and separability.

2.2.1. Residually finite groups. Following [4] (see also [35]), we define
the depth function Dp : I'* — N U {oo} of the finitely generated group I" to
be given by

def .
Dr(y) = min{[Q|| ¢ :T = Q,|Q| < co, and o(y) # 1} .
We define Fr g : N — N by

def

Fr s(n) = max{Dr(7) [ [|7lls < n and v # 1}.

When T is a residually finite group, then Fr g(n) < oo for all n € N. For
any two finite generating subsets S; and Ss, we have that

Fr.s,(n) = Frs,(n)

(see [4, Lem 1.1]). Thus, we will suppress the choice of finite generating
subset.

2.2.2. Conjugacy separable groups. Following [25], we define the conju-
gacy depth function of I', denoted CDr : (I'xI)\ {(v,n) | v ~ n} — NU{oo},
to be given by

ef .
CDr(y,m) “ min{|Q|] ¢ : T = Q.1Q] < o0, and ¢(y) = ()}
We define Conjp g(n) : N — N as

. def
Conjp g(n) = max {CDr(y,n) [~ n and [|v]s. [|nlls < n}.
When T' is a conjugacy separable group, then Conjp g(n) < oo foralln € N.

Lemma 2.1. If S1,5: are two finite generating subsets of I', then
Conjr 5, (n) ~ Conjr g, (n).

The proof is similar to [4, Lem 1.1] (see also [25, Lem 2.1]). As before,
we will suppress the choice of finite generating subset.

[25, Lem 2.1] implies that the order of the minimal finite group required to
separate a nonidentity element v € I' from the identity is bounded above by
the order of the minimal finite group required to separate the conjugacy class
of v from the identity. Thus, Fr(n) < Conjp(n) for all conjugacy separable
groups. In particular, if I' is conjugacy separable, then I' is residually finite.

2.3. Nilpotent groups and nilpotent Lie groups. See [13, 17, 23, 36]
for a more thorough account of the material in this subsection. Let I' be
a nontrivial, finitely generated group. The i-th term of the lower central
series is defined by I'q def I', and for i > 1, we let I; def [i—1,T]. The
i-term of the upper central series is defined by Z%(T) dof {1} and Z(T") def
wg}_l(r)(Z(r/ZZ—l(r))) for i > 1.
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Definition 2.2. We say that I is a nilpotent group of step size c if c is the
minimal natural number such that I'.y; = {1}, or equivalently, Z¢(I") = T.
If the step size is unspecified, we simply say that I' is a nilpotent group.
When given a nilpotent group I', we denote its step length as ¢(I").

For a finitely generated nilpotent group I, the set of torsion elements of
I, denoted as T'(T'), is a finite, characteristic subgroup. Moreover, when
IT'| = oo, then I'/T(T") is torsion-free.

Let g be a nontrivial, finite dimensional R-Lie algebra. The i-th term
of the lower central series of g is defined by g1 def g, and for ¢ > 1, we

let g; def [gi—1,0]. We define the i-th term of the upper central series as
def _q

2°(g) = {0} and Z(g) = 751, (Z(9/277H(g))) for i > 1.

Definition 2.3. We say that g is a nilpotent Lie algebra of step length
¢ if ¢ is the minimal natural number satisfying Z¢(g) = g, or equivalently,
gc+1 = {0}. If the step size is unspecified, we simply say that g is a nilpotent
Lie algebra.

For a connected, simply connected nilpotent Lie group G with Lie algebra
g, the exponential map, written as exp : g — G, is a diffeomorphism [23,
Thm 1.127] whose inverse is formally denoted as Log. The Baker—Campbell—
Hausdorff formula [13, (1.3)] implies that every A, B € g satisfies

e e 1 S
(1) AxB def Log(exp A - exp B) Y A+B+ i[A’ B] + Z CBm(A, B)
m=3
where CB,, (A, B) is a rational linear combination of m-fold Lie brackets of
A and B. By assumption, CB,,(A, B) = 0 for m > ¢(G). For {4;}]", in g,
we may more generally write

c(G)
(2)  Aps---x Ay =Log(exp Ay -+ exp Ap) = ¥ CBi(Ay,..., Ap)
=1

where CB;(A1, ..., Ay) is arational linear combination of i-fold Lie brackets
of the elements {A;,}¢_; C {A4;}]", via repeated applications of the Baker—
Campbell-Hausdorff formula.

We define the adjoint representation of G, denoted Ad : G — Aut(g), as
Ad(g)(X) = (d¥y)1(X) where ¥ (z) = gz g~ . By [23, 1.92], we may write
foryel'and Aeg

(3) Ad(7)(4) = A+ %[Log(fy), A+Y W .
=3

By [30], a connected, simply connected nilpotent Lie group G with Lie
algebra g admits a cocompact lattice I' if and only if g admits a basis with
rational structure constants (see [29, Thm 7] for more details). We say G
is Q-defined if it admits a cocompact lattice. For any torsion-free, finitely
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generated nilpotent group I', [29, Thm 6] implies that there exists a Q-
defined group unique up to isomorphism in which I' embeds as a cocompact
lattice.

Definition 2.4. We call this Q-defined group the Mal’tsev completion of T'.
When given a connected, simply connected, Q-defined nilpotent Lie group
G, the tangent space at the identity with the Lie bracket of vector fields is
a finite dimensional nilpotent R-Lie algebra.

2.4. Polycyclic groups. See [20, 33, 36] for the material contained in the
following subsection.

Definition 2.5. A group I' is polycyclic if there exists an ascending chain
of subgroups {A;};", such that A; is cyclic, A; < Ajyq, and Ay /A is
cyclic for all i. We call {A;}", a cyclic series for I'. We say {&}i2, is
a compatible generating subset with respect to the cyclic series {A;}" if
(€&1) = Ay and (§41,A;) = Ajyq for all i > 1. We define the Hirsch length
of I', denoted as h(I"), as the number of indices ¢ such that [A; 1 : A;| = 0.

For a general polycyclic group, there may be infinitely many different
cyclic series of arbitrary length (see [20, Ex 8.2]). However, the Hirsch length
of I' is independent of the cyclic series. With respect to the compatible
generating subset {&;}:~, [20, Lem 8.3] implies that we may represent every
element v € T" uniquely as v = [[/%, & where o; € Z if A4+ Aj| = 00
and 0 < a; < r; if |Aj41 0 Ayl = 7. If [T < oo, then the second paragraph
after [20, Defn 8.2] implies that |T'| = [[;"; 7.

Definition 2.6. We call the collection of such m-tuples a Mal’tsev basis
for T with respect to the compatible generating subset {;};~,. When v =

IT2, &, we call (o)™, the Mal’tsev coordinates of ~.

For a finitely generated nilpotent group I', we may refine the upper cen-
tral series to obtain a cyclic series and a compatible generating subset. In
particular, we will demonstrate that every finitely generated nilpotent group
is polycyclic. First, assume that I" is abelian. We may write I' = Z" @ T(T'),
and we let {{z}?:(? be a free basis for Z™. Since T'(T') is a finite abelian group,
there exists an isomorphism ¢ : T(T') — @&¢_,Z/ p?iZ. If z; generates Z/ pf’Z
in ®°_,Z/p¥7Z, we then set & = o (@;_pry) for R() +1 <@ < h(T) + L.
Thus, the groups {Ai}?g)H given by A; = <§t>i:1 form a cyclic series for I’

with a compatible generating subset {&}?g”e.

We now assume that ¢(I') > 1. There exists a generating basis {zz}?g)

for Z(I') and integers {tl}zh:(? such that {zfi}?gcm) is a basis for '),

and for each 4, there exist z; € I'yr)_; and y; € I such that zf" =[x, yi)-
We may choose a cyclic series {HZ}?SI) for Z(T') such that H; = (z,)'_,.
Induction implies that there exists a cyclic series {A;}¥_, and a compatible
generating subset {)\i}le for T'/Z(T). For 1 < i </, we set A; = H;, and
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for £+1<i</l+k, weset A; = ﬂg(lr)(Ai,g). For 1 <i </, we set & = z;.
For £ +1 < i < £+ k, we choose a &; such that 7wz r)(&) = Ai—¢. It then
follows that {A,}fif is a cyclic series for I' with a compatible generating

subset {fz}fif Moreover, the given construction implies that

c(I')
h(T) = rankg (Z'(T)/Z71(I)).

i=1
Whenever T is a finitely generated nilpotent group, we choose the cyclic
series and compatible generating subset this way.

Another way to calculate the Hirsch length of a finitely generated nilpo-

tent group is to use successive quotients of the lower central series. In
particular, we have that

(")
h(T) = rankz(Ti/Tit1).
i=1
Let I' be a torsion-free, finitely generated nilpotent group with a cyclic
series {Al}ffl) and a compatible generating subset {51}?:(? [17, Thm 6.5]
implies that multiplication of v, € I' can be expressed as polynomials in
terms of the Mal’tsev basis associated to the cyclic series {Al}?g) and the

compatible generating subset {@}?gp Specifically, we may write

h(T) h(T)

h(T)
yo=TIe ) - (1€ | = T &*
i=1 j=1 s=1

where each dg can be expressed as a polynomial in the Mal’stev coordinates
of v and 7, respectively. Similarly, we may write

h(T) Ch
Y= 11| =11¢
i=1 j=1

where each e; can be expressed as a polynomial in the Mal’tsev coordinates
of v and the integer /.

The polynomials that define the group product and group power operation
of I with respect to the given cyclic series and compatible generating subset
have unique extensions to R*T). That implies the Mal’tsev completion
of T, denoted G, is diffeomorphic to R*™) (see [17, Thm 6.5], [23, Cor
1.126]). Consequently, the dimension and step length of G are equal to
the Hirsch length and step length of I', respectively. Thus, we may write
h(T') = dim(G). We may also identify I" with its image in G which is the
set ZMM),

The following definition will be of use for the last lemma of this subsection.
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Definition 2.7. Let I' be a torsion-free, finitely generated nilpotent group,
and let A < T be a subgroup. We define the isolator of A in I' as the subset
given by

VA = {y €T there exists a k € N such that v* € A}U{1}.

By the paragraph proceeding exercise 8 of [36, Ch 8] and [17, Thm 4.5],
V/A is a subgroup such that |V/A : A| < oo when T is a torsion-free, finitely
generated nilpotent group. If ' is abelian, then we may write

= (T/VA)e VA,

When A < T, we have that I'/ V/A is torsion-free.

We finish this section with the following result. When given an infinite,
finitely generated nilpotent group I', the following lemma relates the word
length of an element v in I" to the Mal’tsev coordinates of « with respect to
a cyclic series and a compatible generating subset.

Lemma 2.8. Let I' be an infinite, finitely generated nilpotent group with a
cyclic series {Ai}le and a compatible generating subset {&}f:l. Letv el
such that |y||s < n. There exists some C' € N such that |oy| < C nD) for
all i, where () are the Maltsev coordinates of .

Proof. We proceed by induction on step length, and observe that the base
case of abelian groups is clear. Now suppose ¢(I') > 1 and that ||v|ls < n.
Since |7, ('7)||7rri (s) < n, the inductive hypothesis implies that there exists
a constant Cy > 0 such that |o;| < Cont when 7r, (&) # 1 and 7, _, (&) = 1.
Let k be the length of the cyclic series A;, and let S C {1,...,k} be the set
of indices such that &;, & Iy for i € S and §; € I' .1y, otherwise.

We will demonstrate that there exists some constant C7 > 0 such that
the element

-1
(= (Wf:ugés 51%> satisfies  [|C]ls < C1n.

Suppose for some i ¢ S that 71, (&) # 1 and where 7, (&) = 1. We have
by induction that |a;| < Cont. By [16, 3.B2], we have that |5 ~ || '/*.
Thus, there exists a constant Cy > 0 such that ||€M|s < Ca |oy|'/t when
Ordr(&;) = oo. Therefore, we may write [|£||s < Cs n for some C3 > 0.
By letting Cy = max {Cs, |T(I")|}, it follows that [|&||ls < Cyn for all i ¢ S.
In particular, we may write

Inlls = llv Clls < lvlls + [IKlls < C5n

for some constant Cs > 0. By taking C; = Cs, we have our statement.
Thus, we may assume that v € I'cry.

We may write v = [[;cs & If we let \p = [[;c5,, & ™ it is evident
that || A¢|ls < n. Thus, we may write

1€ s = [17 Adlls < llvlls + lAells <4 Co
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for some Cs > 0. Thus, we need only consider when v = £ for §; € Loy
Since &; € I'¢ry, [16, 3.B2] implies that |o;| < C7 n®) for some C7 € N. [0

Part 1I. Technical tools
3. Admissible quotients

In the following subsection, we define what an admissible quotient with re-
spect to a central, nontrivial element is, what a maximal admissible quotient
is, and define the constants ¥rp(I') and Yrower(I') for an infinite, finitely
generated nilpotent group I

3.1. Existence of admissible quotients. The following proposition will
be useful throughout this article.

Proposition 3.1. Let I' be a torsion-free, finitely generated nilpotent group,
and suppose that v s a central, nontrivial element. There exists a normal
subgroup A in T such that T/A is an irreducible, torsion-free, finitely gen-
erated nilpotent group such that Z(T'/A) = Z and where (wp(7)) is a finite
index subgroup of Z(U'/A). If v is primitive, then Z(T'/A) = (wa(7)).

Proof. We construct A by induction on Hirsch length, and since the base
case is trivial, we may assume that A(I') > 1. If Z(I') = Z, then the
proposition is now evident by letting A = {1}.

Now assume that h(Z(I')) > 2. There exists a basis {zi}?:(?(r)) for Z(T")

such that 2§ = « for some k € Z°*. Letting K = <zi>£i§(r)), we note that
K 4T and 7g(y) # 1. Additionally, it follows that I'/K is a torsion-free,
finitely generated nilpotent group. If h(Z(I'/K)) = 1, then our proposition
is evident by defining A = K.

Now suppose that h(Z(['/K)) > 2. Since h(I'/K) < h(T), the inductive
hypothesis implies that there exists a subgroup A; such that A; <T'/K and
where (I'/ K') /Ay is a torsion-free, finitely generated nilpotent group. Letting
p:I'/K — (I'/K)/A; be the natural projection, induction additionally
implies that (p(7x(7))) is a finite index subgroup of Z((I'/K)/A;). Taking
Ay = TI'I_(l(Al), we note that Ag/K = Aj. Thus, the third isomorphism
theorem implies that (I'/K)/(A2/K) = I'/Ay. Hence, I'/Ag is a torsion-
free, finitely generated nilpotent group, and by construction, (ma, (7)) is a
finite index subgroup of Z(I'/Az2).

Letting A satisfy the hypothesis of the proposition for v, we now demon-
strate that I'/A is irreducible. Suppose for a contradiction that there exists
a pair of nontrivial, finitely generated nilpotent groups A; and As such that
I'/A =2 Ay xAy. Since I'/A is torsion-free, A and Ay are torsion-free. Thus,
Z(A1) and Z(Ag) are torsion-free, finitely generated abelian groups. Hence,
Z? is isomorphic to a subgroup of Z(I'/A). Subsequently, h(Z(I'/A)) > 2
which is a contradiction. Thus, either A; = {1} or Ay = {1}, and subse-
quently, I'/A is irreducible. O
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As a natural corollary of the proof of Proposition 3.1, we have the follow-
ing. Let I' be a torsion-free, finitely generated nilpotent group with a cyclic

)

series {AZ}?EI) and a compatible generating subset {fz}iil . For a central

element &;, € {SZ}?SI), the next proposition demonstrates that there exists

a normal subgroup A < I' such that I'/A satisfies Proposition 3.1 for &;,.

Moreover, A is generated by a subset {él-j }?(:1}) of the compatible generating
subset.

Corollary 3.2. Let I' be a torsion-free, finitely generated nilpotent group
with a cyclic series {AZ}?SI) and a compatible generating subset {fi}h(r)

i=1
and let &, be a central element of {52}?21) There exists a normal subgroup

A < T such that T'/A satisfies the conditions of Proposition 3.1 for & .
Moreover, there exists a subset, possibly empty, {E%}?fl) of the compatible

generating subset satisfying the following. The subgroups Wy = <£Z-j>
h(A)
=1
Definition 3.3. Let v € I' be a central, nontrivial element, and let J be

the set of subgroups of I' that satisfy Proposition 3.1 for . Since the set
{R(T'/A)| A € J} is bounded below by 1, there exists an 2 € J such that

h(T'/Q) = min{h(T'/A) |A € T}.
We say I'/Q is an admissible quotient of T' with respect to =y .

¢
i=1
form a cyclic series for A with a compatible generating subset {5”}

For a primitive element v € (Z(I'))®, we let I'/A; and I'/A2 be two differ-
ent admissible quotients of I" with respect to 7. In general, T'/A; 2 T'/As.
On the other hand, we have, by definition, that h(I'/A;1) = h(I'/A2). Sub-
sequently, the Hirsch length of an admissible quotient with respect to ~ is
a natural invariant of I' associated to . Such a quotient corresponds to a
torsion-free quotient of I' of minimal Hirsch length such that + has a non-
trivial image that generates a finite index subgroup of the center. That will
be useful in finding the smallest finite quotient in which + has a nontrivial
image.

Definition 3.4. Let I' be a non-abelian, torsion-free, finitely generated
nilpotent group. For each element v € (Z(I'))®, we let I'/A, be an admissible
quotient of I" with respect to 7. Let J be the set of v € (Z(I'))*® such that
there exists a k € Z* such that v* = [a,b] where a € Loy and b € T.
Observe that the set {h(I'/Ay) |~y € J)} is bounded above by h(I'). Thus,
there exists an 7 € J such that

A(D/A,) = max {h(T/A,) | v € T}
We say that I'/A,, is a mazimal admissible quotient of I'. When I' is a torsion-
free, finitely generated abelian group, we take any admissible quotient with

respect to any central element and denote it as a maximal admissible quo-
tient.
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For an infinite, finitely generated nilpotent group I', we now define the
constants Yrp(I") and Yrower(T).

Definition 3.5. Let I" be an infinite, finitely generated nilpotent group. We
let (I'/T(I"))/A be a maximal admissible quotient of I'/T'(I"). We then set

Yre(T) = A((T/T(T))/A).

Assuming that I is not virtually abelian, we define
Yrower(I') = Yre (L) (c(T'/T(T)) — 1).

Suppose that I'/A; and I'/Ay are two maximal admissible quotients of T’
when I' is torsion-free. In general, I'/A; 22 I'/Ay. However,

h(I'/A1) = h(T'/A2) = ¢rr(T)

by definition; hence, ¥rr(I") is a well defined invariant of T'. Similarly, we
have that ¥1,ower (I') is a well defined invariant of finitely generated nilpotent
groups that are not virtually abelian.

A natural observation is that if h(Z(I'/T(T"))) = 1, then

Yre(T) = h(T).
Additionally, if I" is an infinite, finitely generated abelian group, then

Yrr(l) = 1.

Finally, if T" is a finitely generated nilpotent group that is not virtually
abelian where h(Z(I'/T(I"))) = 1, then

¢Lower(F) = h(r)(C(F/T(F)) - 1)

Let I" be a torsion-free, finitely generated nilpotent group with a primitive
element v € Z(I')®, and let I'/A be an admissible quotient of I' with respect
to 7. The next proposition demonstrates that we may choose a cyclic series
and a compatible generating subset such that a subset of the compatible
generating subset generates A.

Proposition 3.6. Let I' be a torsion-free, finitely generated nilpotent group,
and let v be a primitive, central, nontrivial element. Let I'/A be an admissi-

ble quotient of I' with respect to ~v. Then there exists a cyclic series {AZ}?S;)
and a compatible generating subset {fl}?g) such that T'/A is an admissible
quotient of I' with respect to & where v = £1. Moreover, there exists a sub-

set, possibly empty, {ﬁij };Zi/;) of the compatible generating subset satisfying

the following. The subgroups Wy = <§i]. >;:1 form a cyclic series for A with
a compatible generating subset {@-J. };l(:/;)

Proof. We proceed by induction on h(T"), and note that the base case of

h(T') = 1 is evident. Thus, we may assume that h(T') > 1. If h(Z(T)) =

1, then A = {1}; hence, we may take any cyclic series {Al}?:(? and a
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compatible generating subset {ﬁl}?g) where & = . Therefore, we may
assume that A(Z(T")) > 1.

There exists a generating basis {z;}; 7 MZO) for 7 (T') such that z; = 7.

Letting K = (z ﬁ(g(r))’ we note that K § A. Observe that (I'/K)/(A/K)

is an admissible quotient of I'/ K with respect to mx () for the group I'/ K.

h(D/K)

Induction implies that there exists a cychc series {A;/K},2,/"/ and a com-

F/K)

patible generating subset {7mx (&)}~ such that there exists a subset

{ (flj)}h( /K) satisfying the followmg. The subgroups {W;/K} given by
<7TK &i;) >t | form a cyclic series for A/K with a compatible generating sub-
set {mx (¢ ])} A/K). We let H; = (z5)._, for 1 < i < h(Z(T)) and for

i > h(Z(I)), we let H; = <{K}U{£t . h(K > We also take 7; = z; for
1 < i < h(Z()) and for i > h(Z(I)), we take 1; = &_p(zr)). Thus,
{Hl}f:(? is cyclic series for I' with a compatible generating subset {771}?32)

Consider the subset {772-]. };Lgi) where 7;; = zj41 for 1 < j < h(K) and
= &;_nu for j > h(K). Thus, one can see that {mi, };Lg;) is the
required subset. O

where 7;;

For the next two propositions, we establish some notation. Let I' be a
torsion-free, finitely generated nilpotent group. For each primitive element
v € Z(I')*, we let I'/A, be an admissible quotient with respect to ~.

We demonstrate that we may calculate ¥gp(I") for I' when given a gen-
erating basis for (I'/T(I')) o/ (ry)-

Proposition 3.7. Let I" be a torsion-free, finitely generated nilpotent group,
and let {Zz}h(Z(F)) be a basis of Z(I'). Moreover, assume there exist integers
{ti}?ilc(r) such that {zf"}?gc(r)) is a basis of U'yry and that there erist
a; € I'yry—1 and b; € T such that zf" = [a;, b;]. For eachy € Z(F\)/%, there
exists an 1o € {1 ,h(T } such that 1“/AZ1.0 s an admissible quotient
with respect to ~y. More genemlly, zf{zz}h( ) s any basis of Z(I") with v €

(Z(I'))*, then there exists an io such that I'/A, —is an admissible quotient
of T with respect to .

Proof. Letting M = Z20)/T',r), we may write 7 = Hfﬁ/[) 2. There exist
indices 1 <1y < --- <iy < h(M) such that a;; # 0 for 1 < j < /and o; = 0,
otherwise. We observe that I'/A, satisfies the conditions of Proposition 3.1

for « for each 1 <t < {. Therefore,
h(T'/Ay) < min{h(F/Azit) |1 <t </}

Since 7z, (v) # 1, there exists i, such that mp_ (2;, ) # 1. Thus, I'/A, sat-
isfies the conditions of Proposition 3.1 for z;, . Thus, h(F/AZ%) < h(I'/A,).
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In particular,
min{h(I'/A;,) |1 <t < £} <h(T/Ay).
Therefore,
h(T'/Ay) = min{h(T'/A,,) |1 <i < /{}
The last statement follows using similar reasoning. O

The following proposition demonstrates that ¢¥rp(I") can always be real-
ized as the Hirsch length of an admissible quotient with respect to a central
element of a fixed basis of I'yr).

Proposition 3.8. Let I' be a torsion-free, finitely generated nilpotent group
with a basis {zi}?:(f(r)) for Z(T'). Moreover, assume there exist integers
{ti}?gc(r)) such that {zf"}?gc(r)) is a basis of U'yry and that there erist
elements a; € T'yry_1 and b; € T' such that zf" = [a;, b;]. There exists an
io € {1,...,h(Cyry) } such that Yrp(T) = h(L'/Az,, ). Hence,

KZJRF(F) = ma:c{h(I‘/Azl) ’ 1 <1< h(l“c(p))} .
More generally, if {zi}?:(f(r)) is any basis of Z(T'), then

Y (T) = maz {A(T/A.) | 1< i < h(Z(D))}
Proof. Let J be the set of central, nontrivial elements + such that there
exists a k € Z* where 7* is a ¢(I")-fold commutator bracket. Given that the
set {h(I'/A,) |y € J} is bounded above by h(I'), there exists a nontrivial
element n € J such that

B(T/Ay) = max{h(T/A,) |y € T}

Proposition 3.7 implies that there exists an ig € {1,...,h(Z(T"))} such that
h('/Ay) = K(I'/A;, ). By the definition of ¢rp(I), it follows that

Yre(I') = max{h(I'/A;;) | 1 <i < h(T¢r))}-

The last statement follows using similar reasoning. O

3.2. Properties of admissible quotients. We demonstrate conditions
for an admissible quotient of I' with respect to some primitive, central,
nontrivial element to have the same step length as T'.

Proposition 3.9. Let I' be a torsion-free, finitely generated nilpotent group.
If we let v € ( Z(I‘,)/FC(F)). be a primitive element with an admissible quotient
I'/A with respect to v, then c¢(I'/A) = ¢(T'). In particular, if T'/A is a
mazximal admissible quotient of ', then c¢(I'/A) = ¢(I'). If ¢(I') > 1, then
h(T'/A) > 3.

Proof. By definition, there exists a k € Z°® such that v* € Lcr). Suppose

for a contradiction that ¢(I'/A) < ¢(I"). We then have that ',y < ker(my),

and hence, 75 (7*) = 1. Since I'/A is torsion-free, it follows that 75 () = 1.
That contradicts the construction of I'/A, and thus, ¢(I'/A) = ¢(T').
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Since every irreducible, torsion-free, finitely generated nilpotent group I'
such that ¢(I') > 2 contains a subgroup isomorphic to the 3-dimensional
integral Heisenberg group, we have that A(I'/A) > 3. O

The following proposition relates the value ¢¥rp(I') to the value ¥Yrp(A)
when A is a torsion-free quotient of I' of lower step length.

Proposition 3.10. Let I'be a torsion-free, finitely generated nilpotent group.
If M = 2@Q/T ), then Yrp(T') > Yrp(T/M).

Proof. There exist elements {zi}z}-i{(r/ M) and integers {tl}?:(];[) satisfying
the following. The set {WM(Zi)}?:(?(F/M)) generates Z(I'/M) and that there

exist a; € (['/M)yry—2 and b; € T'/M such that my([a;,bi]) = T (2).

Finally, the set <{7TM(zi)ti}h(N)> generates Z@/M)/(T/M)ry_1.

i=1
h(T"
There exist ; € T' such that the elements {[z;, %]}i:(fm) generate o).

Finally, there exist elements {yz}fz(jy) in Z(I') and integers {sz}?z(jr) such

that y;* = [2;,7]. For each i € {1,...,h(M)}, we let I'/A; be an admissible
quotient with respect to y;.
Let (I'/M)/€; be an admissible quotient of I'/M with respect to mps(z;).

It is evident that A; < 7,/ (Q;). Thus, it follows that
h(D/A;) > h(T/myf () = h((D/M) /).

Proposition 3.8 implies that ¢rp(I") > A((I'/M)/Q;). Applying Proposi-
tion 3.8 again, we have that Yrp(I') > ¢rr(I'/M). O

This last proposition demonstrates that the definition of ¢Yrp(I") is the
maximum value over all possible Hirsch lengths of admissible quotients with
respect to primitive, central, nontrivial elements of T".

Proposition 3.11. Let I be a torsion-free, finitely generated nilpotent group.
For each primitive element v € (Z(I'))®, we let I'/A., be an admissible quo-
tient with respect to v. Then

Yrp (') = maz{h(T/Ay) |y € (Z(T))*} .

Proof. Suppose that I' is abelian. We then have that h(I'/A,) = 1 for all
primitive elements. Therefore, we have our statement, and thus, we may
assume that ¢(I") > 1.

Let M = #2MQ)/T',r), and let v € (Z(T'))*. There exists a basis {zi}h(Z(F))
for Z(T") and integers {ti}?gcm) such that {zfi}?gc(r)) is a basis for T'(r).
Moreover, there exist a; € I'yry—; and b; € I' such that zf" = [a;, b;). If
v € M, then by definition of ¥grr(I') and Proposition 3.8, we have that
h(I'/A,) < ¢rp(I"). Thus, we may assume that v ¢ M.

Since v ¢ M, ma(7y) # 1. Hence, it is evident that (I'/M) /7y (Ay) satis-
fies Proposition 3.1 for mas(«y). Thus, if (I'/M )/ is an admissible quotient



102 MARK PENGITORE

with respect to (), we note that I'/7w ' (Q) satisfies Proposition 3.1 for
~. Thus, by definition,
MI/A,) < AT/ (@) < h((T/M)/9) < e (T/M).
Proposition 3.10 implies that ¢rp(I'/M) < ¢gp(T"). Thus,
MZ(L/Ay)) < ¢re(l). O
Definition 3.12. Let I' be a torsion-free, finitely generated nilpotent group
with a maximal admissible quotient I'/A. Let {4A; }h(r

and {El}iil be a compatible generating subset that together satisfy Propo-
sition 3.6 for A. We take the Mal’tsev completion G to be constructed as
defined in §2.4 with Lie algebra g. We observe that the vectors Log(&;) span

g. We call the subset {Log(fi)}?g) an induced basis for g.

be a cyclic series

4. Commutator geometry and lower bounds for residual
finiteness

The following definitions and propositions will be important in the con-
struction of the lower bounds found in the proof of Theorem 1.1.

4.1. Finite index subgroups and cyclic series. The following proposi-
tion tells us how to view finite index subgroups in light of a cyclic series and
a compatible generating subset.

Proposition 4.1. Let I' be a torsion-free, finitely generated nilpotent group
with a cyclic series {AZ}?SP and a compatible generating subset {fi}?g),
and let K < T be a finite index subgroup. Then there exist natural numbers

{tz}?g) satisfying the following. The subgroups {Hl}f:(? given by
ts\?
Hi = <£5 >s=1
form a cyclic series for K with a compatible generating subset {ﬁfl}fg)

Proof. We proceed by induction on Hirsch length. For the base case, we
have that I' & Z and that K = ¢Z for some t > 1. Now the statement of the
proposition is evident by choosing H; = K and the compatible generating
subset is given by {t}.

Thus, we may assume h(I') > 1. Observing that Ay_; N K is a finite
index subgroup of Ay and that h(Ayry—1) = A(T) — 1 the inductive

hypothesis implies that there ex1st natural numbers {¢; } 1 sat1sfy1ng the
following. The groups {H; }l . glven by H, <§ : >8 form a cyclic series

for Apry—1 N K with a compatible generatmg subset {§ } F) ' We also
have that 7, ., _, (K) is a finite index subgroup of I'/Ay, p)_l Thus, there
exists a t(r) € N such that

K/Apry—1 = <”Ah(r)71 ( Z}E(FF))>>
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If we set Hyry = <Hh(r)_1,£Z}E(IF))>, then the groups {Hz}fg) form a cyclic
series for K with a compatible generating subset {ffl}?fl) O

We now apply Proposition 4.1 to give a description of the subgroups of I'
of the form I'"* for m € N.

Corollary 4.2. Let I' be a torsion-free, finitely generated nilpotent group
with a cyclic series {AZ}?SP and a compatible generating subset {fi}?g),
and let m € N. The subgroups H; = (£I")._, form a cyclic series for T'™

with a compatible generating subset {5{”}?;11) In particular,
T/ =m0,

Proof. Proposition 4.1 implies that there exist natural numbers {tl}?g)

such that the subgroups {Hz}f:(? given by H; = ( t5>i:1 form a cyclic se-

S

ries for I' with a compatible generating subset {ffl }jf;) We observe that

(T/A)™ = (I'™/A;). It is also evident that the series {HZ/Al};il;) is a

cyclic series for (I'/A1)™ with a compatible generating subset {7, (&) }:L_(l;)

Thus, the inductive hypothesis implies that t; = m for all 2 < i < h(F)._To
finish, we observe that I'"* N A; = A", Thus, t; = m. O

Let I be a torsion-free, finitely generated nilpotent group, and let K < T
be a finite index subgroup. The following proposition allows us to under-
stand how K intersects a fixed admissible quotient of I" with respect to a
primitive, central, nontrivial element.

Proposition 4.3. Let I' be a torsion-free, finitely generated nilpotent group
with a mazimal admissible quotient T'/A. Let {AZ}?S;) be a cyclic series

and {&}?:(11) be a compatible generating subset that together satisfy Proposi-
tion 3.6 for A. Let K be a finite index subgroup of I'. There exist indices
1 <ip <ig < - < ip < () with natural numbers {ts}'_, such that the

N\ s
subgroups Hy = <§t3>} . form a cyclic series for K N A with compatible
j:

i
generating subset {§f§ iy

Proof. We proceed by induction on Hirsch length, and since the base case
is clear, we may assume that A(T') > 1. By assumption, the cyclic series
{Az}?g) and compatible generating subset {fz}?:(? together satisfy the con-
ditions of Proposition 3.6 for A. Thus, there exists indices 1 < i1 < i9 <

.-+ < iy such that the subgroups M; = (§is)§:1 form a cyclic series for A
g(:/}) Applying Proposition 4.1 to
h(T)
i=1>

with a compatible generating subset {¢;,}
the torsion-free, finitely generated nilpotent group I', cyclic series {A;}
and compatible generating subset {fi}?g), we have that there exist natu-

%
s

ral numbers {tz}ii? such that the subgroups given by W,; = <£§5> _, form
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. : . . . (T .
a cyclic series for K with a compatible generating subset {E?}iil). Since

£

KNA is a finite index subgroup of A, the subgroups given by H, = <§ijj > -
j:

form the desired cyclic series for K N A with a compatible generating subset

{525 _,. Therefore, {t; }‘_, are the desired integers. O

4.2. Reduction of complexity for residual finiteness. We first demon-
strate that we may assume that I' is torsion-free when calculating Fr(n).

Proposition 4.4. Let I" be an infinite, finitely generated nilpotent group.
Then

Fr(n) ~ FF/T(F) (n).
Proof. We proceed by induction on |T'(T")|, and observe that the base case
is evident. Thus, we may assume that |T(I")| > 1. Note that
TZ(T(T)) * I'— F/Z(T(F))
is surjective and that ker(mz(pr))) = Z(T(T')) is a finite central subgroup.
Since finitely generated nilpotent groups are linear, [7, Lem 2.4] implies that
Fp(n) ~ FF/T(Z(F))(”)- Since
(T/Z(T()))/T(/Z(T(T))) = T/T(T),

the inductive hypothesis implies that Fr(n) =~ Fr, 7 (n). O

For a torsion-free, finitely generated nilpotent group I', the following

proposition implies that we may pass to a maximal admissible quotient of
I when computing the lower bounds of Fr(n).

Proposition 4.5. Let I' be a torsion-free, finitely generated nilpotent group
with a mazimal admissible quotient T'/A. Let {Al}?g) be a cyclic series

and {5,}?:(? be a compatible generating subset that together satisfy Proposi-
tion 3.6 for A. If ¢ : I' — Q is a surjective homomorphism to a finite group,

then @(&7) # 1 if and only if Typ)(¢(&7")) # 1 where m € N.
Proof. If A = {1}, then there is nothing to prove. Thus, we may assume
that A 2 {1}. Proposition 3.6 implies that & ¢ A and that there exists a

collection of elements of the Mal’tsev basis {¢; }‘_, such that A = <fis>g(:/})-
Moreover, we have that Hy = (§;,);_, is cyclic series for A with compatible
generating subset {§;, ﬁzl. Proposition 4.3 implies that there exist natural

numbers {t,}¢_; such that the series of subgroups {WS}Z(:/}) given by
o= (e
&)

forms a cyclic series for ker(¢) N A with a compatible generating subset

{ee Y
11 s=1"

Since the backwards direction is clear, we proceed with forward direction.
To be more specific, we demonstrate that if p(£7") # 1, then m 5 (§7°) # 1.
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We proceed by induction on |¢(A)|, and observe that the base case is clear.
Thus, we may assume that |[@(A)] > 1. In order to apply the inductive
hypothesis, we find a nontrivial, normal subgroup M < Z(Q) such that
p(&1") & M.

We first observe that if ¢(&;,) # 1 for some iy € {2,...,h(Z(T'))}, we
may set M = (p(&;,)). It is straightforward to see that M 2 {1} and that
©(&]") ¢ M. Thus, we may assume that §; € ker(p) fori € {2,...,h(Z(I'))}.

In this next paragraph, we prove that there exists an element of the
compatible generating subset, say &;,, such that &, € A, &, ¢ ker(y¢), and
v(&,) € Z(Q). To that end, we note that if |t;,| = 1, then ;, € ker(p).
Since |p(A)] > 1, the set E = {&, | |ti,| # 1} is non empty. Given that F is
a finite set, there exists a &, € E such that

Height(&;,,) = min{Height(&,) | &, € E}.

We claim that ¢(&;, ) is central in @, and since we are assuming that ¢(§;) =
1for i € {2,...,h(Z(T'))}, we may assume that Height(¢;, ) > 1. Since
Height([;,,,&]) < Height(§;,,) for any & and that p(A) < Q, it follows
that (&, ), 9(&)] € @(A). Thus, [©(&,,), ¢(&)] is a product of ©(&, )
where Height(;, ) < Height(&;, ). Since &, € ¢(A) and Height(&;, ) <
Height(;,, ), the definition of E and the choice of &;, imply that ti,, = 1.
Thus, fisj € ker(p), and subsequently, <p(§isj) = 1. Hence, [¢(&,,), ¢(&)] =
1, and thus, o(&,) € (Z(Q))".

Since ¢(&;,, ) is central in @, the group M = (p(&;,)) is a normal subgroup
of Q. By selection, p(&") ¢ M, and since |mar(p(A))| < |@(A)], we may
apply the inductive hypothesis to the surjective homomorphism

o : T — Q/M.
Letting N = ms 0 p(A), we have that 7y (ma(9(€]"))) # 1. Thus,

As a natural consequence of the techniques used in the proof of the above
proposition, we have the following corollary.

Corollary 4.6. Let I' be a torsion-free, finitely generated nilpotent group

with a cyclic series {Az}fg) and a compatible generating subset {ﬁz}?g)

Let &, be a central element of {fl}fg) If A satisfies the conditions of

Corollary 3.2 for &, then ©(&,) # 1 if and only if wyn) 0 (&) # 1.
4.3. Rank and step estimates.

Definition 4.7. Let I' be a torsion-free, finitely generated nilpotent group
with a cyclic series {AZ}?S;) and a compatible generating subset {fz}ii?

Let @ = (a;)f_; where 1 < a; < h(T) for all i. We write

[56] = [gau e 7§a4]-
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We call [{z] a simple commutator of weight £ with respect to d. Let
Wk (Fa A7 5)

be the set of nontrivial simple commutators of weight k. Since I' is a nilpo-
tent group, W )4 is empty. Thus, the set of nontrivial simple commutators
of any weight, denoted as W (T, A, ¢), is finite.

When considering a surjective homomorphism to a finite group ¢ : I' — Q,
we need to ensure that the step length of @ is equal to the step length of T'.
We do that by assuming that ¢([{z]) # 1 for all [£z] € W(T', A, &) N Z(T).

Proposition 4.8. Let I' be a torsion-free, finitely generated nilpotent group
with a cyclic series {Al}fg) and a compatible generating subset {@}?SI)
Let ¢ : ' = Q be a surjective homomorphism to a finite group such that
if [a] € W, A,8) N Z(T), then ([&z]) # 1. Then ¢([&5]) # 1 for all
(€3] € W(T,A€). Lastly, ¢(T) = ¢(Q).

Proof. We first demonstrate that ¢([¢z]) # 1 for all [{z] € W(T,A€)
by induction on Height([¢{z]). Observe that if [{z] € Wi(T,A,€), then
Height([§5]) < ¢(I')—k+1. Thus, if [§z] € W) (T, A, §), then Height([¢z]) =
1. Hence, the base case follows from assumption.

Now consider [£z] € W(T', A, &) where Height([£z]) = ¢ > 1. If [¢z] € Z(T),
then the assumptions of the proposition imply that ¢([¢z]) # 1. Thus, we
may assume there exists an element &, of the Mal'tsev basis such that
[[€z], &io] # 1. The induction hypothesis implies that ¢([[¢z], &,]) # 1 since
[[€z], &io] 1s a simple commutator of Height([[¢z], &i,]) < £—1. Thus, ¢([¢3]) #
1. Therefore, for each [£z] € W(T, A, €), it follows that ¢([&z]) # 1.

If ¢(Q) < ¢(T'), then ¢ factors through I'/T'r), and thus,

WC(F) (F7 Aa g) - ker(g&)
Since
WC(F) (F’ Ay 5) - W(F) A) 5) N Z(F)v

we have a contradiction. Hence, ¢(Q) = ¢(T). O

The following definition will be important in the proofs of Theorem 1.1
and Theorem 1.8.

Definition 4.9. Let I' be a torsion-free, finitely generated nilpotent group
with a cyclic series {Al}?g) and a compatible generating subset {fz}?g)
For [¢5] € W(T, A, €), we may write [¢5] = [T/} €. Let

)

B(T,A,¢) = lem{|0z,

1< <A(T), 0 # 0 and [&5] € W(D,A,6)}.

Suppose that I' is a torsion-free, finitely generated nilpotent group with
a cyclic series {AZ}?SI) and a compatible generating subset {gl}fﬁ) For
a surjective homomorphism to a finite p-group ¢ : I' — @, the following

proposition gives conditions so that |Q] > p"T) . To be more specific, if ¢ is
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an injective map when restricted to the set of central simple commutators,
is an injective map when restricted to central elements of a fixed compatible
generating subset, and p > B(T', A, {), then ¢ is an injection when restricted
to that same compatible generating subset.

Proposition 4.10. Let I' be a torsion-free, finitely generated nilpotent group
with a cyclic series {AZ}?SP and a compatible generating subset {§Z}££;)
Let o : I' = @ be a surjective homomorphism to a finite p-group where
p > B(I,A.€). Suppose that p([¢a)) # 1 for all [&] € W(I,A,€) 1 Z(D).
Also, suppose that (&) # 1 for & € Z(T) and 9(&) # (&) for &,& €
Z(I') where i # j. Then ¢(&) # 1 for 1 <t < h(I') and ¢(&) # ©(&;) for
1<i<j<h(l). Finaly, |Q| > p"1).

Proof. Let & ¢ Z(T'). By selection, there exists a £, such that [&, ] # 1.
Since [&, &5] is a simple commutator of weight 2, we have that ¢([&;,&s]) # 1
by Proposition 4.8. Thus, p(&;) # 1.

We now demonstrate that ¢(&) # (&) for all 1 < i < j < (T) by
induction on h(T"). If &,& € Z(T'), then by assumption, p(&) # ¢(&;).
Now suppose that & € Z(I') and that & ¢ Z(I'). Then there exists a &
such that [£;,&] # 1, and subsequently, the above paragraph implies that
o([65,6]) # 1. In particular, ¢(&) ¢ Z(Q), and thus, (&) # o(&;).

We now may assume that &;,&; ¢ Z(I'). Proposition 3.2 implies that there
exists a normal subgroup A/K < T'/K such that A/K satisfies the conditions

of Proposition 3.1 for mx (&) where K = (£,)°”}. Moreover, A = ({,-Q?gi)

s=1"
where the subgroups given by W; = <€w>§:1 form a cyclic series for A with
a compatible generating subset {¢;, }Zbi/}) Thus, {WA(AS)}ZL(:?S ¢s 1s a cyclic

series for I'/A with a compatible generating subset {WA(fs)}ZLIPS¢ s That

implies A (W(T, A, €)) = W(T /A, ma(A), ma(§)). For simplicity, we indicate
elements of W(T'/A, wpa(A), ma(§)) as [ma(&z)]-
Corollary 4.6 implies that 7,5y 0 ¢(ma(§;)) # 1. Thus, we proceed based

A

on whether ¢(&;) € ¢(A) or not. If ¢(&;) € ¢(A), then (&) # (&) since
)

©(&) ¢ o(A). Thus, we may assume that ¢(&), (&) € @(A).
Since we have a homomorphism

oy 0w I —=T/p(A)

where A < ket‘(ﬂ@( A)© ¢), we obtain an induced homomorphism

W@\\)_EQD :T/A — Q/p(N).
We now demonstrate the hypotheses of our proposition hold for the homo-
morphism WW()D :T/A = Q/w(A). Since myay0p(ma(&i)) # 1, it follows
that Trmcp(wK(ﬁi)) # 1. Thus, we have that Z(I'/A) = (ma(&)).

In particular, ﬂm (o is injective when restricted to the subset of central
elements of the compatible generating subset for I'/A given by {mx (&) }. For
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each [mA(£z)] € W(T'/A, ma(A), ma(€)), there exists a [§7] € W(T', A, &) such
that o ([&5]) = [ma(€a)]- We may write

h(T)

5 h(T) 5 h(T)
malgh) =ma [ [T&" | = T ma)%i = J] ma(€)’® = [mal&a)).
s=1 s=1 s=1,s#S8

By construction, d;, = dz; for 1 <7 < h(T') and i ¢ S. By the definition of
lem, we have that

B(I', A, &) = B(I'/A, ma(A), ma(8))-
Additionally, for
(A (€a)] € W(T/A, ma(A), ma(€)) N Z(T/A)
we have that [¢;] = €)% Since p > B(I/A, ma(A), 7o (€)), we have that
Ordg /p(a) (Ton) © (A (&) > p.
Thus, we have m(x) 0 ¢([ma(£7)]) # 1 for all
[ra(&a)] € W(L/A, ma(A), ma(§)) N Z(L/A).

By the proof of the first statement, we have that WSZ/\\)_E()D(FK(&C)) # 1 for
1 <k < h(I') where k ¢ S. We also have that Wm(p([fa]) # 1 for all

[ma(§2)] € W(T'/A, ma(A), ma(§))-

By construction, there exists a £, such that [wA(&;), mA(€s,)] # 1. Propo-
sition 4.8 implies that wmgp([m\(ﬁj), mA(€sy)]) # 1. Thus, it follows that

Ton) © P(TA(&5)) & Z(Q/¢(A))
whereas wmgo(m\(&)) € Z(Q/p(A)). Thus,

o) © P(TA(&)) # mo(a) © p(ma(§)).

Given that wmgo(m\(g)) = o) © p(g) for all g € T', we have that
Toa) © (&) # Tp(a) © 9(&))-

In particular, p(&) # ¢(&):

Subsequently {(p(ﬁl)}?:(? is a generating subset of Q where Ordg(¢(&;)) >
p for all . [17, Thm 1.10] implies that |@Q| divides nonzero some power of
p"0). Hence, |Q| > p"1). O
Proposition 4.11. Let I’ be a torsion-free, finitely generated nilpotent group
such that h(Z(T')) = 1 with a cyclic series {AZ}?S;) and a compatible generat-
ing subset {EZ}?SI) Suppose that ¢ : I' = Q is a surjective homomorphism

to a finite p-group such that p > B(T', A,€), and suppose that o(&1) # 1.
Then ¢(T) = ¢(Q), Z(Q) = (p(&1)), and |Q| > p"T).
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Proof. Since ¢(&1) # 1 and @ is p-group, we have that Ordg(¢(&1)) > p.
We claim that if [(z] € W(I',A,§) N Z(T), then ¢([&z]) # 1. Suppose for
a contradiction that ¢([{z]) = 1 for some [¢z] € W(T',A,&) N Z(T'). Since
go(fiB(F’A’é)) is a power of ¢([€z]) by definition, we have that go(fiB(F’A’é)) = 1.
Thus, ¢(&1) has order strictly less than p which is a contradiction.

Since p([€z]) # 1 for all [¢z] € W(I', A, &) N Z(I'), Proposition 4.8 implies
that ¢(I') = ¢(Q). On the other hand, Proposition 4.10 implies that ¢(&;) #
1forall 1 <i<h(I')and ¢(§;,) # ¢(&),) for all 1 < ji < jo < h(I"). Thus,
{@(Al)}?ﬁz) is a cyclic series for () and {gp(fl)}?g) is a compatible generating
subset for Q). Since Q is a p-group, we have that |@(A;) : (A;—1)| > p for
each 1 < i < h(T") with the convention that Ay = {1}. Hence, the second
paragraph after [20, Defn 8.2] implies that

h(I")

Q| = H A;t Ag_q| > D).
i=1

We finish by demonstrating Z(Q) = (p(&1)). Since {go(A,)}fEl) is an
ascending central series that is a refinement of the upper central series,
there exists an iy such that ¢(A;,) = Z(Q). For t > 1, there exists a j # t
such that [&,&;] # 1. Since [§,&;] is a simple commutator of weight 2,
Proposition 4.8 implies that ¢([&,&;]) # 1. Given that

(6, &5]) = [p(&r), (&5)],

it follows that ¢(&) ¢ Z(Q). Thus, we have that p(A;) > Z(Q) for all
t > 1. Hence, Z(Q) = (p(&1))- O

Let I be a torsion-free, finitely generated nilpotent group with a maximal
admissible quotient I'/A. Let {Al}zhg) be a cyclic series and {fz}f’i? be
a compatible generating subset that together satisfy Proposition 3.6 for A.
Suppose that ¢ : I' — @ is a surjective homomorphism to a finite group
and m € Z°. The following proposition gives conditions such that @) has no
nontrivial quotients in which ¢(&]*) # 1.

Proposition 4.12. Let I’ be a torsion-free, finitely generated nilpotent group
with a mazimal admissible quotient T'/A. Let {AZ}?SI) be a cyclic series
and {&}?S;) be a compatible generating subset that together satisfy Propo-
sition 3.6 for A. Suppose that ¢ : I' — @Q is a surjective homomorphism
to a finite p-group where p(A) = {1}, p > B(L/A,ma(A),mA(§)), and
Q| < p¥re(M) | [f p(£) # 1 for some m € Z, then |Q| = p?»F (). Addition-
ally, if N is a proper quotient of Q, then p(¢(£7")) = 1 where p: Q — N is
the natural projection. Finally, Z(Q) = Z/pZ.

Proof. Let us first demonstrate that |Q| = p»F(I). Since A < ker(p), we
have an induced homomorphism ¢ : I'/A — @ such that g oy = . Hence,
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Proposition 4 11 implies that p(Z(I'/A)) = Z(Q) and |Q| > p¥rF(D). Thus,
We now demonstrate that Z(Q) = Z/pZ. Since {p(ma(A;)) | € ¢ A} is a
cyclic series for () with a compatible generating {¢(&;) | & ¢ A}, it follows

that
Q= IT Orda(w(&))
SigA

(see the second paragraph after [20, Defn 8.2]). Thus, we must have that
Ordg(e(&)) < p. Since Ordg(p(&1)) > p, we have that Ordg(¢(&1)) = p.
Since Z(Q) = (p(&1)), it follows that Z(Q) = Z/pZ.

Since Z(Q) = Z/pZ, there are no proper, nontrivial, normal subgroups of
Z(Q). Given that ker(p) < @, we have that Z(Q) Nker(p) = Z(Q); hence,

pl(€1)) = 1 because p(&") € Z(Q) < ker(p). 0

5. Some examples of precise residual finiteness

To demonstrate the techniques used in the proof of Theorem 1.1, we
make a precise calculation of Fy,, . (z)(n) where Hapy1(Z) is the (2m +1)-
dimensional integral Heisenberg group.

5.1. Basics facts about the integral Heisenberg group. We start by
introducing basic facts about the (2m + 1)-dimensional integral Heisenberg
group which will be useful in the calculation of Fy, . (z)(n) and in Section 9.
We may write

1 7 =z
Hopi1(Z) = 0 L, 7|lzez, z,4" ez™
0O 0 1
where I,,, is the m x m identity matrix. If v € Hop,41(Z), we write
1 2, =z
Y=10 Iln Yy
0 0 1
where &y = [2y,1,.. ., Ty m] and G0 = [Yy1, .-+, Yy,m)-

We let E = {é;}.", be the standard basis of Z™ and then choose a gener-
ating subset for Hoy,11(Z) given by S = {a1,...,am,B1,..., Bm, A} where

1 & 0 1 0 0 1 0 1
=10 1L, 0], Bi=(0 1, &|, andA=|0 I, O
0 0 1 0 0 1 0 0 1

Thus, if v € By,,,.,(z),5(n), then fv,fn,yf,gjg € Bzm g(Con) and |z,| <
Co n? for some Cyp € N [16, 3.B2]. We obtain a finite presentation for
Hop+1(Z) written as

(4)  Hom+1(Z) = (K, ps,vj for 1 < 4,5 <m| [, ] = k for 1 <t <m)

with all other commutators being trivial.
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Finally, we let A; = (x), &; = ({s}U{ps})'Z} for 2 < i < m 41,
and A; = <{Am+1},{yt}i;7lﬂ_1> for m+2 < i < 2m+ 1. One can see
that {A;}2 is a cyclic series for Ha,41(Z) and that S is a compatible

generating subset.

5.2. Residual finiteness of Ha;,+1(Z). The upper and lower bounds for
FHymi1(2) (n) require different strategies, so we approach them separately.
We start with the upper bound as it is more straightforward.

Proposition 5.1. Fy, . (z)(n) = (log(n))>m+1.

Proof. For ||v|ls < n, we will construct a surjective homomorphism to a
finite group ¢ : Hopt1(Z) — @ such that ¢(v) # 1 and where
Q| < Co(log(Co n))*™*

for some Cy > 0.
Via the Mal’tsev basis, we may write

— e i M Aj
v=r"(IIm" | { I1%
i=1 j=1

We proceed based on whether 7, () is trivial or not.

Suppose that mp(y) # 1. Since v # 1, either 3;, # 0 for some ig, or
Ajo # 0 for some jo. Without loss of generality, we may assume that there
exists some 7o such that 3;, # 0. The Prime Number Theorem [38, 1.2]
implies that there exists a prime p such that pt|5;,| and where

p S CQ lOg(CQ |610’) S CQ log(C1 CQ n2).
Consider the homomorphism p : Hoy11(Z) — Z/pZ given by

« - i . Aj
K (Huz> Hyj] — (B1, - Bms ALy ooy, Am) — Bip (mod p).
i=1 j=1

Here, the first arrow is the abelianization homomorphism and the second
arrow is the natural projection from Z*™ to Z/pZ. By construction, p(y) # 1
and

‘Z/pZ’ S Cl CQ 10g(C’1 CQ TL2).
Thus, for some Cs > 0, we have that

Dy, (2)(7) < C3log(Cs n).

Now suppose that m,,(y) = 1. That implies 5;, \; = 0 for all 4,j. As
before, the Prime Number Theorem [38, 1.2] implies that there exists a
prime p such that p { |a| and p < Cy log(Cy n) for some Cy € N. We have
that m(x,,.,1(2))? (V) = T(Hamir(2))? (K¢) # 1. Corollary 4.2 implies that

| Homt1(Z)/(Hom41(Z))P| = p*™+1.
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Hence,
| Hom1(Z) ) (Ham+1(2))P| < (Ca)*™* (log(Cy n)) >+,
Thus, Dy, ,,(z)(7) < Ca(log(Cyn))*™ !, and therefore,

Fity,, 1(2)(n) < (log(n))*" . 0

We now proceed with the lower bound calculation of Fy, . (z)(n).
Proposition 5.2. (log(n))*" ™ X Fy, . @z (n).

Proof. To demonstrate that (log(n))?"+! < Fy,.1(z)(n), We construct a
sequence of elements {v;} such that there exists a constant C; > 0 where

C1(log(Cy [1vill))*™ ' < D,y 2y (%)
independent of i. The proof of Proposition 5.1 implies that

Diy,,40(2) (1) < G2 10g(C2 [|v]ls)

for some Cy € N, when v ¢ Z(Hap+1(Z)). That implies that we will be
looking for central elements.
Let {p;} be an enumeration of the primes, and let

a; = (Ilem{1,2,...,p; — 1})*™ T2,
We claim for all ¢ that Dy, ., z) (k%) = log(||s*s))*" 1. Tt is clear that
W(H2m+1(Z))pi (K)ai 75 1in H2m+1(Z)/(H2m+1(Z))pi. [16, 3.B2] implies that
|kY||s ~ +/|ai|, and the Prime Number Theorem [38, 1.2] implies that
log(|a;|) ~ pi. Subsequently, log(||x%||s) ~ p;, and thus,

(log([|w™[|5)) ™+ = pm .
Corollary 4.2 implies that

| Hom41(Z)/ (Ham 11 (Z))P" | = p™
thus, we will establish that

Dy, 11 (2) (%) = (log(|[x*[|s))
by demonstrating that if given a surjective homomorphism to a finite group
¢ : Hopmi1(Z) — Q satisfying |Q| < pi™*!, then (k) = 1.

[17, Thm 2.7] implies that we may assume that |Q| = ¢® where ¢ is a
prime. Since p(k%*) = 1 when (k) = 1, we may assume that p(k) # 1.
Give that [p, 1] = & for all ¢, it follows that p(vs), p(u;) # 1 for all s, j and
that |Q| > ¢®*™T! (see the second paragraph after [20, Defn 8.2]).

Suppose @ is a p;-group. If p(k%) # 1, then Proposition 4.12 implies
that |Q] = p?m'H and that there are no proper quotients of () where the
image of p(k“) does not vanish. In particular, there are no proper quotients
of Hom1(Z)/(Ham+1(Z))P* where m(y,,, ., (z)i (k*) does not vanish. Thus,
we may assume that q # p;.

If ¢ > p;, then we have that Ordg(¢(v;)), Ordg(¢(pj)) > p; for all 4, 5.
That implies |A; : A;—1]| > p;. Thus, the second paragraph after [20, Defn

2m+1
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8.2] implies that |Q| > p?mﬂ; hence, we may disregard this possibility. We
now assume that @ is a g-group where ¢ < p;. If ¢° < p, then |Q| | 4. Since
the order of an element of a finite group divides the order of the group, we
have that A | o where A = Ordg(¢(k)). Thus, p(k*) = 1.

Hence, we may assume that Q is a g-group where ¢ < p; and p; < ¢° <

p?mﬂ. There exists v such that

2m+1)v 2m+1 < q(2m+1)(v+l).

gt < p?

Thus, we may write

B=uvt+r
where t < 2m + 1 and 0 < r < t. By construction, ¢@m )" < o, and
since g < p;, it follows that

q(2m+1)t+r ‘ .

Subsequently, A | a; and ¢(k%) =1 as desired. O

Corollary 5.3. Let Hopnt1(Z) be the integral Heisenberg group. Then

FH2m+1(Z) (n) ~ (log(n))2m+l'

Part III. Residual finiteness
6. Proof of Theorem 1.1

Our goal for Theorem 1.1 is to demonstrate that Fp(n) ~ (log(n))wRF(F).
Proposition 4.4 implies that we may assume that I' is torsion-free. We
proceed with the proofs of the upper and lower bounds for Fr(n) separately
since they require different strategies. We start with the upper bound as its
proof is simpler.

For the upper bound, our task is to prove for a nonidentity element v € I'
that there exists a surjective homomorphism to a finite group ¢ : I' — @
such that ¢(v) # 1 and where

QI < Co (log(Co [[v]s)) ™)

for some Cyp € N. When v ¢ #(0)/Try, we pass to the quotient given by
r/ ZQ/T(F) and then appeal to induction on step length. Otherwise, for
v € Z0/Tyr), we find an admissible quotient of I' with respect to some
primitive central element in which v has a nontrivial image.

Proposition 6.1. Let I' be a torsion-free, finitely generated nilpotent group.
Then

Fr(n) < (log(n))?xr @),
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Proof. Let {Az}fg) be a cyclic series with a compatible generating subset

{52}?31) Suppose v € T" such that ||v]|s < n. Using the Mal’tsev coordinates
of v, we may write

h(T)
v=]]¢&"
=1

Lemma 2.8 implies that |a;| < C) n™) for some C; € N for all i. By
induction, we will construct a surjective homomorphism to a finite group
¢ : ' — @ such that ¢(v) # 1 and where

QI < Ca (Ily]ls)Pre

for some constant Cy > 0.

When T is a torsion-free, finitely generated abelian group, [4, Cor 2.3]
implies that there exists a surjective homomorphism ¢ : I' — @ such that
©(v) # 1 and where

Q| < C5 log(Csn)

for some constant C'3 > 0. Thus, we may assume that I' is nonabelian.

Letting M = 2@Q/T' 1, suppose that my/() # 1. Passing to the group
I'/M, the inductive hypothesis implies that there exists a surjective homo-
morphism ¢ : I'/M — @ such that ¢(mp(7)) # 1 and where

Dr(v) < Cy4 (log(Cy n))¥rr /M)

for some Cy € N. Proposition 3.10 implies that ¥rp(I'/M) < ¢rp(I'), and
thus,

Dr(7) < C4 (log(Cy m)) 1)
Otherwise, we may assume that v € M. Thus, we may write

R(T 1)

v=]] &
=1

and since v # 1, there exists a 1 < j < h(I'c) such that a; # 0. The Prime
Number Theorem [38, 1.2] implies that there exists a prime p such that
p 1 |aj] and p < Cs log(Cs |e]) for some Cs € N. If I'/A; is an admissible
quotient with respect to &;, then 7 ,.r»(7) # 1. Corollary 4.2 implies that

P/A; -7 < G5 (log(Cs Ja )M/
Proposition 3.8 implies that h(I'/A;) < ¢grp(I'). Thus, we have that
Dr(7) < Cg (log(Cg n))Y»r®)
for some Cg € N. Hence,

Fr(n) < (log(n))wRF(F) . O
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In order to demonstrate that (log(n))*#* () < Fr(n), we require an infi-
nite sequence of elements {v;} C I' such that

C (log(C [175l8)) "™ < Dr(y;)

for some C' € N independent of j. That entails finding elements that are of
high complexity with respect to residual finiteness, i.e., nonidentity elements
that have relatively short word length in comparison to the order of the
minimal finite group required to separate them from the identity.

Proposition 6.2. Let I' be torsion-free, finitely generated nilpotent group.
Then

(log(n))"™ (") < Fp(n).

Proof. Suppose that I' is a torsion-free, finitely generated abelian group.
Then [4, Cor 2.3] implies that Fr(n) ~ log(n) which gives our theorem in
this case. Thus, we may assume that I" is not abelian.

Let T'/A be a maximal admissible quotient of I'. There exists a g €
(Z(T'))® such that I'/A is an admissible quotient with respect to g. Moreover,
there exists a k € Z°, a € I'yr)_1, and b € I such that g* = [a,b]. If g is not
primitive, then there exists a primitive element 5 € Z(I') such that 23 =g
for some s € N. In particular, z is a primitive, central, nontrivial element
such that z3% = [a, b].

Let {AZ}?EI) be a cyclic series with a compatible generating subset {fz}?g)
that together satisfy Proposition 3.6 for A such that & = x5. Let

ajane = (lem{1,2,...,pjaae — 1})rr@H

where {p; a.a ¢} is an enumeration of primes greater than B(I'/A, A, £). Let-
ting v;aae = &M%, we claim that {y; A ¢}, is our desired sequence.
Before continuing, we make some remarks. The value B(I'/A, A, &) de-
pends on the maximal admissible quotient I'/A of T' and the cyclic series
{Az}?g) and a compatible generating subset {&}?SP that together satisfy
Proposition 3.6 for A. To be more specific, if I'/2 is another maximal admis-
sible quotient of I" with cyclic series {HZ}?g) and a compatible generating

subset {gl}?:a;) that together satisfy Proposition 3.6 for €2, then, in gen-
eral, I'/A 2 T'/Q, and subsequently, B(I'/A, A,§) # B(I'/Q, H,g). Even
when we have a fixed maximal admissible quotient, i.e., A = Q, we still
may run into ambiguity in the value B(I'/A, A, ¢). To this end, let {AZ}?SI)
and {Hz}fg) be distinct cyclic series which satisfy Proposition 3.6 for A

with respective compatible generating subsets {51}?51) and {gl}f:a;) Then
B(I'/A,K,¢&) # B(I'/A,H, g), in general. Finally, assuming that we have a
h(T)

fixed cyclic series {A;},~,” with two distinct compatible generating subsets

(&} and {g:}!}), we then have that B(I/A, H,€) # B(I/A, H,g), in
general. Thus, the sequence of elements {v; A A ¢} depends on the maximal
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admissible quotient of I' and the cyclic series and compatible generating sub-
set that together satisfy Proposition 3.6 for A. However, we will demonstrate
that the given construction will work for any maximal admissible quotient
we take and any cyclic series and compatible generating subset that together
satisfy Proposition 3.6 for A.

We claim for all j that Dr(v;) = (log(pja.ae))?® ). Tt is evident that
Tarriaae (Yja,A,¢) 71 in T'/A - TPiA2¢ and Proposition 4.2 implies that
IT/A - TPinae| = (pjane)?® ). To proceed, we show that if given a
surjective homomorphism to a finite group ¢ : I' — @ such that |Q] <
(Pja.ae)?™ D), then p(v) = 1.

[17, Thm 2.7] implies that we may assume that |Q| = ¢” where ¢ is a
prime. If & € ker(yp), then ¢(vja,a¢) = 1. Thus, we may assume that
©(&1) # 1. Proposition 4.5 implies that ¢(yja,ae) # 1 if and only if
Tl A)(¢(7j7A7A7£)) # 1. Thus, we may restrict our attention to surjective
homomorphisms that factor through I'/A, i.e., homomorphisms ¢ : ' — @
where ¢(A) = {1}.

Suppose that ¢ = pjaae. If o(vjaae) = 1, then there is nothing to
prove. So we may assume that ¢(vjaa¢) 7 1. Since |Q| < (pjaae)?®F @),
Proposition 4.12 implies that |Q| = (pj7A7A7§)¢RF(F) and that if NV is a
proper quotient of () with natural projection given by p : @ — N, then
p(e(vja,a¢)) = 1. We have two natural consequences. There are no proper
quotients of I'/A - T'P3:A.2.¢ where ¢(7yj.4,a,¢) has nontrivial image. Addition-
ally, if ¢ : I' = @ is a surjective homomorphism to a finite p; A A ¢-group
where |Q] < (pLA’A,g)wRF(F), then ¢(vja,a¢) = 1. Thus, we may assume
that ¢ 7 pjaae

Suppose that ¢ > pja ae. Since ¢ : I'/A — @ is a surjective homomor-
phism to a finite g-group where ¢ > B(I'/A, A, ), Proposition 4.11 implies
that |Q| > (pj7A7Ai7§i)¢RF(F). Hence, we may assume that ¢ < p;j s ae.

Now suppose that @ is a g-group where |Q| < pjaae. By selection, it
follows that |@| divides aja a¢. Since the order of an element divides the
order of the group, we have that Ordg(¢(&1)) divides a;a A ¢. In particular,
we have that p(y;aa¢) = 1.

Now suppose that @ is a g-group where ¢ < p;a A ¢ and @ > DjAAE-
Thus, there exists a v € N such that

i Yre(l) ( )"/)RF(F) < q(l’+1) Yre(l)

Pj.A AL
Subsequently, we may write 8 = vt + r where ¢t < ¢Yrp(I’) and 0 < r < v.
By construction, ¢"t" < ajaAe, and since ¢ < pja g, it follows that
¢% = ¢t | aj A ¢ Given that the order of any element in a finite group
divides the order of the group, it follows that Ordg(¢(&1)) divides oz A e
Thus, ¢(vj,a,a,¢) =1, and therefore,

Dr(vja.n¢) = (Djane)mr T
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Since ;a4 € Te(ry, [16, 3.B2] implies that

(lvjaaclls) = (|0‘j,A,A,g|)1/C(F),

and the Prime Number Theorem [38, 1.2] implies that

log(|aja,ael) = pjaae

Hence,
(IOg(”’Vj,A,A{HS))wRF(F) 7 (pj,A,A,§)¢RF(F).
Thus, Dr(vja.a.¢) & (10g(||’Yj,A,A,§||S))¢RF(F), and subsequently,
(log(n))‘/’RF(F) < FI‘(TL) 0

We now prove the main result of this section.
Theorem 1.1. Let I' be an infinite, finitely generated nilpotent group. Then
Fr(n) & (log(n))"* ().
Additionally, one can compute Yrr (L") given a basis for (I'/T(T))cr)/r(r)-
Proof. Let I' be an infinite, finitely generated nilpotent group. Proposi-
tion 4.4 implies that
Fr(n) = Fr/rr)(n).
Proposition 6.1 and Proposition 6.2 together imply that
Fryr(r)(n) & (log(n)) ")
Thus,
Fr(n) & (log(n))"* (")
The last statement in the theorem follows from Proposition 3.8. ([

7. Cyclic series, lattices in nilpotent Lie groups, and
Theorem 1.3

Let I" be a torsion-free, finitely generated nilpotent group. The main task
of this section is to demonstrate that the value h(I'/A) is a well-defined
invariant of the Mal’tsev completion of I'. Thus, we need to establish some
properties of cocompact lattices in connected, simply connected, Q-defined
nilpotent Lie groups. We start with the following lemma that relates the
Hirsch lengths of centers of cocompact lattices within the same connected,
simply connected, Q-defined nilpotent Lie group.

Lemma 7.1. Let G be a connected, simply connected, Q-defined nilpotent
Lie group with two cocompact lattices I'1 and I'y. Then

dim(Z(G)) = h(Z(T'1)) = h(Z(I2)).
Proof. This proof is a straightforward application of [13, Lem 1.2.5]. O

We now introduce the notion of one parameter families of group elements
of a Lie group.
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Definition 7.2. Let G be a connected, simply connected Lie group. We
call amap f: R — G an one parameter family of group elements of G if f
is an injective group homomorphism from the real line with addition.

Let I' be a torsion-free, finitely generated nilpotent group with a cyclic
series {Al}?g) and a compatible generating subset {fz}?g) We let G be
the Mal’tsev completion with Lie algebra g and induced basis for g given by
{Log(fi)}?:(?. Via the exponential map and [13, Lem 1.2.5], the maps given
by

firag(t) = exp(t Log(&:))
are one parameter families of group elements. The discussion below [13,
Thm 1.2.4 Pg 9] implies that we may uniquely write each g € G as

h(I)
g=[] firaet)
=1

where t; € R for all 7.

Definition 7.3. We say the one parameter families of group elements f; r A ¢

are assoctated to the group I', cyclic series {Al}?:(? , and compatible gener-
ating subset {fl}zhg)

We characterize when a discrete subgroup of an connected, simply con-
nected, Q-defined nilpotent Lie group is a cocompact lattice based on how
it intersects a collection of one parameter families of group elements.

Proposition 7.4. Let G be a connected, simply connected, Q-defined nilpo-
tent Lie group, and suppose that ' is a discrete subgroup of G. Suppose
there exists a collection of one parameter families of group elements of G,
written as f; : R — G for 1 <i < dim(G), such that G is diffeomorphic to
H?;IIII(G) fi(R). Then T is a cocompact lattice in G if and only I'N f;(R) = Z
for all 1.

Proof. Let p: G — G/T be the natural projection onto the space of cosets.
Suppose that there exists an iy such that f; (R)NI" 2 Z. Since I is discrete
in G, we have that I' N f;,(R) is a discrete subset of f;,(R). Given that
I'n fi, (R) is discrete and not infinite cyclic, we have that I' N f;, (R) = {1}.

We claim that each element of the sequence {fi,(f)}ieny projects to a
unique element of G/T". To this end, suppose that there exists integers tg
and t; such that p(fi,(to)) = p(fi,(t1)). That implies that there exists an
element g € I" such that f;,(to — ¢t1) = g. In particular, g € f;,(R) NI, and
thus, g = 1. Hence, fi,(to) = fi,(t1) which gives our claim.

Thus, {p(fi,(t)) }en is an infinite sequence in G/I' with no convergent
subsequence. Hence, I' is not a cocompact lattice of G

Now suppose that f;(R) N T = Z for all i. That implies for each i €
{1,...,h(")} that there exists a ¢; > 0 such that

I'n fi(R) =2 A{fi(nt;) |n€Z}.
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Let
dim(G)

1T #o.t)
i=1

We claim that E is compact and that p(E) = G/T.
Let f: RY™(&) 5 @ be the continuous map given by

dim(G

f((aiv"'vadim(G H fz az

Since Hdlm(G [0,t;] is a closed and bounded subset of R¥™(&)  the Heine-

dim(G

Borel theorem implies that [,
FE is compact.

We now claim that each coset of I' in G has a representative in E. Let

= Hdlm )fi(&) where ¢; € R for each ¢ € {1,...,dim(G)}. For each i,
there exists a s; € Z such that s; t; < E < (s;+1)t;. Let k; = ¢; — s; t; and
write h € E to be given by h = Hdlm f(k;). By construction, p(h) = p(g),
and subsequently, p(g) € p(E). Thus, p(E) = p(G). Since G/T is the image
of a compact set under a continuous map, G/T" is compact. [33, Thm 2.1]
implies that I is a cocompact lattice of G. O

[0 t;] is compact. Since f is continuous,

These next two propositions give some structural information needed
about the Mal’tsev completion of a torsion-free, finitely generated nilpo-
tent group and some structural information of admissible quotients with
respect to some primitive, central, nontrivial element.

Proposition 7.5. Let I' be a torsion-free, finitely generated nilpotent group.
Let v € (Z(I'))* be a primitive element, and let I'/A be an admissible quo-
tient with respect to y. Suppose that G is the Mal’tsev completion of I, and
let H be the Mal’tsev completion of A. Then H is isomorphic to a closed,
connected, normal subgroup of G.

Proof. Proposition 3.6 there exists a cyclic series {A; } 1 ) and a compatible
generatmg subset {fz}izrl) satisfying the following. There exists a subset
{523} {é}}h(F such that if Wy = (&,);_,, then {Ws}g(:/}) is a cyclic
series for A with compatible generating subset {gzs}iﬁ) where & = . Let
{f i,F,A,g}?SI) be the one parameter families of group elements of G associated
to the torsion-free, finitely generated nilpotent group I, cyclic series {Al}?g)
and compatible generating subset {&}h(r)

[13, Thm 1.2.3] implies that we may view H as a connected subgroup
of G. We proceed by induction on h(T') to demonstrate that H is a closed
and normal subgroup of G. If h(I') = 1, then I' = Z. It follows that G is
isomorphic to R and that H = {1}. Now our claim is evident.
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Now suppose that h(I') > 1. If h(Z(T")) = 1, then we may take A = {1}
which implies that H = {1}. Thus, our claims are evident. Now suppose

that h(Z(I')) > 1. Let Q = <§i>?if(r))’ and let K be the Mal’tsev completion
of Q. [13, Lem 1.2.5] implies that K < Z(G). Thus, K is a closed, connected,
normal subgroup of G.

We Will demonstrate H/K is Mal’tsev completion of g (A). We may write

H= H fzs,p A¢(R). Since A is a cocompact lattice of H, Proposition 7.4
implies that AN fi,rae(R) = Z for all 1 < s < h(A). By Proposition 7.4
again, we have that K N A is a cocompact lattice of K. [12, Prop 5.1.4]
implies that mx(A) is a cocompact lattice in H/K.

Observe that mx(A) = A/Q. We have that A/Q satisfies Proposition 3.1
for mx(&1). Thus, the inductive hypothesis implies that H/K is a closed,
normal subgroup of G/K. Since H isomorphic to the pullback of a closed,
normal subgroup of G/K, H is a closed, normal subgroup of G. U

Suppose that G is the Mal’tsev completion of I'; and let I'/A be an ad-
missible quotient with respect to a primitive, central, nontrivial element of
I'. If H is a Mal'tsev completion of A, then H intersects any cocompact
lattice as a cocompact lattice.

Proposition 7.6. Let I' be a torsion-free, finitely generated nilpotent group.
Let v € (Z(T'))* be a primitive element, and let T'/A be an admissible quo-
tient with respect to v, G be the Mal’tsev completion of I, and H be the
Mal’tsev completion of A. If Q < G is another cocompact lattice of G, then
QN H is a cocompact lattice of H.

Proof. Proposition 3.6 implies that there exists a cyclic series {A-}h(r) and
a compatible generatmg subset {&;}; (1 satisfying the following. There exists
a subset {fl]} ) Such that the groups {W;}; (1) where W; = <§”> form

(A)
1 Let

a cyclic series for A with a compatible generating subset {&j }j
{fi,F,Avg}?iIi) be the associated one parameter families of group elements
of the Mal’tsev completion G of I". It follows that G is diffeomorphic to
Hfg) fir.ae(R). By construction, H = H?g}) fi;r,a¢(R). Proposition 7.4
implies that QN f;r a¢(R) = Z for all i. In particular, QN f;; r A¢(R) = Z
for all j. Proposition 7.4 implies that Q2 N H is a cocompact lattice in H as
desired. O

The following lemma demonstrates that you can select a cyclic series and a
compatible generating subset for a cocompact lattice in a connected, simply
connected, Q-defined nilpotent Lie group by intersecting the lattice with a
collection of one parameter families of group elements.

Lemma 7.7. Let G be a connected, simply connected, Q-defined nilpotent
Lie group with a cocompact lattice I'. Let f; be a collection of one parameter

families of elements of G such that G is diffeomorphic to Hdlm(G fi(R). Let
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(&) = fi(R)YNT. Then the groups given by As = (&);_, form a cyclic series

for T with a compatible generating subset {51}?32)

Proof. We proceed by induction on the dim(G). Since the statement is
clear for the base case, we may assume that dim(G) > 1. If we let

dim(G)—1

H= ] f®
i=1

then Proposition 7.4 implies that I' N H is a cocompact lattice in H. The
inductive hypothesis implies that the elements &; given by

(& = fi(R)NT
satisfy the following. The groups given by Ag = (§);_;, 1 < s < dim(G) -1,

form a cyclic series for 'NH with a compatible generating subset {fz}dlm(G) !

Since I' is a cocompact lattice in G, Proposition 7.4 implies that
faim@®R)NT = Z.

Letting Agimq) = <Adim(g)_1,§dim((;)>, we have that the groups given by

{A; }dlm(G) form a cyclic series for I' with a compatible generating subset

{gz}dun(G) ‘ 0

Let T' be a torsion-free, finitely generated nilpotent group. We now
demonstrate that the value ¥rp(I") is a well-defined invariant of the Mal’tsev
completion of I'.

Proposition 7.8. Let G be a connected, simply connected, Q-defined nilpo-
tent Lie group, and suppose that I'y and 'y are two cocompact lattices of G.

Then Yrp(I'1) = ¢Yrr(l'2).
Proof. If h(Z(I'1)) = 1, then Proposition 7.1 implies that h(Z(I'2)) = 1. It
then follows from the definition of ¢¥rp(I'1) and ¥rp(I'2) that

Yre(l'1) = A(I') = ¢rp(2).

Therefore, we may assume that h(Z(I'1)),h(Z(I'2)) > 2. In this case,
we demonstrate the equality by showing that pr(Fl) < Yrp(l2) and
Yrr(l'2) < Yrp(T1).

Let G be the Mal'tsev completion of I'y. Let {A } ) be a cyclic serles

for I'y with a compatible generating subset {51}1 1 ), and let {fir,.a 5}
be the associated one parameter families of group elements. We have that

G is diffeomorphic to H?(El) firiae(R). Let
{n }h(r2 CTy suchthat (n;) 2TonN fi(R).
If we let W; = (nﬁj 1» then Proposition 7.7 implies that {W }h(rz) is a

cyclic series for I'y with a compatible generating subset {n;},_; MI2) et & be
a central element of the compatible generating subset of I'y, and let I'y/A be
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an admissible quotient with respect to &;. Let H be the Mal’tsev completion
of A. Since mp(&) = Z(T'1/H), it is evident that (mg(n;)) = Z(T'2/H). In
particular, g (n;) # 1. Proposition 7.6 implies that H N Q is a compact
lattice of H and Proposition 7.5 implies that H is a closed, connected, normal
subgroup of G. Thus, [12, Prop 5.1.4] implies that 7 (2) is a compact lattice
in G/H. Proposition 7.1 implies that h(I'y/A) = h(mg(I'2)); thus, it follows
that 7 (T'2) satisfies the conditions of Proposition 3.1 for 7;. If we let I'y /2
be an admissible quotient with respect to 7;, it follows that

hI/Q) < 7a(T2) < A(I'/A),

By Proposition 3.8, h(I'2/Q) < ¢rp(I'1). [13, Lem 1.2.5] implies that n; €
Z(T'2), and thus, the above inequality holds for each central element of the
compatible generating subset of I's in Z(I'y). Therefore, Proposition 3.8
implies that ¢rp(I'2) < ¥Yrrp(I'1). By interchanging I'y and I'y, we have that
Yrr(I'1) < Yrr(T2). O

‘We now come to the main result of this section.

Theorem 1.3. Suppose that I'y and I's are two infinite, finitely generated
nilpotent groups such that Ty /T(T'1) and T's/T(I'y) have isomorphic Mal’tsev
completions. Then Fr,(n) =~ Fr,(n).

Proof. Suppose that I'y and I'y are two infinite, finitely generated nilpo-
tent groups such that I'y/T'(T';) and I'y/T(I'2) have isomorphic Mal’tsev
completions. Proposition 4.4 implies that

FFl (n) ~ FF1/T(F1)(n) and FFz (n) ~ FFQ/T(F2)(n)'
We also have that Theorem 1.1 implies

Fiy ey (1) (log()) e /70
Yrr(C2/T(T2))

Fr,/rry)(n) ~ (log(n)) .
Proposition 7.8 implies that ¢rp(I'1/T(I'1)) = ¢Yrr(I'2/T(I2)). Thus,
Fr,(n) =~ Fr,(n). O

8. Some examples and the proof of Theorem 1.5

8.1. Free nilpotent groups and Theorem 1.5(i).

Definition 8.1. Let F(X) be the free group of rank m generated by X. We
define N(X, ¢, m) = F(X)/(F(X))c+1 as the free nilpotent group of step size
¢ and rank m on the set X.

Following [22, Sec 2.7], we construct a cyclic series for N(X, ¢, m) and a
compatible generating subset using iterated commutators in the set X.
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Definition 8.2. We formally call elements of X basic commutators of weight
1 of N(X, ¢, m), and we choose an arbitrary linear order for weight 1 basic
commutators. If 44 and -9 are basic commutators of weight i1 and io,
respectively, then [v1, 2] is a basic commutator of weight i1+1i2 of N(X, ¢, m)
if 41 > 72. If, in addition, we can write v = [y1,1,71,2] where 711 and 712
are basic commutators, then we also assume that ;2 < 9.

Basic commutators of higher weight are greater with respect to the linear
order than basic commutators of lower weight. Moreover, we choose an
arbitrary linear order for commutators of the same weight.

For z;, € X, we say that a 1-fold commutator ~ contains z;, if v = x;,.
Inductively, we say that a j-fold commutator [y, 2] contains x;, if either
~1 contains x;, or y2 contains x;,.

Note that any basic commutator of weight greater or equal to 2 must
contain two distinct commutators of weight 1 but not necessarily more than
2. Additionally, if v is a basic commutator of weight k, then v can contain
at most k distinct basic commutators of weight 1.

It is well known that the number of basic commutators of N(X, ¢, m) is
equal to the Hirsch length of N(X, ¢, m). Letting u be the Mébius function,
we may write

BN(X eom) =3 % S (dym
r=1 d|r

h(N(X,c,m))

We label the basic commutators as {51}12(1 with respect to the given
linear order.

Definition 8.3. One can see that the subgroup series {Ai}?ﬁf(){’c’m)) where

A; = (&);_, is a cyclic series for N(X, ¢, m), and [22, Cor 2.7.3] implies that

{gl-}?ﬁf(x’c’m” is a compatible generating subset. We call {Ai}?Sf(x’c’m))

the cyclic series of basic commutators for N(X, ¢, m) and {&}?SY(X’CM)) the

compatible generating subset of basic commutators for N(X,c,m).

Proposition 8.4. Let N(X, ¢, m) be the free nilpotent group of step size c
and rank m on the set X = {x;};~,. Let~ be a basic commutator of weight
c in the set X that contains only elements of Y C X where Y # 0. There
exists a normal subgroup Q such that N(X,c,m)/Q is torsion-free where
(ra(7)) = Z(N(X,c,m)/Q). Additionally, if n is a j-fold commutator that
contains elements of X\Y, then mq(n) = 1.

Proof. Let {Ai}?gf(x’c’m)) be the cyclic series of basic commutators and

{&}?SY(X’CM)) be the compatible generating subset of basic commutators.

By assumption, there exists an ig € {1,...,h(Z(N(X,c,m)))} such that
fio =7

We will demonstrate that there exists a normal descending series {K;}y_,
such that N(X, ¢, m)/K; is torsion-free for each ¢, mx,(&1) # 1 for each t,
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and if n is a i-fold commutator that contains only elements of X\Y where
i > t, then 7g,(n) = 1. We will also have that K; is generated by basic
commutators of weight greater than or equal to ¢, and finally, we will have
that (7, (&,)) = Z(N(X,c,m)/K;). We proceed by induction on ¢.

Consider the subgroup given by K, = (flﬁ:(fgl(fcm))) Observe that if
n is a c-fold commutator such that 7 contains only elements of X\Y', then
it follows by selection that mx, () = 1. Thus, we have the base case.

Thus, we may assume that the subgroup K; has been constructed for
t < ¢, and let n be a (t — 1)-fold commutator bracket that contains ele-
ments of X\Y. It then follows that [, x;] contains elements of X\Y. Thus,
7k, ([n, zi]) = 1 by assumption. Since that is true for all 1 < i < m, we have
that 7x,(n) € Z(N(X,¢,m)/K;). Let W be the set of basic commutator
brackets &; such that 7g, (&) is central and where 7g, (&) # 7k, (&,). By
construction, mg,(&1) ¢ (7, (W)) and if n is a ¢-fold commutator bracket
that contains elements of X\Y where ¢ > t — 1, then mg,(n) € (mx,(W)).
We set K;—1 & (K, W), and suppose that n is a ¢-fold commutator that
contains elements of X/Y and where ¢ > t — 1. By construction, we have
that 7, ,(n) = 1. Since K;_; = WI}:((WKt(W»), we have that K; 1 is a
normal subgroup of N(X,¢,m) and K; < K;_;. Finally, it is evident that
N(X,¢,m)/ K, is torsion-free. Hence, induction gives the construction of K
for all 4.

We now demonstrate that Z(N(X, ¢, m)/K1) = (mg, (&1)) by first showing
that & ¢ K for all i. We proceed by induction, and note that the base case
follows from the definition of K.. Now assume that £; ¢ K for the inductive
hypothesis. By definition, K;_1 = (K, W) where W is the set of basic com-
mutator brackets & such that 7g, (&;) is central in N(X, ¢, m)/K; and where
i, (&) # 7K, (&, ). By the construction of the upper central series, we have
that the subset {7k, (&), 7k, (W)} is a free basis of Z(N(X,c,m)/K;). Sup-
pose for a contradiction that &;, € Ky—1. Given that K; < K;_1, we have
that &, € W mod K; which contradicts the fact that {mg, (&), 7k, (W)}
is a free basis of Z(N(X,c,m)/K;). Thus, induction implies that &, ¢
K;. In particular, g, (&,) € (Z(N(X,c,m)/K7))®. The construction of
K7 mirrors the techniques used in the proof of Proposition 3.1. Thus,
h(Z(N(Xa Cy m)/Kl)) =1, and therefore, Z(N(Xa Cy m)/Kl) = <7TK1 (510))
By taking Q2 = K7, we have our proposition. ([

We now come to the main result of this subsection.

Theorem 1.5(i). For each ¢ € N, there exists a m(c) € N satisfying the
following. For each ¢ € N, there exists an irreducible, torsion-free, finitely
generated nilpotent group T of step length ¢ and h(T') > £ such that

Fr(n) < (log(n))™.

Proof. Let ¢ > 1, £ > 2, and Xy = {x;}{_,. Let N(Xy,¢,¥) to be the free
nilpotent group of step size ¢ and rank £ on the set X,. Theorem 1.1 implies
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that there exists a Yrr(N (Xy, ¢, £)) € N such that

Px(x00) () = (log(n)) Vo N (X,

Before we continue, we make an observation. One can see that we may
take the groups given by N(X,,¢,c) x Z¢ to satisfy a weak version of our
theorem. However, N(X,, ¢, c) X Z* is not irreducible. Thus, we will find an
irreducible, torsion-free quotient of N(Xy,c,¢) which achieves the desired
end.

We will demonstrate that

(log(n))¢RF(N(Xz,c,€)) =< (10g(n))wRF(N(Xc,C,C))

for each ¢ > ¢, and since N (Xy, ¢, f) is a nilpotent group of step size ¢ and
Hirsch length greater than ¢, we will have our desired result.

We let {A;}Xeed
{fi}?ilf(x‘“c’e)) be the compatible generating subset of basic commutators
for N(Xy, ¢, £). For each & € Z(N(Xy,c,?)), let N(Xy,c,?)/A; be an admis-
sible quotient with respect to &;. Proposition 3.8 implies that there exists
an ig € {1,...,h(Z(N(Xy,c,£)))} such that h(I'/A;y) = Yrr(N(Xp, ¢, £)).

For each & € Z(N(Xy,c,?)), there exists a subset Y; C X such that &; is
a basic commutator of weight ¢ that contains only elements of Y;. Propo-
sition 8.4 implies that there exists a subgroup €; such that N(Xy, ¢, £)/$;
satisfies Proposition 3.1 with respect to &. Moreover, elements of X\Y; are
contained in £2;.

There is a natural surjective homomorphism p; : N(Xy, ¢, £) — N(Y;, ¢, |Y;])
given by sending elements of X'\Y; to the identity. Thus, we have an induced
homomorphism ¢ : N(Y;, ¢, |Yi]) = N(Xy, ¢, £)/€; such that o, = o p;. In
particular, N(Xy, ¢, £)/Q; = N(Y;, ¢, |Y;])/pi(€;). Therefore, N(Xy, ¢, £)/82;
satisfies the conditions of Proposition 3.1 for p;(&;). Proposition 3.8 implies
that

) be the cyclic series of basic commutators and

h(N(va c, g)/AZ) S ¢RF(N(E7 C, ‘Y;D)
Since N(Xy, ¢, £) has step size ¢, we have that |Y;| < cforany &; € Z(N(Xy, ¢, ?)).
Additionally, we have that N(Y;, ¢, |Yi|) = N(X}, ¢, j) when |Y;| = j. In par-
ticular,

Urr(N(Yi, ¢, [Yi])) = ¥re (N(Xj, ¢, 5))-
By setting

m(c) = max{yrr(N(Xj,¢,j)) [1 <j < c},

Proposition 3.8 implies that Fy(x,,c.¢) (1) = (log(n))™). O

8.2. Central products and applications. The examples we contruct for
Theorem 1.5(ii), (iii) and (iv) arise as iterated central products of torsion-
free, finitely generated nilpotent groups whose centers have Hirsch length
1. In the given context, Corollary 1.2 allows us to compute the precise
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residually finiteness function in terms of the Hirsch length of the torsion-

free, finitely generated nilpotent groups of whom we take the central product
of.

Definition 8.5. Let I' and A be finitely generated groups, and let
0:2Z() — Z(A)

be an isomorphism. We define the central product of I' and A with respect
to 6 as

FogA= (T xA)/K where K =1{(2,0(z)"")|z¢c Z()}.

We define the central product of the groups {T';}_, with respect to the au-
tomorphisms 0; : Z(G;) — Z(G,41) for 1 <i < ¢ —1 inductively. Assuming
that (I';op,)¢_, has already been defined, we define (I';op,)’_; as the cen-
tral product of (I‘io&)f;% and I'y with respect to the induced isomorphism
0p_1 : Z((Fiof)i)f;%) — Z(Iy). When I' =T; and 6 = 6; for all i, we write

the central product as (T'og)’_,.

Suppose that I' og A is a central product of two nilpotent groups. Since
products and quotients of nilpotent groups are nilpotent, it follows that
I" oy A is a nilpotent group. However, the isomorphism type of I' og A is
dependent on 6.

Proposition 8.6. Let {I;}{_, be a collection of torsion-free, finitely gen-
erated nilpotent groups where h(Z(I';)) = 1 for all i. Let Z(I';) = (z),
and let 0; : Z(T;) — Z(Liy1) be the isomorphism given by 6(z;) = zi41 for
1<i</l—1. Then
l
h((Tiog,)izy) = Y M) =€+ 1 and h(Z(Tiog,)i_1)) = 1.

=1

Proof. We may assume that ¢ = 2. First note that if I" is a torsion-free,
finitely generated nilpotent group with a normal subgroup A < I such that
I'/A is torsion-free, then h(I') = h(A) + h(I'/A). Observe that

T 0p s /Z (T 0 Ts) = Ty /Z(T1) x Da/Z (D).
It is evident that h(Z(I'; og I'2)) = 1, and thus, we may write
hI1/Z(T1)) + h(l2/Z(T2)) +1 = h(I'1 0g I'2).
Therefore,
h(T1o0gTs) = h(T1) — 1+ h(Ts) =14+ 1 =h([1) + h(Ts) — 1. O

Definition 8.7. For ¢ > 3, we define Ay to be the torsion-free, finitely
generated nilpotent group generated by the set Sy = {xi}le with relations
consisting of commutator brackets of the form [z1, ;] = ;41 for 2 <i < /-1
and all other commutators being trivial.
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Ay is an example of a Filiform nilpotent group. It has Hirsch length ¢ and
has step length £ — 1. Defining A; = (z,) it follows that {A;}f_;

s=m—i+1’
is a cyclic series for A, and {&}le is a compatible generating subset where
& = x¢—i+1. Additionally, h(Z(Ay)) = 1.
Theorem 1.5(ii), (iii), and (iv).
(ii) Suppose £ # 2. Then there exists an irreducible, torsion-free, finitely
generated nilpotent group Ty such that Fr(n) ~ (log(n))".
(iii) Suppose 2 < ¢1 < ¢y are natural numbers. For each ¢ € N, there
exist irreducible, torsion-free, finitely generated nilpotent groups I'y
and Ay of step lengths c1 and ca, respectively, such that

Fr,(n) ® Fa,(n) = (log(n))e lem(er+1,e24+1)

(iv) For natural numbers ¢ > 1 and m > 1, there exists an irreducible,
torsion-free, finitely generated nilpotent group I' of step length c
such that (log(n))™ < Fr(n).

Proof. Assume that ¢ > 3. By construction, Ay is a torsion-free, finitely
generated nilpotent group of Hirsch length ¢ such that h(Z(I'y)) = 1. Corol-
lary 1.2 implies that
Fp,(n) = (log(n))*
and since Fz(n) ~ log(n), we have Theorem 1.5(ii).
For 2 < ¢; < ¢9 and £ > 1, there exist natural numbers j, and ¢y satisfying

(Je—1)(aa+1) =L 1lem(e; + 1,0+ 1)
and

(e —1)(ca+1)=Clem(c; +1,c0+ 1),
respectively. Let
Ty = (Aiog)l, and Ay = (Ajog, )i,
where
HI‘ : Z(Ac1+1) — Z(Acl-i-l) and GA : Z(Acz—f—l) — Z(Acz-‘rl)
are the identity isomorphisms, respectively. Proposition 8.6 implies that
h(T¢) = h(Ay) and h(Z(Ty)) = h(Z(Ay)) = 1, and thus, Corollary 1.2
implies that
Fr,(n) = Fa,(n).
Lastly, let ¢ > 1 and m > 1, and consider the group
Lem = (Act199)i21
with finite generating subset S.,,. Proposition 8.6 implies that
R(Tem) = cm? +cm — 1,
and since ¢ m? +c¢m — 1 > m, Corollary 1.2 implies that
(log(n))™ = Fr, ,(n)
as desired. O
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Part IV. Conjugacy separability
9. A review of Blackburn and a proof of Theorem 1.6

We start with a review of Blackburn’s proof of conjugacy separability for
infinite, finitely generated nilpotent groups. This section provides motiva-
tion for estimates in the following sections and how one obtains an upper
bound for Conjp(n).

Let I" be a torsion-free, finitely generated nilpotent group with a cyclic
series {Az}?:(? and a compatible generating subset {fi}?g), and let v,n €T’
be elements such that v ~ 1. In order to construct a surjective homomor-
phism to a finite group that separates the conjugacy classes of v and 7, we
proceed by induction on h(T'). Since the base case is evident, we may as-
sume that A(I') > 1. When ma, (y) = ma,(n), induction implies that there
exists a surjective homomorphism to a finite group ¢ : I' — @ such that
©(y) = ¢(n). Otherwise, by passing to a conjugate element, we may as-
sume that n = v & for some t € Z*. The following integer is of particular
importance.

Definition 9.1. Let I be a torsion-free, finitely generated nilpotent group
with a cyclic series {AZ}?S;) and a compatible generating subset {EZ}?SI)
Let v € T'. If we let ¢ : ﬂ&}(Cp/Al(fy)) — Ay be given by ¢(n) = [y,n], we

define 7(I"; A, £,~) € N so that <£I(F’A’E”7)> =~ Tm(p).

Since we are trying to separate the conjugacy classes of v and v &%, we
choose a prime power p® such that p* | 7(I', A, £, v) and p® 1 t. We then find
a w € N such that if 8 > w, then for each v € T?’ there exists an element
n € T satisfying n?” " = v (see [3, Lem 2]).

Consider the following definition (see [3, Lem 3]).

Definition 9.2. Let I be a torsion-free, finitely generated nilpotent group
with a cyclic series {AZ}?SI) and a compatible generating subset {&}?g),
and let v € I'. We define e(I", A, £,v) € N to be the smallest natural number

such that if A > e(T", A, &, 7), then
Crypo () € T (Cr(7) - 17

We set w = a +w + e(I'/A1, A, €,7). Blackburn then proves that

A*E(F,A,E,'ﬂ)

e (7) % e (17)

(see §12 and [3]). However, as a consequence of the choice of a cyclic series
and a compatible generating subset, it becomes evident that the integer w
is unnecessary. When I' has torsion elements, Blackburn inducts on |T'(T")|.
Thus, it suffices to bound p¢(247) and 7(I', A, €, +) in terms of ||||g and
In||s. Following Blackburn’s method, we calculate the upper bound for
Conjy,,, ., (z)(n). We then demonstrate that the given upper bound is sharp.
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Before starting, we make the following observations for Hay,41(Z). Using
the cyclic series and a compatible generating subset given in Subsection 5.1,
we have that

T(ry) = T(H2m+1 (Z)7 Aa 5)7) = ng{x’y,’b y’y,]|1 S 7’7.7 S m}
Thus, Proposition 2.8 implies that 7(v) < Cyl|v||s for some Cy € N. More-
over, via Subsection 5.1 we may write the conjugacy class of v as
}‘ Ty () B+ 2y
(5) 0 IT Uny BEL
0 0 1
The following proposition gives the upper bound for Conjy, ., (z)(n)-

Proposition 9.3. Conjy, ., (z)(n) < n*™.

Proof. Let v,n € T such that [|v[s,|nlls < n and v = 1. We need to
construct a surjective homomorphism to a finite group ¢ : Hop11(Z) — @
such that ¢(v) = ¢(n) and where |Q| < C n®™*! for some C € N. We
proceed based on whether v and 7 have equal images in (Hap41(Z))ab-
To this end, assume that m,,(y n~!) # 1. Corollary 1.4 (see also [4, Cor
2.3]) implies that there exists a surjective homomorphism to a finite group
@ : Z¥™ — Q such that o(map(yn71)) # 1 and |Q| < Cy log(Cy n) for some
C1 € N. Since the images of v and 7 are nonequal, central elements in @, it
follows that ¢ (map(7)) » @(map(n)), and thus,

CDw,,, .1 (z)(7>n) < Crlog(Cr n).
Thus, we may assume that m,p(7) = map(n). In particular, we may write
n = v A, and Proposition 2.8 implies that |t| < Cyn?. Let p* be a prime
power that divides 7() but does not divide t. We claim that
T (Ham 1 (27 (V) % Tttg @ (YA,
and for a contradiction, suppose otherwise. That implies there exists an
element x € Hyy,4+1(Z) such that
T (Ham 1 27 (V5 2]) = Ty, @y ()
Equation (5) implies that
2y € {ly B+ 2y | f€Z} (mod p¥).
Therefore, there exist a,b € Z such that ¢t = a 7(y) + bp“. Thus, p* | ¢, a
contradiction. Hence,
T(Hapmy1(Z))P* (7) ~ T(Hapmy1(7))P* (v AY).
When 7(7) # 0, we have that p* < 7(v) < Cpn. Hence,

CDH2m+1(Z) (77 77) < Cgm—H p2mtl
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When 7(y) = 0, the Prime Number Theorem [38, 1.2] implies that there
exists a prime p such that p { ¢ where p < C3 log(Cs |t|) for some Cy € N.
Hence, p < C3 log(C3 n) for some C3 € N, and thus,

CDu,,,1(z)(7:m) < Cs (log(Cs n))* ™.

Therefore, Conjy,, ., (z)(n) = n2m+1 -
The following proposition gives the lower bound of Conjy,,, , (z)(n)-
Proposition 9.4. n*"*! < Conjy,, ., z)(n).

Proof. We will construct a sequence of nonconjugate pairs {~;,7;} such that

CDH2m+1 (2) (i, mi) = n?m—i-l

where ||y, ||7:|| = n; for all i. Let {p;} be an enumeration of the primes.
Writing p; - e; as the scalar product, we consider the following pair of ele-
ments:

1 pi- 51 1 1 pi- 51 2
=10 I, O and m,=0 I, O
o 0 1 o 0 1

Equation (5) implies that we may write the conjugacy class of 7; as
1 pi-é1 tpi+1
(6) 0 I, i |ltez
0 0 1
Since m(w,,,,, (z))r: (Vi) and 7(w,,.,, (z))e: (1:) are nonequal, central elements
of Hom+1(Z)/(Ham+1(Z))P:, it follows that ~; ~ n; for all i. Moreover, we
have that ||vil|s, [|7:|ls = pi- Given that

| Homi1(Z)/(Homy1 (Z))Pi] = p2m T,

we claim that

CDu,,, 1z (Vismi) = 0™

In order to demonstrate our claim, we show if given a surjective homomor-
phism to a finite group ¢ : Hopi1(Z) — Q such that |Q| < p7™*!, then
©(vi) ~ @(m;). [17, Thm 2.7] implies that we may assume that |Q| = ¢*.
Since p(7y;) = ¢(n;) when ¢(\) = 1, we may assume that @(\) # 1.

Suppose first that ¢ = p;. We demonstrate that if @) is a group where
©(vi) ~ (1), then there exists no proper quotient of @ such that the
images of ¢(v;) and ¢(n;) are nonconjugate. Since B(Hap41(Z), A €) =1,
Proposition 4.11 implies that |Q| = p?mﬂ. Since every admissible quotient
with respect to any primitive, central, nontrivial element is isomorphic to
the trivial subgroup, Proposition 4.12 implies that there exist no proper
quotients of @ such that the image of ¢(\?) is nontrivial. Thus, if N is a
proper quotient of ) with natural projection p: Q — N, then

ker(p) N1 Z(Q) = Z(Q)
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since Z(Q) = Z/p;Z by Proposition 4.12. Thus, p(¢(7:)) = p(¢(ni)); hence,

p(p(vi)) ~ ple(n;)). In particular, if Q is a p;-group where |Q| < p?™ 1,

then ©(y;) ~ ¢(n;). Thus, we may assume that g # p;.

If ¢ > p;, then Proposition 4.11 implies that p?™*!

; > g*. Thus, we may
assume that ¢ < p;. Since Proposition 4.11 implies that Z/¢"Z = Z(Q),
Equation (6) implies that if 1 = pt¢ ( mod ¢” Z) for some t € Z , then
©(7p) ~ @(np). The smallest ¢” where this fails is ¢” = p; since the image of
p; is a unit in Z/q¢"7Z if and only if ged(p;, ¢¥) = 1. Therefore, p(v;) ~ ©(n;)

when ¢* < p;. Hence, n?m*! < Conjy,, ., (z)(n). O

Taking these propositions together, we obtain the main result of this
section.

Theorem 1.6. Conjy,, ., (z)(n) ~ n*"*1.

Proof. Proposition 9.3 implies that Fy,, ,  (z)(n) =< n?m+1and Proposi-
tion 9.4 implies that n®™*! < Fy, . (z)(n). Therefore,

FH2m+1 (z) (n) ~ n2m+1 . U

The following corollary will be useful for the proof of Theorem 1.8.

Corollary 9.5. Let H3(Z) be the 3-dimensional Heisenberg group with the
presentation given by (k,pu,v | [u,v] = Kk, k central ), and let p be a prime.
Suppose ¢ : H3(Z) — Q is a surjective homomorphism to a finite group such
that Q is a q-group where q is a prime distinct from p and where p(k) # 1.
Then

PP k) ~ (P k).
Proof. We may write the conjugacy class of uP k as

{pP &Pt e 7).
Proposition 4.11 implies that Z(Q) = (¢(k)). Hence, Z(Q) = Z/mZ where
m = Ordg(p(k)). Since Q is a g-group, it follows that m = ¢” for some 3 €

Z. Given that gcd(p, ¢°) = 1, there exists integers r, s such that rp+sq¢® = 1.
We have that

P KTPHL wP K.
We may write
—sqP
p(p? 677 = p(uP w170 = (P K2).
Therefore, p(uP k) ~ (P k?) as desired. O

10. Relating complexity in groups and Lie algebras

Let I' be a torsion-free, finitely generated nilpotent group with a cyclic
series {Ai}?g), and a compatible generating subset {fi}h:(?, and let G be

7
the Mal’tsev completion of I' with Lie algebra g. The overall goal of this
section is to provide a bound of || Log(7)l|reg(s) in terms of [|y[|s where

Log(S) gives a norm for the additive structure of g.
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Proposition 10.1. Let I' be a torsion-free, finitely generated nilpotent group
with a cyclic series {Az}?:(? and a compatible generating subset {ﬁz}?g) Let
G be the Mal’tsev completion of I' with Lie algebra g. Let v € I'. Then there

exists a constant C € N such that
c 2
| Log(7)|rog(sy < C (Jl7]ls) )",

Proof. Using the Mal’tsev coordinates of v, we may write

h(T)
v=[I&
=1

Lemma 2.8 implies that there exists C; € N such that |as| < C1(||7]/s)*™
for all 4. A straightforward application of the Baker—Campbell-Hausdorff
formula (2) implies that Log(§"*) = «; Log(&;). Writing A; = o Log(&), it
follows that

1 4il|Log(s) < Ca(llvlls)™.

Equation (2) implies that we may write

()
I Log(NlLog(sy < D ICBi(Ar, .., Apr))lLog(s)
i=1
where CB;(Ax, ..., Apr)) is a rational linear combination of i-fold Lie brack-

ets of {4}y € {A}S). Lot {4}y € (A} where [Aj,,... 4] #
0. Via induction on the length of the iterated Lie bracket, one can see that
there exists a constant C; € N such that

t
[Ajis 0 A < C ] 1A oges) < CrCa (o).

s=1

h(T)

By maximizing over all possible ¢-fold Lie brackets of elements of {4;},2,’,

there exists a constant D; € N such that
ICB;i(Ar, ..., Apry)logcs) < Di (I17]5)" 0.

Hence,

I Log (M) |log(s) < C (Jl7lls) ™
for some C' € N. O

An immediate application of Proposition 10.1 is that the adjoint repre-
sentation of I'" has matrix coefficients bounded by a polynomial in terms of
word length.

Proposition 10.2. Let I be a torsion-free, finitely generated nilpotent group
with a cyclic series {Al}?g) and a compatible generating set {ﬁz}fg) Let G
be the Mal’tsev completion of I with Lie algebra g. Let v € ', and let (j; ;)

be the matrixz representative of Ad(vy) with respect to the basis {Log(& )}?g)

Then |p; ;| < C (171ls)€™* for some C € N.
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Proof. Proposition 10.1 implies that there exists a constant C7 € N such
that ,

I Log()l|Log(sy < Cr ([V]ls) "
Via induction on the length of the Lie bracket and Equation (3), we have
that .

1 Ad(7) (03)l|Log(sy < Calllylls) ™
for some C5 € N. O

11. Preliminary estimates for Theorem 1.7

Let I' be a torsion-free, finitely generated nilpotent group with a cyclic
series {Al}?g) and a compatible generating subset {51}?:(1;) Let v be a
nontrivial element of I', and let p be some prime. In the following section,
we demonstrate the construction of the integer e(I',A,¢,~) and give an
upper bound for p¢T-24:7) in terms of |7l s independent of the prime p. We
first provide a bound for 7(T', A, &,~) in terms of ||7||s.

Proposition 11.1. Let I' be a torsion-free, finitely generated nilpotent group
with a cyclic series {Az}?g) and a compatible generating subset {@}?El)
There exists k,C € N such that

(0, 4,67 < C (Is)".
Proof. Let G be the Mal’tsev completion of I" with Lie algebra g. Consider
the smooth map ® : G — G given by ®(g) = [, g]. Suppose n € I" satisfies
d(n) = éz(F’A’gﬁ). The commutative diagram (1.2) on [13, Pg 7] implies
that we may write

(I — Ad(y™"))(Log(n)) = Log(&]"447)

where (d®,); = I — Ad(y~!). Proposition 10.2 implies that I — Ad(y™1)
is a strictly upper triangular matrix whose coefficients are bounded by
C (Ivlls) €™’ for some C € N. Since it is evident that

Log(¢]"47)) = 7(I', A, €,7) Log(1),

backwards substitution gives our result. O

The first statement of the following proposition is originally found in [3,
Lem 3]. We reproduce its proof so that we may provide estimates for the
value p¢(I2€7) in terms of |y||g where p is an arbitrary prime.
Proposition 11.2. Let I’ be a torsion-free, finitely generated nilpotent group
with a cyclic series {Al}?:a;) and a compatible generating subset {fz}ii? Let
p be a prime number, and let v € T'. Then there exists e(I', A, £,~) € N such
that if a > e(I', A, €, 7), then

Crree (7) C Tppe (CF(’Y) -IP
Moreover, p*U2&7) < C(||v||s)* for some C € N and k € N.

a*E(TvA,€,7)>
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Proof. We proceed by induction on Hirsch length, and given that the state-
ment is clear for Z by setting e(I", A, &, v) = 0 for all v, we may assume that
h(I') > 1.

We construct e(T', A, £, 7) based on the value of 7(I", A, &, v) (see Defini-
tion 9.1). By induction, we may assume that we have already constructed
e(T'/A1, A€, 5). When 7(T', A, €,v) = 0, we set

G(F, Aa 57 7) = e(F/Ab A) ga ’7)
Suppose a > e(I',A,€&,7v) and that 7 € Cr/ree (%) for some n € T'. By
selection, ) € Cpppe.p, (7). Thus, we may write

a—e(I',AL,y)

ne W;i(cr/alﬁ)) -I?
Since W&}(CF/AI(’V)) = Cr(7y), it follows that

1 € Trpe (CF('Y) TP

)

a—e(F,A,m)>
Thus,

Cryrve () € mppe (Crly) - T7

When 7(T',A,€,v) # 0, we let 8 be the largest power of p such that
PP T(T, A€, ) and set

e(F’ A? 57 /7) = e(F/A17 A?E? ’7) + B'

Let a > e(I',A,&,7), and let n € I' satisfy 7 € Cpjppe (3). Thus, 7 €
Cr/ree.a (%), and subsequently, induction implies that

afe(l“ﬁﬁ,ﬁ,’v))

1 € Tre. A, (Cr/Al('?) 'FPWE(F’A’MHB) )

Thus, we may write n = p €* A where

a—e(I,AL,v)+8

pelr(y), rel? . and g, (e) = €T,

Hence, we have that

a—e(l',A,8,7)+8

[v,n] = [v,e"] € TP

a—e(l'/A1,A6,7)

Since [y, €] € I'? and [, €] € A, we have that
pa_e(F7A7£7V)+ﬁ ’ a T(F, A’ é" p)/).
By definition of p?, it follows that p®~ €447 | a, and thus,

7] € Tppo (Cr(’Y) : Fp%dn“’”) :

Hence,

a—e(T,A¢,y)
Cryron (1) € mppe (Cr(y) - T34,
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We proceed by induction on Hirsch length to demonstrate the upper
bound, and since the base case is clear, we may assume that h(T') > 1.
Let v € T, and suppose that 7(I'; A, £,v) = 0. By construction,

e(r7 A? 57 ,‘Y) = e(F/A17 A? 57 7)7
and thus, induction implies that there exist C1,k; € N such that
p/ABEN < 0y (J3)5)"

When 7(T', A, €,v) # 0, it follows that e(T, A, &,7) = e(T/A1, A €,7) + B
where [ is the largest power of p that divides 7(I', A, £, ). Proposition 11.1
implies that there exist k2,Cy € N such that p® < Cy (|Jy]ls)*2. Conse-
quently,

peAEY < 0 Oy (Ily|lg)Fr 2. H
We finish with the following technical result.

Proposition 11.3. Let I' be a torsion-free, finitely generated nilpotent group
(T)

with a cyclic series {A;}; (1 and a compatible generating subset {&;},2,, and
let v,m € T'. Suppose that v =~ n, but ma,(7) ~ 7a,(n). Then there exists
an element g € T such that g~*n g =~ & where

k
[t} < C maz{lvls, [Inlls}

for some constant C' > 0 and k € N.

Proof. Let G be the Mal’tsev completion of I" with Lie algebra g. Consider
the smooth map ® : G — G given by ®(z) = [n,z]. By assumption, there
exists an element g € I' such that g=' 7 ¢ = ~ mod Ay, and thus, the
commutative diagram (1.2) on [13, Pg 7] implies that we may write

(I = Ad(n™")) (Log(g)) = Log(n~" 7 £1)

for some t € Z°*. Since & is central, Equation 2 implies that we may write

(1 = Ad(n™")) (Log(g)) = Log(n ™" 7) + Log(£1).

Proposition 10.2 implies that I — Ad(n~!) is a strictly upper triangular
matrix whose coefficients are bounded by Cy (||n]|s)©™)* for some C; € N.
Lemma 10.1 implies that we may write Log(n~17) = Z,’fg) a; Log(&;) where

lai| < Co (Hn_l fyHS)(C(F))Q for some Cy € N. Thus, we may write

(I = Ad(n™")) (Log(g)) = (t + a1) Log(&1) + Z a; Log(&).

Thus, backwards substitution gives our result. ([
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12. Proof of Theorem 1.7

Let I' be an infinite, finitely generated nilpotent group. In order to demon-
strate that there exists a k1 € N such that Conjp(n) < n*1, we need to show
for any elements v,n € I" where v = n and ||7||s, ||7]|ls < n that there exists
a prime power p* < C n*? such that mppe () » mppe (1) for some C, ko € N.
It then follows that CDr(v,7) < CMDpMT) k2 We first specialize to torsion-
free, finitely generated nilpotent groups.

Proposition 12.1. Let I be a torsion-free, finitely generated nilpotent group
with a cyclic series {Az}?g) and a compatible generating subset {fz}f’ilz)

Then there exists a k € N such that
Conjp(n) < n*.

Proof. Let v,n € I such that ||v[s,||n]ls < n and where v = 7. We
demonstrate that there exists a kg € N such that CDr(v,n) < Co nko for
some Cjy € N by induction on h(T"), and since the base case is clear, we may
assume that (') > 1. If ma, () » 7ma,(n), then the inductive hypothesis

implies that there exists a surjective homomorphism to a finite group
p: /A1 —Q
such that ¢() < ¢(n) and where |Q| < Cy n*! for some C1,k; € N. Thus,
CDr(y,n) < Cy n*L.

Thus, Proposition 11.3 implies that there exists an element ( € I' such
that (¢! = v & where |t| < Cy n*2 for some Cy € N and ko € N. Since
v = &L, there exists a prime power p® such that p* | 7(T, A, £,v) but p® { ¢.
We set

w=a+el/A A7),
and suppose for a contradiction that there exists an element x € I" such that
e (17 y @) = mppe (7 €1)F. That implies 7 € Cr/rre.a, (7), and thus,

T € e .p, (Crya, (7) TP

by Proposition 11.2. Subsequently, x = g u for some g € W;}(CF/Al(’_)/» and

€ TP, Hence, mppe ([v,9]) = mpp (€1)", and since [y, g] = gT(F’A’g’A’) for

some q € Z, it follows that
ifq T(F7A7£7"/) c I‘pa+e(F/A1’A’E’V) .
That implies p® | ¢, which is a contradiction. Hence, 7y« (7) o mppe ().
Proposition 11.2 implies that p¢T/A1867) < O3 nks for some Cs, ks € N.
When 7(T', A, &,v) = 0, the Prime Number Theorem [38, 1.2] implies that
we may take |p| < Cy log(Cyn) for some Cy € N.
Hence,
CDr(v,n) < Cs (log(C5 n))"™
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for some C5 € N. When 7(I', A, §,v) # 0, Proposition 11.1 implies that
(T, A, &,7) < Cg n* for some Cg,ky € N. Thus, p¥ < Cs Cg nF3the,
Therefore,
CDr(7, 1) < (C3 C)MT) D) katha)
Thus, by letting
ks = max{k;l, h<F>(k}3 + k4)},

we have
Conjp(n) < n*s. O

‘We now come to the main result of this section.

Theorem 1.7. Let I' be a finitely generated nilpotent group. Then there
exists a k € N such that

Conjp(n) < n*.

Proof. Let I' be an infinite, finitely generated nilpotent group I' with a
cyclic series {A;}", and a compatible generating subset {&;}I",. Let k; be
the natural number from Proposition 12.1 and ks be the natural number
from Proposition 11.2, both for I'/T'(T"). Letting k3 = h(T') -max{k1, k2 }, we
claim that Conjp(n) < n*3. Let ,n € T satisfy v = 7 and ||v]|s, [|[nlls < n.
In order to show that CDr(vy,n) < Cy n¥s where Cy € N, we construct a
surjective homomorphism to a finite group that distinguishes the conjugacy
classes of v and 7 via induction on |T'(T")|.

Proposition 12.1 implies that we may assume that there exists a subgroup
P C Z(T') of prime order p. If wp(vy) » mwp(n), then induction implies that
there exists a surjective homomorphism to a finite group ¢ : I'/P — N such
that ¢(7) = ¢(n) and where |[N| < C1 n*3 for some C; € N. Thus,

CDr(y,n) < Cy n*s.

Otherwise, we may assume that n = v u where (u) = P.

Suppose there exists a subgroup @ C Z(I') such that |Q| = ¢ where ¢ is
a prime distinct from p. Suppose for a contradiction that there exists an
element = € T such that 27!y 2 = v u A where Q = ()\). Since [y,z] € Z(T')
and Ordr(\) = ¢, basic commutator properties imply that [y,z] = pf.
Given that p s+ qr =1 for some r, s € Z, it follows that

2 =yt P =

which is a contradiction. Hence, induction implies that there exists a surjec-
tive homomorphism to a finite group 6 : I'/Q — M such that 6() ~ 6(~ u)
and where |[M| < Cs n*s for some Cy € N. Thus,

CDr(y,n) < Cyn*.
We now may assume that T'(T") is a p-group with exponent p™. We set

w=m+e/T(T),A,E %),
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and suppose for a contradiction that there exists an element x € I such that
mppe (271 @) ~ e (7 ).

ThuS, T e CF/T(F),FpW (’7), hel’lce7

z € mry.ro (Cryray (1) - TP7)

by Proposition 11.2. Therefore, we may write z = g A where A € T?" and
g € Wf(lp)(CF/T(F)('?))- Subsequently, [y,g] u~' € TP". Moreover, since

[v,g] € T(T') and T(I') N T?" = {1}, it follows that [y,z] = pu which is
75

(F/T(F)7A 7’7) S 03 nkQ for

a contradiction. Proposition 11.2 implies that p®
some C3 € N. Thus,

CDr(v,7) < CY®) [T(1)| nhT) b2

and subsequently,
Conjp(n) < nks. O

13. Proofs of Theorem 1.8 and Theorem 1.9

Let I" be an infinite, finitely generated nilpotent group with a cyclic se-
ries {A;};", and a compatible generating subset {&;};~,. Since the proofs
of Theorem 1.8(i) and Theorem 1.8(ii) require different strategies, we ap-
proach them separately. We start with Theorem 1.8(i) since it only requires
elementary methods.

We assume that ' contains an infinite, finitely generated abelian group
K of index m. We want to demonstrate that

log(n) < Conjp(n) < (log(n))™.

Since Fr(n) =< Conjp(n), Corollary 1.4 (see also [4, Cor 2.3]) implies that
log(n) = Conjp(n). Thus, we need only to demonstrate that

Conjr(n) = (log(n))™.

For any two nonconjugate elements v,n € I where ||v||s, [|[7|ls < n, we want
to construct a surjective homomorphism to a finite group ¢ : I' — @ such
that o(v) = ¢(n) and where |Q] < C (log(C n))™ for C € N.

Theorem 1.8(i). Suppose that T is an infinite, finitely generated nilpotent
group. If ' contains a normal abelian subgroup of index m, then

log(n) < Conjr(n) < (log(n))™.

Proof. Let K be a normal abelian subgroup of I" of index m. Let S; be a
finite generating subset for K, and let {v;};", be a set of coset representa-
tives of K in I'. We take S = S; U {v;};", as the generating subset for T".
If ||[y|ls < n, we may write v = g, vy where ||g,||s, < C1n for some C; € N
and vy, € {v;};~,. Conjugation in I induces a map ¢ : I'/K — Aut(K)
given by ¢(mx(v;)) = ;. Thus, we may write

M = {@i(gy) (0; vy b
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Finally, there exists a constant Cy € N such that if ||v|ls, < n, then
lei(7)]ls < Cen for all i.

Suppose v,n € I' are two nonconjugate elements such that ||v|s, [|n|ls <
n. If m(y) = mx(n), then by taking the homomorphism 7 : I' — I'/ K, it
follows that CDr(v,n) < m. Otherwise, we may assume that n = g, vy. By
Corollary 1.4 (see also [4, Cor 2.3]), there exists a surjective homomorphism
fi : ' = @Q; such that

filgy ot wilgn) (vt oy vy)) # 1
and
|Qi| < C5 log(2C2 C3n)
for some C3 € N. By letting H = N[, ker(f;), it follows that mg () ~ 7 (n)
and
IT'/H| < C5" (log(2 C2 Cym))™.
Hence, Conjp(n) = (log(n))™ and thus, log(n) < Conjp(n) = (log(n))™. O

For Theorem 1.8(ii), suppose that I" does not contain an abelian group of
finite index. In order to demonstrate that

n¢reOET/TI)=D < Conjp(n),

we desire a sequence of nonconjugate pairs {7;,7;} such that

CDr (v, ) = n;ﬁRF(F)(C(F/T(F))*l)
where ||yills, ||nills & n; for all ¢. In particular, we must find nonconjugate
elements whose conjugacy classes are difficult to separate, i.e., nonconjugate
elements that have relatively short word length in comparison to the order
of the minimal finite group required to separate their conjugacy classes.
We first reduce to the calculation of the lower bounds for Conjp(n) to
torsion-free, finitely generated nilpotent groups by appealing to the conju-
gacy separability of two elements within a finite index subgroup.

Proposition 13.1. Let I" be an infinite, finitely generated nilpotent group,
and let A be a subgroup. Suppose there exist v,n € A such that v~ n in I.
Then CDA(y,n) < CDr(v,n).

Proof. We first remark that since I" and A are finitely generated nilpotent
groups, Theorem 1.7 implies that CDp(vy,7) < oo and CDa(y,n) < oo.
Suppose that ¢ : I' — @ is surjective homomorphism to a finite group
such that |Q| = CDr(vy,n). If we let ¢ : A — T' be the inclusion, then
we have a surjective homomorphism ¢ ot : A — ¢(A) to a finite group
where ©(1(7)) = ¢(t(n)). By definition, CDa(y,n) < |p(A)| < |Q|. Thus,

Theorem 1.8(ii). Let T be an infinite, finitely generated nilpotent group,
and suppose that I' is not virtually abelian. Then

n¥rower(l) < Conjp(n).
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Additionally, one can compute Yrower(T) given a basis for (I'/T(T)). where
c is the step length of T'/T(T).

Proof. We first assume that I' is torsion-free. Let I'/A be a maximal ad-
missible quotient of I'. There exists an element g € (Z(I"))® such that I'/A
is an admissible quotient with respect to g. Moreover, there exists a k € Z°*
such that gF = [y, 2] for some y € Lery—1 and z € T'. If g is not primitive,
then there exists an element x5 € (Z(I'))® such that 2} = g for some s € Z°.
In particular, 2, = [y, z] where t = s k.

There exists a cyclic series {Al}ffl) and a compatible generating subset
{51}?:(11) that together satisfy Proposition 3.6 for A where & = x5. There ex-
ists AA A€ € Fc(l“)fl and bA,A,£ € I' such that {GA,A,@ bA,A,g] = iB(F/A’A’é).
Equation 4 implies that

ABH\ o
Hyng = <GA,A,&5A,A,&5§ P ’5)> = H3(2).

Let {pja.ne} be an enumeration of primes greater than B(I'/A, A, €). Let
. t BL'/AAE
Tinag = (anagnasg B
and B(T'/AAL
i 2t Pt}
Midse = (anae)Pinas € (T/AA8)
Since the images of v A ¢ and nja A ¢ are nonequal, central elements of
/A -TPirac it follows that v;aa¢ % nja,a,e for all j.
We claim that v; A A ¢ and ;A A ¢ are our desired nonconjugate elements.
In particular, we will demonstrate that

CDr(v0,06 Maae) = ((pja,a,6) /A7) rover®) = (pj 4 5 ¢y e
and that
i aelss [m50,a¢lls 2 (pja,a,) 1.
By construction, we have that ;A A, nja,a¢ € Lery—1 and
Ivinaellss 1m7.a.0lls = pjanag
where S’ = SN T2 [16, 3.B2] implies that
Iiaaelss [m5aaells &~ (paa.6)" 071,
Therefore,
(jaaels) @, (Injaaels) v ® ~ (pja,ae) ™.

Hence, we need to demonstrate that if given a surjective homomorphism to
a finite group ¢ : I' — @ such that |Q| < (pj’A,A{)lﬁRF(F), then o(vja,a¢) ~

P(nj.a.0.)- 5

[17, Thm 2.7] implies that we may assume that |Q| = ¢” where q is prime.
Since ¢(vj,a,8,¢) = ©(Mja,a,¢) when <p(§i B(F/A’A’é)) = 1, we may assume
that <p(£§ B(F/A’A’g)) # 1. In particular, we have ) o cp(ﬁi B(F/A’A’E)) #1

by Proposition 4.5.
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Now assume that ¢ = p;a ., and suppose that ¢(A) # {1}. As before,
we have the homomorphism pop : T'/A — Q/p(A). Since |Q/p(Q)] <
(PjA,A,gWRF(F), Proposition 4.12 implies that |Q/¢(Q)| = (pj,A,A,g)wRF(F)'
Thus, we have that [Q| > (pja,a¢)?*(). Hence, we may assume that
p(A) = {1}.

Now assume that ¢ = pja a¢ and p(A) = {1} If p(vaa.e) ~ e(Miane),
then there is nothing to prove. Thus, we may assume that ¢(yjaa¢) ©
¢(njaag). Proposition 4.12 implies that |Q| = (pjaae)?™ ) and that
if N is a proper quotient of ) with natural projection 6 : Q — N, then
ker(6) N Z(Q) = Z(Q). Thus, we have that 0(¢(vja,a¢)) = 0(@(nja,n.¢))
since 0(p(&1)) = 1. In particular, if Q is a p;a A ¢-group where p(A) = {1}
and |Q| < (pja.ae)?® ) then p(yj4) ~ ¢(nja). Hence, we may assume
that g # pja,ac.

Now suppose that @ is a g-group where ¢ # pja a¢, Corollary 9.5 im-
plies that there exists an element g € Hjy a¢ such that ¢(g7 yjane g) =

©(nja,ne) as elements of p(Hp ag). Thus, o(vjaae) ~ @(Mjaae). Since
we have exhausted all possibilities, it follows that

CDr(vjaa.6 Maag) = (piaag) ™.

Hence,
p¥re M=) < Conjp(n).

Now suppose that I' is an infinite, finitely generated nilpotent group where
|T(I")] > 1. There exists a finite index, torsion-free, subgroup of I' which
we denote as A. Note that all torsion-free, finite index subgroups of I
have the same step length. Let A/A be a maximal admissible quotient
of A. Using above reasoning, there exists an element xp € A such that
A/A is an admissible quotient with respect to xp where x, = [y, 2] for
some y € Aya)—1 and z € A. In particular, there exists a cyclic series

{K@}?:(?) and a compatible generating subset {&}?:(f) that together satisfy
Proposition 3.6 for A where &1 = xx.

Let {pja ¢} be an enumeration of primes greater than B(A/A, K, §).
There exist an ap k¢ € Aya)—1 and by k¢ € A such that

B(A/AKE
lan ke, bace] = € PEML
Let o
‘ B(A/AR,
Vine = (an g e )Prasce g PO
and

- 2t B(A/JAKE

Niaae = (an re)Pinie e (A/AKR)

be the elements from the above construction for A. Let
p: T = T/T(T)  T'PirKE

be the natural projection. We have that

p(vinke) # p(jake) and  p(yjake), P(Miake) # 1
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by construction. Additionally, 77r)(A) is a finite index subgroup of I'/T'(T").
Thus, [17, Lem 4.8(c)| implies that

Z(mrr)(A)) = mpay(A) N Z(T/Z(T)).

Hence, 7y (§1) € Z(I'/T(T)). Since p(y;a,x.¢) and p(nja,x,e) are unequal,
central elements of I'/T'(I") - I'P2A.K¢ | we have that vj A k¢ » 1A K¢
Proposition 13.1 implies that

CDA(vja k.6 MAKE) < CDr(Va ke MjA K-
By the above construction, we have that

)iﬁRF (A)(c(A)-1) < CDp(

(pj7A7K7§ 7j7A7K7£7 77]7A7K7§>

where

i kellss Imiakells = pja,me) D7D

If S’ is a finite generating subset of I', then

Hence,

viaells Imjamells = (pya k) @AY,

and

)¢RF(A)(C(A)*1) < CDr(

(nj7A7K7£ ’Yj7A7K7§’ n]aA7K7£>

Since the projection to the torsion-free quotient 7pry : I' — T/T(T) is
injective when restricted to A, A is isomorphic to a finite index subgroup
of T'/T(T"), and thus, Theorem 1.3 implies that ¢grr(A) = ¢¥rp(I'). Since
c(I'/T(T)) = c¢(A), we have that

nwLower(F) j Conjr(n). l:,

Theorem 1.9. Let I and A be infinite, finitely generated nilpotents of step
size greater than or equal to 2, and suppose that I'/T(I") and A/T(A) have
isomorphic Mal’tsev completions. Then

nwLower(F) < ConjA(n) and nwLower(A) = COHjF(n)-

Proof. Suppose that I" and A are two infinite, finitely generated nilpotent
groups of step size 2 or greater such that I'/T'(I") and A/T'(A) has isomorphic
Mal’tsev completions. Proposition 7.8 implies that

Yre(L/T(T)) = Yre(A/T(A)).

By definition of ¢rp(T") and ¥rr(A), we have that ¢rp(I") = Yrr(A). Since
c¢(T/T(T)) = c(A/T(A)), our theorem is now evident. O
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14. Proof of Theorem 1.10

Theorem 1.10. For natural numbers ¢ > 1 and k > 1, there exists an
irreducible, torsion-free, finitely generated nilpotent group I' of step length c
such that

n* < Conjp(n).

Proof. For each s € N, let A; be the group given in Definition 8.7, and
let 60 : Z(As) — Z(As) be the identity morphism. Let ¢ > 1 and m > 1,
and consider the group I'c, = (Acy100)i", with a finite generating subset

Sem- Proposition 8.6 implies that h([e,) = ¢m? +c¢m — 1, and since
®m? 4+ ¢®m — 1 > m, Theorem 1.8(ii) implies that n™ < Conjp_ (n) as
desired. 0
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