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Effective separability of finitely generated
nilpotent groups

Mark Pengitore

Abstract. We give effective proofs of residual finiteness and conju-
gacy separability for finitely generated nilpotent groups. In particular,
we give precise effective bounds for a function introduced by Bou-Rabee
that measures how large the finite quotients that are needed to separate
nonidentity elements of bounded length from the identity which im-
proves the work of Bou-Rabee. Similarly, we give polynomial upper and
lower bounds for an analogous function introduced by Lawton, Louder,
and McReynolds that measures how large the finite quotients that are
needed to separate pairs of distinct conjugacy classes of bounded word
length using work of Blackburn and Mal’tsev.
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Part I. Introduction

We say that Γ is residually finite if for each nontrivial element γ ∈ Γ
there exists a surjective homomorphism to a finite group ϕ : Γ → Q such
that ϕ(γ) 6= 1. Mal’tsev [28] proved that if Γ is a residually finite finitely
presentable group, then there exists a solution to the word problem of Γ. We
say that Γ is conjugacy separable if for each nonconjugate pair of elements
γ, η ∈ Γ there exists a surjective homomorphism to a finite group ϕ : Γ→ Q
such that ϕ(γ) and ϕ(η) are not conjugate. Mal’tsev [28] also proved that
if Γ is a conjugacy separable finitely presentable group, then there exists a
solution to the conjugacy problem of Γ.

Residual finiteness, conjugacy separability, subgroup separability, and
other residual properties have been extensively studied and used to great
effect in resolving important conjectures in geometry, such as the work of
Agol on the Virtual Haken conjecture [1]. Much of the work in the litera-
ture has been to understand which groups satisfy various residual proper-
ties. For example, free groups, polycyclic groups, finitely generated nilpotent
groups, surface groups, and fundamental groups of compact, orientable 3-
manifolds have all been shown to be residually finite and conjugacy separable
[3, 14, 18, 19, 34, 37]. Recently, there have been several papers that have
made effective these separability properties for certain classes of groups. The
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main purpose of this article is to improve on the effective residual finiteness
results of [4] and establish effective conjugacy separability results for the
class of finitely generated nilpotent groups.

1. Main results

To state our results, we require some notation. For two nondecreasing
functions f, g : N → N, we write f � g if there exists a C ∈ N such that
f(n) ≤ Cg(Cn) for all n ∈ N. We write f ≈ g when f � g and g � f .
For a finitely generated nilpotent group Γ, we denote T (Γ) to be the normal
subgroup of finite order elements. For a finitely generated group Γ, we
denote Γi as the i-th step of the lower central series.

1.1. Effective residual finiteness. For a finitely generated group Γ with
a finite generating subset S, [4] (see also [35]) introduced a function FΓ,S(n)
on the natural numbers that quantifies residual finiteness. Specifically, the
value of FΓ,S(n) is the maximum order of a finite group needed to distinguish
a nonidentity element from the identity as one varies over nonidentity ele-
ments in the n-ball. Numerous authors have studied the effective behavior
of FΓ,S(n) for a wide collection of groups (see [4, 5, 6, 7, 10, 21, 32, 35]).

As we will see in Subsection 2.2.1, the dependence of FΓ,S(n) on S is mild;
subsequently, we will suppress the dependence of FΓ on the generating subset
in this subsection.

For finitely generated nilpotent groups, Bou-Rabee [4, Thm 0.2] proved

that FΓ(n) � (log(n))h(Γ) where h(Γ) is the Hirsch length of Γ. Our first
result establishes the precise effective behavior of FΓ(n).

Theorem 1.1. Let Γ be an infinite, finitely generated nilpotent group. There
exists a ψRF(Γ) ∈ N such that

FΓ(n) ≈ (log(n))ψRF(Γ) .

Additionally, one can compute ψRF(Γ) given a basis for (Γ/T (Γ))c where c
is the step length of Γ/T (Γ).

Given the nature of the study of the effective behavior of residual finiteness
for some finitely generated group Γ, we must study the upper bounds and
lower bounds of FΓ(n) separately. However, the necessary tools used in
the calculation of both bounds are developed in Part II. In the next few
paragraphs, we describe the tools developed in these sections and how they
are applied to the study of FΓ(n) when Γ is an infinite, finitely generated
nilpotent group.
§3 introduces admissible quotients of a torsion-free, finitely generated

nilpotent group which are associated to central, nontrivial elements. These
admissible quotients are the main tool of use in the evaluation of the upper
and lower bounds for Theorem 1.1. This section develops properties of ad-
missible quotients associated to nontrivial, central elements and introduces
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the idea of a maximal admissible quotient. These maximal admissible quo-
tients capture the complexity of residual finiteness of torsion-free, finitely
generated nilpotent groups. In particular, the Hirsch length of a maximal
admissible quotient is a global invariant of a torsion-free, finitely generated
nilpotent group Γ and is equal to the value ψRF(Γ).
§4 is devoted to developing tools that allow us to reduce the study of

residual finiteness of an infinite, finitely generated nilpotent group Γ to the
study of residual finiteness of a maximal admissible quotient (Γ/T (Γ))/Λ of
Γ/T (Γ).
§4 and §5 allow us to give an overall strategy for the upper and lower

bounds for FΓ(n) when Γ is an infinite, finitely generated nilpotent group.
We first demonstrate that FΓ(n) is equivalent to FΓ/T (Γ)(n). That allows
us to assume that the nilpotent group in consideration is torsion-free. For
the upper bound, we then proceed by induction on the step length of Γ
which reduces us to the consideration of elements who have powers that
are in the last nontrivial step of the lower central series. If γ ∈ Γ is a
nontrivial, central element with admissible quotient Γ/Λγ associated to γ,
we have, by construction, that the image of γ is nontrivial in Γ/Λ. Then, via
the Prime Number Theorem, we demonstrate that there exists a surjective
homomorphism to a finite group ϕ : Γ/Λγ → Q such that ϕ(γ) 6= 1 and
where

|Q| ≤ (log(‖γ‖S))h(Γ/Λγ) .

We finish by observing that if Γ/Λ is a maximal admissible quotient, then
h(Γ/Λγ) ≤ h(Γ/Λ) for all central, nontrivial elements γ ∈ Γ. As an im-
mediate consequence, the effective behavior of FΓ(n) is bounded above by

(log(n))ψRF(Γ).
For the lower bound, we show that the elements that realize the lower

bound for FΓ(n) are central elements γ satisfying γ 6≡ 1 mod Λ where Γ/Λ
is a maximal admissible quotient of Γ. Thus, we need to study surjective
homomorphisms to finite groups ϕ : Γ→ Q with ϕ(γ) 6= 1. We first demon-
strate that the study of the given homomorphism may be reduced to the
study of the homomorphism π̃ ◦ ϕ : Γ/Λ→ Q/ϕ(Λ) where π : Q→ Q/ϕ(Λ)
is the natural projection and where π̃ ◦ ϕ : Γ/Λ → Q/ϕ(Λ) is the homo-
morphism induced by π ◦ ϕ : Γ → Q/ϕ(Λ). We then introduce necessary

conditions on the homomorphism π̃ ◦ ϕ so that |Q/ϕ(Λ)| ≥ pψRF(Γ). In par-
ticular, we use the Prime Number Theorem to pick a sequence of elements
{γi} ⊆ Γ such that the order of the minimal finite group that separates γi
from the identity is bounded below by C(log(C‖γi‖))ψRF(Γ) for some C ∈ N.
§5 gives a preview of the techniques used for the proof of Theorem 1.1

by explicitly calculating FH2m+1(Z)(n) where H2m+1(Z) is the (2m + 1)-
dimensional integral Heisenberg group. In particular, we use the techniques
and tools developed in the previous sections.

The following is a consequence of the proof of Theorem 1.1.
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Corollary 1.2. Let Γ be a finitely generated nilpotent group. Then

FΓ(n) ≈ (log(n))h(Γ)

if and only if h(Z(Γ/T (Γ))) = 1.

We now introduce some terminology. Suppose that G is a connected,
simply connected nilpotent Lie group with Lie algebra g. We say that G
is Q-defined if g admits a basis with rational structure constants. The
Mal’tsev completion of a torsion-free, finitely generated nilpotent group Γ is
a connected, simply connected, Q-defined nilpotent Lie group G such that
Γ embeds into as a cocompact lattice.

The next theorem demonstrates that the effective behavior of FΓ(n) is an
invariant of the Mal’tsev completion of Γ/T (Γ).

Theorem 1.3. Suppose that Γ1 and Γ2 are two infinite, finitely generated
nilpotent groups such that Γ1/T (Γ1) and Γ2/T (Γ2) have isomorphic Mal’tsev
completions. Then FΓ1(n) ≈ FΓ2(n).

The proof of Theorem 1.3 follows from an examination of a cyclic series
that comes from a refinement of the upper central series and its interaction
with the topology of the Mal’tsev completion.

Since the 3-dimensional integral Heisenberg group embeds into every in-
finite, nonabelian nilpotent group, Theorem 1.1, Theorem 1.3, [4, Thm 2.2],
and [4, Cor 2.3] allow us to characterize Rd within the collection of con-
nected, simply connected, Q-defined nilpotent Lie groups by the effective
behavior of residual finiteness of a cocompact lattice.

Corollary 1.4. Let G be a connected, simply connected, Q-defined nilpotent
Lie group. Then G is Lie isomorphic to Rdim(G) if and only if

FΓ(n) � (log(n))3

where Γ ⊆ G is any cocompact lattice.

For the last result of this section, we need the following. We say that
a group Γ is irreducible if there is no nontrivial splitting of Γ as a direct
product.

Theorem 1.5.

(i) For each c ∈ N, there exists a m(c) ∈ N satisfying the following.
For each ` ∈ N, there exists an irreducible, torsion-free, finitely
generated nilpotent group Γ of step length c and h(Γ) ≥ ` such that

FΓ(n) � (log(n))m(c).

(ii) Suppose that ` 6= 2. There exists an irreducible, torsion-free, finitely
generated nilpotent group Γ` such that

FΓ`(n) ≈ (log(n))` .
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(iii) Suppose 2 ≤ c1 < c2 are natural numbers. For each ` ∈ N, there
exist irreducible, torsion-free, finitely generated nilpotent groups Γ`
and ∆` of step lengths c1 and c2, respectively, such that

FΓ`(n),F∆`
(n) ≈ (log(n))` lcm(c1+1,c2+1) .

(iv) For natural numbers c > 1 and m ≥ 1, there exists an irreducible,
torsion-free, finitely generated nilpotent group Γ of step length c
such that

(log(n))m � FΓ(n).

For Theorem 1.5(i), we consider free nilpotent groups of fixed step length
and increasing rank. We make use of central products of filiform nilpotent
groups for Theorem 1.5(ii)–(iv).

Using Theorem 1.5, we are able to relate the constant ψRF(Γ) with well
known invariants of Γ when Γ is a finitely generated nilpotent group. The-
orem 1.5(i) implies that ψRF(Γ) does not depend on the Hirsch length of Γ.
Similarly, Theorem 1.5(iv) implies that there is no upper bound in terms of
step length of Γ for ψRF(Γ). On the other hand, the step size of Γ is not
determined by ψRF(Γ) as seen in Theorem 1.5(iii).

1.2. Effective conjugacy separability. We now turn our attention to
the study of effective conjugacy separability. Lawton–Louder–McReynolds
[25] introduced a function ConjΓ,S(n) on the natural numbers that quan-
tifies conjugacy separability. To be precise, the value of ConjΓ,S(n) is the
maximum order of the minimal finite quotient needed to separate a pair of
nonconjugate elements as one varies over nonconjugate pairs of elements in
the n-ball. Since the dependence of ConjΓ,S(n) on S is mild (see Lemma 2.1),
we will suppress the generating subset throughout this subsection.

The only previous work on the effective behavior of ConjΓ(n) is due to
Lawton–Louder–McReynolds [25]. They demonstrate that if Γ is a surface

group or a finite rank free group, then ConjΓ(n) � nn2
[25, Cor 1.7]. In this

subsection, we initiate the study of the effective behavior of ConjΓ(n) for
the collection of finitely generated nilpotent groups.

Our first result is the calculation of ConjH2m+1(Z)(n) where H2m+1(Z) is

the (2m+ 1)-dimensional integral Heisenberg group.

Theorem 1.6. ConjH2m+1(Z)(n) ≈ n2m+1.

For general nilpotent groups, we establish the following upper bound for
ConjΓ(n).

Theorem 1.7. Let Γ be a finitely generated nilpotent group. Then there
exists a k ∈ N such that

ConjΓ(n) � nk.
Blackburn [3] was the first to prove conjugacy separability of finitely gen-

erated nilpotent groups. Our strategy for proving Theorem 1.7 is to effec-
tivize [3].
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For the same class of groups, we have the following lower bound which
allows us to characterize virtually abelian groups within the class of finitely
generated nilpotent groups. Moreoever, we obtain the first example of a
class of groups for which the effective behavior of FΓ(n) and ConjΓ(n) are
shown to be dramatically different.

Theorem 1.8. Let Γ be an infinite, finitely generated nilpotent group.

(i) If Γ contains a normal abelian subgroup of index m, then

log(n) � ConjΓ(n) � (log(n))m.

(ii) Suppose that Γ is not virtually abelian. There exists a ψLower(Γ) ∈ N
such that

nψLower(Γ) � ConjΓ(n).

Additionally, one can compute ψLower(Γ) given a basis for (Γ/T (Γ))c
where c is the step length of Γ/T (Γ).

The proof of Theorem 1.8(i) is elementary. We prove Theorem 1.8(ii) by
finding an infinite sequence of nonconjugate elements {γi, ηi} such that the
order of the minimal finite group that separates the conjugacy classes of γi
and ηi is bounded below by Cn

ψLower(Γ)
i for some C ∈ N where ‖γi‖S , ‖ηi‖S ≈

ni for some finite generating subset S using tools from §3 and §5.
We have the following theorem which is similar in nature to Theorem 1.3.

Theorem 1.9. Let Γ and ∆ be infinite, finitely generated nilpotent groups
of step size greater than or equal to 2, and suppose that Γ/T (Γ) and ∆/T (∆)
have isomorphic Mal’tsev completions. Then

nψLower(Γ) � Conj∆(n) and nψLower(∆) � ConjΓ(n).

We apply Theorem 1.8 to construct nilpotent groups that help demon-
strate the various effective behaviors that the growth of conjugacy separa-
bility may exhibit.

Theorem 1.10. For natural numbers c > 1 and k ≥ 1, there exists an
irreducible, torsion-free, finitely generated nilpotent group Γ of step length c
such that

nk � ConjΓ(n).

Theorem 1.10 implies that the conjugacy separability function does not
depend of the step length of the nilpotent group. We consider central prod-
ucts of filiform nilpotent groups for Theorem 1.10.
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2. Background

We will assume the reader is familiar with finitely generated groups, Lie
groups, and Lie algebras.

2.1. Notation and conventions. We let lcm{r1, . . . , rm} be the lowest
common multiple of {r1, . . . , rm} ⊆ Z with the convention that lcm(a) = |a|
and lcm(a, 0) = 0. We let gcd(r1, . . . , rm) be the greatest common multiple
of {r1, . . . , rm} ⊆ Z with the convention that gcd(a, 0) = |a|.

We denote ‖γ‖S as the word length of γ with respect to the finite gen-
erating subset S and denote the identity of Γ as 1. We denote the order
of γ as an element of Γ as OrdΓ(γ) and denote the cardinality of a group
Γ as |Γ|. We write γ ∼ η when there exists an element g ∈ Γ such that
g−1 γ g = η. For a normal subgroup ∆ E Γ, we set π∆ : Γ→ Γ/∆ to be the
natural projection and write γ̄ = π∆(γ) when ∆ is clear from context. For
a subset X ⊆ Γ, we denote 〈X〉 to be the subgroup generated by X. For
any group Γ, we let Γ• = Γ\ {1}.

We define the commutator of γ and η as [γ, η] = γ−1 η−1 γ η. We denote
the m-fold commutator of not necessarily distinct elements {γi}mi=1 ⊆ Γ as
[γ1, . . . , γm] with the convention that

[γ1, . . . , γm] = [[γ1, . . . , γm−1], γm].

We denote the center of Γ as Z(Γ) and the centralizer of γ in Γ as CΓ(γ).
We define Γi to be the i-th term of the lower central series and Zi(Γ) to be
the i-th term of the upper central series. For γ ∈ Γ•, we denote Height(γ)
as the minimal j ∈ N such that πZj−1(Γ)(γ) 6= 1.

We define the abelianization of Γ as Γab with the associated projection
given by πab = π[Γ,Γ]. For m ∈ N, we define Γm ∼= 〈γm | γ ∈ Γ〉 .

When given a basis X = {Xi}dimR(g)
i=1 for g, we denote∥∥∥∥∥∥

dimR(g)∑
i=1

αi Xi

∥∥∥∥∥∥
X

=

dimR(g)∑
i=1

|αi|.

For a Lie algebra g with a Lie ideal h, we define πh : g → g/h to be the
natural Lie projection.

For a R-Lie algebra g, we denote Z(g) to the center of g, gi to be the i-th
term of the lower central series, and Zi(g) to be the i-th term of the upper
central series.

For A ∈ g, we define the map adA : g→ g to be given by

adA(B) = [A,B].

Denote the m-fold Lie bracket of not necessarily distinct elements {Ai}mi=1 ⊆
g as [A1, . . . , Am] with the convention that

[A1, . . . , Am] = [[A1, . . . , Am−1], Am].
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2.2. Finitely generated groups and separability.

2.2.1. Residually finite groups. Following [4] (see also [35]), we define
the depth function DΓ : Γ• → N ∪ {∞} of the finitely generated group Γ to
be given by

DΓ(γ)
def
= min {|Q| | ϕ : Γ→ Q, |Q| <∞, and ϕ(γ) 6= 1} .

We define FΓ,S : N→ N by

FΓ,S(n)
def
= max {DΓ(γ) | ‖γ‖S ≤ n and γ 6= 1} .

When Γ is a residually finite group, then FΓ,S(n) < ∞ for all n ∈ N. For
any two finite generating subsets S1 and S2, we have that

FΓ,S1(n) ≈ FΓ,S2(n)

(see [4, Lem 1.1]). Thus, we will suppress the choice of finite generating
subset.

2.2.2. Conjugacy separable groups. Following [25], we define the conju-
gacy depth function of Γ, denoted CDΓ : (Γ×Γ)\ {(γ, η) | γ ∼ η} → N∪{∞},
to be given by

CDΓ(γ, η)
def
= min {|Q| | ϕ : Γ→ Q, |Q| <∞, and ϕ(γ) � ϕ(η)} .

We define ConjΓ,S(n) : N→ N as

ConjΓ,S(n)
def
= max {CDΓ(γ, η) | γ � η and ‖γ‖S , ‖η‖S ≤ n} .

When Γ is a conjugacy separable group, then ConjΓ,S(n) <∞ for all n ∈ N.

Lemma 2.1. If S1, S2 are two finite generating subsets of Γ, then

ConjΓ,S1
(n) ≈ ConjΓ,S2

(n).

The proof is similar to [4, Lem 1.1] (see also [25, Lem 2.1]). As before,
we will suppress the choice of finite generating subset.

[25, Lem 2.1] implies that the order of the minimal finite group required to
separate a nonidentity element γ ∈ Γ from the identity is bounded above by
the order of the minimal finite group required to separate the conjugacy class
of γ from the identity. Thus, FΓ(n) � ConjΓ(n) for all conjugacy separable
groups. In particular, if Γ is conjugacy separable, then Γ is residually finite.

2.3. Nilpotent groups and nilpotent Lie groups. See [13, 17, 23, 36]
for a more thorough account of the material in this subsection. Let Γ be
a nontrivial, finitely generated group. The i-th term of the lower central

series is defined by Γ1
def
= Γ, and for i > 1, we let Γi

def
= [Γi−1,Γ]. The

i-term of the upper central series is defined by Z0(Γ)
def
= {1} and Zi(Γ)

def
=

π−1
Zi−1(Γ)

(Z(Γ/Zi−1(Γ))) for i > 1.
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Definition 2.2. We say that Γ is a nilpotent group of step size c if c is the
minimal natural number such that Γc+1 = {1}, or equivalently, Zc(Γ) = Γ.
If the step size is unspecified, we simply say that Γ is a nilpotent group.
When given a nilpotent group Γ, we denote its step length as c(Γ).

For a finitely generated nilpotent group Γ, the set of torsion elements of
Γ, denoted as T (Γ), is a finite, characteristic subgroup. Moreover, when
|Γ| =∞, then Γ/T (Γ) is torsion-free.

Let g be a nontrivial, finite dimensional R-Lie algebra. The i-th term

of the lower central series of g is defined by g1
def
= g, and for i > 1, we

let gi
def
= [gi−1, g]. We define the i-th term of the upper central series as

Z0(g)
def
= {0} and Zi(g)

def
= π−1

Zi−1(g)
(Z(g/Zi−1(g))) for i > 1.

Definition 2.3. We say that g is a nilpotent Lie algebra of step length
c if c is the minimal natural number satisfying Zc(g) = g, or equivalently,
gc+1 = {0}. If the step size is unspecified, we simply say that g is a nilpotent
Lie algebra.

For a connected, simply connected nilpotent Lie group G with Lie algebra
g, the exponential map, written as exp : g → G, is a diffeomorphism [23,
Thm 1.127] whose inverse is formally denoted as Log. The Baker–Campbell–
Hausdorff formula [13, (1.3)] implies that every A,B ∈ g satisfies

(1) A ∗B def
= Log(expA · expB)

def
= A+B +

1

2
[A,B] +

∞∑
m=3

CBm(A,B)

where CBm(A,B) is a rational linear combination of m-fold Lie brackets of
A and B. By assumption, CBm(A,B) = 0 for m > c(G). For {Ai}mi=1 in g,
we may more generally write

(2) A1 ∗ · · · ∗Am = Log(expA1 · · · expAm) =

c(G)∑
i=1

CBi(A1, . . . , Am)

where CBi(A1, . . . , Am) is a rational linear combination of i-fold Lie brackets
of the elements {Ajt}`t=1 ⊆ {Ai}

m
i=1 via repeated applications of the Baker–

Campbell–Hausdorff formula.
We define the adjoint representation of G, denoted Ad : G → Aut(g), as

Ad(g)(X) = (dΨg)1(X) where Ψg(x) = g x g−1. By [23, 1.92], we may write
for γ ∈ Γ and A ∈ g

(3) Ad(γ)(A) = A+
1

2
[Log(γ), A] +

c∑
i=3

(adLog(γ))
i(A)

i!
.

By [30], a connected, simply connected nilpotent Lie group G with Lie
algebra g admits a cocompact lattice Γ if and only if g admits a basis with
rational structure constants (see [29, Thm 7] for more details). We say G
is Q-defined if it admits a cocompact lattice. For any torsion-free, finitely
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generated nilpotent group Γ, [29, Thm 6] implies that there exists a Q-
defined group unique up to isomorphism in which Γ embeds as a cocompact
lattice.

Definition 2.4. We call this Q-defined group the Mal’tsev completion of Γ.
When given a connected, simply connected, Q-defined nilpotent Lie group
G, the tangent space at the identity with the Lie bracket of vector fields is
a finite dimensional nilpotent R-Lie algebra.

2.4. Polycyclic groups. See [20, 33, 36] for the material contained in the
following subsection.

Definition 2.5. A group Γ is polycyclic if there exists an ascending chain
of subgroups {∆i}mi=1 such that ∆1 is cyclic, ∆i E ∆i+1, and ∆i+1/∆i is
cyclic for all i. We call {∆i}mi=1 a cyclic series for Γ. We say {ξi}mi=1 is
a compatible generating subset with respect to the cyclic series {∆i}mi=1 if
〈ξ1〉 = ∆1 and 〈ξi+1,∆i〉 = ∆i+1 for all i > 1. We define the Hirsch length
of Γ, denoted as h(Γ), as the number of indices i such that |∆i+1 : ∆i| =∞.

For a general polycyclic group, there may be infinitely many different
cyclic series of arbitrary length (see [20, Ex 8.2]). However, the Hirsch length
of Γ is independent of the cyclic series. With respect to the compatible
generating subset {ξi}mi=1, [20, Lem 8.3] implies that we may represent every
element γ ∈ Γ uniquely as γ =

∏m
i=1 ξ

αi
i where αi ∈ Z if |∆i+1 : ∆i| = ∞

and 0 ≤ αi < ri if |∆i+1 : ∆i| = ri. If |Γ| < ∞, then the second paragraph
after [20, Defn 8.2] implies that |Γ| =

∏m
i=1 ri.

Definition 2.6. We call the collection of such m-tuples a Mal’tsev basis
for Γ with respect to the compatible generating subset {ξi}mi=1. When γ =∏m
i=1 ξ

αi
i , we call (αi)

m
i=1 the Mal’tsev coordinates of γ.

For a finitely generated nilpotent group Γ, we may refine the upper cen-
tral series to obtain a cyclic series and a compatible generating subset. In
particular, we will demonstrate that every finitely generated nilpotent group
is polycyclic. First, assume that Γ is abelian. We may write Γ ∼= Zm⊕T (Γ),

and we let {ξi}h(Γ)
i=1 be a free basis for Zm. Since T (Γ) is a finite abelian group,

there exists an isomorphism ϕ : T (Γ)→ ⊕`i=1Z/p
ki
i Z. If xi generates Z/pkii Z

in ⊕`i=1Z/p
ki
i Z, we then set ξi = ϕ−1(xi−h(Γ)) for h(Γ) + 1 ≤ i ≤ h(Γ) + `.

Thus, the groups {∆i}h(Γ)+`
i=1 given by ∆i = 〈ξt〉it=1 form a cyclic series for Γ

with a compatible generating subset {ξi}h(Γ)+`
i=1 .

We now assume that c(Γ) > 1. There exists a generating basis {zi}h(Γ)
i=1

for Z(Γ) and integers {ti}h(Γ)
i=1 such that

{
ztii
}h(Γc(Γ))

i=1
is a basis for Γc(Γ),

and for each i, there exist xi ∈ Γc(Γ)−1 and yi ∈ Γ such that ztii = [xi, yi].

We may choose a cyclic series {Hi}h(Γ)
i=1 for Z(Γ) such that Hi = 〈zs〉is=1.

Induction implies that there exists a cyclic series {Λi}ki=1 and a compatible
generating subset {λi}ki=1 for Γ/Z(Γ). For 1 ≤ i ≤ `, we set ∆i = Hi, and
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for `+ 1 ≤ i ≤ `+ k, we set ∆i = π−1
Z(Γ)(Λi−`). For 1 ≤ i ≤ `, we set ξi = zi.

For ` + 1 ≤ i ≤ ` + k, we choose a ξi such that πZ(Γ)(ξi) = λi−`. It then

follows that {∆i}`+ki=1 is a cyclic series for Γ with a compatible generating

subset {ξi}`+ki=1 . Moreover, the given construction implies that

h(Γ) =

c(Γ)∑
i=1

rankZ (Zi(Γ)/Zi−1(Γ)).

Whenever Γ is a finitely generated nilpotent group, we choose the cyclic
series and compatible generating subset this way.

Another way to calculate the Hirsch length of a finitely generated nilpo-
tent group is to use successive quotients of the lower central series. In
particular, we have that

h(Γ) =

c(Γ)∑
i=1

rankZ(Γi/Γi+1).

Let Γ be a torsion-free, finitely generated nilpotent group with a cyclic

series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 . [17, Thm 6.5]
implies that multiplication of γ, η ∈ Γ can be expressed as polynomials in

terms of the Mal’tsev basis associated to the cyclic series {∆i}h(Γ)
i=1 and the

compatible generating subset {ξi}h(Γ)
i=1 . Specifically, we may write

γ η =

h(Γ)∏
i=1

ξaii

 ·
h(Γ)∏
j=1

ξ
bj
j

 =

h(Γ)∏
s=1

ξdss

where each ds can be expressed as a polynomial in the Mal’stev coordinates
of γ and η, respectively. Similarly, we may write

γ` =

h(Γ)∏
i=1

ξaii

`

=

h(Γ)∏
j=1

ξ
ej
j

where each ej can be expressed as a polynomial in the Mal’tsev coordinates
of γ and the integer `.

The polynomials that define the group product and group power operation
of Γ with respect to the given cyclic series and compatible generating subset
have unique extensions to Rh(Γ). That implies the Mal’tsev completion
of Γ, denoted G, is diffeomorphic to Rh(Γ) (see [17, Thm 6.5], [23, Cor
1.126]). Consequently, the dimension and step length of G are equal to
the Hirsch length and step length of Γ, respectively. Thus, we may write
h(Γ) = dim(G). We may also identify Γ with its image in G which is the

set Zh(Γ).
The following definition will be of use for the last lemma of this subsection.
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Definition 2.7. Let Γ be a torsion-free, finitely generated nilpotent group,
and let ∆ ≤ Γ be a subgroup. We define the isolator of ∆ in Γ as the subset
given by

Γ
√

∆ = {γ ∈ Γ | there exists a k ∈ N such that γk ∈ ∆} ∪ {1} .

By the paragraph proceeding exercise 8 of [36, Ch 8] and [17, Thm 4.5],
Γ
√

∆ is a subgroup such that | Γ
√

∆ : ∆| <∞ when Γ is a torsion-free, finitely
generated nilpotent group. If Γ is abelian, then we may write

Γ = (Γ/
Γ
√

∆)⊕ Γ
√

∆.

When ∆ E Γ, we have that Γ/ Γ
√

∆ is torsion-free.
We finish this section with the following result. When given an infinite,

finitely generated nilpotent group Γ, the following lemma relates the word
length of an element γ in Γ to the Mal’tsev coordinates of γ with respect to
a cyclic series and a compatible generating subset.

Lemma 2.8. Let Γ be an infinite, finitely generated nilpotent group with a

cyclic series {∆i}ki=1 and a compatible generating subset {ξi}ki=1. Let γ ∈ Γ

such that ‖γ‖S ≤ n. There exists some C ∈ N such that |αi| ≤ C nc(Γ) for
all i, where (αi) are the Mal’tsev coordinates of γ.

Proof. We proceed by induction on step length, and observe that the base
case of abelian groups is clear. Now suppose c(Γ) > 1 and that ‖γ‖S ≤ n.
Since ‖πΓi(γ)‖πΓi

(S) ≤ n, the inductive hypothesis implies that there exists

a constant C0 > 0 such that |αi| ≤ C0n
t when πΓt(ξi) 6= 1 and πΓt−1(ξi) = 1.

Let k be the length of the cyclic series ∆i, and let S ⊂ {1, . . . , k} be the set
of indices such that ξis /∈ Γc(Γ) for i ∈ S and ξi ∈ Γc(Γ), otherwise.

We will demonstrate that there exists some constant C1 > 0 such that
the element

ζ =
(
πki=1,i/∈S ξ

αi
i

)−1
satisfies ‖ζ‖S ≤ C1 n.

Suppose for some i /∈ S that πΓt(ξi) 6= 1 and where πΓt−1(ξi) = 1. We have

by induction that |αi| ≤ C0 n
t. By [16, 3.B2], we have that ‖ξαii ‖S ≈ |αi|1/t.

Thus, there exists a constant C2 > 0 such that ‖ξαii ‖S ≤ C2 |αi|1/t when
OrdΓ(ξi) = ∞. Therefore, we may write ‖ξαii ‖S ≤ C3 n for some C3 > 0.
By letting C4 = max {C3, |T (Γ)|}, it follows that ‖ξi‖S ≤ C4 n for all i /∈ S.
In particular, we may write

‖η‖S = ‖γ ζ‖S ≤ ‖γ‖S + ‖ζ‖S ≤ C5 n

for some constant C5 > 0. By taking C1 = C5, we have our statement.
Thus, we may assume that γ ∈ Γc(Γ).

We may write γ =
∏
i∈S ξ

αi
i . If we let λt =

∏
i∈S,i 6=t ξ

−αi
i , it is evident

that ‖λt‖S ≤ n. Thus, we may write

‖ξαtt ‖S = ‖γ λt‖S ≤ ‖γ‖S + ‖λt‖S ≤ 4 C6 n
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for some C6 > 0. Thus, we need only consider when γ = ξαii for ξi ∈ Γc(Γ).

Since ξi ∈ Γc(Γ), [16, 3.B2] implies that |αi| ≤ C7 n
c(Γ) for some C7 ∈ N. �

Part II. Technical tools

3. Admissible quotients

In the following subsection, we define what an admissible quotient with re-
spect to a central, nontrivial element is, what a maximal admissible quotient
is, and define the constants ψRF(Γ) and ψLower(Γ) for an infinite, finitely
generated nilpotent group Γ.

3.1. Existence of admissible quotients. The following proposition will
be useful throughout this article.

Proposition 3.1. Let Γ be a torsion-free, finitely generated nilpotent group,
and suppose that γ is a central, nontrivial element. There exists a normal
subgroup Λ in Γ such that Γ/Λ is an irreducible, torsion-free, finitely gen-
erated nilpotent group such that Z(Γ/Λ) ∼= Z and where 〈πΛ(γ)〉 is a finite
index subgroup of Z(Γ/Λ). If γ is primitive, then Z(Γ/Λ) ∼= 〈πΛ(γ)〉.

Proof. We construct Λ by induction on Hirsch length, and since the base
case is trivial, we may assume that h(Γ) > 1. If Z(Γ) ∼= Z, then the
proposition is now evident by letting Λ = {1}.

Now assume that h(Z(Γ)) ≥ 2. There exists a basis {zi}h(Z(Γ))
i=1 for Z(Γ)

such that zk1 = γ for some k ∈ Z•. Letting K = 〈zi〉h(Z(Γ))
i=2 , we note that

K E Γ and πK(γ) 6= 1. Additionally, it follows that Γ/K is a torsion-free,
finitely generated nilpotent group. If h(Z(Γ/K)) = 1, then our proposition
is evident by defining Λ = K.

Now suppose that h(Z(Γ/K)) ≥ 2. Since h(Γ/K) < h(Γ), the inductive
hypothesis implies that there exists a subgroup Λ1 such that Λ1 E Γ/K and
where (Γ/K)/Λ1 is a torsion-free, finitely generated nilpotent group. Letting
ρ : Γ/K → (Γ/K)/Λ1 be the natural projection, induction additionally
implies that 〈ρ(πK(γ))〉 is a finite index subgroup of Z((Γ/K)/Λ1). Taking
Λ2 = π−1

K (Λ1), we note that Λ2/K ∼= Λ1. Thus, the third isomorphism
theorem implies that (Γ/K)/(Λ2/K) ∼= Γ/Λ2. Hence, Γ/Λ2 is a torsion-
free, finitely generated nilpotent group, and by construction, 〈πΛ2(γ)〉 is a
finite index subgroup of Z(Γ/Λ2).

Letting Λ satisfy the hypothesis of the proposition for γ, we now demon-
strate that Γ/Λ is irreducible. Suppose for a contradiction that there exists
a pair of nontrivial, finitely generated nilpotent groups ∆1 and ∆2 such that
Γ/Λ ∼= ∆1×∆2. Since Γ/Λ is torsion-free, ∆1 and ∆2 are torsion-free. Thus,
Z(∆1) and Z(∆2) are torsion-free, finitely generated abelian groups. Hence,
Z2 is isomorphic to a subgroup of Z(Γ/Λ). Subsequently, h(Z(Γ/Λ)) ≥ 2
which is a contradiction. Thus, either ∆1

∼= {1} or ∆2
∼= {1}, and subse-

quently, Γ/Λ is irreducible. �
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As a natural corollary of the proof of Proposition 3.1, we have the follow-
ing. Let Γ be a torsion-free, finitely generated nilpotent group with a cyclic

series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 . For a central

element ξi0 ∈ {ξi}
h(Γ)
i=1 , the next proposition demonstrates that there exists

a normal subgroup Λ E Γ such that Γ/Λ satisfies Proposition 3.1 for ξi0 .

Moreover, Λ is generated by a subset
{
ξij
}h(Λ)

j=1
of the compatible generating

subset.

Corollary 3.2. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 ,

and let ξi0 be a central element of {ξi}h(Γ)
i=1 . There exists a normal subgroup

Λ E Γ such that Γ/Λ satisfies the conditions of Proposition 3.1 for ξi0.

Moreover, there exists a subset, possibly empty,
{
ξij
}h(Γ)

i=1
of the compatible

generating subset satisfying the following. The subgroups Wt =
〈
ξij
〉t
j=1

form a cyclic series for Λ with a compatible generating subset
{
ξij
}h(Λ)

j=1
.

Definition 3.3. Let γ ∈ Γ be a central, nontrivial element, and let J be
the set of subgroups of Γ that satisfy Proposition 3.1 for γ. Since the set
{h(Γ/Λ) | Λ ∈ J } is bounded below by 1, there exists an Ω ∈ J such that

h(Γ/Ω) = min{h(Γ/Λ) | Λ ∈ J }.
We say Γ/Ω is an admissible quotient of Γ with respect to γ .

For a primitive element γ ∈ (Z(Γ))•, we let Γ/Λ1 and Γ/Λ2 be two differ-
ent admissible quotients of Γ with respect to γ. In general, Γ/Λ1 � Γ/Λ2.
On the other hand, we have, by definition, that h(Γ/Λ1) = h(Γ/Λ2). Sub-
sequently, the Hirsch length of an admissible quotient with respect to γ is
a natural invariant of Γ associated to γ. Such a quotient corresponds to a
torsion-free quotient of Γ of minimal Hirsch length such that γ has a non-
trivial image that generates a finite index subgroup of the center. That will
be useful in finding the smallest finite quotient in which γ has a nontrivial
image.

Definition 3.4. Let Γ be a non-abelian, torsion-free, finitely generated
nilpotent group. For each element γ ∈ (Z(Γ))•, we let Γ/Λγ be an admissible
quotient of Γ with respect to γ. Let J be the set of γ ∈ (Z(Γ))• such that
there exists a k ∈ Z• such that γk = [a, b] where a ∈ Γc(Γ)−1 and b ∈ Γ.
Observe that the set {h(Γ/Λγ) | γ ∈ J )} is bounded above by h(Γ). Thus,
there exists an η ∈ J such that

h(Γ/Λη) = max {h(Γ/Λγ) | γ ∈ J } .
We say that Γ/Λη is a maximal admissible quotient of Γ. When Γ is a torsion-
free, finitely generated abelian group, we take any admissible quotient with
respect to any central element and denote it as a maximal admissible quo-
tient.
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For an infinite, finitely generated nilpotent group Γ, we now define the
constants ψRF(Γ) and ψLower(Γ).

Definition 3.5. Let Γ be an infinite, finitely generated nilpotent group. We
let (Γ/T (Γ))/Λ be a maximal admissible quotient of Γ/T (Γ). We then set

ψRF(Γ) = h((Γ/T (Γ))/Λ).

Assuming that Γ is not virtually abelian, we define

ψLower(Γ) = ψRF(Γ) (c(Γ/T (Γ))− 1) .

Suppose that Γ/Λ1 and Γ/Λ2 are two maximal admissible quotients of Γ
when Γ is torsion-free. In general, Γ/Λ1 � Γ/Λ2. However,

h(Γ/Λ1) = h(Γ/Λ2) = ψRF(Γ)

by definition; hence, ψRF(Γ) is a well defined invariant of Γ. Similarly, we
have that ψLower(Γ) is a well defined invariant of finitely generated nilpotent
groups that are not virtually abelian.

A natural observation is that if h(Z(Γ/T (Γ))) = 1, then

ψRF(Γ) = h(Γ).

Additionally, if Γ is an infinite, finitely generated abelian group, then

ψRF(Γ) = 1.

Finally, if Γ is a finitely generated nilpotent group that is not virtually
abelian where h(Z(Γ/T (Γ))) = 1, then

ψLower(Γ) = h(Γ)(c(Γ/T (Γ))− 1).

Let Γ be a torsion-free, finitely generated nilpotent group with a primitive
element γ ∈ Z(Γ)•, and let Γ/Λ be an admissible quotient of Γ with respect
to γ. The next proposition demonstrates that we may choose a cyclic series
and a compatible generating subset such that a subset of the compatible
generating subset generates Λ.

Proposition 3.6. Let Γ be a torsion-free, finitely generated nilpotent group,
and let γ be a primitive, central, nontrivial element. Let Γ/Λ be an admissi-

ble quotient of Γ with respect to γ. Then there exists a cyclic series {∆i}h(Γ)
i=1

and a compatible generating subset {ξi}h(Γ)
i=1 such that Γ/Λ is an admissible

quotient of Γ with respect to ξ1 where γ = ξ1. Moreover, there exists a sub-

set, possibly empty,
{
ξij
}h(Λ)

j=1
of the compatible generating subset satisfying

the following. The subgroups Wt =
〈
ξij
〉t
j=1

form a cyclic series for Λ with

a compatible generating subset
{
ξij
}h(Λ)

j=1
.

Proof. We proceed by induction on h(Γ), and note that the base case of
h(Γ) = 1 is evident. Thus, we may assume that h(Γ) > 1. If h(Z(Γ)) =

1, then Λ ∼= {1}; hence, we may take any cyclic series {∆i}h(Γ)
i=1 and a
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compatible generating subset {ξi}h(Γ)
i=1 where ξ1 = γ. Therefore, we may

assume that h(Z(Γ)) > 1.

There exists a generating basis {zi}h(Z(Γ))
i=1 for Z(Γ) such that z1 = γ.

Letting K = 〈zi〉h(Z(Γ))
i=2 , we note that K ≤ Λ. Observe that (Γ/K)/(Λ/K)

is an admissible quotient of Γ/K with respect to πK(γ) for the group Γ/K.

Induction implies that there exists a cyclic series {∆i/K}h(Γ/K)
i=1 and a com-

patible generating subset {πK(ξi)}h(Γ/K)
i=1 such that there exists a subset{

πK(ξij )
}h(Γ/K)

j=1
satisfying the following. The subgroups {Wt/K} given by〈

πK(ξij )
〉t
j=1

form a cyclic series for Λ/K with a compatible generating sub-

set
{
πK(ξij )

}h(Λ/K)

j=1
. We let Hi = 〈zs〉is=1 for 1 ≤ i ≤ h(Z(Γ)) and for

i > h(Z(Γ)), we let Hi =
〈
{K} ∪ {ξt}i−h(K)

t=1

〉
. We also take ηi = zi for

1 ≤ i ≤ h(Z(Γ)) and for i > h(Z(Γ)), we take ηi = ξi−h(Z(Γ)). Thus,

{Hi}h(Γ)
i=1 is cyclic series for Γ with a compatible generating subset {ηi}h(Γ)

i=1 .

Consider the subset
{
ηij
}h(Λ)

j=1
where ηij = zj+1 for 1 ≤ j ≤ h(K) and

where ηij = ξij−h(K)
for j > h(K). Thus, one can see that

{
ηij
}h(Λ)

j=1
is the

required subset. �

For the next two propositions, we establish some notation. Let Γ be a
torsion-free, finitely generated nilpotent group. For each primitive element
γ ∈ Z(Γ)•, we let Γ/Λγ be an admissible quotient with respect to γ.

We demonstrate that we may calculate ψRF(Γ) for Γ when given a gen-
erating basis for (Γ/T (Γ))c(Γ/T (Γ)).

Proposition 3.7. Let Γ be a torsion-free, finitely generated nilpotent group,

and let {zi}h(Z(Γ))
i=1 be a basis of Z(Γ). Moreover, assume there exist integers

{ti}
h(Γc(Γ))

i=1 such that
{
ztii
}h(Γc(Γ))

i=1
is a basis of Γc(Γ) and that there exist

ai ∈ Γc(Γ)−1 and bi ∈ Γ such that ztii = [ai, bi]. For each γ ∈ Z(Γ)
√

Γc(Γ), there

exists an i0 ∈
{

1, . . . , h(Γc(Γ))
}

such that Γ/Λzi0 is an admissible quotient

with respect to γ. More generally, if {zi}h(Z(Γ))
i=1 is any basis of Z(Γ) with γ ∈

(Z(Γ))•, then there exists an i0 such that Γ/Λzi0 is an admissible quotient
of Γ with respect to γ.

Proof. Letting M = Z(Γ)
√

Γc(Γ), we may write γ =
∏h(M)
i=1 zαii . There exist

indices 1 ≤ i1 < · · · < i` ≤ h(M) such that αij 6= 0 for 1 ≤ j ≤ ` and αi = 0,
otherwise. We observe that Γ/Λzit satisfies the conditions of Proposition 3.1
for γ for each 1 ≤ t ≤ `. Therefore,

h(Γ/Λγ) ≤ min{h(Γ/Λzit ) | 1 ≤ t ≤ `}.

Since πΛγ (γ) 6= 1, there exists it0 such that πΛγ (zit0 ) 6= 1. Thus, Γ/Λγ sat-
isfies the conditions of Proposition 3.1 for zit0 . Thus, h(Γ/Λzit0

) ≤ h(Γ/Λγ).
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In particular,
min{h(Γ/Λzit ) | 1 ≤ t ≤ `} ≤ h(Γ/Λγ).

Therefore,
h(Γ/Λγ) = min{h(Γ/Λzit ) | 1 ≤ i ≤ `}.

The last statement follows using similar reasoning. �

The following proposition demonstrates that ψRF(Γ) can always be real-
ized as the Hirsch length of an admissible quotient with respect to a central
element of a fixed basis of Γc(Γ).

Proposition 3.8. Let Γ be a torsion-free, finitely generated nilpotent group

with a basis {zi}h(Z(Γ))
i=1 for Z(Γ). Moreover, assume there exist integers

{ti}
h(Γc(Γ))

i=1 such that
{
ztii
}h(Γc(Γ))

i=1
is a basis of Γc(Γ) and that there exist

elements ai ∈ Γc(Γ)−1 and bi ∈ Γ such that ztii = [ai, bi]. There exists an

i0 ∈
{

1, . . . , h(Γc(Γ))
}

such that ψRF(Γ) = h(Γ/Λzi0 ). Hence,

ψRF(Γ) = max
{
h(Γ/Λzi) | 1 ≤ i ≤ h(Γc(Γ))

}
.

More generally, if {zi}h(Z(Γ))
i=1 is any basis of Z(Γ), then

ψRF(Γ) = max {h(Γ/Λzi) | 1 ≤ i ≤ h(Z(Γ))} .

Proof. Let J be the set of central, nontrivial elements γ such that there
exists a k ∈ Z• where γk is a c(Γ)-fold commutator bracket. Given that the
set {h(Γ/Λγ) |γ ∈ J } is bounded above by h(Γ), there exists a nontrivial
element η ∈ J such that

h(Γ/Λη) = max{h(Γ/Λγ) |γ ∈ J }.
Proposition 3.7 implies that there exists an i0 ∈ {1, . . . , h(Z(Γ))} such that
h(Γ/Λη) = h(Γ/Λzi0 ). By the definition of ψRF(Γ), it follows that

ψRF(Γ) = max{h(Γ/Λzi) | 1 ≤ i ≤ h(Γc(Γ))}.
The last statement follows using similar reasoning. �

3.2. Properties of admissible quotients. We demonstrate conditions
for an admissible quotient of Γ with respect to some primitive, central,
nontrivial element to have the same step length as Γ.

Proposition 3.9. Let Γ be a torsion-free, finitely generated nilpotent group.
If we let γ ∈

(
Z(Γ)
√

Γc(Γ)

)•
be a primitive element with an admissible quotient

Γ/Λ with respect to γ, then c(Γ/Λ) = c(Γ). In particular, if Γ/Λ is a
maximal admissible quotient of Γ, then c(Γ/Λ) = c(Γ). If c(Γ) > 1, then
h(Γ/Λ) ≥ 3.

Proof. By definition, there exists a k ∈ Z• such that γk ∈ Γc(Γ). Suppose
for a contradiction that c(Γ/Λ) < c(Γ). We then have that Γc(Γ) ≤ ker(πΛ),

and hence, πΛ(γk) = 1. Since Γ/Λ is torsion-free, it follows that πΛ(γ) = 1.
That contradicts the construction of Γ/Λ, and thus, c(Γ/Λ) = c(Γ).
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Since every irreducible, torsion-free, finitely generated nilpotent group Γ
such that c(Γ) ≥ 2 contains a subgroup isomorphic to the 3-dimensional
integral Heisenberg group, we have that h(Γ/Λ) ≥ 3. �

The following proposition relates the value ψRF(Γ) to the value ψRF(Λ)
when Λ is a torsion-free quotient of Γ of lower step length.

Proposition 3.10. Let Γbe a torsion-free, finitely generated nilpotent group.
If M = Z(Γ)

√
Γc(Γ), then ψRF(Γ) ≥ ψRF(Γ/M).

Proof. There exist elements {zi}h(Z(Γ/M))
i=1 and integers {ti}h(N)

i=1 satisfying

the following. The set {πM (zi)}h(Z(Γ/M))
i=1 generates Z(Γ/M) and that there

exist ai ∈ (Γ/M)c(Γ)−2 and bi ∈ Γ/M such that πM ([ai, bi]) = πM (ztii ).

Finally, the set
〈{
πM (zi)

ti
}h(N)

i=1

〉
generates Z(Γ/M)

√
(Γ/M)c(Γ)−1.

There exist γi ∈ Γ such that the elements {[zi, γi]}
h(Γc(Γ))

i=1 generate Γc(Γ).

Finally, there exist elements {yi}h(M)
i=1 in Z(Γ) and integers {si}h(M)

i=1 such
that ysii = [zi, γi]. For each i ∈ {1, . . . , h(M)}, we let Γ/Λi be an admissible
quotient with respect to yi.

Let (Γ/M)/Ωi be an admissible quotient of Γ/M with respect to πM (zi).
It is evident that Λi ≤ π−1

M (Ωi). Thus, it follows that

h(Γ/Λi) ≥ h(Γ/π−1
M (Ωi)) = h((Γ/M)/Ωi).

Proposition 3.8 implies that ψRF(Γ) ≥ h((Γ/M)/Ωi). Applying Proposi-
tion 3.8 again, we have that ψRF(Γ) ≥ ψRF(Γ/M). �

This last proposition demonstrates that the definition of ψRF(Γ) is the
maximum value over all possible Hirsch lengths of admissible quotients with
respect to primitive, central, nontrivial elements of Γ.

Proposition 3.11. Let Γbe a torsion-free, finitely generated nilpotent group.
For each primitive element γ ∈ (Z(Γ))•, we let Γ/Λγ be an admissible quo-
tient with respect to γ. Then

ψRF(Γ) = max {h(Γ/Λγ) | γ ∈ (Z(Γ))•} .

Proof. Suppose that Γ is abelian. We then have that h(Γ/Λγ) = 1 for all
primitive elements. Therefore, we have our statement, and thus, we may
assume that c(Γ) > 1.

Let M = Z(Γ)
√

Γc(Γ), and let γ ∈ (Z(Γ))•. There exists a basis {zi}h(Z(Γ))

for Z(Γ) and integers {ti}
h(Γc(Γ))

i=1 such that
{
ztii
}h(Γc(Γ))

i=1
is a basis for Γc(Γ).

Moreover, there exist ai ∈ Γc(Γ)−1 and bi ∈ Γ such that ztii = [ai, bi]. If
γ ∈ M , then by definition of ψRF(Γ) and Proposition 3.8, we have that
h(Γ/Λγ) ≤ ψRF(Γ). Thus, we may assume that γ /∈M .

Since γ /∈M , πM (γ) 6= 1. Hence, it is evident that (Γ/M)/πM (Λγ) satis-
fies Proposition 3.1 for πM (γ). Thus, if (Γ/M)/Ω is an admissible quotient
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with respect to πM (γ), we note that Γ/π−1
K (Ω) satisfies Proposition 3.1 for

γ. Thus, by definition,

h(Γ/Λγ) ≤ h(Γ/π−1
K (Ω)) ≤ h((Γ/M)/Ω) ≤ ψRF(Γ/M).

Proposition 3.10 implies that ψRF(Γ/M) ≤ ψRF(Γ). Thus,

h(Z(Γ/Λγ)) ≤ ψRF(Γ). �

Definition 3.12. Let Γ be a torsion-free, finitely generated nilpotent group

with a maximal admissible quotient Γ/Λ. Let {∆i}h(Γ)
i=1 be a cyclic series

and {ξi}h(Γ)
i=1 be a compatible generating subset that together satisfy Propo-

sition 3.6 for Λ. We take the Mal’tsev completion G to be constructed as
defined in §2.4 with Lie algebra g. We observe that the vectors Log(ξi) span

g. We call the subset {Log(ξi)}h(Γ)
i=1 an induced basis for g.

4. Commutator geometry and lower bounds for residual
finiteness

The following definitions and propositions will be important in the con-
struction of the lower bounds found in the proof of Theorem 1.1.

4.1. Finite index subgroups and cyclic series. The following proposi-
tion tells us how to view finite index subgroups in light of a cyclic series and
a compatible generating subset.

Proposition 4.1. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 ,
and let K ≤ Γ be a finite index subgroup. Then there exist natural numbers

{ti}h(Γ)
i=1 satisfying the following. The subgroups {Hi}h(Γ)

i=1 given by

Hi =
〈
ξtss
〉i
s=1

form a cyclic series for K with a compatible generating subset {ξtii }
h(Γ)
i=1 .

Proof. We proceed by induction on Hirsch length. For the base case, we
have that Γ ∼= Z and that K ∼= tZ for some t ≥ 1. Now the statement of the
proposition is evident by choosing H1 = K and the compatible generating
subset is given by {t}.

Thus, we may assume h(Γ) > 1. Observing that ∆h(Γ)−1 ∩K is a finite
index subgroup of ∆h(Γ)−1 and that h(∆h(Γ)−1) = h(Γ) − 1, the inductive

hypothesis implies that there exist natural numbers {ti}h(Γ)
i=1 satisfying the

following. The groups {Hi}h(Γ)−1
i=1 given by Hi =

〈
ξtss
〉i
s=1

form a cyclic series

for ∆h(Γ)−1 ∩ K with a compatible generating subset {ξtii }
h(Γ)−1
i=1 . We also

have that π∆h(Γ)−1
(K) is a finite index subgroup of Γ/∆h(Γ)−1. Thus, there

exists a th(Γ) ∈ N such that

K/∆h(Γ)−1
∼=
〈
π∆h(Γ)−1

(
ξ
th(Γ)

h(Γ)

)〉
.
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If we set Hh(Γ)
∼=
〈
Hh(Γ)−1, ξ

th(Γ)

h(Γ)

〉
, then the groups {Hi}h(Γ)

i=1 form a cyclic

series for K with a compatible generating subset {ξtii }
h(Γ)
i=1 . �

We now apply Proposition 4.1 to give a description of the subgroups of Γ
of the form Γm for m ∈ N.

Corollary 4.2. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 ,

and let m ∈ N. The subgroups Hi = 〈ξms 〉
i
s=1 form a cyclic series for Γm

with a compatible generating subset {ξmi }
h(Γ)
i=1 . In particular,

|Γ/Γm| = mh(Γ).

Proof. Proposition 4.1 implies that there exist natural numbers {ti}h(Γ)
i=1

such that the subgroups {Hi}h(Γ)
i=1 given by Hi =

〈
ξtss
〉i
s=1

form a cyclic se-

ries for Γm with a compatible generating subset
{
ξtii
}h(Γ)

i=1
. We observe that

(Γ/∆1)m ∼= (Γm/∆1). It is also evident that the series {Hi/∆1}h(Γ)
i=2 is a

cyclic series for (Γ/∆1)m with a compatible generating subset
{
π∆1(ξtii )

}h(Γ)

i=2
.

Thus, the inductive hypothesis implies that ti = m for all 2 ≤ i ≤ h(Γ). To
finish, we observe that Γm ∩∆1

∼= ∆m
1 . Thus, t1 = m. �

Let Γ be a torsion-free, finitely generated nilpotent group, and let K ≤ Γ
be a finite index subgroup. The following proposition allows us to under-
stand how K intersects a fixed admissible quotient of Γ with respect to a
primitive, central, nontrivial element.

Proposition 4.3. Let Γ be a torsion-free, finitely generated nilpotent group

with a maximal admissible quotient Γ/Λ. Let {∆i}h(Γ)
i=1 be a cyclic series

and {ξi}h(Γ)
i=1 be a compatible generating subset that together satisfy Proposi-

tion 3.6 for Λ. Let K be a finite index subgroup of Γ. There exist indices
1 ≤ i1 < i2 < · · · < i` ≤ h(Γ) with natural numbers {ts}`s=1 such that the

subgroups Hs =
〈
ξ
tj
ij

〉s
j=1

form a cyclic series for K ∩ Λ with compatible

generating subset {ξtsis }
`
s=1.

Proof. We proceed by induction on Hirsch length, and since the base case
is clear, we may assume that h(Γ) > 1. By assumption, the cyclic series

{∆i}h(Γ)
i=1 and compatible generating subset {ξi}h(Γ)

i=1 together satisfy the con-
ditions of Proposition 3.6 for Λ. Thus, there exists indices 1 ≤ i1 < i2 <

· · · < i` such that the subgroups Mj = 〈ξis〉
j
s=1 form a cyclic series for Λ

with a compatible generating subset {ξis}
h(Λ)
s=1 . Applying Proposition 4.1 to

the torsion-free, finitely generated nilpotent group Γ, cyclic series {∆i}h(Γ)
i=1 ,

and compatible generating subset {ξi}h(Γ)
i=1 , we have that there exist natu-

ral numbers {ti}h(Γ)
i=1 such that the subgroups given by Wi =

〈
ξtss
〉i
s=1

form
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a cyclic series for K with a compatible generating subset
{
ξtii
}h(Γ)

i=1
. Since

K∩Λ is a finite index subgroup of Λ, the subgroups given by Hs =
〈
ξ
tij
ij

〉s
j=1

form the desired cyclic series for K ∩Λ with a compatible generating subset

{ξtisis }
`
s=1. Therefore, {tis}`s=1 are the desired integers. �

4.2. Reduction of complexity for residual finiteness. We first demon-
strate that we may assume that Γ is torsion-free when calculating FΓ(n).

Proposition 4.4. Let Γ be an infinite, finitely generated nilpotent group.
Then

FΓ(n) ≈ FΓ/T (Γ)(n).

Proof. We proceed by induction on |T (Γ)|, and observe that the base case
is evident. Thus, we may assume that |T (Γ)| > 1. Note that

πZ(T (Γ)) : Γ→ Γ/Z(T (Γ))

is surjective and that ker(πZ(T (Γ))) = Z(T (Γ)) is a finite central subgroup.
Since finitely generated nilpotent groups are linear, [7, Lem 2.4] implies that
FΓ(n) ≈ FΓ/T (Z(Γ))(n). Since

(Γ/Z(T (Γ)))/T (Γ/Z(T (Γ))) ∼= Γ/T (Γ),

the inductive hypothesis implies that FΓ(n) ≈ FΓ/T (Γ)(n). �

For a torsion-free, finitely generated nilpotent group Γ, the following
proposition implies that we may pass to a maximal admissible quotient of
Γ when computing the lower bounds of FΓ(n).

Proposition 4.5. Let Γ be a torsion-free, finitely generated nilpotent group

with a maximal admissible quotient Γ/Λ. Let {∆i}h(Γ)
i=1 be a cyclic series

and {ξi}h(Γ)
i=1 be a compatible generating subset that together satisfy Proposi-

tion 3.6 for Λ. If ϕ : Γ→ Q is a surjective homomorphism to a finite group,
then ϕ(ξm1 ) 6= 1 if and only if πϕ(Λ)(ϕ(ξm1 )) 6= 1 where m ∈ N.

Proof. If Λ ∼= {1}, then there is nothing to prove. Thus, we may assume
that Λ � {1}. Proposition 3.6 implies that ξ1 /∈ Λ and that there exists a

collection of elements of the Mal’tsev basis {ξis}`s=1 such that Λ ∼= 〈ξis〉
h(Λ)
s=1 .

Moreover, we have that Hs = 〈ξit〉
s
t=1 is cyclic series for Λ with compatible

generating subset {ξis}`s=1. Proposition 4.3 implies that there exist natural

numbers {ts}`s=1 such that the series of subgroups {Ws}h(Λ)
s=1 given by

Ws =
〈
ξ
tj
ij

〉s
j=1

forms a cyclic series for ker(ϕ) ∩ Λ with a compatible generating subset

{ξtsis }
h(Λ)
s=1 .

Since the backwards direction is clear, we proceed with forward direction.
To be more specific, we demonstrate that if ϕ(ξm1 ) 6= 1, then πϕ(Λ)(ξ

m
1 ) 6= 1.
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We proceed by induction on |ϕ(Λ)|, and observe that the base case is clear.
Thus, we may assume that |ϕ(Λ)| > 1. In order to apply the inductive
hypothesis, we find a nontrivial, normal subgroup M ≤ Z(Q) such that
ϕ(ξm1 ) /∈M .

We first observe that if ϕ(ξi0) 6= 1 for some i0 ∈ {2, . . . , h(Z(Γ))}, we
may set M = 〈ϕ(ξi0)〉. It is straightforward to see that M 6∼= {1} and that
ϕ(ξm1 ) /∈M . Thus, we may assume that ξi ∈ ker(ϕ) for i ∈ {2, . . . , h(Z(Γ))}.

In this next paragraph, we prove that there exists an element of the
compatible generating subset, say ξi0 , such that ξi0 ∈ Λ, ξi0 /∈ ker(ϕ), and
ϕ(ξi0) ∈ Z(Q). To that end, we note that if |tis | = 1, then ξis ∈ ker(ϕ).
Since |ϕ(Λ)| > 1, the set E = {ξis | |tis | 6= 1} is non empty. Given that E is
a finite set, there exists a ξis0 ∈ E such that

Height(ξis0 ) = min{Height(ξis) | ξis ∈ E}.

We claim that ϕ(ξis0 ) is central in Q, and since we are assuming that ϕ(ξi) =
1 for i ∈ {2, . . . , h(Z(Γ))}, we may assume that Height(ξis0 ) > 1. Since
Height([ξis0 , ξt]) < Height(ξis0 ) for any ξt and that ϕ(Λ) E Q, it follows
that [ϕ(ξis0 ), ϕ(ξt)] ∈ ϕ(Λ). Thus, [ϕ(ξis0 ), ϕ(ξt)] is a product of ϕ(ξisj )

where Height(ξisj ) < Height(ξis0 ). Since ξisj ∈ ϕ(Λ) and Height(ξisj ) <

Height(ξis0 ), the definition of E and the choice of ξi0 imply that tisj = 1.

Thus, ξisj ∈ ker(ϕ), and subsequently, ϕ(ξisj ) = 1. Hence, [ϕ(ξis0 ), ϕ(ξt)] =

1, and thus, ϕ(ξi0) ∈ (Z(Q))•.
Since ϕ(ξis0 ) is central in Q, the group M = 〈ϕ(ξi0)〉 is a normal subgroup

of Q. By selection, ϕ(ξm1 ) /∈ M , and since |πM (ϕ(Λ))| < |ϕ(Λ)|, we may
apply the inductive hypothesis to the surjective homomorphism

πM ◦ ϕ : Γ→ Q/M.

Letting N = πM ◦ ϕ(Λ), we have that πN (πM (ϕ(ξm1 ))) 6= 1. Thus,

πϕ(Λ)(ξ
m
1 ) 6= 1. �

As a natural consequence of the techniques used in the proof of the above
proposition, we have the following corollary.

Corollary 4.6. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 .

Let ξt0 be a central element of {ξi}h(Γ)
i=1 . If Λ satisfies the conditions of

Corollary 3.2 for ξt0, then ϕ(ξt0) 6= 1 if and only if πϕ(Λ) ◦ ϕ(ξt0) 6= 1.

4.3. Rank and step estimates.

Definition 4.7. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 .

Let ~a = (ai)
`
i=1 where 1 ≤ ai ≤ h(Γ) for all i. We write

[ξ~a] = [ξa1 , . . . , ξa` ].
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We call [ξ~a] a simple commutator of weight ` with respect to ~a. Let

Wk(Γ,∆, ξ)

be the set of nontrivial simple commutators of weight k. Since Γ is a nilpo-
tent group, Wc(Γ)+1 is empty. Thus, the set of nontrivial simple commutators
of any weight, denoted as W (Γ,∆, ξ), is finite.

When considering a surjective homomorphism to a finite group ϕ : Γ→ Q,
we need to ensure that the step length of Q is equal to the step length of Γ.
We do that by assuming that ϕ([ξ~a]) 6= 1 for all [ξ~a] ∈W (Γ,∆, ξ) ∩ Z(Γ).

Proposition 4.8. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 .
Let ϕ : Γ → Q be a surjective homomorphism to a finite group such that
if [ξ~a] ∈ W (Γ,∆, ξ) ∩ Z(Γ), then ϕ([ξ~a]) 6= 1. Then ϕ([ξ~a]) 6= 1 for all
[ξ~a] ∈W (Γ,∆, ξ). Lastly, c(Γ) = c(Q).

Proof. We first demonstrate that ϕ([ξ~a]) 6= 1 for all [ξ~a] ∈ W (Γ,∆, ξ)
by induction on Height([ξ~a]). Observe that if [ξ~a] ∈ Wk(Γ,∆, ξ), then
Height([ξ~a]) ≤ c(Γ)−k+1. Thus, if [ξ~a] ∈Wc(Γ)(Γ,∆, ξ), then Height([ξ~a]) =
1. Hence, the base case follows from assumption.

Now consider [ξ~a] ∈W (Γ,∆, ξ) where Height([ξ~a]) = ` > 1. If [ξ~a] ∈ Z(Γ),
then the assumptions of the proposition imply that ϕ([ξ~a]) 6= 1. Thus, we
may assume there exists an element ξi0 of the Mal’tsev basis such that
[[ξ~a], ξi0 ] 6= 1. The induction hypothesis implies that ϕ([[ξ~a], ξi0 ]) 6= 1 since
[[ξ~a], ξi0 ] is a simple commutator of Height([[ξ~a], ξi0 ]) ≤ `−1. Thus, ϕ([ξ~a]) 6=
1. Therefore, for each [ξ~a] ∈W (Γ,∆, ξ), it follows that ϕ([ξ~a]) 6= 1.

If c(Q) < c(Γ), then ϕ factors through Γ/Γc(Γ), and thus,

Wc(Γ)(Γ,∆, ξ) ⊆ ker(ϕ).

Since
Wc(Γ)(Γ,∆, ξ) ⊆W (Γ,∆, ξ) ∩ Z(Γ),

we have a contradiction. Hence, c(Q) = c(Γ). �

The following definition will be important in the proofs of Theorem 1.1
and Theorem 1.8.

Definition 4.9. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 .

For [ξ~a] ∈W (Γ,∆, ξ), we may write [ξ~a] =
∏h(Γ)
i=1 ξ

δ~a,i
i . Let

B(Γ,∆, ξ) = lcm
{
|δ~a,i|

∣∣∣ 1 ≤ i ≤ h(Γ), δ~a,i 6= 0 and [ξ~a] ∈W (Γ,∆, ξ)
}
.

Suppose that Γ is a torsion-free, finitely generated nilpotent group with

a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 . For
a surjective homomorphism to a finite p-group ϕ : Γ → Q, the following
proposition gives conditions so that |Q| ≥ ph(Γ). To be more specific, if ϕ is
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an injective map when restricted to the set of central simple commutators,
is an injective map when restricted to central elements of a fixed compatible
generating subset, and p > B(Γ,∆, ξ), then ϕ is an injection when restricted
to that same compatible generating subset.

Proposition 4.10. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 .
Let ϕ : Γ → Q be a surjective homomorphism to a finite p-group where
p > B(Γ,∆, ξ). Suppose that ϕ([ξ~a]) 6= 1 for all [ξ~a] ∈ W (Γ,∆, ξ) ∩ Z(Γ).
Also, suppose that ϕ(ξi) 6= 1 for ξi ∈ Z(Γ) and ϕ(ξi) 6= ϕ(ξj) for ξi, ξj ∈
Z(Γ) where i 6= j. Then ϕ(ξt) 6= 1 for 1 ≤ t ≤ h(Γ) and ϕ(ξi) 6= ϕ(ξj) for

1 ≤ i < j ≤ h(Γ). Finally, |Q| ≥ ph(Γ).

Proof. Let ξt /∈ Z(Γ). By selection, there exists a ξs such that [ξt, ξs] 6= 1.
Since [ξt, ξs] is a simple commutator of weight 2, we have that ϕ([ξt, ξs]) 6= 1
by Proposition 4.8. Thus, ϕ(ξt) 6= 1.

We now demonstrate that ϕ(ξi) 6= ϕ(ξj) for all 1 ≤ i < j ≤ h(Γ) by
induction on h(Γ). If ξi, ξj ∈ Z(Γ), then by assumption, ϕ(ξi) 6= ϕ(ξj).
Now suppose that ξi ∈ Z(Γ) and that ξj /∈ Z(Γ). Then there exists a ξs
such that [ξj , ξs] 6= 1, and subsequently, the above paragraph implies that
ϕ([ξj , ξs]) 6= 1. In particular, ϕ(ξj) /∈ Z(Q), and thus, ϕ(ξi) 6= ϕ(ξj).

We now may assume that ξi, ξj /∈ Z(Γ). Proposition 3.2 implies that there
exists a normal subgroup Λ/K E Γ/K such that Λ/K satisfies the conditions

of Proposition 3.1 for πK(ξi) where K = 〈ξs〉i−1
s=1. Moreover, Λ ∼= 〈ξi`〉

h(Λ)
`=1

where the subgroups given by Wt = 〈ξi`〉
t
`=1 form a cyclic series for Λ with

a compatible generating subset {ξi`}
h(Λ)
`=1 . Thus, {πΛ(∆s)}h(Γ)

s=1,s/∈S is a cyclic

series for Γ/Λ with a compatible generating subset {πΛ(ξs)}h(Γ)
s=1,s/∈S . That

implies πΛ(W (Γ,∆, ξ)) = W (Γ/Λ, πΛ(∆), πΛ(ξ)). For simplicity, we indicate
elements of W (Γ/Λ, πΛ(∆), πΛ(ξ)) as [πΛ(ξ~a)].

Corollary 4.6 implies that πϕ(Λ) ◦ ϕ(πΛ(ξi)) 6= 1. Thus, we proceed based
on whether ϕ(ξj) ∈ ϕ(Λ) or not. If ϕ(ξj) ∈ ϕ(Λ), then ϕ(ξi) 6= ϕ(ξj) since
ϕ(ξi) /∈ ϕ(Λ). Thus, we may assume that ϕ(ξi), ϕ(ξj) /∈ ϕ(Λ).

Since we have a homomorphism

πϕ(Λ) ◦ ϕ : Γ→ Γ/ϕ(Λ)

where Λ ≤ ker(πϕ(Λ) ◦ ϕ), we obtain an induced homomorphism

˜πϕ(Λ) ◦ ϕ : Γ/Λ→ Q/ϕ(Λ).

We now demonstrate the hypotheses of our proposition hold for the homo-
morphism ˜πϕ(Λ) ◦ ϕ : Γ/Λ→ Q/ϕ(Λ). Since πϕ(Λ) ◦ϕ(πΛ(ξi)) 6= 1, it follows

that ˜πϕ(Λ) ◦ ϕ(πK(ξi)) 6= 1. Thus, we have that Z(Γ/Λ) ∼= 〈πΛ(ξi)〉.
In particular, ˜πϕ(Λ) ◦ ϕ is injective when restricted to the subset of central

elements of the compatible generating subset for Γ/Λ given by {πΛ(ξs)}. For
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each [πΛ(ξ~a)] ∈W (Γ/Λ, πΛ(∆), πΛ(ξ)), there exists a [ξ~b] ∈W (Γ,∆, ξ) such
that πΛ([ξ~b]) = [πΛ(ξ~a)]. We may write

πΛ([ξ~b]) = πΛ

h(Γ)∏
s=1

ξ
δ~b,s
i

 =

h(Γ)∏
s=1

πΛ(ξs)
δ~b,i =

h(Γ)∏
s=1,s 6=S

πΛ(ξs)
δ~a,s = [πΛ(ξ~a)].

By construction, δ~b,i = δ~a,i for 1 ≤ i ≤ h(Γ) and i /∈ S. By the definition of

lcm, we have that

B(Γ,∆, ξ) ≥ B(Γ/Λ, πΛ(∆), πΛ(ξ)).

Additionally, for

[πΛ(ξ~a)] ∈W (Γ/Λ, πΛ(∆), πΛ(ξ)) ∩ Z(Γ/Λ)

we have that [ξ~a] = ξ
δ~a,i
i . Since p > B(Γ/Λ, πΛ(∆), πΛ(ξ)), we have that

OrdQ/ϕ(Λ)( ˜πϕ(Λ) ◦ ϕ(πΛ(ξi))) > p.

Thus, we have ˜πϕ(Λ) ◦ ϕ([πΛ(ξ~a)]) 6= 1 for all

[πΛ(ξ~a)] ∈W (Γ/Λ, πΛ(∆), πΛ(ξ)) ∩ Z(Γ/Λ).

By the proof of the first statement, we have that ˜πϕ(Λ) ◦ ϕ(πK(ξk)) 6= 1 for

1 ≤ k ≤ h(Γ) where k /∈ S. We also have that ˜πϕ(Λ) ◦ ϕ([ξ~a]) 6= 1 for all

[πΛ(ξ~a)] ∈W (Γ/Λ, πΛ(∆), πΛ(ξ)).

By construction, there exists a ξs0 such that [πΛ(ξj), πΛ(ξs0)] 6= 1. Propo-

sition 4.8 implies that ˜πϕ(Λ) ◦ ϕ([πΛ(ξj), πΛ(ξs0)]) 6= 1. Thus, it follows that

˜πϕ(Λ) ◦ ϕ(πΛ(ξj)) /∈ Z(Q/ϕ(Λ))

whereas ˜πϕ(Λ) ◦ ϕ(πΛ(ξi)) ∈ Z(Q/ϕ(Λ)). Thus,

˜πϕ(Λ) ◦ ϕ(πΛ(ξi)) 6= ˜πϕ(Λ) ◦ ϕ(πΛ(ξj)).

Given that ˜πϕ(Λ) ◦ ϕ(πΛ(g)) = πϕ(Λ) ◦ ϕ(g) for all g ∈ Γ, we have that

πϕ(A) ◦ ϕ(ξi) 6= πϕ(A) ◦ ϕ(ξj).

In particular, ϕ(ξi) 6= ϕ(ξj).

Subsequently {ϕ(ξi)}h(Γ)
i=1 is a generating subset of Q where OrdQ(ϕ(ξi)) ≥

p for all i. [17, Thm 1.10] implies that |Q| divides nonzero some power of

ph(Γ). Hence, |Q| ≥ ph(Γ). �

Proposition 4.11. Let Γ be a torsion-free, finitely generated nilpotent group

such that h(Z(Γ)) = 1 with a cyclic series {∆i}h(Γ)
i=1 and a compatible generat-

ing subset {ξi}h(Γ)
i=1 . Suppose that ϕ : Γ → Q is a surjective homomorphism

to a finite p-group such that p > B(Γ,∆, ξ), and suppose that ϕ(ξ1) 6= 1.

Then c(Γ) = c(Q), Z(Q) = 〈ϕ(ξ1)〉 , and |Q| ≥ ph(Γ).
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Proof. Since ϕ(ξ1) 6= 1 and Q is p-group, we have that OrdQ(ϕ(ξ1)) ≥ p.
We claim that if [ξ~a] ∈ W (Γ,∆, ξ) ∩ Z(Γ), then ϕ([ξ~a]) 6= 1. Suppose for
a contradiction that ϕ([ξ~a]) = 1 for some [ξ~a] ∈ W (Γ,∆, ξ) ∩ Z(Γ). Since

ϕ(ξ
B(Γ,∆,ξ)
1 ) is a power of ϕ([ξ~a]) by definition, we have that ϕ(ξ

B(Γ,∆,ξ)
1 ) = 1.

Thus, ϕ(ξ1) has order strictly less than p which is a contradiction.
Since ϕ([ξ~a]) 6= 1 for all [ξ~a] ∈W (Γ,∆, ξ) ∩Z(Γ), Proposition 4.8 implies

that c(Γ) = c(Q). On the other hand, Proposition 4.10 implies that ϕ(ξi) 6=
1 for all 1 ≤ i ≤ h(Γ) and ϕ(ξj1) 6= ϕ(ξj2) for all 1 ≤ j1 < j2 ≤ h(Γ). Thus,

{ϕ(∆i)}h(Γ)
i=1 is a cyclic series for Q and {ϕ(ξi)}h(Γ)

i=1 is a compatible generating
subset for Q. Since Q is a p-group, we have that |ϕ(∆i) : ϕ(∆i−1)| ≥ p for
each 1 ≤ i ≤ h(Γ) with the convention that ∆0 = {1}. Hence, the second
paragraph after [20, Defn 8.2] implies that

|Q| =
h(Γ)∏
i=1

|∆i : ∆i−1| ≥ ph(Γ).

We finish by demonstrating Z(Q) = 〈ϕ(ξ1)〉. Since {ϕ(∆i)}h(Γ)
i=1 is an

ascending central series that is a refinement of the upper central series,
there exists an i0 such that ϕ(∆i0) = Z(Q). For t > 1, there exists a j 6= t
such that [ξt, ξj ] 6= 1. Since [ξt, ξj ] is a simple commutator of weight 2,
Proposition 4.8 implies that ϕ([ξt, ξj ]) 6= 1. Given that

ϕ([ξt, ξj ]) = [ϕ(ξt), ϕ(ξj)],

it follows that ϕ(ξt) /∈ Z(Q). Thus, we have that ϕ(∆t) 
 Z(Q) for all
t > 1. Hence, Z(Q) = 〈ϕ(ξ1)〉. �

Let Γ be a torsion-free, finitely generated nilpotent group with a maximal

admissible quotient Γ/Λ. Let {∆i}h(Γ)
i=1 be a cyclic series and {ξi}h(Γ)

i=1 be
a compatible generating subset that together satisfy Proposition 3.6 for Λ.
Suppose that ϕ : Γ → Q is a surjective homomorphism to a finite group
and m ∈ Z•. The following proposition gives conditions such that Q has no
nontrivial quotients in which ϕ(ξm1 ) 6= 1.

Proposition 4.12. Let Γ be a torsion-free, finitely generated nilpotent group

with a maximal admissible quotient Γ/Λ. Let {∆i}h(Γ)
i=1 be a cyclic series

and {ξi}h(Γ)
i=1 be a compatible generating subset that together satisfy Propo-

sition 3.6 for Λ. Suppose that ϕ : Γ → Q is a surjective homomorphism
to a finite p-group where ϕ(Λ) ∼= {1}, p > B(Γ/Λ, πΛ(∆), πΛ(ξ)), and

|Q| ≤ pψRF(Γ). If ϕ(ξm1 ) 6= 1 for some m ∈ Z, then |Q| = pψRF(Γ). Addition-
ally, if N is a proper quotient of Q, then ρ(ϕ(ξm1 )) = 1 where ρ : Q→ N is
the natural projection. Finally, Z(Q) ∼= Z/pZ.

Proof. Let us first demonstrate that |Q| = pψRF(Γ). Since Λ ≤ ker(ϕ), we
have an induced homomorphism ϕ̃ : Γ/Λ→ Q such that ϕ̃ ◦πΛ = ϕ. Hence,
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Proposition 4.11 implies that ϕ(Z(Γ/Λ)) ∼= Z(Q) and |Q| ≥ pψRF(Γ). Thus,

|Q| = pψRF(Γ).
We now demonstrate that Z(Q) ∼= Z/pZ. Since {ϕ(πΛ(∆i)) | ξ /∈ Λ} is a

cyclic series for Q with a compatible generating {ϕ(ξi) | ξi /∈ Λ}, it follows
that

|Q| =
∏
ξi /∈Λ

OrdQ(ϕ(ξi))

(see the second paragraph after [20, Defn 8.2]). Thus, we must have that
OrdQ(ϕ(ξi)) ≤ p. Since OrdQ(ϕ(ξ1)) ≥ p, we have that OrdQ(ϕ(ξ1)) = p.
Since Z(Q) ∼= 〈ϕ(ξ1)〉, it follows that Z(Q) ∼= Z/pZ.

Since Z(Q) ∼= Z/pZ, there are no proper, nontrivial, normal subgroups of
Z(Q). Given that ker(ρ) E Q, we have that Z(Q) ∩ ker(ρ) = Z(Q); hence,
ρ(ϕ(ξmi )) = 1 because ϕ(ξm1 ) ∈ Z(Q) ≤ ker(ρ). �

5. Some examples of precise residual finiteness

To demonstrate the techniques used in the proof of Theorem 1.1, we
make a precise calculation of FH2m+1(Z)(n) where H2m+1(Z) is the (2m+ 1)-
dimensional integral Heisenberg group.

5.1. Basics facts about the integral Heisenberg group. We start by
introducing basic facts about the (2m+ 1)-dimensional integral Heisenberg
group which will be useful in the calculation of FH2m+1(Z)(n) and in Section 9.
We may write

H2m+1(Z) =


1 ~x z
~0 Im ~y

0 ~0 1

∣∣∣∣∣∣ z ∈ Z, ~x, ~yT ∈ Zm


where Im is the m×m identity matrix. If γ ∈ H2m+1(Z), we write

γ =

1 ~xγ zγ
~0 Im ~yγ
0 ~0 1


where ~xγ = [xγ,1, . . . , xγ,m] and ~yTγ = [yγ,1, . . . , yγ,m].

We let E = {~ei}mi=1 be the standard basis of Zm and then choose a gener-
ating subset for H2m+1(Z) given by S = {α1, . . . , αm, β1, . . . , βm, λ} where

αi =

1 ~ei 0
~0 Im ~0

0 ~0 1

 , βi =

1 ~0 0
~0 Im ~eTi
0 ~0 1

 , and λ =

1 ~0 1
~0 Im ~0

0 ~0 1

 .

Thus, if γ ∈ BH2m+1(Z),S(n), then ~xγ , ~xη, ~y
T
γ , ~y

T
η ∈ BZm,E(C0 n) and |zγ | ≤

C0 n
2 for some C0 ∈ N [16, 3.B2]. We obtain a finite presentation for

H2m+1(Z) written as

(4) H2m+1(Z) = 〈κ, µi, νj for 1 ≤ i, j ≤ m | [µt, νt] = κ for 1 ≤ t ≤ m〉
with all other commutators being trivial.
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Finally, we let ∆1 = 〈κ〉, ∆i = 〈{κ} ∪ {µs}〉t−1
s=1 for 2 ≤ i ≤ m + 1,

and ∆i =
〈
{∆m+1} , {νt}i−m−1

t=1

〉
for m + 2 ≤ i ≤ 2m + 1. One can see

that {∆i}2m+1
i=1 is a cyclic series for H2m+1(Z) and that S is a compatible

generating subset.

5.2. Residual finiteness of H2m+1(Z). The upper and lower bounds for
FH2m+1(Z)(n) require different strategies, so we approach them separately.
We start with the upper bound as it is more straightforward.

Proposition 5.1. FH2m+1(Z)(n) � (log(n))2m+1.

Proof. For ‖γ‖S ≤ n, we will construct a surjective homomorphism to a
finite group ϕ : H2m+1(Z)→ Q such that ϕ(γ) 6= 1 and where

|Q| ≤ C0(log(C0 n))2m+1

for some C0 > 0.
Via the Mal’tsev basis, we may write

γ = κα

(
m∏
i=1

µβii

) m∏
j=1

ν
λj
j

 .

We proceed based on whether πab(γ) is trivial or not.
Suppose that πab(γ) 6= 1. Since γ 6= 1, either βi0 6= 0 for some i0, or

λj0 6= 0 for some j0. Without loss of generality, we may assume that there
exists some i0 such that βi0 6= 0. The Prime Number Theorem [38, 1.2]
implies that there exists a prime p such that p - |βi0 | and where

p ≤ C2 log(C2 |βi0 |) ≤ C2 log(C1 C2 n
2).

Consider the homomorphism ρ : H2m+1(Z)→ Z/pZ given by

κα

(
m∏
i=1

µβii

) m∏
j=1

ν
λj
j

 −→ (β1, . . . , βm, λ1, . . . , λm) −→ βi0 ( mod p ).

Here, the first arrow is the abelianization homomorphism and the second
arrow is the natural projection from Z2m to Z/pZ. By construction, ρ(γ) 6= 1
and

|Z/pZ| ≤ C1 C2 log(C1 C2 n
2).

Thus, for some C3 > 0, we have that

DH2m+1(Z)(γ) ≤ C3 log(C3 n).

Now suppose that πab(γ) = 1. That implies βi, λj = 0 for all i, j. As
before, the Prime Number Theorem [38, 1.2] implies that there exists a
prime p such that p - |α| and p ≤ C4 log(C4 n) for some C4 ∈ N. We have
that π(H2m+1(Z))p(γ) = π(H2m+1(Z))p(κ

α) 6= 1. Corollary 4.2 implies that

|H2m+1(Z)/(H2m+1(Z))p| = p2m+1.
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Hence,

|H2m+1(Z)/(H2m+1(Z))p| ≤ (C4)2m+1 (log(C4 n))2m+1.

Thus, DH2m+1(Z)(γ) ≤ C4(log(C4 n))2m+1, and therefore,

FH2m+1(Z)(n) � (log(n))2m+1 . �

We now proceed with the lower bound calculation of FH2m+1(Z)(n).

Proposition 5.2. (log(n))2m+1 � FH2m+1(Z)(n).

Proof. To demonstrate that (log(n))2m+1 � FH2m+1(Z)(n), we construct a
sequence of elements {γi} such that there exists a constant C1 > 0 where

C1(log(C1 ‖γi‖S))2m+1 ≤ DH2m+1(Z)(γi)

independent of i. The proof of Proposition 5.1 implies that

DH2m+1(Z)(γ) ≤ C2 log(C2 ‖γ‖S)

for some C2 ∈ N, when γ /∈ Z(H2m+1(Z)). That implies that we will be
looking for central elements.

Let {pi} be an enumeration of the primes, and let

αi = (lcm{1, 2, . . . , pi − 1})2m+2.

We claim for all i that DH2m+1(Z)(κ
αi) ≈ log(‖καi‖S))2m+1. It is clear that

π(H2m+1(Z))pi (κ)αi 6= 1 in H2m+1(Z)/(H2m+1(Z))pi . [16, 3.B2] implies that

‖καi‖S ≈
√
|αi|, and the Prime Number Theorem [38, 1.2] implies that

log(|αi|) ≈ pi. Subsequently, log(‖καi‖S) ≈ pi, and thus,

(log(‖καi‖S))2m+1 ≈ p2m+1
i .

Corollary 4.2 implies that

|H2m+1(Z)/ (H2m+1(Z))pi | = p2m+1
i ;

thus, we will establish that

DH2m+1(Z)(κ
αi) ≈ (log(‖καi‖S))2m+1

by demonstrating that if given a surjective homomorphism to a finite group
ϕ : H2m+1(Z)→ Q satisfying |Q| < p2m+1

i , then ϕ(κ)αi = 1.

[17, Thm 2.7] implies that we may assume that |Q| = qβ where q is a
prime. Since ϕ(καi) = 1 when ϕ(κ) = 1, we may assume that ϕ(κ) 6= 1.
Give that [µt, νt] = κ for all t, it follows that ϕ(νs), ϕ(µj) 6= 1 for all s, j and
that |Q| ≥ q2m+1 (see the second paragraph after [20, Defn 8.2]).

Suppose Q is a pi-group. If ϕ(καi) 6= 1, then Proposition 4.12 implies
that |Q| = p2m+1

i and that there are no proper quotients of Q where the
image of ϕ(καi) does not vanish. In particular, there are no proper quotients
of H2m+1(Z)/(H2m+1(Z))pi where π(H2m+1(Z))pi (κ

αi) does not vanish. Thus,
we may assume that q 6= pi.

If q > pi, then we have that OrdQ(ϕ(νi)),OrdQ(ϕ(µj)) ≥ pi for all i, j.
That implies |∆i : ∆i−1| > pi. Thus, the second paragraph after [20, Defn
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8.2] implies that |Q| > p2m+1
i ; hence, we may disregard this possibility. We

now assume that Q is a q-group where q < pi. If qβ < p, then |Q| | αi. Since
the order of an element of a finite group divides the order of the group, we
have that λ | αi where λ = OrdQ(ϕ(κ)). Thus, ϕ(καi) = 1.

Hence, we may assume that Q is a q-group where q < pi and pi < qβ <
p2m+1
i . There exists v such that

q(2m+1)v < p2m+1
i < q(2m+1)(v+1).

Thus, we may write

β = vt+ r

where t ≤ 2m + 1 and 0 ≤ r < t. By construction, q(2m+1)t+r ≤ αi, and
since q < pi, it follows that

q(2m+1)t+r | αi.

Subsequently, λ | αi and ϕ(καi) = 1 as desired. �

Corollary 5.3. Let H2m+1(Z) be the integral Heisenberg group. Then

FH2m+1(Z)(n) ≈ (log(n))2m+1.

Part III. Residual finiteness

6. Proof of Theorem 1.1

Our goal for Theorem 1.1 is to demonstrate that FΓ(n) ≈ (log(n))ψRF(Γ).
Proposition 4.4 implies that we may assume that Γ is torsion-free. We
proceed with the proofs of the upper and lower bounds for FΓ(n) separately
since they require different strategies. We start with the upper bound as its
proof is simpler.

For the upper bound, our task is to prove for a nonidentity element γ ∈ Γ
that there exists a surjective homomorphism to a finite group ϕ : Γ → Q
such that ϕ(γ) 6= 1 and where

|Q| ≤ C0 (log(C0 ‖γ‖S))ψRF(Γ)

for some C0 ∈ N. When γ /∈ Z(Γ)
√

Γc(Γ), we pass to the quotient given by

Γ/ Z(Γ)
√

Γc(Γ) and then appeal to induction on step length. Otherwise, for

γ ∈ Z(Γ)
√

Γc(Γ), we find an admissible quotient of Γ with respect to some
primitive central element in which γ has a nontrivial image.

Proposition 6.1. Let Γ be a torsion-free, finitely generated nilpotent group.
Then

FΓ(n) � (log(n))ψRF(Γ).
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Proof. Let {∆i}h(Γ)
i=1 be a cyclic series with a compatible generating subset

{ξi}h(Γ)
i=1 . Suppose γ ∈ Γ such that ‖γ‖S ≤ n. Using the Mal’tsev coordinates

of γ, we may write

γ =

h(Γ)∏
i=1

ξαii .

Lemma 2.8 implies that |αi| ≤ C1 n
c(Γ) for some C1 ∈ N for all i. By

induction, we will construct a surjective homomorphism to a finite group
ϕ : Γ→ Q such that ϕ(γ) 6= 1 and where

|Q| ≤ C2 (‖γ‖S)ψRF(Γ)

for some constant C2 > 0.
When Γ is a torsion-free, finitely generated abelian group, [4, Cor 2.3]

implies that there exists a surjective homomorphism ϕ : Γ → Q such that
ϕ(γ) 6= 1 and where

|Q| ≤ C3 log(C3 n)

for some constant C3 > 0. Thus, we may assume that Γ is nonabelian.
Letting M = Z(Γ)

√
Γc(Γ), suppose that πM (γ) 6= 1. Passing to the group

Γ/M , the inductive hypothesis implies that there exists a surjective homo-
morphism ϕ : Γ/M → Q such that ϕ(πM (γ)) 6= 1 and where

DΓ(γ) ≤ C4 (log(C4 n))ψRF(Γ/M)

for some C4 ∈ N. Proposition 3.10 implies that ψRF(Γ/M) ≤ ψRF(Γ), and
thus,

DΓ(γ) ≤ C4 (log(C4 n))ψRF(Γ) .

Otherwise, we may assume that γ ∈M . Thus, we may write

γ =

h(Γc(Γ))∏
i=1

ξαii ,

and since γ 6= 1, there exists a 1 ≤ j ≤ h(Γc) such that αj 6= 0. The Prime
Number Theorem [38, 1.2] implies that there exists a prime p such that
p - |αj | and p ≤ C5 log(C5 |αj |) for some C5 ∈ N. If Γ/Λj is an admissible
quotient with respect to ξj , then πΛj ·Γp(γ) 6= 1. Corollary 4.2 implies that

|Γ/Λj · Γp| ≤ C
h(Γ/Λj)
5 · (log(C5 |αj |))h(Γ/Λj) .

Proposition 3.8 implies that h(Γ/Λj) ≤ ψRF(Γ). Thus, we have that

DΓ(γ) ≤ C6 (log(C6 n))ψRF(Γ)

for some C6 ∈ N. Hence,

FΓ(n) � (log(n))ψRF(Γ) . �
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In order to demonstrate that (log(n))ψRF(Γ) � FΓ(n), we require an infi-
nite sequence of elements {γj} ⊆ Γ such that

C (log(C ‖γj‖S))ψRF(Γ) ≤ DΓ(γj)

for some C ∈ N independent of j. That entails finding elements that are of
high complexity with respect to residual finiteness, i.e., nonidentity elements
that have relatively short word length in comparison to the order of the
minimal finite group required to separate them from the identity.

Proposition 6.2. Let Γ be torsion-free, finitely generated nilpotent group.
Then

(log(n))ψRF(Γ) � FΓ(n).

Proof. Suppose that Γ is a torsion-free, finitely generated abelian group.
Then [4, Cor 2.3] implies that FΓ(n) ≈ log(n) which gives our theorem in
this case. Thus, we may assume that Γ is not abelian.

Let Γ/Λ be a maximal admissible quotient of Γ. There exists a g ∈
(Z(Γ))• such that Γ/Λ is an admissible quotient with respect to g. Moreover,
there exists a k ∈ Z•, a ∈ Γc(Γ)−1, and b ∈ Γ such that gk = [a, b]. If g is not
primitive, then there exists a primitive element xΛ ∈ Z(Γ) such that xsΛ = g
for some s ∈ N. In particular, xΛ is a primitive, central, nontrivial element
such that xs kΛ = [a, b].

Let {∆i}h(Γ)
i=1 be a cyclic series with a compatible generating subset {ξi}h(Γ)

i=1
that together satisfy Proposition 3.6 for Λ such that ξ1 = xΛ. Let

αj,Λ,∆,ξ = (lcm{1, 2, . . . , pj,Λ,∆,ξ − 1})ψRF(Γ)+1

where {pj,Λ,∆,ξ} is an enumeration of primes greater than B(Γ/Λ, ∆̄, ξ̄). Let-

ting γj,Λ,∆,ξ = ξ
αj,Λ,∆,ξ
1 , we claim that {γj,Λ,∆,ξ}j is our desired sequence.

Before continuing, we make some remarks. The value B(Γ/Λ, ∆̄, ξ̄) de-
pends on the maximal admissible quotient Γ/Λ of Γ and the cyclic series

{∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 that together satisfy
Proposition 3.6 for Λ. To be more specific, if Γ/Ω is another maximal admis-

sible quotient of Γ with cyclic series {Hi}h(Γ)
i=1 and a compatible generating

subset {gi}h(Γ)
i=1 that together satisfy Proposition 3.6 for Ω, then, in gen-

eral, Γ/Λ � Γ/Ω, and subsequently, B(Γ/Λ, ∆̄, ξ̄) 6= B(Γ/Ω, H̄, ḡ). Even
when we have a fixed maximal admissible quotient, i.e., Λ ∼= Ω, we still

may run into ambiguity in the value B(Γ/Λ,∆, ξ). To this end, let {∆i}h(Γ)
i=1

and {Hi}h(Γ)
i=1 be distinct cyclic series which satisfy Proposition 3.6 for Λ

with respective compatible generating subsets {ξi}h(Γ)
i=1 and {gi}h(Γ)

i=1 . Then
B(Γ/Λ, K̄, ξ̄) 6= B(Γ/Λ, H̄, ḡ), in general. Finally, assuming that we have a

fixed cyclic series {∆i}h(Γ)
i=1 with two distinct compatible generating subsets

{ξi}h(Γ)
i=1 and {gi}h(Γ)

i=1 , we then have that B(Γ/Λ, H̄, ξ̄) 6= B(Γ/Λ, H̄, ḡ), in
general. Thus, the sequence of elements {γj,Λ,∆,ξ} depends on the maximal
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admissible quotient of Γ and the cyclic series and compatible generating sub-
set that together satisfy Proposition 3.6 for Λ. However, we will demonstrate
that the given construction will work for any maximal admissible quotient
we take and any cyclic series and compatible generating subset that together
satisfy Proposition 3.6 for Λ.

We claim for all j that DΓ(γj) ≈ (log(pj,Λ,∆,ξ))
ψRF(Γ). It is evident that

πΛ·Γpj,Λ,∆,ξ (γj,Λ,∆,ξ) 6= 1 in Γ/Λ · Γpj,Λ,∆,ξ , and Proposition 4.2 implies that

|Γ/Λ · Γpj,Λ,∆,ξ | = (pj,Λ,∆,ξ)
ψRF(Γ). To proceed, we show that if given a

surjective homomorphism to a finite group ϕ : Γ → Q such that |Q| <
(pj,Λ,∆,ξ)

ψRF(Γ), then ϕ(γ) = 1.

[17, Thm 2.7] implies that we may assume that |Q| = qβ where q is a
prime. If ξ1 ∈ ker(ϕ), then ϕ(γj,Λ,∆,ξ) = 1. Thus, we may assume that
ϕ(ξ1) 6= 1. Proposition 4.5 implies that ϕ(γj,Λ,∆,ξ) 6= 1 if and only if
πϕ(Λ)(ϕ(γj,Λ,∆,ξ)) 6= 1. Thus, we may restrict our attention to surjective
homomorphisms that factor through Γ/Λ, i.e., homomorphisms ϕ : Γ → Q
where ϕ(Λ) ∼= {1}.

Suppose that q = pj,Λ,∆,ξ. If ϕ(γj,Λ,∆,ξ) = 1, then there is nothing to

prove. So we may assume that ϕ(γj,Λ,∆,ξ) 6= 1. Since |Q| ≤ (pj,Λ,∆,ξ)
ψRF(Γ),

Proposition 4.12 implies that |Q| = (pj,Λ,∆,ξ)
ψRF(Γ) and that if N is a

proper quotient of Q with natural projection given by ρ : Q → N , then
ρ(ϕ(γj,Λ,∆,ξ)) = 1. We have two natural consequences. There are no proper
quotients of Γ/Λ ·Γpj,Λ,∆,ξ where ϕ(γj,Λ,∆,ξ) has nontrivial image. Addition-
ally, if ϕ : Γ → Q is a surjective homomorphism to a finite pj,Λ,∆,ξ-group

where |Q| < (pj,Λ,∆,ξ)
ψRF(Γ), then ϕ(γj,Λ,∆,ξ) = 1. Thus, we may assume

that q 6= pj,Λ,∆,ξ.
Suppose that q > pj,Λ,∆,ξ. Since ϕ̃ : Γ/Λ → Q is a surjective homomor-

phism to a finite q-group where q > B(Γ/Λ, ∆̄, ξ̄), Proposition 4.11 implies

that |Q| > (pj,Λ,∆i,ξi)
ψRF(Γ). Hence, we may assume that q < pj,Λ,∆,ξ.

Now suppose that Q is a q-group where |Q| < pj,Λ,∆,ξ. By selection, it
follows that |Q| divides αj,Λ,∆,ξ. Since the order of an element divides the
order of the group, we have that OrdQ(ϕ(ξ1)) divides αj,Λ,∆,ξ. In particular,
we have that ϕ(γj,Λ,∆,ξ) = 1.

Now suppose that Q is a q-group where q < pj,Λ,∆,ξ and qβ > pj,Λ,∆,ξ.
Thus, there exists a ν ∈ N such that

qν ψRF(Γ) < (pj,Λ,∆,ξ)
ψRF(Γ) < q(ν+1) ψRF(Γ).

Subsequently, we may write β = νt + r where t ≤ ψRF(Γ) and 0 ≤ r < ν.
By construction, qvt+r ≤ αj,Λ,∆,ξ, and since q < pj,Λ,∆,ξ, it follows that

qβ = qvt+r | αj,Λ,∆,ξ. Given that the order of any element in a finite group
divides the order of the group, it follows that OrdQ(ϕ(ξ1)) divides αj,Λ,∆,ξ.
Thus, ϕ(γj,Λ,∆,ξ) = 1, and therefore,

DΓ(γj,Λ,∆,ξ) = (pj,Λ,∆,ξ)
ψRF(Γ).
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Since γj,Λ,∆,ξ ∈ Γc(Γ), [16, 3.B2] implies that

(‖γj,Λ,∆,ξ‖S) ≈ (|αj,Λ,∆,ξ|)1/c(Γ),

and the Prime Number Theorem [38, 1.2] implies that

log(|αj,Λ,∆,ξ|) ≈ pj,Λ,∆,ξ.
Hence,

(log(‖γj,Λ,∆,ξ‖S))ψRF(Γ) ≈ (pj,Λ,∆,ξ)
ψRF(Γ).

Thus, DΓ(γj,Λ,∆,ξ) ≈ (log(‖γj,Λ,∆,ξ‖S))ψRF(Γ), and subsequently,

(log(n))ψRF(Γ) � FΓ(n). �

We now prove the main result of this section.

Theorem 1.1. Let Γ be an infinite, finitely generated nilpotent group. Then

FΓ(n) ≈ (log(n))ψRF(Γ) .

Additionally, one can compute ψRF(Γ) given a basis for (Γ/T (Γ))c(Γ)/T (Γ).

Proof. Let Γ be an infinite, finitely generated nilpotent group. Proposi-
tion 4.4 implies that

FΓ(n) ≈ FΓ/T (Γ)(n).

Proposition 6.1 and Proposition 6.2 together imply that

FΓ/T (Γ)(n) ≈ (log(n))ψRF(Γ) .

Thus,

FΓ(n) ≈ (log(n))ψRF(Γ) .

The last statement in the theorem follows from Proposition 3.8. �

7. Cyclic series, lattices in nilpotent Lie groups, and
Theorem 1.3

Let Γ be a torsion-free, finitely generated nilpotent group. The main task
of this section is to demonstrate that the value h(Γ/Λ) is a well-defined
invariant of the Mal’tsev completion of Γ. Thus, we need to establish some
properties of cocompact lattices in connected, simply connected, Q-defined
nilpotent Lie groups. We start with the following lemma that relates the
Hirsch lengths of centers of cocompact lattices within the same connected,
simply connected, Q-defined nilpotent Lie group.

Lemma 7.1. Let G be a connected, simply connected, Q-defined nilpotent
Lie group with two cocompact lattices Γ1 and Γ2. Then

dim(Z(G)) = h(Z(Γ1)) = h(Z(Γ2)).

Proof. This proof is a straightforward application of [13, Lem 1.2.5]. �

We now introduce the notion of one parameter families of group elements
of a Lie group.
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Definition 7.2. Let G be a connected, simply connected Lie group. We
call a map f : R → G an one parameter family of group elements of G if f
is an injective group homomorphism from the real line with addition.

Let Γ be a torsion-free, finitely generated nilpotent group with a cyclic

series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 . We let G be
the Mal’tsev completion with Lie algebra g and induced basis for g given by

{Log(ξi)}h(Γ)
i=1 . Via the exponential map and [13, Lem 1.2.5], the maps given

by
fi,Γ,∆,ξ(t) = exp(t Log(ξi))

are one parameter families of group elements. The discussion below [13,
Thm 1.2.4 Pg 9] implies that we may uniquely write each g ∈ G as

g =

h(Γ)∏
i=1

fi,Γ,∆,ξ(ti)

where ti ∈ R for all i.

Definition 7.3. We say the one parameter families of group elements fi,Γ,∆,ξ

are associated to the group Γ, cyclic series {∆i}h(Γ)
i=1 , and compatible gener-

ating subset {ξi}h(Γ)
i=1 .

We characterize when a discrete subgroup of an connected, simply con-
nected, Q-defined nilpotent Lie group is a cocompact lattice based on how
it intersects a collection of one parameter families of group elements.

Proposition 7.4. Let G be a connected, simply connected, Q-defined nilpo-
tent Lie group, and suppose that Γ is a discrete subgroup of G. Suppose
there exists a collection of one parameter families of group elements of G,
written as fi : R → G for 1 ≤ i ≤ dim(G), such that G is diffeomorphic to∏dim(G)
i=1 fi(R). Then Γ is a cocompact lattice in G if and only Γ∩fi(R) ∼= Z

for all i.

Proof. Let ρ : G→ G/Γ be the natural projection onto the space of cosets.
Suppose that there exists an i0 such that fi0(R)∩Γ � Z. Since Γ is discrete
in G, we have that Γ ∩ fi0(R) is a discrete subset of fi0(R). Given that
Γ ∩ fi0(R) is discrete and not infinite cyclic, we have that Γ ∩ fi0(R) ∼= {1}.

We claim that each element of the sequence {fi0(t)}t∈N projects to a
unique element of G/Γ. To this end, suppose that there exists integers t0
and t1 such that ρ(fi0(t0)) = ρ(fi0(t1)). That implies that there exists an
element g ∈ Γ such that fi0(t0 − t1) = g. In particular, g ∈ fi0(R) ∩ Γ, and
thus, g = 1. Hence, fi0(t0) = fi0(t1) which gives our claim.

Thus, {ρ(fi0(t))}t∈N is an infinite sequence in G/Γ with no convergent
subsequence. Hence, Γ is not a cocompact lattice of G

Now suppose that fi(R) ∩ Γ ∼= Z for all i. That implies for each i ∈
{1, . . . , h(Γ)} that there exists a ti > 0 such that

Γ ∩ fi(R) ∼= {fi(n ti) | n ∈ Z}.
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Let

E =

dim(G)∏
i=1

fi([0, ti]).

We claim that E is compact and that ρ(E) ∼= G/Γ.

Let f : Rdim(G) → G be the continuous map given by

f(
(
ai, . . . , adim(G)

)
) =

dim(G)∏
i=1

fi(ai).

Since
∏dim(G)
i=1 [0, ti] is a closed and bounded subset of Rdim(G), the Heine–

Borel theorem implies that
∏dim(G)
i=1 [0, ti] is compact. Since f is continuous,

E is compact.
We now claim that each coset of Γ in G has a representative in E. Let

g =
∏dim(G)
i=1 fi(`i) where `i ∈ R for each i ∈ {1, . . . ,dim(G)} . For each i,

there exists a si ∈ Z such that si ti ≤ `i ≤ (si + 1) ti. Let ki = `i − si ti and

write h ∈ E to be given by h =
∏dim(G)
i=1 f(ki). By construction, ρ(h) = ρ(g),

and subsequently, ρ(g) ∈ ρ(E). Thus, ρ(E) = ρ(G). Since G/Γ is the image
of a compact set under a continuous map, G/Γ is compact. [33, Thm 2.1]
implies that Γ is a cocompact lattice of G. �

These next two propositions give some structural information needed
about the Mal’tsev completion of a torsion-free, finitely generated nilpo-
tent group and some structural information of admissible quotients with
respect to some primitive, central, nontrivial element.

Proposition 7.5. Let Γ be a torsion-free, finitely generated nilpotent group.
Let γ ∈ (Z(Γ))• be a primitive element, and let Γ/Λ be an admissible quo-
tient with respect to γ. Suppose that G is the Mal’tsev completion of Γ, and
let H be the Mal’tsev completion of Λ. Then H is isomorphic to a closed,
connected, normal subgroup of G.

Proof. Proposition 3.6 there exists a cyclic series {∆i}h(Γ)
i=1 and a compatible

generating subset {ξi}h(Γ)
i=1 satisfying the following. There exists a subset

{ξis}
h(Λ)
s=1 ⊆ {ξi}

h(Γ)
i=1 such that if Ws = 〈ξit〉

s
t=1, then {Ws}h(Λ)

s=1 is a cyclic

series for Λ with compatible generating subset {ξis}
h(Λ)
s=1 where ξ1 = γ. Let

{fi,Γ,∆,ξ}
h(Γ)
i=1 be the one parameter families of group elements of G associated

to the torsion-free, finitely generated nilpotent group Γ, cyclic series {∆i}h(Γ)
i=1

and compatible generating subset {ξi}h(Γ)
i=1 .

[13, Thm 1.2.3] implies that we may view H as a connected subgroup
of G. We proceed by induction on h(Γ) to demonstrate that H is a closed
and normal subgroup of G. If h(Γ) = 1, then Γ = Z. It follows that G is
isomorphic to R and that H ∼= {1}. Now our claim is evident.
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Now suppose that h(Γ) > 1. If h(Z(Γ)) = 1, then we may take Λ = {1}
which implies that H ∼= {1}. Thus, our claims are evident. Now suppose

that h(Z(Γ)) > 1. Let Ω = 〈ξi〉h(Z(Γ))
i=1 , and let K be the Mal’tsev completion

of Ω. [13, Lem 1.2.5] implies that K ≤ Z(G). Thus, K is a closed, connected,
normal subgroup of G.

We will demonstrateH/K is Mal’tsev completion of πK(Λ). We may write

H =
∏h(Λ)
s=1 fis,Γ,∆,ξ(R). Since Λ is a cocompact lattice of H, Proposition 7.4

implies that Λ ∩ fis,Γ,∆,ξ(R) ∼= Z for all 1 ≤ s ≤ h(Λ). By Proposition 7.4
again, we have that K ∩ Λ is a cocompact lattice of K. [12, Prop 5.1.4]
implies that πK(Λ) is a cocompact lattice in H/K.

Observe that πK(Λ) ∼= Λ/Ω. We have that Λ/Ω satisfies Proposition 3.1
for πK(ξ1). Thus, the inductive hypothesis implies that H/K is a closed,
normal subgroup of G/K. Since H isomorphic to the pullback of a closed,
normal subgroup of G/K, H is a closed, normal subgroup of G. �

Suppose that G is the Mal’tsev completion of Γ, and let Γ/Λ be an ad-
missible quotient with respect to a primitive, central, nontrivial element of
Γ. If H is a Mal’tsev completion of Λ, then H intersects any cocompact
lattice as a cocompact lattice.

Proposition 7.6. Let Γ be a torsion-free, finitely generated nilpotent group.
Let γ ∈ (Z(Γ))• be a primitive element, and let Γ/Λ be an admissible quo-
tient with respect to γ, G be the Mal’tsev completion of Γ, and H be the
Mal’tsev completion of Λ. If Ω ≤ G is another cocompact lattice of G, then
Ω ∩H is a cocompact lattice of H.

Proof. Proposition 3.6 implies that there exists a cyclic series {∆i}h(Γ)
i=1 and

a compatible generating subset {ξi}h(Γ)
i=1 satisfying the following. There exists

a subset
{
ξij
}h(Λ)

j=1
such that the groups {Wi}h(Λ)

i=1 where Wi
∼=
〈
ξij
〉i
j=1

form

a cyclic series for Λ with a compatible generating subset
{
ξij
}h(Λ)

j=1
. Let

{fi,Γ,∆,ξ}
h(Γ)
i=1 be the associated one parameter families of group elements

of the Mal’tsev completion G of Γ. It follows that G is diffeomorphic to∏h(Γ)
i=1 fi,Γ,∆,ξ(R). By construction, H ∼=

∏h(Λ)
j=1 fij ,Γ,∆,ξ(R). Proposition 7.4

implies that Ω ∩ fi,Γ,∆,ξ(R) ∼= Z for all i. In particular, Ω ∩ fij ,Γ,∆,ξ(R) ∼= Z
for all j. Proposition 7.4 implies that Ω ∩H is a cocompact lattice in H as
desired. �

The following lemma demonstrates that you can select a cyclic series and a
compatible generating subset for a cocompact lattice in a connected, simply
connected, Q-defined nilpotent Lie group by intersecting the lattice with a
collection of one parameter families of group elements.

Lemma 7.7. Let G be a connected, simply connected, Q-defined nilpotent
Lie group with a cocompact lattice Γ. Let fi be a collection of one parameter

families of elements of G such that G is diffeomorphic to
∏dim(G)
i=1 fi(R). Let
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〈ξi〉 ∼= fi(R)∩Γ. Then the groups given by ∆s = 〈ξt〉st=1 form a cyclic series

for Γ with a compatible generating subset {ξi}h(Γ)
i=1 .

Proof. We proceed by induction on the dim(G). Since the statement is
clear for the base case, we may assume that dim(G) > 1. If we let

H ∼=
dim(G)−1∏

i=1

fi(R),

then Proposition 7.4 implies that Γ ∩ H is a cocompact lattice in H. The
inductive hypothesis implies that the elements ξi given by

〈ξi〉 ∼= fi(R) ∩ Γ

satisfy the following. The groups given by ∆s = 〈ξi〉si=1, 1 ≤ s ≤ dim(G)−1,

form a cyclic series for Γ∩H with a compatible generating subset {ξi}dim(G)−1
i=1 .

Since Γ is a cocompact lattice in G, Proposition 7.4 implies that

fdim(G)(R) ∩ Γ ∼= Z.

Letting ∆dim(G) =
〈
∆dim(G)−1, ξdim(G)

〉
, we have that the groups given by

{∆i}dim(G)
i=1 form a cyclic series for Γ with a compatible generating subset

{ξi}dim(G)
i=1 . �

Let Γ be a torsion-free, finitely generated nilpotent group. We now
demonstrate that the value ψRF(Γ) is a well-defined invariant of the Mal’tsev
completion of Γ.

Proposition 7.8. Let G be a connected, simply connected, Q-defined nilpo-
tent Lie group, and suppose that Γ1 and Γ2 are two cocompact lattices of G.
Then ψRF(Γ1) = ψRF(Γ2).

Proof. If h(Z(Γ1)) = 1, then Proposition 7.1 implies that h(Z(Γ2)) = 1. It
then follows from the definition of ψRF(Γ1) and ψRF(Γ2) that

ψRF(Γ1) = h(Γ) = ψRF(Γ2).

Therefore, we may assume that h(Z(Γ1)), h(Z(Γ2)) ≥ 2. In this case,
we demonstrate the equality by showing that ψRF(Γ1) ≤ ψRF(Γ2) and
ψRF(Γ2) ≤ ψRF(Γ1).

Let G be the Mal’tsev completion of Γ1. Let {∆i}h(Γ1)
i=1 be a cyclic series

for Γ1 with a compatible generating subset {ξi}h(Γ1)
i=1 , and let {fi,Γ1,∆,ξ}

h(Γ1)
i=1

be the associated one parameter families of group elements. We have that

G is diffeomorphic to
∏h(Γ1)
i=1 fi,Γ1,∆,ξ(R). Let

{ηi}h(Γ2)
i=1 ⊆ Γ2 such that 〈ηi〉 ∼= Γ2 ∩ fi(R).

If we let Wi
∼= 〈ηj〉ij=1, then Proposition 7.7 implies that {Wi}h(Γ2)

i=1 is a

cyclic series for Γ2 with a compatible generating subset {ηi}h(Γ2)
i=1 . Let ξi be

a central element of the compatible generating subset of Γ1, and let Γ1/Λ be
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an admissible quotient with respect to ξi. Let H be the Mal’tsev completion
of Λ. Since πΛ(ξi) ∼= Z(Γ1/H), it is evident that 〈πH(ηi)〉 ∼= Z(Γ2/H). In
particular, πH(ηi) 6= 1. Proposition 7.6 implies that H ∩ Ω is a compact
lattice ofH and Proposition 7.5 implies thatH is a closed, connected, normal
subgroup of G. Thus, [12, Prop 5.1.4] implies that πH(Ω) is a compact lattice
in G/H. Proposition 7.1 implies that h(Γ2/Λ) = h(πH(Γ2)); thus, it follows
that πH(Γ2) satisfies the conditions of Proposition 3.1 for ηi. If we let Γ2/Ω
be an admissible quotient with respect to ηi, it follows that

h(Γ/Ω) ≤ πH(Γ2) ≤ h(Γ/Λ),

By Proposition 3.8, h(Γ2/Ω) ≤ ψRF(Γ1). [13, Lem 1.2.5] implies that ηi ∈
Z(Γ2), and thus, the above inequality holds for each central element of the
compatible generating subset of Γ2 in Z(Γ2). Therefore, Proposition 3.8
implies that ψRF(Γ2) ≤ ψRF(Γ1). By interchanging Γ1 and Γ2, we have that
ψRF(Γ1) ≤ ψRF(Γ2). �

We now come to the main result of this section.

Theorem 1.3. Suppose that Γ1 and Γ2 are two infinite, finitely generated
nilpotent groups such that Γ1/T (Γ1) and Γ2/T (Γ2) have isomorphic Mal’tsev
completions. Then FΓ1(n) ≈ FΓ2(n).

Proof. Suppose that Γ1 and Γ2 are two infinite, finitely generated nilpo-
tent groups such that Γ1/T (Γ1) and Γ2/T (Γ2) have isomorphic Mal’tsev
completions. Proposition 4.4 implies that

FΓ1(n) ≈ FΓ1/T (Γ1)(n) and FΓ2(n) ≈ FΓ2/T (Γ2)(n).

We also have that Theorem 1.1 implies

FΓ1/T (Γ1)(n) ≈ (log(n))ψRF(Γ1/T (Γ1)) ,

FΓ2/T (Γ2)(n) ≈ (log(n))ψRF(Γ2/T (Γ2)) .

Proposition 7.8 implies that ψRF(Γ1/T (Γ1)) = ψRF(Γ2/T (Γ2)). Thus,

FΓ1(n) ≈ FΓ2(n). �

8. Some examples and the proof of Theorem 1.5

8.1. Free nilpotent groups and Theorem 1.5(i).

Definition 8.1. Let F(X) be the free group of rank m generated by X. We
define N(X, c,m) = F(X)/(F(X))c+1 as the free nilpotent group of step size
c and rank m on the set X.

Following [22, Sec 2.7], we construct a cyclic series for N(X, c,m) and a
compatible generating subset using iterated commutators in the set X.
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Definition 8.2. We formally call elements of X basic commutators of weight
1 of N(X, c,m), and we choose an arbitrary linear order for weight 1 basic
commutators. If γ1 and γ2 are basic commutators of weight i1 and i2,
respectively, then [γ1, γ2] is a basic commutator of weight i1+i2 of N(X, c,m)
if γ1 > γ2. If, in addition, we can write γ1 = [γ1,1, γ1,2] where γ1,1 and γ1,2

are basic commutators, then we also assume that γ1,2 ≤ γ2.
Basic commutators of higher weight are greater with respect to the linear

order than basic commutators of lower weight. Moreover, we choose an
arbitrary linear order for commutators of the same weight.

For xi0 ∈ X, we say that a 1-fold commutator γ contains xi0 if γ = xi0 .
Inductively, we say that a j-fold commutator [γ1, γ2] contains xi0 if either
γ1 contains xi0 or γ2 contains xi0 .

Note that any basic commutator of weight greater or equal to 2 must
contain two distinct commutators of weight 1 but not necessarily more than
2. Additionally, if γ is a basic commutator of weight k, then γ can contain
at most k distinct basic commutators of weight 1.

It is well known that the number of basic commutators of N(X, c,m) is
equal to the Hirsch length of N(X, c,m). Letting µ be the Möbius function,
we may write

h(N(X, c,m)) =
c∑

r=1

1

r

∑
d|r

µ(d)m
r
d

 .

We label the basic commutators as {ξi}h(N(X,c,m))
i=1 with respect to the given

linear order.

Definition 8.3. One can see that the subgroup series {∆i}h(N(X,c,m))
i=1 where

∆i = 〈ξt〉it=1 is a cyclic series for N(X, c,m), and [22, Cor 2.7.3] implies that

{ξi}h(N(X,c,m))
i=1 is a compatible generating subset. We call {∆i}h(N(X,c,m))

i=1

the cyclic series of basic commutators for N(X, c,m) and {ξi}h(N(X,c,m))
i=1 the

compatible generating subset of basic commutators for N(X, c,m).

Proposition 8.4. Let N(X, c,m) be the free nilpotent group of step size c
and rank m on the set X = {xi}mi=1. Let γ be a basic commutator of weight
c in the set X that contains only elements of Y ( X where Y 6= ∅. There
exists a normal subgroup Ω such that N(X, c,m)/Ω is torsion-free where
〈πΩ(γ)〉 ∼= Z(N(X, c,m)/Ω). Additionally, if η is a j-fold commutator that
contains elements of X\Y , then πΩ(η) = 1.

Proof. Let {∆i}h(N(X,c,m))
i=1 be the cyclic series of basic commutators and

{ξi}h(N(X,c,m))
i=1 be the compatible generating subset of basic commutators.

By assumption, there exists an i0 ∈ {1, . . . , h(Z(N(X, c,m)))} such that
ξi0 = γ.

We will demonstrate that there exists a normal descending series {Kt}ct=1
such that N(X, c,m)/Kt is torsion-free for each t, πKt(ξ1) 6= 1 for each t,
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and if η is a i-fold commutator that contains only elements of X\Y where
i ≥ t, then πKt(η) = 1. We will also have that Kt is generated by basic
commutators of weight greater than or equal to t, and finally, we will have
that 〈πK1(ξi0)〉 ∼= Z(N(X, c,m)/K1). We proceed by induction on t.

Consider the subgroup given by Kc = 〈ξi〉h(Z(N(X,c,m)))
i=1,i 6=i0 . Observe that if

η is a c-fold commutator such that η contains only elements of X\Y , then
it follows by selection that πKc(η) = 1. Thus, we have the base case.

Thus, we may assume that the subgroup Kt has been constructed for
t < c, and let η be a (t − 1)-fold commutator bracket that contains ele-
ments of X\Y . It then follows that [η, xi] contains elements of X\Y . Thus,
πKt([η, xi]) = 1 by assumption. Since that is true for all 1 ≤ i ≤ m, we have
that πKt(η) ∈ Z(N(X, c,m)/Kt). Let W be the set of basic commutator
brackets ξi such that πKt(ξi) is central and where πKt(ξi) 6= πKt(ξi0). By
construction, πKt(ξ1) /∈ 〈πKt(W )〉 and if η is a `-fold commutator bracket
that contains elements of X\Y where ` ≥ t − 1, then πKt(η) ∈ 〈πKt(W )〉.
We set Kt−1

∼= 〈Kt,W 〉, and suppose that η is a `-fold commutator that
contains elements of X/Y and where ` ≥ t − 1. By construction, we have
that πKt−1(η) = 1. Since Kt−1

∼= π−1
Kt

(〈πKt(W )〉), we have that Kt−1 is a
normal subgroup of N(X, c,m) and Kt ≤ Kt−1. Finally, it is evident that
N(X, c,m)/Kt is torsion-free. Hence, induction gives the construction of Kt

for all i.
We now demonstrate that Z(N(X, c,m)/K1) ∼= 〈πK1(ξ1)〉 by first showing

that ξ1 /∈ Ki for all i. We proceed by induction, and note that the base case
follows from the definition of Kc. Now assume that ξ1 /∈ Kt for the inductive
hypothesis. By definition, Kt−1 = 〈Kt,W 〉 where W is the set of basic com-
mutator brackets ξi such that πKt(ξi) is central in N(X, c,m)/Kt and where
πKt(ξi) 6= πKt(ξi0). By the construction of the upper central series, we have
that the subset {πKt(ξt), πKt(W )} is a free basis of Z(N(X, c,m)/Kt). Sup-
pose for a contradiction that ξi0 ∈ Kt−1. Given that Kt E Kt−1, we have
that ξi0 ∈ W mod Kt which contradicts the fact that {πKt(ξt), πKt(W )}
is a free basis of Z(N(X, c,m)/Kt). Thus, induction implies that ξi0 /∈
K1. In particular, πK1(ξi0) ⊆ (Z(N(X, c,m)/K1))•. The construction of
K1 mirrors the techniques used in the proof of Proposition 3.1. Thus,
h(Z(N(X, c,m)/K1)) = 1, and therefore, Z(N(X, c,m)/K1) ∼= 〈πK1(ξi0)〉.
By taking Ω = K1, we have our proposition. �

We now come to the main result of this subsection.

Theorem 1.5(i). For each c ∈ N, there exists a m(c) ∈ N satisfying the
following. For each ` ∈ N, there exists an irreducible, torsion-free, finitely
generated nilpotent group Γ of step length c and h(Γ) ≥ ` such that

FΓ(n) � (log(n))m(c) .

Proof. Let c ≥ 1, ` ≥ 2, and X` = {xi}`i=1. Let N(X`, c, `) to be the free
nilpotent group of step size c and rank ` on the set X`. Theorem 1.1 implies
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that there exists a ψRF(N (X`, c, `)) ∈ N such that

FN(X`,c,`)(n) ≈ (log(n))ψRF(N(X`,c,`)).

Before we continue, we make an observation. One can see that we may
take the groups given by N(Xc, c, c) × Z` to satisfy a weak version of our
theorem. However, N(Xc, c, c)×Z` is not irreducible. Thus, we will find an
irreducible, torsion-free quotient of N(X`, c, `) which achieves the desired
end.

We will demonstrate that

(log(n))ψRF(N(X`,c,`)) � (log(n))ψRF(N(Xc,c,c))

for each ` > c, and since N (X`, c, `) is a nilpotent group of step size c and
Hirsch length greater than `, we will have our desired result.

We let {∆i}h(N(X`,c,`))
i=1 be the cyclic series of basic commutators and

{ξi}h(N(X`,c,`))
i=1 be the compatible generating subset of basic commutators

for N(X`, c, `). For each ξi ∈ Z(N(X`, c, `)), let N(X`, c, `)/Λi be an admis-
sible quotient with respect to ξi. Proposition 3.8 implies that there exists
an i0 ∈ {1, . . . , h(Z(N(X`, c, `)))} such that h(Γ/Λi0) = ψRF(N(X`, c, `)).

For each ξi ∈ Z(N(X`, c, `)), there exists a subset Yi ⊆ X such that ξi is
a basic commutator of weight c that contains only elements of Yi. Propo-
sition 8.4 implies that there exists a subgroup Ωi such that N(X`, c, `)/Ωi

satisfies Proposition 3.1 with respect to ξi. Moreover, elements of X\Yi are
contained in Ωi.

There is a natural surjective homomorphism ρi :N(X`, c, `)→ N(Yi, c, |Yi|)
given by sending elements of X\Yi to the identity. Thus, we have an induced
homomorphism ϕ : N(Yi, c, |Yi|)→ N(X`, c, `)/Ωi such that πΩi = ϕ ◦ ρi. In
particular, N(X`, c, `)/Ωi

∼= N(Yi, c, |Yi|)/ρi(Ωi). Therefore, N(X`, c, `)/Ωi

satisfies the conditions of Proposition 3.1 for ρi(ξi). Proposition 3.8 implies
that

h(N(X`, c, `)/Λi) ≤ ψRF(N(Yi, c, |Yi|)).
Since N(X`, c, `) has step size c, we have that |Yi| ≤ c for any ξi ∈ Z(N(X`, c, `)).
Additionally, we have that N(Yi, c, |Yi|) ∼= N(Xj , c, j) when |Yi| = j. In par-
ticular,

ψRF(N(Yi, c, |Yi|)) = ψRF(N(Xj , c, j)).

By setting

m(c) = max{ψRF(N(Xj , c, j)) | 1 ≤ j ≤ c},

Proposition 3.8 implies that FN(X`,c,`)(n) � (log(n))m(c). �

8.2. Central products and applications. The examples we contruct for
Theorem 1.5(ii), (iii) and (iv) arise as iterated central products of torsion-
free, finitely generated nilpotent groups whose centers have Hirsch length
1. In the given context, Corollary 1.2 allows us to compute the precise
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residually finiteness function in terms of the Hirsch length of the torsion-
free, finitely generated nilpotent groups of whom we take the central product
of.

Definition 8.5. Let Γ and ∆ be finitely generated groups, and let

θ : Z(Γ)→ Z(∆)

be an isomorphism. We define the central product of Γ and ∆ with respect
to θ as

Γ ◦θ ∆ = (Γ×∆)/K where K = {(z, θ(z)−1) | z ∈ Z(Γ)}.

We define the central product of the groups {Γi}`i=1 with respect to the au-
tomorphisms θi : Z(Gi)→ Z(Gi+1) for 1 ≤ i ≤ `− 1 inductively. Assuming
that (Γi◦θi)`i=1 has already been defined, we define (Γi◦θi)`i=1 as the cen-

tral product of (Γi◦θi)
`−1
i=1 and Γ` with respect to the induced isomorphism

θ̄`−1 : Z((Γi◦θi)
`−1
i=1) → Z(Γ`). When Γ = Γi and θ = θi for all i, we write

the central product as (Γ◦θ)`i=1.

Suppose that Γ ◦θ ∆ is a central product of two nilpotent groups. Since
products and quotients of nilpotent groups are nilpotent, it follows that
Γ ◦θ ∆ is a nilpotent group. However, the isomorphism type of Γ ◦θ ∆ is
dependent on θ.

Proposition 8.6. Let {Γi}`i=1 be a collection of torsion-free, finitely gen-
erated nilpotent groups where h(Z(Γi)) = 1 for all i. Let Z(Γi) = 〈zi〉,
and let θi : Z(Γi) → Z(Γi+1) be the isomorphism given by θ(zi) = zi+1 for
1 ≤ i ≤ `− 1. Then

h((Γi◦θi)
`
i=1) =

∑̀
i=1

h(Γi)− `+ 1 and h(Z(Γi◦θi)
`
i−1)) = 1.

Proof. We may assume that ` = 2. First note that if Γ is a torsion-free,
finitely generated nilpotent group with a normal subgroup ∆ E Γ such that
Γ/∆ is torsion-free, then h(Γ) = h(∆) + h(Γ/∆). Observe that

Γ1 ◦θ Γ2/Z(Γ1 ◦θ Γ2) ∼= Γ1/Z(Γ1)× Γ2/Z(Γ2).

It is evident that h(Z(Γ1 ◦θ Γ2)) = 1, and thus, we may write

h(Γ1/Z(Γ1)) + h(Γ2/Z(Γ2)) + 1 = h(Γ1 ◦θ Γ2).

Therefore,

h(Γ1 ◦θ Γ2) = h(Γ1)− 1 + h(Γ2)− 1 + 1 = h(Γ1) + h(Γ2)− 1. �

Definition 8.7. For ` ≥ 3, we define Λ` to be the torsion-free, finitely
generated nilpotent group generated by the set S` = {xi}`i=1 with relations
consisting of commutator brackets of the form [x1, xi] = xi+1 for 2 ≤ i ≤ `−1
and all other commutators being trivial.
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Λ` is an example of a Filiform nilpotent group. It has Hirsch length ` and

has step length ` − 1. Defining ∆i = 〈xs〉`s=m−i+1, it follows that {∆i}`i=1

is a cyclic series for Λ` and {ξi}`i=1 is a compatible generating subset where
ξi = x`−i+1. Additionally, h(Z(Λ`)) = 1.

Theorem 1.5(ii), (iii), and (iv).

(ii) Suppose ` 6= 2. Then there exists an irreducible, torsion-free, finitely

generated nilpotent group Γ` such that FΓ(n) ≈ (log(n))`.
(iii) Suppose 2 ≤ c1 < c2 are natural numbers. For each ` ∈ N, there

exist irreducible, torsion-free, finitely generated nilpotent groups Γ`
and ∆` of step lengths c1 and c2, respectively, such that

FΓ`(n) ≈ F∆`
(n) ≈ (log(n))` lcm(c1+1,c2+1) .

(iv) For natural numbers c > 1 and m ≥ 1, there exists an irreducible,
torsion-free, finitely generated nilpotent group Γ of step length c
such that (log(n))m � FΓ(n).

Proof. Assume that ` ≥ 3. By construction, Λ` is a torsion-free, finitely
generated nilpotent group of Hirsch length ` such that h(Z(Γ`)) = 1 . Corol-
lary 1.2 implies that

FΛ`(n) ≈ (log(n))`

and since FZ(n) ≈ log(n), we have Theorem 1.5(ii).
For 2 ≤ c1 < c2 and ` ≥ 1, there exist natural numbers j` and ι` satisfying

(j` − 1) (c1 + 1) = ` lcm(c1 + 1, c2 + 1)

and

(ι` − 1) (c2 + 1) = ` lcm(c1 + 1, c2 + 1),

respectively. Let

Γ` = (Λi◦θΓ)j`i=1 and ∆` = (Λi◦θ∆)ι`i=1

where

θΓ : Z(Λc1+1)→ Z(Λc1+1) and θ∆ : Z(Λc2+1)→ Z(Λc2+1)

are the identity isomorphisms, respectively. Proposition 8.6 implies that
h(Γ`) = h(∆`) and h(Z(Γ`)) = h(Z(∆`)) = 1, and thus, Corollary 1.2
implies that

FΓ`(n) ≈ F∆`
(n).

Lastly, let c > 1 and m ≥ 1, and consider the group

Γc m = (Λc+1◦θ)c mi=1

with finite generating subset Scm. Proposition 8.6 implies that

h(Γcm) = c m2 + c m− 1,

and since c m2 + c m− 1 ≥ m, Corollary 1.2 implies that

(log(n))m � FΓc m(n)

as desired. �
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Part IV. Conjugacy separability

9. A review of Blackburn and a proof of Theorem 1.6

We start with a review of Blackburn’s proof of conjugacy separability for
infinite, finitely generated nilpotent groups. This section provides motiva-
tion for estimates in the following sections and how one obtains an upper
bound for ConjΓ(n).

Let Γ be a torsion-free, finitely generated nilpotent group with a cyclic

series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 , and let γ, η ∈ Γ
be elements such that γ � η. In order to construct a surjective homomor-
phism to a finite group that separates the conjugacy classes of γ and η, we
proceed by induction on h(Γ). Since the base case is evident, we may as-
sume that h(Γ) > 1. When π∆1(γ) � π∆1(η), induction implies that there
exists a surjective homomorphism to a finite group ϕ : Γ → Q such that
ϕ(γ) � ϕ(η). Otherwise, by passing to a conjugate element, we may as-
sume that η = γ ξt1 for some t ∈ Z•. The following integer is of particular
importance.

Definition 9.1. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 .

Let γ ∈ Γ. If we let ϕ : π−1
∆1

(CΓ/∆1
(γ̄)) → ∆1 be given by ϕ(η) = [γ, η], we

define τ(Γ,∆, ξ, γ) ∈ N so that
〈
ξ
τ(Γ,∆,ξ,γ)
1

〉
∼= Im(ϕ).

Since we are trying to separate the conjugacy classes of γ and γ ξt1, we
choose a prime power pα such that pα | τ(Γ,∆, ξ, γ) and pα - t. We then find

a w ∈ N such that if β ≥ w, then for each γ ∈ Γp
β

there exists an element

η ∈ Γ satisfying ηp
β−w

= γ (see [3, Lem 2]).
Consider the following definition (see [3, Lem 3]).

Definition 9.2. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 ,
and let γ ∈ Γ. We define e(Γ,∆, ξ, γ) ∈ N to be the smallest natural number
such that if λ ≥ e(Γ,∆, ξ, γ), then

C
Γ/Γpλ

(γ̄) ⊆ π
Γpλ

(
CΓ(γ) · Γpλ−e(Γ,∆,ξ,γ)

)
.

We set ω = α+ w + e(Γ/∆1, ∆̄, ξ̄, γ̄). Blackburn then proves that

πΓpω (γ) � πΓpω (η)

(see §12 and [3]). However, as a consequence of the choice of a cyclic series
and a compatible generating subset, it becomes evident that the integer w
is unnecessary. When Γ has torsion elements, Blackburn inducts on |T (Γ)|.
Thus, it suffices to bound pe(Γ,∆,ξ,γ) and τ(Γ,∆, ξ, γ) in terms of ‖γ‖S and
‖η‖S . Following Blackburn’s method, we calculate the upper bound for
ConjH2m+1(Z)(n). We then demonstrate that the given upper bound is sharp.
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Before starting, we make the following observations for H2m+1(Z). Using
the cyclic series and a compatible generating subset given in Subsection 5.1,
we have that

τ(γ) = τ(H2m+1(Z),∆, ξ, γ) = gcd{xγ,i, yγ,j |1 ≤ i, j ≤ m}.

Thus, Proposition 2.8 implies that τ(γ) ≤ C0‖γ‖S for some C0 ∈ N. More-
over, via Subsection 5.1 we may write the conjugacy class of γ as

(5)


1 ~xγ τ(γ) β + zγ
~0 Im ~yγ
0 ~0 1

∣∣∣∣∣∣β ∈ Z
 .

The following proposition gives the upper bound for ConjH2m+1(Z)(n).

Proposition 9.3. ConjH2m+1(Z)(n) � n2m+1.

Proof. Let γ, η ∈ Γ such that ‖γ‖S , ‖η‖S ≤ n and γ � η. We need to
construct a surjective homomorphism to a finite group ϕ : H2m+1(Z) → Q
such that ϕ(γ) � ϕ(η) and where |Q| ≤ C n2m+1 for some C ∈ N. We
proceed based on whether γ and η have equal images in (H2m+1(Z))ab.
To this end, assume that πab(γ η−1) 6= 1. Corollary 1.4 (see also [4, Cor
2.3]) implies that there exists a surjective homomorphism to a finite group
ϕ : Z2m → Q such that ϕ(πab(γ η−1)) 6= 1 and |Q| ≤ C1 log(C1 n) for some
C1 ∈ N. Since the images of γ and η are nonequal, central elements in Q, it
follows that ϕ(πab(γ)) � ϕ(πab(η)), and thus,

CDH2m+1(Z)(γ, η) ≤ C1 log(C1 n).

Thus, we may assume that πab(γ) = πab(η). In particular, we may write
η = γ λt, and Proposition 2.8 implies that |t| ≤ C0 n

2. Let pω be a prime
power that divides τ(γ) but does not divide t. We claim that

π(H2m+1(Z))pω (γ) � π(H2m+1(Z))pω (γ λt),

and for a contradiction, suppose otherwise. That implies there exists an
element x ∈ H2m+1(Z) such that

π(H2m+1(Z))pω ([γ, x]) = π(H2m+1(Z))pω (λt).

Equation (5) implies that

zη ∈ {`γ β + zγ | β ∈ Z} ( mod pω) .

Therefore, there exist a, b ∈ Z such that t = a τ(γ) + b pω. Thus, pω | t, a
contradiction. Hence,

π(H2m+1(Z))pω (γ) � π(H2m+1(Z))pω (γ λt).

When τ(γ) 6= 0, we have that pω ≤ τ(γ) ≤ C0 n. Hence,

CDH2m+1(Z)(γ, η) ≤ C2m+1
0 n2m+1.
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When τ(γ) = 0, the Prime Number Theorem [38, 1.2] implies that there
exists a prime p such that p - t where p ≤ C2 log(C2 |t|) for some C2 ∈ N.
Hence, p ≤ C3 log(C3 n) for some C3 ∈ N, and thus,

CDH2m+1(Z)(γ, η) ≤ C3 (log(C3 n))2m+1.

Therefore, ConjH2m+1(Z)(n) � n2m+1. �

The following proposition gives the lower bound of ConjH2m+1(Z)(n).

Proposition 9.4. n2m+1 � ConjH2m+1(Z)(n).

Proof. We will construct a sequence of nonconjugate pairs {γi, ηi} such that

CDH2m+1(Z)(γi, ηi) = n2m+1
i

where ‖γi‖, ‖ηi‖ ≈ ni for all i. Let {pi} be an enumeration of the primes.
Writing pi · e1 as the scalar product, we consider the following pair of ele-
ments:

γi =

1 pi · ~e1 1
~0 Im ~0

0 ~0 1

 and ηi =

1 pi · ~e1 2
~0 Im ~0

0 ~0 1

 .

Equation (5) implies that we may write the conjugacy class of γi as

(6)


1 pi · ~e1 tpi + 1
~0 Im ~0

0 ~0 1

∣∣∣∣∣∣ t ∈ Z
 .

Since π(H2m+1(Z))pi (γi) and π(H2m+1(Z))pi (ηi) are nonequal, central elements
of H2m+1(Z)/(H2m+1(Z))pi , it follows that γi � ηi for all i. Moreover, we
have that ‖γi‖S , ‖ηi‖S ≈ pi. Given that

|H2m+1(Z)/(H2m+1(Z))pi | = p2m+1
i ,

we claim that
CDH2m+1(Z)(γi, ηi) = p2m+1

i .

In order to demonstrate our claim, we show if given a surjective homomor-
phism to a finite group ϕ : H2m+1(Z) → Q such that |Q| < p2m+1

i , then
ϕ(γi) ∼ ϕ(ηi). [17, Thm 2.7] implies that we may assume that |Q| = qµ.
Since ϕ(γi) = ϕ(ηi) when ϕ(λ) = 1, we may assume that ϕ(λ) 6= 1.

Suppose first that q = pi. We demonstrate that if Q is a group where
ϕ(γi) � ϕ(ηi), then there exists no proper quotient of Q such that the
images of ϕ(γi) and ϕ(ηi) are nonconjugate. Since B(H2m+1(Z),∆, ξ) = 1,
Proposition 4.11 implies that |Q| = p2m+1

i . Since every admissible quotient
with respect to any primitive, central, nontrivial element is isomorphic to
the trivial subgroup, Proposition 4.12 implies that there exist no proper
quotients of Q such that the image of ϕ(λ2) is nontrivial. Thus, if N is a
proper quotient of Q with natural projection ρ : Q→ N , then

ker(ρ) ∩ Z(Q) ∼= Z(Q)
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since Z(Q) ∼= Z/pjZ by Proposition 4.12. Thus, ρ(ϕ(γi)) = ρ(ϕ(ηi)); hence,

ρ(ϕ(γi)) ∼ ρ(ϕ(ηi)). In particular, if Q is a pi-group where |Q| < p2m+1
i ,

then ϕ(γi) ∼ ϕ(ηi). Thus, we may assume that q 6= pi.
If q > pi, then Proposition 4.11 implies that p2m+1

i > qµ. Thus, we may
assume that q < pi. Since Proposition 4.11 implies that Z/qνZ ∼= Z(Q),
Equation (6) implies that if 1 ≡ p t ( mod qν Z) for some t ∈ Z , then
ϕ(γp) ∼ ϕ(ηp). The smallest qν where this fails is qν = pi since the image of
pi is a unit in Z/qνZ if and only if gcd(pi, q

ν) = 1. Therefore, ϕ(γi) ∼ ϕ(ηi)
when qµ < pi. Hence, n2m+1 � ConjH2m+1(Z)(n). �

Taking these propositions together, we obtain the main result of this
section.

Theorem 1.6. ConjH2m+1(Z)(n) ≈ n2m+1.

Proof. Proposition 9.3 implies that FH2m+1(Z)(n) � n2m+1, and Proposi-

tion 9.4 implies that n2m+1 � FH2m+1(Z)(n). Therefore,

FH2m+1(Z)(n) ≈ n2m+1. �

The following corollary will be useful for the proof of Theorem 1.8.

Corollary 9.5. Let H3(Z) be the 3-dimensional Heisenberg group with the
presentation given by 〈κ, µ, ν | [µ, ν] = κ, κ central 〉, and let p be a prime.
Suppose ϕ : H3(Z)→ Q is a surjective homomorphism to a finite group such
that Q is a q-group where q is a prime distinct from p and where ϕ(κ) 6= 1.
Then

ϕ(µp κ) ∼ ϕ(µp κ2).

Proof. We may write the conjugacy class of µp κ as

{µp κt p+1 | t ∈ Z}.
Proposition 4.11 implies that Z(Q) ∼= 〈ϕ(κ)〉. Hence, Z(Q) ∼= Z/mZ where
m = OrdQ(ϕ(κ)). Since Q is a q-group, it follows that m = qβ for some β ∈
Z. Given that gcd(p, qβ) = 1, there exists integers r, s such that rp+sqβ = 1.
We have that

µp κr p+1 ∼ µp κ.
We may write

ϕ(µp κr p+1) = ϕ(µp κ1−s qβ+1) = ϕ(µp κ2).

Therefore, ϕ(µp κ) ∼ ϕ(µp κ2) as desired. �

10. Relating complexity in groups and Lie algebras

Let Γ be a torsion-free, finitely generated nilpotent group with a cyclic

series {∆i}h(Γ)
i=1 , and a compatible generating subset {ξi}h(Γ)

i=1 , and let G be
the Mal’tsev completion of Γ with Lie algebra g. The overall goal of this
section is to provide a bound of ‖Log(γ)‖Log(S) in terms of ‖γ‖S where
Log(S) gives a norm for the additive structure of g.
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Proposition 10.1. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 . Let
G be the Mal’tsev completion of Γ with Lie algebra g. Let γ ∈ Γ. Then there
exists a constant C ∈ N such that

‖Log(γ)‖Log(S) ≤ C (‖γ‖S)(c(Γ))2
.

Proof. Using the Mal’tsev coordinates of γ, we may write

γ =

h(Γ)∏
i=1

ξαii .

Lemma 2.8 implies that there exists C1 ∈ N such that |αi| ≤ C1(‖γ‖S)c(Γ)

for all i. A straightforward application of the Baker–Campbell–Hausdorff
formula (2) implies that Log(ξαii ) = αi Log(ξi). Writing Ai = αi Log(ξi), it
follows that

‖Ai‖Log(S) ≤ C1(‖γ‖S)c(Γ).

Equation (2) implies that we may write

‖Log(γ)‖Log(S) ≤
c(Γ)∑
i=1

‖CBi(A1, . . . , Ah(Γ))‖Log(S)

where CBi(A1, . . . , Ah(Γ)) is a rational linear combination of i-fold Lie brack-

ets of {Ajs}ts=1 ⊆ {Ai}
h(Γ)
i=1 . Let {Ajs}ts=1 ⊂ {Ai}

h(Γ)
i=1 where [Aj1 , . . . Ajt ] 6=

0. Via induction on the length of the iterated Lie bracket, one can see that
there exists a constant Ct ∈ N such that

[Aj1 , . . . , Ajt ] ≤ Ct
t∏

s=1

‖Ajs‖Log(S) ≤ Ct C1 (‖γ‖S)t c(Γ).

By maximizing over all possible t-fold Lie brackets of elements of {Ai}h(Γ)
i=1 ,

there exists a constant Di ∈ N such that

‖CBi(A1, . . . , Ah(Γ))‖Log(S) ≤ Di (‖γ‖S)t c(Γ).

Hence,

‖Log(γ)‖Log(S) ≤ C (‖γ‖S)(c(Γ))2

for some C ∈ N. �

An immediate application of Proposition 10.1 is that the adjoint repre-
sentation of Γ has matrix coefficients bounded by a polynomial in terms of
word length.

Proposition 10.2. Let Γbe a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating set {ξi}h(Γ)

i=1 . Let G
be the Mal’tsev completion of Γ with Lie algebra g. Let γ ∈ Γ, and let (µi,j)

be the matrix representative of Ad(γ) with respect to the basis {Log(ξ)}h(Γ)
i=1 .

Then |µi,j | ≤ C (‖γ‖S)(c(Γ))3
for some C ∈ N.
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Proof. Proposition 10.1 implies that there exists a constant C1 ∈ N such
that

‖Log(γ)‖Log(S) ≤ C1 (‖γ‖S)(c(Γ))2
.

Via induction on the length of the Lie bracket and Equation (3), we have
that

‖Ad(γ)(vi)‖Log(S) ≤ C2(‖γ‖S)(c(Γ))3

for some C2 ∈ N. �

11. Preliminary estimates for Theorem 1.7

Let Γ be a torsion-free, finitely generated nilpotent group with a cyclic

series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 . Let γ be a
nontrivial element of Γ, and let p be some prime. In the following section,
we demonstrate the construction of the integer e(Γ,∆, ξ, γ) and give an

upper bound for pe(Γ,∆,ξ,γ) in terms of ‖γ‖S independent of the prime p. We
first provide a bound for τ(Γ,∆, ξ, γ) in terms of ‖γ‖S .

Proposition 11.1. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 .
There exists k,C ∈ N such that

|τ(Γ,∆, ξ, γ)| ≤ C (‖γ‖S)k.

Proof. Let G be the Mal’tsev completion of Γ with Lie algebra g. Consider
the smooth map Φ : G→ G given by Φ(g) = [γ, g]. Suppose η ∈ Γ satisfies

Φ(η) = ξ
τ(Γ,∆,ξ,γ)
1 . The commutative diagram (1.2) on [13, Pg 7] implies

that we may write

(I −Ad(γ−1))(Log(η)) = Log(ξ
τ(Γ,∆,ξ,γ)
1 )

where (dΦγ)1 = I − Ad(γ−1). Proposition 10.2 implies that I − Ad(γ−1)
is a strictly upper triangular matrix whose coefficients are bounded by

C (‖γ‖S)(c(Γ))3
for some C ∈ N. Since it is evident that

Log(ξ
τ(Γ,∆,ξ,γ)
1 ) = τ(Γ,∆, ξ, γ) Log(ξ1),

backwards substitution gives our result. �

The first statement of the following proposition is originally found in [3,
Lem 3]. We reproduce its proof so that we may provide estimates for the

value pe(Γ,∆,ξ,γ) in terms of ‖γ‖S where p is an arbitrary prime.

Proposition 11.2. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 . Let
p be a prime number, and let γ ∈ Γ. Then there exists e(Γ,∆, ξ, γ) ∈ N such
that if α ≥ e(Γ,∆, ξ, γ), then

CΓ/Γpα (γ̄) ⊆ πΓpα

(
CΓ(γ) · Γpα−e(Γ,∆,ξ,γ)

)
.

Moreover, pe(Γ,∆,ξ,γ) ≤ C(‖γ‖S)k for some C ∈ N and k ∈ N.
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Proof. We proceed by induction on Hirsch length, and given that the state-
ment is clear for Z by setting e(Γ,∆, ξ, γ) = 0 for all γ, we may assume that
h(Γ) > 1.

We construct e(Γ,∆, ξ, γ) based on the value of τ(Γ,∆, ξ, γ) (see Defini-
tion 9.1). By induction, we may assume that we have already constructed
e(Γ/∆1, ∆̄, ξ̄, γ̄). When τ(Γ,∆, ξ, γ) = 0, we set

e(Γ,∆, ξ, γ) = e(Γ/∆1, ∆̄, ξ̄, γ̄).

Suppose α ≥ e(Γ,∆, ξ, γ) and that η̄ ∈ CΓ/Γpα (γ̄) for some η ∈ Γ. By

selection, η̄ ∈ CΓ/Γpα ·∆1
(γ̄). Thus, we may write

η ∈ π−1
∆1

(CΓ/∆1
(γ̄)) · Γpα−e(Γ,∆,ξ,γ)

.

Since π−1
∆1

(CΓ/∆1
(γ̄)) = CΓ(γ), it follows that

η̄ ∈ πΓpα

(
CΓ(γ) · Γpα−e(Γ,∆,ξ,γ)

)
,

Thus,

CΓ/Γpα (γ̄) ⊆ πΓpα

(
CΓ(γ) · Γpα−e(Γ,∆,ξ,γ)

)
.

When τ(Γ,∆, ξ, γ) 6= 0, we let β be the largest power of p such that
pβ | τ(Γ,∆, ξ, γ) and set

e(Γ,∆, ξ, γ) = e(Γ/∆1, ∆̄, ξ̄, γ̄) + β.

Let α ≥ e(Γ,∆, ξ, γ), and let η ∈ Γ satisfy η̄ ∈ CΓ/Γp
α (γ̄). Thus, η̄ ∈

CΓ/Γpα ·∆1
(γ̄), and subsequently, induction implies that

η̄ ∈ πΓpα ·∆1

(
CΓ/∆1

(γ̄) · Γpα−e(Γ,∆,ξ,γ)+β
)
.

Thus, we may write η = µ εa λ where

µ ∈ CΓ(γ), λ ∈ Γp
α−e(Γ,∆,ξ,γ)+β

, and ϕγ(ε) = ξ
τ(Γ,∆,ξ,γ)
1 .

Hence, we have that

[γ, η] = [γ, εa] ∈ Γp
α−e(Γ,∆,ξ,γ)+β

.

Since [γ, εa] ∈ Γp
α−e(Γ/∆1,∆̄,ξ̄,γ̄)

and [γ, εa] ∈ ∆1, we have that

pα−e(Γ,∆,ξ,γ)+β | a τ(Γ,∆, ξ, γ).

By definition of pβ, it follows that pα−e(Γ,∆,ξ,γ) | a, and thus,

η̄ ∈ πΓpα

(
CΓ(γ) · Γpα−e(Γ,∆,ξ,γ)

)
.

Hence,

CΓ/Γpα (γ̄) ⊆ πΓpα

(
CΓ(γ) · Γpα−e(Γ,∆,ξ,γ)

)
.
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We proceed by induction on Hirsch length to demonstrate the upper
bound, and since the base case is clear, we may assume that h(Γ) > 1.
Let γ ∈ Γ, and suppose that τ(Γ,∆, ξ, γ) = 0. By construction,

e(Γ,∆, ξ, γ) = e(Γ/∆1, ∆̄, ξ̄, γ̄),

and thus, induction implies that there exist C1, k1 ∈ N such that

pe(Γ/∆1,∆̄,ξ̄,γ̄) ≤ C1 (‖γ̄‖S̄)k1 .

When τ(Γ,∆, ξ, γ) 6= 0, it follows that e(Γ,∆, ξ, γ) = e(Γ/∆1, ∆̄, ξ̄, γ̄) + β
where β is the largest power of p that divides τ(Γ,∆, ξ, γ). Proposition 11.1
implies that there exist k2, C2 ∈ N such that pβ ≤ C2 (‖γ‖S)k2 . Conse-
quently,

pe(Γ,∆,ξ,γ) ≤ C1 C2 (‖γ‖S)k1+k2 . �

We finish with the following technical result.

Proposition 11.3. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 , and
let γ, η ∈ Γ. Suppose that γ � η, but π∆1(γ) ∼ π∆1(η). Then there exists
an element g ∈ Γ such that g−1 η g = γ ξt1 where

‖t‖ ≤ C max {‖γ‖S , ‖η‖S}k

for some constant C > 0 and k ∈ N.

Proof. Let G be the Mal’tsev completion of Γ with Lie algebra g. Consider
the smooth map Φ : G → G given by Φ(x) = [η, x]. By assumption, there
exists an element g ∈ Γ such that g−1 η g ≡ γ mod ∆1, and thus, the
commutative diagram (1.2) on [13, Pg 7] implies that we may write(

I −Ad(η−1)
)

(Log(g)) = Log(η−1 γ ξt1)

for some t ∈ Z•. Since ξt1 is central, Equation 2 implies that we may write(
I −Ad(η−1)

)
(Log(g)) = Log(η−1 γ) + Log(ξt1).

Proposition 10.2 implies that I − Ad(η−1) is a strictly upper triangular

matrix whose coefficients are bounded by C1 (‖η‖S)(c(Γ))3
for some C1 ∈ N.

Lemma 10.1 implies that we may write Log(η−1γ) =
∑h(Γ)

i=1 αi Log(ξi) where

|αi| ≤ C2

(
‖η−1 γ‖S

)(c(Γ))2

for some C2 ∈ N. Thus, we may write

(
I −Ad(η−1)

)
(Log(g)) = (t+ α1) Log(ξ1) +

h(Γ)∑
i=2

αi Log(ξi).

Thus, backwards substitution gives our result. �
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12. Proof of Theorem 1.7

Let Γ be an infinite, finitely generated nilpotent group. In order to demon-
strate that there exists a k1 ∈ N such that ConjΓ(n) � nk1 , we need to show
for any elements γ, η ∈ Γ where γ � η and ‖γ‖S , ‖η‖S ≤ n that there exists
a prime power pω ≤ C nk2 such that πΓpω (γ) � πΓpω (η) for some C, k2 ∈ N.

It then follows that CDΓ(γ, η) ≤ Ch(Γ)nh(Γ) k2 . We first specialize to torsion-
free, finitely generated nilpotent groups.

Proposition 12.1. Let Γ be a torsion-free, finitely generated nilpotent group

with a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset {ξi}h(Γ)

i=1 .
Then there exists a k ∈ N such that

ConjΓ(n) � nk.

Proof. Let γ, η ∈ Γ such that ‖γ‖S , ‖η‖S ≤ n and where γ � η. We
demonstrate that there exists a k0 ∈ N such that CDΓ(γ, η) ≤ C0 n

k0 for
some C0 ∈ N by induction on h(Γ), and since the base case is clear, we may
assume that h(Γ) > 1. If π∆1(γ) � π∆1(η), then the inductive hypothesis
implies that there exists a surjective homomorphism to a finite group

ϕ : Γ/∆1 → Q

such that ϕ(γ) � ϕ(η) and where |Q| ≤ C1 n
k1 for some C1, k1 ∈ N. Thus,

CDΓ(γ, η) ≤ C1 n
k1 .

Thus, Proposition 11.3 implies that there exists an element ζ ∈ Γ such
that ζ η ζ−1 = γ ξt1 where |t| ≤ C2 n

k2 for some C2 ∈ N and k2 ∈ N. Since
γ � γ ξt1, there exists a prime power pα such that pα | τ(Γ,∆, ξ, γ) but pα - t.
We set

ω = α+ e(Γ/∆1, ∆̄, ξ̄, γ̄),

and suppose for a contradiction that there exists an element x ∈ Γ such that
πΓpω (x−1 γ x) = πΓpω (γ ξ1)t. That implies x̄ ∈ CΓ/Γpω ·∆1

(γ̄), and thus,

x̄ ∈ πΓpω ·∆1
(CΓ/∆1

(γ) · Γpα)

by Proposition 11.2. Subsequently, x = g µ for some g ∈ π−1
∆1

(CΓ/∆1
(γ̄)) and

µ ∈ Γp
α
. Hence, πΓpω ([γ, g]) = πΓpω (ξ1)t, and since [γ, g] = ξ

q τ(Γ,∆,ξ,γ)
1 for

some q ∈ Z, it follows that

ξ
t−q τ(Γ,∆,ξ,γ)
1 ∈ Γp

α+e(Γ/∆1,∆̄,ξ̄γ̄)
.

That implies pα | t, which is a contradiction. Hence, πΓpω (γ) � πΓpω (η).

Proposition 11.2 implies that pe(Γ/∆1,∆̄,ξ̄,γ̄) ≤ C3 n
k3 for some C3, k3 ∈ N.

When τ(Γ,∆, ξ, γ) = 0, the Prime Number Theorem [38, 1.2] implies that
we may take |p| ≤ C4 log(C4 n) for some C4 ∈ N.

Hence,

CDΓ(γ, η) ≤ C5 (log(C5 n))h(Γ)
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for some C5 ∈ N. When τ(Γ,∆, ξ, γ) 6= 0, Proposition 11.1 implies that
τ(Γ,∆, ξ, γ) ≤ C6 n

k4 for some C6, k4 ∈ N. Thus, pω ≤ C3 C6 n
k3+k4 .

Therefore,

CDΓ(γ, η) ≤ (C3 C6)h(Γ) nh(Γ)(k3+k4).

Thus, by letting

k5 = max{k1, h(Γ)(k3 + k4)},
we have

ConjΓ(n) � nk5 . �

We now come to the main result of this section.

Theorem 1.7. Let Γ be a finitely generated nilpotent group. Then there
exists a k ∈ N such that

ConjΓ(n) � nk.

Proof. Let Γ be an infinite, finitely generated nilpotent group Γ with a
cyclic series {∆i}mi=1 and a compatible generating subset {ξi}mi=1. Let k1 be
the natural number from Proposition 12.1 and k2 be the natural number
from Proposition 11.2, both for Γ/T (Γ). Letting k3 = h(Γ) ·max{k1, k2}, we
claim that ConjΓ(n) � nk3 . Let γ, η ∈ Γ satisfy γ � η and ‖γ‖S , ‖η‖S ≤ n.
In order to show that CDΓ(γ, η) ≤ C0 n

k3 where C0 ∈ N, we construct a
surjective homomorphism to a finite group that distinguishes the conjugacy
classes of γ and η via induction on |T (Γ)|.

Proposition 12.1 implies that we may assume that there exists a subgroup
P ⊆ Z(Γ) of prime order p. If πP (γ) � πP (η), then induction implies that
there exists a surjective homomorphism to a finite group ϕ : Γ/P → N such
that ϕ(γ) � ϕ(η) and where |N | ≤ C1 n

k3 for some C1 ∈ N. Thus,

CDΓ(γ, η) ≤ C1 n
k3 .

Otherwise, we may assume that η = γ µ where 〈µ〉 = P .
Suppose there exists a subgroup Q ⊆ Z(Γ) such that |Q| = q where q is

a prime distinct from p. Suppose for a contradiction that there exists an
element x ∈ Γ such that x−1 γ x = γ µ λ where Q = 〈λ〉. Since [γ, x] ∈ Z(Γ)
and OrdΓ(λ) = q, basic commutator properties imply that [γ, xq] = µq.
Given that p s+ q r = 1 for some r, s ∈ Z, it follows that

[γ, xq r] = γ µ1−p s = γ µ

which is a contradiction. Hence, induction implies that there exists a surjec-
tive homomorphism to a finite group θ : Γ/Q→M such that θ(γ) � θ(γ µ)
and where |M | ≤ C2 n

k3 for some C2 ∈ N. Thus,

CDΓ(γ, η) ≤ C2 n
k3 .

We now may assume that T (Γ) is a p-group with exponent pm. We set

ω = m+ e(Γ/T (Γ), ∆̄, ξ̄, γ̄),
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and suppose for a contradiction that there exists an element x ∈ Γ such that

πΓpω (x−1 γ x) ∼ πΓpω (γ µ).

Thus, x̄ ∈ CΓ/T (Γ)·Γpω (γ̄); hence,

x̄ ∈ πT (Γ)·Γpω (CΓ/T (Γ)(γ̄) · Γpm)

by Proposition 11.2. Therefore, we may write x = g λ where λ ∈ Γp
m

and
g ∈ π−1

T (Γ)(CΓ/T (Γ)(γ̄)). Subsequently, [γ, g] µ−1 ∈ Γp
m

. Moreover, since

[γ, g] ∈ T (Γ) and T (Γ) ∩ Γp
m

= {1}, it follows that [γ, x] = µ which is

a contradiction. Proposition 11.2 implies that pe(Γ/T (Γ),∆̄,ξ̄,γ̄) ≤ C3 n
k2 for

some C3 ∈ N. Thus,

CDΓ(γ, η) ≤ Ch(Γ)
3 |T (Γ)| nh(Γ) k2 ,

and subsequently,
ConjΓ(n) � nk3 . �

13. Proofs of Theorem 1.8 and Theorem 1.9

Let Γ be an infinite, finitely generated nilpotent group with a cyclic se-
ries {∆i}mi=1 and a compatible generating subset {ξi}mi=1. Since the proofs
of Theorem 1.8(i) and Theorem 1.8(ii) require different strategies, we ap-
proach them separately. We start with Theorem 1.8(i) since it only requires
elementary methods.

We assume that Γ contains an infinite, finitely generated abelian group
K of index m. We want to demonstrate that

log(n) � ConjΓ(n) � (log(n))m.

Since FΓ(n) � ConjΓ(n), Corollary 1.4 (see also [4, Cor 2.3]) implies that
log(n) � ConjΓ(n). Thus, we need only to demonstrate that

ConjΓ(n) � (log(n))m.

For any two nonconjugate elements γ, η ∈ Γ where ‖γ‖S , ‖η‖S ≤ n, we want
to construct a surjective homomorphism to a finite group ϕ : Γ → Q such
that ϕ(γ) � ϕ(η) and where |Q| ≤ C (log(C n))m for C ∈ N.

Theorem 1.8(i). Suppose that Γ is an infinite, finitely generated nilpotent
group. If Γ contains a normal abelian subgroup of index m, then

log(n) � ConjΓ(n) � (log(n))m.

Proof. Let K be a normal abelian subgroup of Γ of index m. Let S1 be a
finite generating subset for K, and let {υi}mi=1 be a set of coset representa-
tives of K in Γ. We take S = S1 ∪ {υi}mi=1 as the generating subset for Γ.
If ‖γ‖S ≤ n, we may write γ = gγ υγ where ‖gγ‖S1 ≤ C1 n for some C1 ∈ N
and υγ ∈ {υi}mi=1. Conjugation in Γ induces a map ϕ : Γ/K → Aut(K)
given by ϕ(πK(υi)) = ϕi. Thus, we may write

[γ]Γ =
{
ϕi(gγ) (υ−1

i υγ υi)
}m
i=1

.



EFFECTIVE SEPARABILITY OF F.G. NILPOTENT GROUPS 139

Finally, there exists a constant C2 ∈ N such that if ‖γ‖S1 ≤ n, then
‖ϕi(γ)‖S ≤ C2 n for all i.

Suppose γ, η ∈ Γ are two nonconjugate elements such that ‖γ‖S , ‖η‖S ≤
n. If πK(γ) � πK(η), then by taking the homomorphism πK : Γ→ Γ/K, it
follows that CDΓ(γ, η) ≤ m. Otherwise, we may assume that η = gη υγ . By
Corollary 1.4 (see also [4, Cor 2.3]), there exists a surjective homomorphism
fi : Γ→ Qi such that

fi(g
−1
γ υ−1

γ ϕi(gη) (υ−1
i υη υi)) 6= 1

and
|Qi| ≤ C3 log(2 C2 C3 n)

for some C3 ∈ N. By letting H = ∩mi=1 ker(fi), it follows that πH(γ) � πH(η)
and

|Γ/H| ≤ Cm3 (log(2 C2 C3 n))m.

Hence, ConjΓ(n) � (log(n))m and thus, log(n) � ConjΓ(n) � (log(n))m. �

For Theorem 1.8(ii), suppose that Γ does not contain an abelian group of
finite index. In order to demonstrate that

nψRF(Γ)(c(Γ/T (Γ))−1) � ConjΓ(n),

we desire a sequence of nonconjugate pairs {γi, ηi} such that

CDΓ(γi, ηi) = n
ψRF(Γ)(c(Γ/T (Γ))−1)
i

where ‖γi‖S , ‖ηi‖S ≈ ni for all i. In particular, we must find nonconjugate
elements whose conjugacy classes are difficult to separate, i.e., nonconjugate
elements that have relatively short word length in comparison to the order
of the minimal finite group required to separate their conjugacy classes.

We first reduce to the calculation of the lower bounds for ConjΓ(n) to
torsion-free, finitely generated nilpotent groups by appealing to the conju-
gacy separability of two elements within a finite index subgroup.

Proposition 13.1. Let Γ be an infinite, finitely generated nilpotent group,
and let ∆ be a subgroup. Suppose there exist γ, η ∈ ∆ such that γ � η in Γ.
Then CD∆(γ, η) ≤ CDΓ(γ, η).

Proof. We first remark that since Γ and ∆ are finitely generated nilpotent
groups, Theorem 1.7 implies that CDΓ(γ, η) < ∞ and CD∆(γ, η) < ∞.
Suppose that ϕ : Γ → Q is surjective homomorphism to a finite group
such that |Q| = CDΓ(γ, η). If we let ι : ∆ → Γ be the inclusion, then
we have a surjective homomorphism ϕ ◦ ι : ∆ → ϕ(∆) to a finite group
where ϕ(ι(γ)) � ϕ(ι(η)). By definition, CD∆(γ, η) ≤ |ϕ(∆)| ≤ |Q|. Thus,
CD∆(γ, η) ≤ CDΓ(γ, η). �

Theorem 1.8(ii). Let Γ be an infinite, finitely generated nilpotent group,
and suppose that Γ is not virtually abelian. Then

nψLower(Γ) � ConjΓ(n).
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Additionally, one can compute ψLower(Γ) given a basis for (Γ/T (Γ))c where
c is the step length of Γ/T (Γ).

Proof. We first assume that Γ is torsion-free. Let Γ/Λ be a maximal ad-
missible quotient of Γ. There exists an element g ∈ (Z(Γ))• such that Γ/Λ
is an admissible quotient with respect to g. Moreover, there exists a k ∈ Z•
such that gk = [y, z] for some y ∈ Γc(Γ)−1 and z ∈ Γ. If g is not primitive,
then there exists an element xΛ ∈ (Z(Γ))• such that xsΛ = g for some s ∈ Z•.
In particular, xtΛ = [y, z] where t = s k.

There exists a cyclic series {∆i}h(Γ)
i=1 and a compatible generating subset

{ξi}h(Γ)
i=1 that together satisfy Proposition 3.6 for Λ where ξ1 = xΛ. There ex-

ists aΛ,∆,ξ ∈ Γc(Γ)−1 and bΛ,∆,ξ ∈ Γ such that [aΛ,∆,ξ, bΛ,∆,ξ] = ξ
t B(Γ/Λ,∆̄,ξ̄)
1 .

Equation 4 implies that

HΛ,∆,ξ =
〈
aΛ,∆,ξ, bΛ,∆,ξ, ξ

t B(Γ/Λ,∆̄,ξ̄)
1

〉
∼= H3(Z).

Let {pj,Λ,∆,ξ} be an enumeration of primes greater than B(Γ/Λ, ∆̄, ξ̄). Let

γj,Λ,∆,ξ = (aΛ,∆,ξ)
pj,Λ,∆,ξ ξ

t B(Γ/Λ,∆̄,ξ̄)
1

and
ηj,Λ,∆,ξ = (aΛ,∆,ξ)

pj,Λ,∆,ξ ξ
2 t B(Γ/Λ,∆̄,ξ̄)
1 .

Since the images of γj,Λ,∆,ξ and ηj,Λ,∆,ξ are nonequal, central elements of
Γ/Λ · Γpj,Λ,∆,ξ , it follows that γj,Λ,∆,ξ � ηj,Λ,∆,ξ for all j.

We claim that γj,Λ,∆,ξ and ηj,Λ,∆,ξ are our desired nonconjugate elements.
In particular, we will demonstrate that

CDΓ(γj,Λ,∆,ξ, ηj,Λ,∆,ξ) ≈ ((pj,Λ,∆,ξ)
1/(c(Γ)−1))ψLower(Γ) = (pj,Λ,∆,ξ)

ψRF(Γ)

and that
‖γj,Λ,∆,ξ‖S , ‖ηj,Λ,∆,ξ‖S ≈ (pj,Λ,∆,ξ)

1/(c(Γ)−1).

By construction, we have that γj,Λ,∆,ξ, ηj,Λ,∆,ξ ∈ Γc(Γ)−1 and

‖γj,Λ,∆,ξ‖S′ , ‖ηj,Λ,∆,ξ‖S′ ≈ pj,Λ,∆,ξ
where S′ = S ∩ Γ2. [16, 3.B2] implies that

‖γj,Λ,∆,ξ‖S , ‖ηj,Λ,∆,ξ‖S ≈ (pj,Λ,∆,ξ)
1/(c(Γ)−1).

Therefore,

(‖γj,Λ,∆,ξ‖S)ψLower(Γ), (‖ηj,Λ,∆,ξ‖S)ψLower(Γ) ≈ (pj,Λ,∆,ξ)
ψRF(Γ).

Hence, we need to demonstrate that if given a surjective homomorphism to
a finite group ϕ : Γ→ Q such that |Q| < (pj,Λ,∆,ξ)

ψRF(Γ), then ϕ(γj,Λ,∆,ξ) ∼
ϕ(ηj,Λ,∆,ξ).

[17, Thm 2.7] implies that we may assume that |Q| = qβ where q is prime.

Since ϕ(γj,Λ,∆,ξ) = ϕ(ηj,Λ,∆,ξ) when ϕ(ξ
t B(Γ/Λ,∆̄,ξ̄)
1 ) = 1, we may assume

that ϕ(ξ
t B(Γ/Λ,∆̄,ξ̄)
1 ) 6= 1. In particular, we have πϕ(Λ) ◦ ϕ(ξ

t B(Γ/Λ,∆̄,ξ̄)
1 ) 6= 1

by Proposition 4.5.



EFFECTIVE SEPARABILITY OF F.G. NILPOTENT GROUPS 141

Now assume that q = pj,Λ,∆,ξ, and suppose that ϕ(Λ) 6= {1}. As before,
we have the homomorphism ρ̃ ◦ ϕ : Γ/Λ → Q/ϕ(Λ). Since |Q/ϕ(Q)| ≤
(pj,Λ,∆,ξ)

ψRF(Γ), Proposition 4.12 implies that |Q/ϕ(Q)| = (pj,Λ,∆,ξ)
ψRF(Γ).

Thus, we have that |Q| > (pj,Λ,∆,ξ)
ψRF(Γ). Hence, we may assume that

ϕ(Λ) = {1}.
Now assume that q = pj,Λ,∆,ξ and ϕ(Λ) ∼= {1}. If ϕ(γj,Λ,∆,ξ) ∼ ϕ(ηj,Λ,∆,ξ),

then there is nothing to prove. Thus, we may assume that ϕ(γj,Λ,∆,ξ) �
ϕ(ηj,Λ,∆,ξ). Proposition 4.12 implies that |Q| = (pj,Λ,∆,ξ)

ψRF(Γ) and that
if N is a proper quotient of Q with natural projection θ : Q → N , then
ker(θ) ∩ Z(Q) ∼= Z(Q). Thus, we have that θ(ϕ(γj,Λ,∆,ξ)) = θ(ϕ(ηj,Λ,∆,ξ))
since θ(ϕ(ξ1)) = 1. In particular, if Q is a pj,Λ,∆,ξ-group where ϕ(Λ) ∼= {1}
and |Q| < (pj,Λ,∆,ξ)

ψRF(Γ), then ϕ(γj,Λ) ∼ ϕ(ηj,Λ). Hence, we may assume
that q 6= pj,Λ,∆,ξ.

Now suppose that Q is a q-group where q 6= pj,Λ,∆,ξ, Corollary 9.5 im-
plies that there exists an element g ∈ HΛ,∆,ξ such that ϕ(g−1 γj,Λ,∆,ξ g) =
ϕ(ηj,Λ,∆,ξ) as elements of ϕ(HΛ,∆,ξ). Thus, ϕ(γj,Λ,∆,ξ) ∼ ϕ(ηj,Λ,∆,ξ). Since
we have exhausted all possibilities, it follows that

CDΓ(γj,Λ,∆,ξ, ηj,Λ,∆,ξ) = (pj,Λ,∆,ξ)
ψRF(Γ).

Hence,

nψRF(Γ)(c(Γ)−1) � ConjΓ(n).

Now suppose that Γ is an infinite, finitely generated nilpotent group where
|T (Γ)| > 1. There exists a finite index, torsion-free, subgroup of Γ which
we denote as ∆. Note that all torsion-free, finite index subgroups of Γ
have the same step length. Let ∆/Λ be a maximal admissible quotient
of ∆. Using above reasoning, there exists an element xΛ ∈ ∆ such that
∆/Λ is an admissible quotient with respect to xΛ where xtΛ = [y, z] for
some y ∈ ∆c(∆)−1 and z ∈ ∆. In particular, there exists a cyclic series

{Ki}h(∆)
i=1 and a compatible generating subset {ξi}h(∆)

i=1 that together satisfy
Proposition 3.6 for Λ where ξ1 = xΛ.

Let {pj,Λ,K,ξ} be an enumeration of primes greater than B(∆/Λ, K̄, ξ̄).
There exist an aΛ,K,ξ ∈ ∆c(∆)−1 and bΛ,K,ξ ∈ ∆ such that

[aΛ,K,ξ, bΛ,K,ξ] = ξ
t B(∆/Λ,K̄,ξ̄)
1 .

Let

γj,Λ,K,ξ = (aΛ,K,ξ)
pj,∆,K,ξ ξ

t B(∆/Λ,K̄,ξ̄)
1

and

ηj,Λ,∆,ξ = (aΛ,K,ξ)
pj,Λ,K̄,ξ̄ ξ

2 t B(∆/Λ,K̄,ξ̄)
1

be the elements from the above construction for ∆. Let

ρ : Γ→ Γ/T (Γ) · Γpj,Λ,K,ξ

be the natural projection. We have that

ρ(γj,Λ,K,ξ) 6= ρ(ηj,Λ,K,ξ) and ρ(γj,Λ,K,ξ), ρ(ηj,Λ,K,ξ) 6= 1
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by construction. Additionally, πT (Γ)(∆) is a finite index subgroup of Γ/T (Γ).
Thus, [17, Lem 4.8(c)] implies that

Z(πT (Γ)(∆)) = πT (Γ)(∆) ∩ Z(Γ/Z(Γ)).

Hence, πT (Γ)(ξ1) ∈ Z(Γ/T (Γ)). Since ρ(γj,Λ,K,ξ) and ρ(ηj,Λ,K,ξ) are unequal,
central elements of Γ/T (Γ) · Γpj,Λ,K,ξ , we have that γj,Λ,K,ξ � ηj,Λ,K,ξ.

Proposition 13.1 implies that

CD∆(γj,Λ,K,ξ, ηj,Λ,K,ξ) ≤ CDΓ(γj,Λ,K,ξ, ηj,Λ,K,ξ).

By the above construction, we have that

(pj,Λ,K,ξ)
ψRF(∆)(c(∆)−1) ≤ CDΓ(γj,Λ,K,ξ, ηj,Λ,K,ξ)

where

‖γj,Λ,K,ξ‖S , ‖ηj,Λ,K,ξ‖S ≈ (pj,Λ,K,ξ)
1/(c(∆)−1).

If S′ is a finite generating subset of Γ, then

‖γj,Λ,K,ξ‖S ≈ ‖γj,Λ,K,ξ‖S′ and ‖ηj,Λ,K,ξ‖S ≈ ‖ηj,Λ,K,ξ‖S′ .

Hence,

‖γj,Λ,K,ξ‖S′ , ‖ηj,Λ,K,ξ‖S′ ≈ (pj,Λ,K,ξ)
1/(c(∆)−1),

and

(nj,Λ,K,ξ)
ψRF(∆)(c(∆)−1) � CDΓ(γj,Λ,K,ξ, ηj,Λ,K,ξ).

Since the projection to the torsion-free quotient πT (Γ) : Γ → Γ/T (Γ) is
injective when restricted to ∆, ∆ is isomorphic to a finite index subgroup
of Γ/T (Γ), and thus, Theorem 1.3 implies that ψRF(∆) = ψRF(Γ). Since
c(Γ/T (Γ)) = c(∆), we have that

nψLower(Γ) � ConjΓ(n). �

Theorem 1.9. Let Γ and ∆ be infinite, finitely generated nilpotents of step
size greater than or equal to 2, and suppose that Γ/T (Γ) and ∆/T (∆) have
isomorphic Mal’tsev completions. Then

nψLower(Γ) � Conj∆(n) and nψLower(∆) � ConjΓ(n).

Proof. Suppose that Γ and ∆ are two infinite, finitely generated nilpotent
groups of step size 2 or greater such that Γ/T (Γ) and ∆/T (∆) has isomorphic
Mal’tsev completions. Proposition 7.8 implies that

ψRF(Γ/T (Γ)) = ψRF(∆/T (∆)).

By definition of ψRF(Γ) and ψRF(∆), we have that ψRF(Γ) = ψRF(∆). Since
c(Γ/T (Γ)) = c(∆/T (∆)), our theorem is now evident. �
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14. Proof of Theorem 1.10

Theorem 1.10. For natural numbers c > 1 and k ≥ 1, there exists an
irreducible, torsion-free, finitely generated nilpotent group Γ of step length c
such that

nk � ConjΓ(n).

Proof. For each s ∈ N, let Λs be the group given in Definition 8.7, and
let θ : Z(Λs) → Z(Λs) be the identity morphism. Let c > 1 and m ≥ 1,
and consider the group Γcm = (Λc+1◦θ)mi=1 with a finite generating subset
Scm. Proposition 8.6 implies that h(Γcm) = c m2 + c m − 1, and since
c2 m2 + c2 m − 1 ≥ m, Theorem 1.8(ii) implies that nm � ConjΓcm(n) as
desired. �
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