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Figure 1. Source: Oberwolfach photo collection, copyright
George M. Bergman, Berkeley

Introduction

“. . . I saw that the noncommutation was really the dominant
characteristic of Heisenberg’s new theory. It was really more
important than Heisenberg’s idea of building up the theory
in terms of quantities closely connected with experimental
results. So I was led to concentrate on the idea of noncom-
mutation and to see how the ordinary dynamics which people
had been using until then should be modified to include it.”

—P. A. M. Dirac, from The Development of Quantum
Theory (J. Robert Oppenheimer Memorial Prize Acceptance
Speech), Gordon and Breach Publishers, New York, 1971, pp.
20-24.

William Arveson’s work has been extraordinarily influential, and it is
known to everyone in functional analysis and in operator algebras. Bill’s
career spanned UCLA, Harvard, and (since 1968) UC Berkeley, where he had
29 PhD students and also mentored several postdocs. And as we prepared
this tribute we were struck by the sheer number of spontaneous notes or
comments from mathematicians who felt personally inspired by his papers
in the beginning of their careers.

Functional analysis and operator algebras owe much to Hilbert’s and von
Neumann’s pioneering visions for a rigorous mathematical foundation of
quantum mechanics (Hilbert’s Sixth Problem [Wig76], and see also [Dir26]).
Two other areas motivated these subjects from the start: ergodic theory,
and the study of unitary representations of groups, especially the Lie groups
arising in relativistic quantum theory. Bill Arveson told us that von Neu-
mann and Norbert Wiener were his two mathematical heroes, and the non-
commutativity that lies at the heart of quantum theory exerted great fasci-
nation for him.
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Over decades, Bill pioneered making sense of deep questions regarding
non-commutativity, and these developments became an integral part of great
advances that propagated to other fields. Non-commutative harmonic analy-
sis and non-commutative geometry [Con94] in particular have become flour-
ishing and active research areas. The first has direct relevance to signal and
image processing (inspiration from Wiener, for more details see [Jor03]),
and the second offers insights to many generalizations of Atiyah-Singer type
index theorems, to diverse applications, including in physics (e.g., sets from
aperiodic tilings determining geometries of solid-state quasicrystals), in sto-
chastic processes, and in engineering.

Bill’s work often presented entirely new perspectives to problems, intro-
ducing new technical tools and breakthroughs which later proved essential
for the solution of some of the deepest and most celebrated questions in the
field. We only mention a few examples, among others which will be explored
in more detail below by the individual contributors to this tribute article.

Let us remark on a connection with quantum theory. Fixing an alge-
bra A of operators, the selfadjoint elements in A are candidates for quan-
tum observables. In the case of unbounded observables, such as the en-
ergy H (usually semibounded), one considers bounded functions of H. One
must show that these are in the von Neumann algebra of observables, see
[Bor66, Haa96]. For decades, there was no rigorous formulation of dynamics
in the theory that encompassed the essential physical requirements. Arveson
attacked this problem by introducing a spectral theory for non-commutative
dynamical systems [Arv74], which had numerous other applications. For ex-
ample, the Arveson Spectrum inspired two new and powerful von Neumann
algebra invariants (the S-invariant, and the T-invariant, see [Con94]) that
served as key ingredients in the completion of the classification problem for
hyperfinite factors (von Neumann algebras with trivial center).

Perhaps Bill’s most famous result is his extension theorem, which plays an
analogous role for operator-valued maps on subspaces of operator algebras
as the Hahn-Banach theorem for the extension of linear functionals on sub-
spaces of Banach spaces. Arveson was the first to recognize the necessity of
considering matrix norms for the extension, in essence starting the theory of
operator spaces and operator systems. This attracted the attention of many
and laid the foundations for the study of injective von Neumann algebras
and operator systems, and later nuclear C∗-algebras. Furthermore, in the
very same paper Arveson started a program applying these new ideas from
operator algebras to the study of important problems in operator theory.
This started a significant far reaching trend. And it is worth noting that
some open questions from the program started in [Arv69] were finally solved
by Arveson himself, almost 40 years later, in a remarkable paper [Arv08]!

Bill’s career was long and fruitful, and we refer the reader to two re-
cent survey articles on some of his many contributions to mathematics
[Dav12, Izu12]. Bill’s work was often inspired by problems from physics,
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but this was by no means the full story. No matter the source of his inspi-
ration, however, Bill produced many “pure” theorems of unusual elegance
and striking beauty.

Figure 2. Bill Arveson as a Benjamin Peirce Instructor at
Harvard (1965-68) (source: Lee Kaskutas)

Kenneth R. Davidson1

Bill Arveson completed his doctorate in 1964 at UCLA under the super-
vision of Henry Dye. After an instructorship at Harvard, Bill started a long
career at the University of California, Berkeley. I was a student of his in
the early to mid 1970s. Bill was still young, but already had had a strong
influence on operator theory and operator algebras. The influence of this
early work continued to grow in the following decades.

Arveson’s work was deep and insightful, and occasionally completely rev-
olutionary. When he attacked a problem, he always set the problem in a
general framework, and built all of the infrastructure needed to understand
the workings. This perhaps is the reason that his influence has been so
pervasive in many areas of operator theory and operator algebras.

In the introduction to a 1967 paper, Arveson wrote “Many problems in
operator theory lead obstinately toward questions about algebras that are
not necessarily self-adjoint.” This has been a common theme in his work,
interweaving ideas from self-adjoint and nonself-adjoint operator algebras.

There is no space here to review all of the many contributions that Bill
made to operator theory and operator algebras. I must mention his famous
papers in Acta Math. on dilation theory. He developed a framework for

1Kenneth R. Davidson is University Professor in the Pure Mathematics department
of the University of Waterloo, Canada, a Fellow of the Royal Society of Canada and a
Fields Institute Fellow. His email address is krdavids@uwaterloo.ca.
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dilation theory for an arbitrary operator algebra based on the Sz. Nagy
dilation theory for a single operator. The key ideas were that the operator
algebra A was a subalgebra of a C*-algebra. Secondly, the right kind of
representations were completely contractive, and yielded completely positive
maps on A+A∗. Thirdly, he claimed that every operator algebra A lived
inside a unique canonical smallest C*-algebra called the C*-envelope.

While these results are fundamental for nonself-adjoint operator algebras,
they had immediate consequences for C*-algebras as well. His use of com-
pletely positive maps, and proving that B(H) was injective in this category,
led to deep work on injective von Neumann by Connes, and nuclear C*-
algebras by Lance, Effros and Choi. When Brown, Douglas and Fillmore
did their groundbreaking work on essentially normal operators and the Ext
functor for C*-algebras (a K-homology theory), Arveson pointed out how
one gets inverses in the Ext group using completely positive maps. Later
he wrote an important paper introducing quasicentral approximate units for
C*-algebras, and used this to provide a unified and transparent approach to
Voiculescu’s celebrated generalized Weyl-von Neumann theorem, the Choi-
Effros lifting theorem, and the structure of the Ext groups.

The idea of C*-envelope took longer to develop. It was a decade before
Hamana established its existence in general. It took another decade before
good tools for computing it were developed. But in the past two decades,
it has been a central tool in studying nonself-adjoint operator algebras, as
imagined by Arveson back in the late 60s. A new proof due to Dritschel
and McCullough provided important new insights into the structure of this
C*-algebra. Arveson revisited his early approach, and was able to establish
a stronger form (analogous to the Choquet boundary as compared to the
Shilov boundary), as he had conjectured in 1969.

Arveson tackled the problem of invariant subspaces from a completely
different point of view. In a small paper, he showed that an algebra of
operators containing a maximal abelian self-adjoint subalgebra of B(H) (a
masa) with no invariant subspaces was weak-∗ dense. When Radjavi and
Rosenthal extended this result to algebras whose lattice was a nest, Bill
revisited the problem and in a 100 page paper in Annals Math., he developed
a spectral theory for reflexive operator algebras containing a masa. Using
this, and making connections with spectral synthesis in harmonic analysis,
he showed the limits of this kind of result. This became an important class
of operator algebras (CSL algebras).

Even ‘failed’ attempts had profound positive impacts. Arveson tried to
provide an operator theoretic proof of Carleson’s famous corona theorem
about the maximal ideal space of H∞ of the disc. In his paper, he developed
the distance formula for nest algebras, now called the Arveson distance
formula. He also established a weaker version of the corona theorem. This
became known as the operator corona theorem. It has proven to be an
important stepping stone to the full result on other domains.
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I will skip ahead in time, passing by many important results, to the
current century. Arveson tackled the problem of multivariable commutative
operator theory. The ideas of dilation theory, now well established, suggest
that one should understand the universal operator algebra determined by
appropriate algebraic and norm constraints. A number of authors, in the
non-commutative setting, had observed that a row contractive conditon was
proving to be much more amenable than insisting that individual generators
be norm one. Bill applied this to an n-tuple of commuting operators. The
canonical model that he developed was the space of multipliers on symmetric
Fock space. This space turned out to have other remarkable properties.
Arveson showed that it was a reproducing kernel Hilbert space of functions.
David Pitts and I showed that it was a complete Nevanlinna-Pick kernel,
and Agler and McCarthy showed that it was the universal complete NP
kernel. These three results came from different directions, but served to
make operator theory on this space a rich venue for analysis and algebra.

Bill went on to write a long series of papers on this operator algebra.
He introduced many ideas from commutative algebra into the program. He
developed a notion of curvature as a key invariant for commuting row con-
tractions, and many other ideas. He made an important conjecture which
has generated a tremendous amount of work by many authors. As with his
earlier work, he had the good taste, the vision and the mathematical power
to establish a powerful new approach to an important problem.

This is his legacy—a deep and powerful vision of operator theory and
operator algebras as an integrated whole. He brought ideas from function
theory, harmonic analysis, commutative algebra, geometry and physics to
bear on problems in operator theory and operator algebras (two areas I
am sure that he considered as one), and produced works of art that have
attracted almost every practitioner of this subject at some time. He has had
a profound impact; and this impact will continue for a long time to come.

It has been my honor to have been a student of Bill’s. His work influenced
me more than most, since most of my work, traced to its roots, goes back
to Bill in some way. I am glad that I had the privilege to know him.

Ronald G. Douglas2

In January, 1965, after giving a ten-minute talk at the annual American
Mathematical Society meeting, held that year in Denver, a graduate student
came up to me and asked a question. I don’t recall what he asked but I
do remember the event because it was the first time I met Bill and our
mathematical careers became intertwined from that point on. We became,
and remained, strong friends and colleagues over the next almost fifty years.
Let me recall some of the highlights of that professional friendship as I
remember them. I make no effort at any sense of completeness.

2Ronald G. Douglas is Distinguished Professor of mathematics at the Texas A&M
university. His email address is rdouglas@math.tamu.edu .
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Figure 3. Bill Arveson and Ronald Douglas at COSy 2006
(source: Marcelo Laca and Juliana Erlijman )

During the next couple of years, our paths didn’t cross. While I spent
the following year at the Institute for Advanced Study in Princeton, Bill
completed his doctorate at UCLA. When I returned to Ann Arbor, Bill
was off to Cambridge to become a Peirce Instructor at Harvard. Still, in
the Fall of 1966, I received a preprint in the mail from him detailing some
results he had obtained on the existence problem for invariant subspaces
for bounded operators on Hilbert space. In his work he investigated the
closability of certain partially-defined linear transformations. I was both
intrigued and impressed and presented his results in Halmos’ seminar at
Michigan. The research had many of the hallmarks characteristic of Bill’s
approach to mathematics: deep, incisive, often unexpected results obtained
by applying technical machinery which often he had built himself and, many
times, apparently unrelated to the problem at hand. Moreover, it showed
that Bill was not hesitant to strike out in new directions. His thesis had
concerned the classification of algebras of operators defined using measurable
transformations, but none of that was present in this new work on a very
different problem.

In August, 1966, I attended the International Congress of Mathematicians
held in Moscow, enabling me to meet the larger world of operator theorists
including many from the Eastern bloc. Having gained a broader view of the
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subject, I decided to try to bring many of the practitioners together, at least
the Western ones, in Ann Arbor, for the month of July, 1967. Bill visited for
the first week and we had the opportunity to share ideas and approaches,
not only to mathematics but to life in general. Most nights were spent at the
“Pretzel Bell,” drinking beer and listening to Dixieland jazz. The following
summer, Bill arrived in Berkeley, where I spent a month at the AMS Summer
Institute on Global Analysis. We continued our wide-ranging discussions,
often in Bill’s office in T5, a “temporary” building which housed part of the
department before Evans Hall was completed. Our children played together
during many of the days.

Over the next few years, Bill moved on and was now considering a “non
commutative” analogue of function algebras and obtained one of his iconic
results, the dilation or extension theorem and made clear the importance
of the notion of completely positive and contractive maps. After I moved
to Stony Brook in 1969, we got together on both coasts and at conferences
around the world including ones I recall in Dublin and Krakow. Many of my
visits to Berkeley coincided with singular events such as Peoples Park. Bill’s
beliefs and temperament resonated with that somewhat raucous period. In
1974 Bill published a paper in which he obtained another legacy result on
reflexivity of weakly closed non selfadjoint subalgebras. Through a series
of deep reductions based on machinery he constructed, he first extended
positive results of Heydar Radjavi and Peter Rosenthal. Moreover, he then
obtained a remarkable counterexample to the general question by reducing
the question to a spectral synthesis problem. The failure of the latter for the
two sphere in three space allowed him to show that weakly closed subalgebras
containing a MASA are not always reflexive. In the same year he published a
seminal paper on transformation groups returning to the theme of his thesis.
During this period he became one of the pillars of the functional analysis
group at Berkeley.

In the early seventies, I collaborated with Larry Brown and Peter Fill-
more to produce the body of results usually known as BDF theory. Classes
of operator algebra extensions were made into an abelian group which could
be calculated resulting in some, then rather surprising, results in operator
theory. I had many discussions with Bill in the middle seventies in which
he wrestled with these ideas trying to fit them into his context. No surprise
– he did! He saw the bigger picture relating the group structure to cer-
tain questions in operator algebras involving completely positive maps and
nuclearity.

In Spring, 1980, Bill and I, and several other operator theorists, were
invited to spend one to two months at the Mittag-Leffler Institute outside
Stockholm, to work through Per Enflo’s paper on a Banach space operator
without proper invariant subspaces. Although all of us spent some time on
that project, more time was devoted to developing ideas involving operator
algebras, related to index theory on my part and completely positive maps
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and C*-algebras for Bill. He also had the opportunity to explore the Swedish
branch of his family tree. Finally, I recall riding between the cars on a train
ride to a conference in Goteberg so Bill could enjoy perhaps his favorite vice.

The machinery connected with BDF theory Bill provided helped extend
the ideas and provide the extension framework for Guennadi Kasparov’s KK-
theory. Further, revolutionary development of these ideas by Alain Connes,
Kasparov and many others led to the Special Year at MSRI in Berkeley in
1984-85. By this point, Bill was well on his way to inviting an outstanding
group of young mathematicians into the field and his seminar was a must
for everyone interested in linear analysis, both as a speaker and an attendee.
Bill also participated in the social life surrounding the program at MSRI.
On one Friday evening, he offered to show a group of perhaps ten, “his San
Francisco.” After dinner and wondering through the North Beach area, we
ended up at Carol Doda’s club, where she invited Bill on stage to join her.
Bill didn’t disappoint.

Next Fall, back in Stony Brook, I got a call from Bill. He was in New
York and invited my wife, Bunny, and me to come into Manhattan to meet
Lee. On his return flight from Tokyo, following a visit to China, he had met
her. Although she was seated in first class while he was in “steerage,” he
had managed to talk with her and the two of them had been talking and
meeting since. Over the years my wife and I got together with Bill and Lee,
now his wife, many times in Berkeley and at conferences around the world.

In 1988, Bill and I jointly led an AMS Summer Institute in Operator
Algebras/Operator Theory. In part, we were making an effort to keep the
two communities from fracturing since each of us had a foot in each camp.
The program was held at the University of New Hampshire in July where
we assumed the weather would be welcoming. It was the hottest summer in
memory on the East Coast including Durham. With little air conditioning
and fans in short supply, it was a hot month. But the mathematics was “hot”
too and almost everyone involved in any aspect of the subjects, worldwide,
participated. For the final week of the workshop, both couples moved into
the air conditioned campus hotel.

Over the next decade or so, our research interests diverged, although we
often shared ideas and kept up with what the other was doing, usually in
Berkeley or at meetings. One I recall fondly is the NATO meeting in Istanbul
in June, 1991.

Perhaps the most singular event of those years was the loss of the hill-
side house of Bill and Lee in the Oakland Hills to a wildfire. Rather than
admit defeat, however, Bill and Lee plunged into the task of rebuilding and
refurnishing an even better house. The energy and enthusiasm one would
encounter upon one’s arrival in Berkeley during those years was nothing
short of amazing. Still the mathematics flowed since this was the period
in which Bill took up and transformed the endomorphism problem of Bob
Powers.
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With my move to College Station in February, 1996, and my new ad-
ministrative role at Texas A & M University, I saw less of Bill although
he did deliver a series of lectures at A & M during the early years of my
tenure as provost. I noted that he had gotten interested in an approach to
a topic which I had been exploring – Hilbert modules. As was usually the
case, Bill had his own ideas about the subject, had obtained some deep,
unexpected results, and had formulated some challenging questions. His ap-
proach was based, in part, on his earlier work on subalgebras of C*-algebras
and published the third paper in the series.

While attending a conference at Berkeley in February, 2003, honoring
Donald Sarason, Bill told me that he had come upon a problem he wanted
to discuss with me. During the rest of that year and at conferences that De-
cember in Bangalore and Chennai, we discussed his problem. He was trying
to get C*- or “quantum” models for projective varieties in Cn. He sought to
show that the closure of a homogeneous polynomial ideal in the symmetric
Fock space is essentially normal; that is, the cross-commutators of polyno-
mial multipliers and their adjoints are compact. (Actually he conjectured
that they are in the Schatten-von Neumann p-class for p greater than n.)
He was able to show that this was the case for homogeneous ideals gener-
ated by monomials but not in general. I became intrigued and was able to
extend his results modestly. Both Bill and I announced, at different times,
proofs of the conjecture which turned out to be incomplete. In talks, Bill
spoke of the “witch’s curse” on this problem and indeed at least one other
incorrect proof has been announced since then. The question is deep and
has attracted the attention of researchers around the world but the general
case remains open.

The last time I saw Bill was in August, 2008, at SUMIRFAS, a conference
held in College Station, where he talked on quantum entanglement. He had
realized that some of his earlier work on completely positive maps was closely
related to this phenomenon from physics, but he didn’t stop there. After
establishing this relationship, he went on to uncover surprising applications
of these ideas and raise questions about others.

As various emails and papers make clear, Bill was doing mathematics till
the end. He will be, and is, missed but his mathematical legacy is strong
and will live on.

Edward G. Effros3

The functional analysts at UCLA were devastated by the news that Bill
had passed away. He was one of the key figures in the development of
non-commutative functional analysis and its applications to a wide range
of mathematical disciplines. I will largely restrict my remarks to several of
Bill’s papers on linear spaces of operators.

3Edward G. Effros is professor of mathematics at UCLA. His email address is
ege@math.ucla.edu.
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Figure 4. Bill Arveson with Edward Effros (source: Lee Kaskutas).

One of Bill’s most influential discoveries was that one could develop a
theory of boundaries for the operator algebraic analogues of function alge-
bras [Arv69]. His key observation was that linear spaces of operators have a
hidden matricial structure that must be incorporated into the theory. This
rests upon the fact that a matrix of operators is again an operator, and
thus the matrices over an operator space is again an operator space. The
ordering and norms of such matrices is an essential part of the relevant struc-
ture, and must be acknowledged by the morphisms, i.e., by the completely
positive and completely bounded operators.

Although complete positivity had been investigated earlier by Sz. Nagy,
Stinespring, and Umegaki, Bill was the first to appreciate the power of these
notions. The crowning achievement of his early theory were analogues of the
Hahn-Banach theorem for completely bounded and for completely positive
mappings (put in its final form by Wittstock [Wit81]). He used this theory
to prove important results about matrix numerical ranges.

Soon the young operator/functional analysts jumped on the matrix or-
dered version of Bill’s theory (operator systems), and before very long, the
injective (or semidiscrete) von Neumann algebras were characterized as be-
ing the hyperfinite von Neumann algebras (work of Connes, Choi, Lance,
and myself). Of course, there were many other directions to be pursued,
and within a few years, the nuclear C*-algebras were determined (Choi and
myself, and some parallel work by Kirchberg), and lifting theorems were
proved (relevant to KK theory).

Owing to Ruan’s axiomatization of the operator spaces (the “quantized
Banach spaces” [Rua88]), the full significance of Bill’s approach to matrix
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norms is now also understood. This has enabled researchers to find non-
commutative analogues of many of the notions of Banach space theory (see
[ER00, Pis03]). Very recently, the matrix ordered operator systems have seen
an upswing of interest, due to the work of Vern Paulsen and his colleagues
[P+]. Yet another application of these ideas may be found in the abstract
characterization of the non-self adjoint unital operator algebras [BRS90].
This provides an elegant framework for Arveson’s original investigations.

Bill’s interests ranged over a wide range of subjects, and he influenced
several generations of mathematicians. A particularly intriguing example
of this work was his theory of continuous tensor products, which was also
pursued by Bob Powers, and then by Boris Tsirelson. What was truly
remarkable about Bill was that his productivity never declined throughout
his mathematical career. He was always ready to tackle a completely new
area. This is illustrated by some of his last papers, which are concerned
with quantum information theory.

Although I have never worked on non-commutative boundary theory, I
would be remiss if I did not recount one of Bill’s most spectacular recent
results. Nearly forty years before, he had posed the problem of determining
if operator systems have sufficiently many boundary representations. Im-
portant contributions had been made by a number of individuals, including
Dritchel and McCulloch, Muhly and Solel, as well as Ozawa. In [Arv08] he
finally succeeded in proving the result for separable operator systems, by
using delicate direct integral techniques. This is an “old-fashioned” technol-
ogy (dear to my “Mackey heritage”) that might not have been appreciated
by his younger colleagues.

Upon the appearance of that work, I couldn’t resist writing to him that he
“had shown all those young whippersnappers a thing or two”. He gleefully
replied that he shared that opinion, and then he characteristically sent me a
fascinating paper on operator systems on finite dimensional Hilbert spaces
[Arv10]. I am only just beginning to realize its importance.

Having summarized so much of Bill’s professional accomplishments, I
would like to add a final personal memory of how non-mathematicians
viewed Bill: I was with my family at Victoria Station in London, proba-
bly in the late 1980’s, awaiting the train to a math conference somewhere in
the UK, when we bumped into Lee and Bill, who were enroute to the same
meeting. We all spoke for a while, then moved on so that we could get a
bite to eat. Our teen-age daughter asked how we know those two people,
and I mentioned that Bill was a mathematician. Having met many of my
colleagues over the years, she looked totally shocked, and said “That guy
seems much too cool to be a mathematician!”.

Bill, you will be irreplaceable.
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Richard V. Kadison4

Bill and I met during his graduate student days at UCLA. He reminded
me of that, with a smile, on a few occasions, each time I said that we had met
during the so-called “Baton Rouge Conference” (at LSU in March of 1967).
After two or three corrections, much to Bill’s amusement each time, I finally
got that straight (I’m a slow learner – but I, then, retain it tenaciously). As
I was just noting, when I first met Bill, at that Baton Rouge conference, the
year was 1967, the same year in which Bill’s great paper in Amer. J. Math.
appeared. We’ll have more to say about that paper at a later point. It was
clear to me that Bill was a very smart young mathematician. What I hadn’t
known, until we had that time to talk to one another, was that Bill had a
personality that was very congenial to my own way of doing and thinking
about things. Bill was articulate and clear, with the kind of humor that I
enjoy. He had a candor, at least when talking with me, that I appreciated.
It wasn’t “kick-in-the-shins” candor, the kind that hurts people, without
much extra purpose. When I listen to some people, who pride themselves
on being “candid,” I feel that they are deriving at least as much pleasure
from being cruel as from being “forthright.” I never detected one scintilla of
cruelty in Bill’s interaction with people. What one could observe about Bill
was that he had an abundance of what the young people, these days, call
“cool.” At a conference in England (Durham, I think) that Bill, Ed Effros,
and I were attending, I talked to Rita Effros during a lunch break. She
reported that her son, then a youngster, had remarked to her, the preceding
evening, that “Bill Arveson was the coolest mathematician he had met.” At
the same moment in which she told me that, she realized that she might
have offended me by not saying that her young son thought that I was “cool”
as well. Now, Rita is as sweet and kind as they come, to which everyone
who knows her will attest. But level of “cool” is not one of the axes in my
personality description on which people are prepared to place a mark. Bill’s
“cool credentials” are, however, unassailable.

I dwell on our meeting, the “Baton Rouge conference,” and Bill’s paper
[Arv67], in which I browsed somewhat carefully, but not as carefully as I
should have, as later years were to reveal because that paper is the basis of a
tangled mathematical tale that occupies part of this vignette. At the same
time, it provides a glimpse of Bill and of the relationship Bill and I had. I’m
sorry that so much of my work and activities appears in this remembrance;
I don’t know of another way of describing the interaction between the two
of us.

Given our interests and general view of how mathematical development
should proceed, Bill and I were certain to become good friends and to meet
often at conferences. One such meeting took place at a conference at the

4Richard V. Kadison is Gustave C. Kuemmerle Professor of Mathematics at the Uni-
versity of Pennsylvania and a member of the U.S. National Academy of Sciences. His
email address is kadison@math.upenn.edu.
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University of Newcastle-on-Tyne in England near 2000. That conference, on
Banach Algebras, was in honor of Barry Johnson, an heroic figure in that
and allied subjects. There was a sadness about that meeting. Barry had
terminal cancer and was near the end of his life. We all knew of Barry’s
mathematical heroism. On this occasion, we had the unhappy opportunity
to note his physical courage as well. He attended a number of lectures,
clearly with effort and in some pain, yet attentive and interested. Both
he and Bill were at my lecture – paying close attention. I was speaking
about some work I was doing related to the Pythagorean theorem — what
is often referred to as the “converse” (if the numbers are right, there is a right
triangle with sides of those lengths) [Kad02a]. I refer to that converse as “the
Carpenter’s Theorem,” to distinguish it from the usual formula. (Carpenters
use that converse to check right-angled constructions, as I learned from my
wife’s youngest brother, a carpenter, via my son.) As one takes this (the
converse, that is) to higher dimensions, the problem becomes a fascinating
little matrix problem that looks very simple but is devilishly difficult. It
can be formulated in several different ways, but the most primitive and
innocent is the following. Given n non-negative real numbers for the diagonal
entries of an n× n matrix can the remaining (n(n− 1) off-diagonal) entries
be prescribed so that the resulting matrix is a projection (a self-adjoint
idempotent)? One realizes, quickly, that those prescribed real numbers must
sum to a positive integer, the rank of the projection. As strange as it
may sound, the affirmative answer to this little question is the converse to
Pythagoras. (See [Kad02a].) I struggled with this for longer than I am happy
to admit, approaching it as a “primitive” (fiddling with matrices and with
the geometric form of the problem – yes, there is one, and it is tantalizing),
until I had an important epiphany, to wit: being a Functional Analyst I
should act like one. Shortly after that, something I was doing reminded me
of a key lemma G. K. Pedersen and I produced in connection with some
convexity result we had proved in the early eighties [KP85]. After that,
the finite-dimensional results and some important segments of the infinite-
dimensional case fell to the technique associated with that convexity lemma.
There was a result “settling” the rest of the finite-dimensional case. The
only problem was that I had both a proof and a counter-example to that
result. I mentioned this during that Newcastle lecture in a joking way, “I
seem to have a proof that the Earth is flat – or any other assertion you care
to have proved.” If Barry Johnson had been healthy, this subject would look
different, now, I feel. Bill was (or seemed) well at that time, and the subject
is different as a result.

Bill and I met at the end of the following academic year, while I was
visiting Berkeley for a week or two. We were having lunch together at the
Berkeley faculty club (or whatever it is called these days). As we waited
for our sandwiches to be made, Bill mentioned my Newcastle lecture and a
feeling he had about some of the results I reported there. He had had, then,
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and still had, as we spoke, a vague feeling that some old work of a former
teacher of his, A. Horn, was related to what I was describing. Bill was, of
course, probing for a response of the form, “Oh, yes. That is so-and-so,
whereas, my work is · · · ,” and so forth. The other possibility was that I
hadn’t thought about it or any relation to my work, and perhaps didn’t
even know of Horn. As it happened, I had certainly not thought of Horn’s
work, but I had received a reprint [Hor54] when it first appeared (in 1954).
I glanced through it and determined that it was far from anything I was
doing at that time. Moreover, it seemed scrambled and unclear (although, I
was well aware that I was looking at it very superficially). I mentioned some
of this to Bill. He responded that he had liked his teacher and planned on
taking a closer look at this if I didn’t mind. Of course I didn’t mind. Bill
had my two PNAS reprints [Kad02a, Kad02b]; so, we left it at Bill’s getting
back to me when and if he found a connection.

A few days later, while I was still in the Berkeley area, I received a
phone call from Bill. He said that he had looked at Horn’s work again
and “built a small bridge” from something in that work to my result; but
he could not understand the argument in that work, even after thinking
seriously about it. At this point, I would like to include a copy of a few-
page report I wrote to Is Singer, in a letter dated November 2, 2006. Is was
acting as editor of an article, submitted to the Proceedings of the National
Academy of Sciences (USA), [Arv07] growing out of these discussions. I
was reviewing (“refereeing”) the article for Is. I hope that the readers will
find this “nugget of memorabilia” interesting and informative. It contains
sufficient description and mathematical background to allow me to begin
afterward with the closing vignette. I feel, too, that it offers a very good
picture of Bill’s style and his strength as a mathematician. It also gives
a further view of that “contradiction” with which I struggled and how it
resolved itself.

“Dear Is,
Here is the longer letter on the Arveson paper “Diago-

nals of Normal Operators With Finite Spectrum,” which I
promised you in my e-mail report. Bill’s work grew out of
my Pythagoras work. It was joint work with me. At the
point where I felt that the extent to which I was delaying
Bill was unconscionable, I cut myself adrift and told him to
publish this part as his own. (There were, already a few
joint items.) Bill had done so much and waited so long and
patiently for me to add the things I might be able to do
and wanted to think about that I felt he must be allowed
to proceed without me dragging and bumping along behind
him. It has also been a relief for me to shed the mountain
of guilt that accompanied my interminable delays. Well, Bill
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has come to a watershed, it’s far from the end of the jour-
ney, but it’s an interesting and important advance along that
road. It certainly deserves to be published in PNAS.

Let me say some more about the work (Bill’s and mine).
It is deeply and inextricably related to things you probably
know well. I’m referring to the Atiyah and the Guillemin-
Sternberg results on convexity, moment map, and Hamil-
tonian dynamical systems. It’s also related to the combi-
natorist’s work on Schur bases and MacDonald polynomials
(though less closely). So our project has plenty of mathemat-
ical “scope.” All this stems from a (gorgeous!) 1923 paper
by I. Schur [see [Sch23] –Ed.] and a later paper (1954) by
Al Horn [see [Hor54] –Ed.], a (then) young Assistant Pro-
fessor at UCLA (maybe a contemporary of yours?) and a
teacher of Bill’s. Schur undertakes to extend some 1893 re-
sults of Hadamard, a determinant inequality (for a positive
hermitian matrix: the product of the eigenvalues does not
exceed the product of the diagonal values). Schur’s paper
is deep and rich. He develops a string of inequalities going
from the Hadamard determinant inequality to “trace” in-
equalities. These trace inequalities are what Bill and I have
been calling the “Schur inequalities.” Along the way, Schur
studies functions that preserve operator ordering introducing
his uniformly, multivariable convex functions, developing his
Schur bases for symmetric functions, inventing doubly sto-
chastic matrices. The “other end” of the line from the deter-
minant inequalities, the Schur inequalities, states that if A is
a self-adjoint matrix with eigenvalues λ1, . . . , λn listed in de-
creasing order and a1, . . . , an are the diagonal entries of the
matrix, then a1+· · ·+ak ≤ λ1+· · ·+λk for k in {1, . . . , n−1}.
Of course, a1+· · ·+an = traceA = λ1+· · ·+λn. If we exam-
ine the case where the spectrum of A consists of 0 and 1, that
is, where A is a projection E, and make the (almost “auto-
matic”) assumptions that λ1+· · ·+λn = a1+· · ·+an = tr(E)
and aj (= 〈Eej , ej〉, where {e1, . . . , en} is the orthonormal
basis relative to which A has the given matrix) lies in [0, 1],
then the Schur inequalities are also automatic. So, Schur
gives us necessary conditions on the diagonal for the general
hermitian matrix which are not restrictive beyond the obvi-
ous when the hermitian is an orthogonal projection. That’s
the door thru which I entered all this: trying to find what
the diagonal of a projection could be. (Don’t ask why I was
interested; I could explain, but it’s too long.) When I began,
I knew nothing of Schur or Atiyah and Guillemin-Sternberg
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and “convexity theory” in symplectic geometry (my knowl-
edge of this latter is still superficial.) I didn’t even remember
Horn’s 1954 paper (he sent me a copy, but it looked like a
mess). In effect, Horn sets out to find what the diagonal
of an orthogonal transformation can be (relative to various
orthonormal bases). Along the way, he is looking at the con-
verse to Schur’s result (in the form of proving that Schur’s
conditions are sufficient as well as necessary). I can’t say
that he has proved it; he has a lot of “airy” allusions to the
right sorts of things, but I don’t find it a proof. Bill couldn’t
understand it at all. As I said, Bill became interested in this
when he heard one of my “Pythagoras” lectures. He remem-
bered one of his teachers at UCLA, Horn, and something
Horn showed his class. Bill was able to build a small bridge
from Horn’s proof; so he didn’t really have a proof of the
finite-dimensional case. He felt really badly about that be-
cause he wanted to push on to the infinite-dimensional case.
When I looked at what Horn wanted to do (remember, I
hadn’t known of Schur and paid no attention to Horn’s pa-
per when I got it – and had even forgotten it), I saw that
what I had done in the projection ({0, 1} spectrum) case
applied almost without change to prove the Schur converse.
Bill was so pleased to finally see a proof of the Schur converse
in the finite-dimensional case (and one that was absolutely
clear, correct, and complete, though not so easy) that he
suggested we throw in together on the infinite-dimensional
Schur-Horn. We did the Schur inequalities two ways in that
case. One way was primarily mine, doing all sorts of delicate
boundary cases by fancy conditional-expectation techniques
in both the discrete and II1 cases (it was complicated – nec-
essarily, for accuracy – and heavy as a Russian tragedy),
and the other way, primarily Bill’s, nice, lighter, without the
boundary cases, easier reading but making use of other work
(Weyl inequalities and such). I could see that Bill wasn’t too
happy to meld my version into what we were writing; so I
suggested publishing it (as part of joint work) as a section in
my article on non-commutative conditional expectations in
the Baltimore, von Neumann-Stone conference Proceedings
Bob Doran and I were editing. It was clear that Bill was
relieved and happy about that. At one point, Bill mentioned
what we were doing to some young guys and the word got
around. Soon, a number of people were clamoring to see
what we had. Bill apologized to me for letting it slip out
without asking me – of course, he didn’t have to apologize.
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He suggested posting it on the internet as work in progress
and I agreed. It generated quite a bit of interest. In partic-
ular, Palle Jorgensen, Dave Larson, and some others wanted
it very badly (as is) for a “fancy” GPOTS volume they were
getting together (just appeared – Cont. Math. 414). They’re
good friends and we had attended that GPOTS meeting, so
we agreed. Our article also contained Horn (the Schur con-
verse) for trace class operators. That’s not just a limiting
extension of the finite case. The technique I had found for
filling out a projection matrix given a diagonal didn’t con-
verge as you went infinite-dimensional. In addition the Schur
inequalities kick in, in the general case, and have to be dealt
with for the converse in this general L1 case. I had done this
in the projection case, which means finite-rank projection,
but an infinite diagonal. As I noted, I didn’t really have the
Schur inequalities to fight with (just had to make sure that
what is on the infinite diagonal lies in [0, 1] and that its sum
is the rank of the projection).

Figure 5. Visible faces of Bill Arveson and Henry Dye in
profile, at a conference at the University of Iowa in 1985 (see
[JM87]) (source: Palle Jorgensen)

At that point, I went to infinite-rank projections; I was on
a roll. It was “clear” that you could put anything in [0, 1]
on the diagonal that summed to infinity and my algorithm,
slightly extended, would prove it. I was about to dust off
my hands, wrap it up, publish it and walk away from the
whole project. Fortunately, I realized that something was
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wrong (after a week or so). If E is a projection, so is I −E.
If a1, a2, . . . is the diagonal for the matrix of E, then 1 −
a1, 1 − a2, . . . is the diagonal for I − E. Suppose I − E is
finite rank. Then 1 − a1, 1 − a2, . . . must sum to that rank.
Of course, there is a sequence a1, a2, . . . in [0, 1] that sums to
infinity, while 1 − a1, 1 − a2, . . . sums to a real number that
isn’t an integer (e.g. aj = 1 − j−2). But I had proved that
there was a projection without that integrality obstruction
included; I couldn’t find the mistake in the proof! For a
month or more, I was walking around responding to people
who asked me what I was doing, that I was trying to find
out why the world isn’t flat! (I may even have said that to
you at some point during a phone conversation.) Finally, I
realized that my algorithm didn’t yield a convergent process
at each matrix entry. I had been doing a “small” matrix
computation mentally (dangerous!) and making the same
mistake (neglecting a term) several times.

With integrality as an added condition, that infinite case
with finite rank complement is a trivial consequence of the
finite-rank result (on infinite-dimensional space – that is,
with infinite diagonal) that I’d proved – but I’d made the
same mistake in proving that. Back to the drawing board
to repair that (not too easy). What about the case of an
infinite-rank projection with infinite-rank complement (so,
a1 +a2 + · · · =∞ = 1−a1 +1−a2 + · · · ). Now, surely, there
was no integrality obstruction. Wrong! The final result is
the following:

Let a1, a2, . . . be a sequence of numbers in [0, 1] such that
{aj} and {1 − aj} sum to ∞. Let {a′j} be the set of those

aj that exceed 1
2 and {a′′j } be the set of those aj that do not

exceed 1
2 . Let a be the sum of the a′′j and b be the sum of the

a′j . If either a or b is ∞, then a1, a2, . . . is the diagonal of a
projection of infinite rank with complement of infinite rank.
If both a and b are finite, then a1, a2, . . . is the diagonal of
such a projection if and only if a− b is an integer.

What does 1
2 have to do with anything? Nothing! If a and

b are finite and we use 1
3 instead of 1

2 , then an aj between 1
3

and 1
2 enters the difference a− b with the prime and double

prime interchanged and either acquires or drops a 1. In any
event, the change in a− b is the number of 1s involved. So,
while a − b changes value, it stays integral or non-integral,
as the case may be. I worked long and hard to prove this,
partly because I didn’t realize the integrality condition until
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the very end. That is Theorem 15 in my Pythagoras II paper
[see [Kad02b] –Ed.].

Bill was very impressed by that result. It was the one
thing I had done that was way out of the range of any of
the earlier work (Horn, our own trace-class stuff, Kostant,
etc.). So, we wanted to push on to the general spectrum
case without the summability restriction (as in the case of
my infinite-rank projection with infinite-rank complement).
We met out in Berkeley at one point and spent a working
day together. I suggested something to Bill that I had been
thinking about, but hadn’t had a chance to work on (all the
chores and distractions!), shortly after Bill drew my attention
to Horn’s work. I had begun to suspect that the difference
of the spectral values generate a subgroup of the (additive)
group of reals that must play the role of the subgroup of
integers in my projection case, and that the sequences that
might be diagonals had to “cluster” around the points of
the spectrum. The invariant would play a role when their
differences from those spectral points could be summed to
a finite number (as with my a and b). I hadn’t given it
real thought and certainly wasn’t thinking of expanding the
study to complex spectrum (normal operators). So, it was all
quite loose, vague, and muddled in my mind. Nevertheless,
I decided to tell it to Bill and did so over lunch. Bill clearly
caught on and began to think about it seriously and to get
somewhere (in contrast to me). Meanwhile, I continued in
my mental, dream world, not responding, for long periods,
to Bill’s occasional “position” papers on the topic after I
received them and, then, only after a few minutes thought.
Bill had formulated the normal case precisely, cleaning up my
wild, disorganized suggestions and producing a piece of gen-
uine mathematics. He decided that the case where the finite
complex spectrum X forms the vertices of a convex polygon
in R2 was the right case to tackle first. Each point in X has
infinite multiplicity (corresponding to the 0 and 1 in the cru-
cial case of my projections). Each point on the diagonal has
to lie in the convex polygon (corresponding to my [0, 1] in
the projection case, but as in this case, that’s not sufficient).
If a1, a2, . . . is the proposed diagonal for some operator with
spectrum X (each point having infinite multiplicity), then he
sets up the clustering around the points of X and restricts
to the case of the distances from the points summing (which
is the tough case of a and b finite). He forms the “obstruc-
tion” quotient space and shows that the obstruction must
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be 0 for the diagonals of normal operators with spectrum
X, and diagonal clustering around points of X with the dif-
ferences summing. He has an example to show that those
conditions don’t guarantee being a diagonal (in this infinite
case) even when X consists of just three points. To do the
job in the two-point case, Bill uses a simple transformation
to take the two points to 0 and 1, respectively, and then cites
my “Pythagoras” result.

As I said in my e-mail review, it looks like a very nice
article to me.”

At this point, we’ve come full circle; we are back to Bill’s 1967 Acta paper
[Arv67]. In Section 4.3 of that paper, Bill speaks of “determinants” in a von
Neumann algebra setting. He cites the “determinant” that Bent Fuglede
and I introduced [FK51, FK52] and used to answer a question we had asked
ourselves: Must a generalized nilpotent operator in a II1 factor have trace 0?
We proved, using that determinant that the trace of each operator lies in the
closed convex hull of the spectrum of the operator, which, of course, provides
a positive answer to the question about generalized nilpotents. Bill notes
that our determinant applies to more general circumstances than the II1
factor case without the least difficulty; statements, definitions, and proofs,
remain virtually unchanged. One has, for example, the extension to gen-
eral, finite von Neumann algebras, where a fixed tracial state is used in
place of the trace itself in the factor. Using this determinant, Bill states and
proves a generalization of the Hadamard determinant inequalities [Had93],
mentioned in the report to Is Singer. It involves the tracial state and a con-
ditional expectation that “lifts” it. This occurs in Section 4.3. In Section
4.4, the final section of Chapter 4, Bill formulates an extension of Jensen’s
inequality in terms of Bill’s “subdiagonal algebras,” the determinant, a con-
ditional expectation onto the “diagonal” of the subdiagonal algebra, and a
tracial state that lifts it. In some inexplicable way, my browsing in Bill’s
paper, back near the time it first appeared, had been, at most, superficial.
Any memory of those later sections with our determinant had completely
disappeared by the time Bill and I were thinking about the extension of the
Carpenter’s theorem. On the other hand, I had re-examined Schur’s paper,
which Schur had dedicated, with the greatest (and certainly, all due) respect
to Hadamard and the Hadamard inequality. It seemed worthwhile to get
hold of Hadamard’s paper and examine it. I did so; it was interesting — just
a few pages long — but, as nothing compared to Schur’s paper in richness of
results, depth, and scope. I had just seen how to use conditional expectation
techniques to extend and prove the Schur inequalities for finite matrices to
certain infinite-dimensional situations (viz. trace-class operators on Hilbert
space and self-adjoint operators in factors of type II1) . (See [AK06] and
[Kad04, Section 5]). Bill and I had spoken about this and his version of
the same, as described earlier. At the same time, I had just been learning
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about the Hadamard determinant inequality — either totally oblivious to
all the fine work Bill had done with this inequality in his Acta article, or
having completely forgotten glancing at it as I browsed in that article many
years earlier. So, I began to think about proving an infinite-dimensional,
Hadamard, determinant inequality in a factor of type II1, in terms of our
determinant in a II1 factor introduced some fifty years earlier, with my con-
ditional expectation techniques. I stopped almost at once, after getting a
rough, unwritten idea of how I might proceed, when the thought occurred
to me that it would be great fun to do this with Bent. And how apt that
would be; two young fellows, twenty-five years old, start this line of work
and return to it, as old men, close to eighty, to prove another inequality
with these tools. I phoned Bent shortly after that thought. I recall his re-
sponse, when we had straightened out what the Hadamard result said. He
conjectured that since I was proposing that we work on this, I may have
a proof in mind. I answered that I had a rough idea along certain lines,
but I hadn’t tried to “push it through.” We agreed to think about it and
get back in touch. Two weeks later, I received a handwritten letter from
Bent with a lovely, “primitive” proof of the inequality we wanted in a finite
factor. (It may seem a little curious to conjoin ‘lovely’ and ‘primitive’ in a
description of a proof, but that feels accurate to me.) I had begun to add
my own ideas to what Bent had done, after a pause to complete some other
work, when Bill and I contacted one another, by phone, to talk about our
joint project. I mentioned what Bent and I were doing with the Hadamard
inequality to Bill. He must have been shocked that I was totally unaware
of the fact that this inequality was a key element in his Acta paper, but
there was no “explosion” (of rage, disbelief, or anything). What I heard
was, rather, a soft response, almost whispered, suggesting that I might want
to take a look at Chapter 4 in his Acta paper. I did that and generated my
own stunned disbelief at what my much-admired, younger friend had done
with things “close to my heart” — and making crucial use of my work with
Bent Fuglede, and my work with Is Singer [KS59, KS60], at that! What a
good sport Bill was. That incident prompted my earlier remark, “I browsed
somewhat carefully but not as carefully as I should have.”

I phoned Bent shortly after that “illuminating” conversation with Bill,
and told him of Bill’s work with “our” question. Bent and I agreed not to
try to analyze the connection of Bill’s work to ours until we were together
again. That meeting occurred not much later in Copenhagen in Bent’s office.
We had examined Section 4.3 of Bill’s Acta paper but could not clarify the
connection between what Bill had done and what we had done. Bill’s article
is not something that permits complete comprehension when it is entered
randomly. It’s an “organic whole” and requires being studied as such. In
writing this “remembrance,” I have taken the time to have that closer look
at the last sections of Bill’s Acta paper (the look I should have had forty-five
years earlier). I now understand the connection between Bill’s extension of
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our determinant in a II1 factor and what Bent and I did in that regard.
Bill’s point is to extend that determinant, with no essential changes, to a
form in which he can use it for important purposes. Bill certainly does
not “fuss” about that extension (and would have been embarrassed, not
“gratified,” by anyone who did so on on his behalf). He uses that theory
with his extension to formulate the generalized Hadamard inequality, which
he proves with roughly the same conditional-expectation techniques I had
in mind (forty years later!). Very likely, Bent and I will make our thoughts
on the Hadamard result and some extensions available in published form at
some not too distant future date. Bill will be very much in our thoughts at
that time. It’s not too daring to predict that he will be in the thoughts of
many mathematicians for many years to come.

Figure 6. Bill Arveson and some of his students at COSy
2006. From the left: Marcelo Laca, Ilan Hirshberg, Michael
Lamoureux, Kenneth R. Davidson and Donal P. O’Donovan
(source: Marcelo Laca and Juliana Erlijman)
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Marcelo Laca5

It is difficult for me to imagine the world without Bill Arveson, math-
ematician, mentor and friend. The recognition that he left behind an ex-
tremely rich mathematical legacy, both in print and in the minds of those
he inspired, is only a partial consolation. He also left behind a wonderful
network of friends and colleagues who will remember him fondly and miss
him sorely. I had the privilege of doing my PhD with him, in a period that
shaped the rest of my life, and I would like to take this opportunity to rem-
inisce and give a glimpse of what it was like to have Bill as an advisor, and
also to share some of his advice. Other aspects of Bill’s professional life and
his many contributions to mathematics are described elsewhere by others.

The 1980’s were excellent years for functional analysis and operator al-
gebras at Berkeley, and it was in the spring of 1984 that I first met Bill.
At the time I was a graduate student in statistics, but old habits die hard
and I had decided to take a course in operator algebras. The very first day
Bill outlined the course for us, it was going to be an introduction to C*-
algebras and their K-theory. He then mentioned in passing that we could
settle on A’s for everyone who was still there at the end of the semester,
unless we preferred actual grades, which might include some A+’s, or worse.
Somewhat incredulously, we took him up on the safe bet by overwhelming
(but not unanimous) vote. The irreverent way of settling that detail and
the direct dive into the matter of the course that followed left a lasting im-
pression on me. Later I was to find out that ‘being there at the end’ would
not be as easy as it sounded, and that Bill’s real assessment of performance
and potential would be distilled in a few crucial words to be appended to
student’s files.

After taking a couple of his courses and hearing him speak on his research
at seminars, I made up my mind that I wanted to work with him. His
mathematics, his style and his personality were so compelling that it was
an unavoidable choice. Never mind it was a long shot. At the time Bill had
a large number of graduate students and rumour had it that he was not
taking any more. But some of them graduated just in time and I got lucky.
I instantly felt I was part of a society, or rather, of a family. In the mid
eighties the family included Belisario Ventura, David Pitts, Jack Spielberg,
Jack Shaio, Richard Baker, Michael Lamoureux, Chikaung Pai, Hung Dinh
and myself. It was a great privilege to work with Bill, and, even better, it
was fun, great fun. Among several of us, he had the status of rock star or
movie star, somewhere between a shining Elvis Presley and a tough John
Wayne. The simple fact was that Bill was amazing, as a mathematician and
as a person. And he was cool too. He even wore a black leather jacket,
which prompted several of us to follow suit. The rumours about his past

5Marcelo Laca is professor of mathematics at the University of Victoria, Canada. His
email address is laca@uvic.ca.
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were plenty and colourful: racing dragsters down the streets of LA, chased
by police, or being thrown out of Las Vegas casinos for a little too much
success at blackjack. And the list went on. More revealing stories kept
surfacing as time went by (many told by Bill himself -he was definitely not
one to take himself pompously), adding to the legend.

Fun as it was, studying with Bill was serious business. With the benefit
of experience I understand even less now than then how Bill managed to
keep us all moving along our separate tracks, yet close enough to be highly
interactive with each other. With up to six students at a time, this was
no small feat. We all met and gave talks at Bill’s weekly seminar, usually
following one or two major topics in a semester. Bill would meet with
each of us separately for an hour or more every two weeks, to talk about
our respective projects. At the beginning I often had nothing, not even
questions, so Bill would try to get me going again, or he would simply
launch into a fascinating impromptu lecture on whatever was in his mind at
the time. It could be a dilation principle viewed across different categories,
the principles of nonlinear filtering, ideas on noncommutative scattering,
the construction of E0-semigroups or a number of other topics. The range
was astonishing. Invariably, I came out of our meetings upbeat, feeling
privileged for the window to Bill’s deep insight on a wealth of ideas and
also for his unbounded enthusiasm and encouragement. Initially, because of
my background, I chose to work on Osterwalder-Schrader positivity, and its
relation to Markov processes. After some time and effort I came up with
a disappointing answer to the key question. Bill showed some interest in
the example that trivialized the question, but acknowledged that it had not
been such a great problem after all. I know now that many advisors would
show more than a bit of concern seeing a PhD problem come to such a dead
end. Not Bill. True to his trademark, not only did he not have any regrets,
he was not even taken aback. I got the idea that things like that sometimes
happened and moved along.

At the time Bill was deeply into his effort to sort out the index theory for
E0-semigroups via product systems, and in the weekly seminar several of
us had been going through Bob Powers’ seminal papers on E0-semigroups.
After a while I felt I had a shot at something related to semigroups of en-
domorphisms for my thesis so I inquired about changing topics. Bill agreed,
but said to get some results first and only then announce the change. Once
I asked what to read for background; his answer was a dry “We’ll worry
about that if you start spinning your wheels. If you read too much you’ll
never write anything.” He obviously knew the kind of background I would
need, and pointed me in the direction of the Powers-Størmer inequality.
But even then, he did it by asking me to present some of their results in the
seminar, in relation to something else, or at least so I thought. Later I was
to prove a modified inequality that was quite useful in classifying certain
endomorphisms of B(H) up to conjugacy.
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The semester I was supposed to graduate Bill was planning to be on leave
at the Mittag-Leffler Institute, so he said to give him my manuscript before
he left. I took this literally so the day before he left I gave him my neatly
handwritten notes, together with the typeset title page. I remember him
looking at the notes, then at me, then the title page, then the notes again.
A few weeks later I got the notes carefully annotated in red and the signed
title page. He did eventually comment that I should not always take words
so literally.

Bill had a gift for being genuinely friendly and personable while keeping
his distance in a smooth but firm way. Initially I did not quite know what
to make of this, but then I appreciated it and often wished I had more of
that capacity myself. After the seminar we all used to go out for pizza and
beer, usually to La Val’s where he would insist on buying the first couple
of pitchers. Bill had many foreign students over the years, and he and Lee
were honour guests at our ‘international’ potluck dinners. He was gregarious
and easygoing, and was always keen to learn more about people, customs,
food and other things foreign. But his larger-than-life mathematical persona
still loomed over me, ominously, even many years after graduation, and I
suppose I am not alone at that. He knew this, of course, and sometimes got
a kick out of playing the role. I will never forget a rather jolting email I got
from Bill a few years after I left Berkeley. It came out of the blue but was
so much in time and to the point that I got the impression he was actually
watching me. The message said that it was time to stop the fooling around
and to get back to work proving theorems. What really got me was the
signature: “Bill (the voice of your conscience) Arveson”. Needless to say,
his “voice of my conscience” still resounds in my ears.

I remember asking once about administrative duties. He pointed at a pile
of papers close to the edge of his desk: “Look at that pile. It keeps growing,
but at some point it will go over the edge and into the basket. Less than
5% of it is important. It will come back.” As editor, he declined to take a
paper of mine, adding with a grin “it would look like greasing the skids for
my former student, and we wouldn’t want that”.

I am convinced that when Bill did mathematics, he just thought differ-
ently from everyone else I know; his was a very intimate thought process
that was not complete and could not be shared until he had the perfect
way of presenting the big picture, frame and all. Many of his papers be-
came hugely influential in the field, and for all I know, many others are just
awaiting re-discovery to achieve similar fate, for Bill’s ideas are deep and
timeless. His work is all the more impressive considering that he worked
almost exclusively by himself, and that he only published what met his high
standard. His research touched upon many areas. One common thread was
that he preferred to deal with challenging problems, another was the prin-
ciple that to be properly understood, problems should be put in operator
algebraic terms. Only once or twice I got the feeling that something I was
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saying was news to him but, in any case, the interval between “that cannot
be true” and “I see” was never long enough to enjoy. He was very generous
with credit and with his ideas. Embedded in his explanations there were
often priceless jewels of his original insight, which he simply gave away as
part of his approach to the subject. These keep cropping up once and again
in my mathematical life, evoking no small amount of admiration, gratitude,
and nostalgia.

Figure 7. From the left: Daniel Kastler, Marcelo Laca, Paul
Muhly, Hans Borchers and Bill Arveson at a conference at the
University of Iowa in 1985. (Source: Palle Jorgensen)

Paul S. Muhly6

I had the wonderful good fortune to spend the 1977-78 academic year on
sabbatical at the University of California at Berkeley. It was an extraor-
dinarily stimulating experience, but my most vivid memories are from the
times I spent talking with Bill Arveson. Among the many things we dis-
cussed were his papers, Subalgebras of C∗-algebras I & II [Arv69, Arv72].
I was already very familiar with them. Indeed, I had spent a lot of time
studying them. I found them full of inspiration and, after more than 40
years, I still do.

So I was taken aback, early in our discussions, when Bill expressed dis-
appointment that Subalgebras I had not received more recognition. It was
Bill’s most heavily cited paper and it continues to be number 1, with almost

6Paul S. Muhly is professor of mathematics and statistics at the University of Iowa.
His email address is paul-muhly@uiowa.edu.
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100 more citations on MathSciNet than the runner up. One might think,
therefore, that Bill was being greedy. He was not, and I would like to take
this opportunity to explain why.

Bill wrote [Arv69, Arv72] in order to set the stage for studying general,
not-necessarily-self-adjoint operator algebras. He drew inspiration from sev-
eral sources. First there was the seminal work of Kadison and Singer [KS59].
This was the first paper dedicated to studying non-self-adjoint operator al-
gebras. Their objective had been to classify algebras of operators which are
infinite dimensional analogues of the algebra of upper triangular n× n ma-
trices. Bill also gained inspiration from the dilation theory that was due in
large part to Sz.-Nagy [SN53]. Owing to the contributions of many function
theoretically oriented functional analysts, dilation theory had grown into a
model theory for arbitrary operators on Hilbert space. And he was inspired
by developments in the theory of function algebras. This theory had arisen,
in large part, to provide a functional analytic treatment of spaces of ana-
lytic functions that arise in harmonic analysis and in approximation theory.
There were already very close ties between the theory of function algebras
and the model theory stemming from the dilation theory of Sz.-Nagy.

For Bill, an operator algebra was simply a norm-closed subalgebra of the
algebra of operators on Hilbert space. His Hilbert spaces were always com-
plex and almost always separable. He also assumed his algebras contained
the identity operator. Thus he was set up to study a category whose ob-
jects are general norm-closed unital operator algebras. But what are the
morphisms in this category? The answer is not so clear. At least it wasn’t
at the time Bill started his study. What Bill settled upon was the no-
tion of a completely bounded algebra homomorphism. The point is that if
A is a subalgebra of B(H), the algebra of bounded linear operators on a
Hilbert space H, then not only does A have a norm structure, but for each
n, the n × n matrices over A, Mn(A), carries an intimately related norm
structure arising from the natural ∗-isomorphism between Mn(B(H)) and
B(H⊕H⊕· · ·⊕H). If ϕ : A→ B is a homomorphism between two operator
algebras, then one may promote ϕ in the obvious way to a homomorphism
ϕn : Mn(A)→Mn(B): ϕn((aij)) := (ϕ(aij)). One says that ϕ is completely
bounded in case each ϕn is bounded and supn ‖ϕn‖ < ∞. This supremum
is called the cb-norm of ϕ, ‖ϕ‖cb. There are, of course, variations on this
notion. Thus, for example, ϕ is called completely contractive if ‖ϕ‖cb ≤ 1
and ϕ is called completely isometric if each ϕn is isometric.

Bill was led to the notion of a completely bounded homomorphism by
the little note of Stinespring [Sti55]. Stinespring, in turn, was inspired
by Naimark’s theorem about dilating positive operator-valued measures to
spectral measures. Stinespring’s theorem asserts that if B is a unital C∗- al-
gebra and if ϕ : B → B(H) is a linear map, then there is a C∗-representation
π : B → B(K), for some, possibly different, Hilbert space K and a bounded
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linear map V from K to H such that

ϕ(b) = V ∗π(b)V

for all b ∈ B if and only if ϕ is completely positive in the sense that each
ϕn : Mn(B)→Mn(B(H)) is is positive for every n. Although this theorem
received some notice in the literature between 1955, when it appeared, and
the appearance of [Arv69], the literature about completely positive maps,
and their relatives defined by Bill, exploded afterwards and grew, ultimately,
into the subject now known as the theory of operator spaces.

Bill modestly asserts at the outset of [Arv69]: “In a broad sense, the
objective of this paper is to call attention to certain relations that exist
between non self-adjoint operator algebras on Hilbert space and the C∗-
algebras they generate.” His goal was to show that each operator algebra
A has a naturally associated C∗-algebra, C∗(A), that contains it and is
invariant under complete isometric isomorphisms in a very strong sense.
Further, he wanted to show that the completely contractive representations
of A can be expressed in terms of C∗-representations of C∗(A). One’s first
reaction to these assertions might be to ask: What’s wrong with simply
taking the C∗-subalgebra of B(H) generated by A, where H is the Hilbert
space on which A lives? One answer is that A can be represented in a
completely isometric fashion on Hilbert space in lots of different ways and it
is not at all clear how the different representations affect the theory. To put
the same thing somewhat more emphatically: When one defines an operator
algebra as a subalgebra of B(H), one gets more than an operator algebra,
one has an operator algebra plus a preferred module. The problem is to
separate the intrinsic properties of the algebra from those that are artifacts
of the way in which it acts on the Hilbert space.

Bill’s solution to this problem involved the notion of a boundary repre-
sentation. Suppose B is a C∗-algebra and suppose B is generated by a copy
of the operator algebra A. A bit more formally and completely, suppose
ϕ : A → B is a unital, completely isometric homomorphism from A into
B whose image generates B. An irreducible representation π of B on the
Hilbert space Hπ is called a boundary representation of B for ϕ(A) in case
the only completely positive map from B to B(Hπ) that agrees with π on
ϕ(A) is π.

As an illustrative example, let D denote the open unit disc in the complex
plane and let A(D) denote the disc algebra, i.e., A(D) is the space of all con-
tinuous functions on D that are analytic on D. Then A(D) is a subalgebra
of the C∗-algebra C(D). The irreducible representations of C(D) are given
by all the evaluations at the points of D. The ones that are boundary repre-
sentations for A(D) are the ones coming from the points on the topological
boundary of D, namely the unit circle.

Bill called ϕ(A) an admissible subalgebra of the C∗-algebra B in case the
intersection of the kernels of the boundary representations of B for ϕ(A)
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is a boundary ideal in B in the following sense: A two sided ideal J of
B is a boundary ideal for ϕ(A) in case the restriction of the quotient map
q : B → B/J to ϕ(A) maps ϕ(A) completely isometrically into B/J . In the
example of the disc algebra, every open subset U of D determines an ideal
in C(D), namely the space of all functions that vanish on the complement of
U , C0(U). By the maximum modulus theorem, C0(U) is a boundary ideal
for A(D) if and only if U contains no points of the unit circle. Bill proved
that when ϕ(A) is admissible, then the intersection of the kernels of the
boundary representations of B for ϕ(A) is the largest boundary ideal in B
for ϕ(A). He called this ideal the Shilov boundary ideal for ϕ(A).

Bill proved that the quotient of B by the Shilov boundary ideal for ϕ(A)
is unique in this sense: Suppose that for i = 1, 2 ϕi : A→ Bi is a completely
isometric homomorphic embedding of A into a C∗-algebra Bi in such a way
that Bi is generated as a C∗-algebra by ϕi(A) and suppose that the Shilov
boundary ideal of Bi for ϕi(A) vanishes. Then there is a C∗-isomorphism
π : B1 → B2 with the property that ϕ2 = π ◦ ϕ1. Thus, there is an essen-
tially unique C∗-algebra containing a completely isometric copy of A such
that the Shilov boundary ideal vanishes. This is the C∗-algebra Bill wanted
to associate to A and he called it the C∗-envelope of A, denoting it C∗(A).
C∗(A) codifies the operator algebra structure of A, i.e., its complete isomet-
ric isomorphism class, and it does so without reference to any Hilbert space
on which A might act. Further, Bill showed how the completely contractive
representations of A could be studied in terms of the C∗-representations of
C∗(A) in a fashion that naturally generalizes Sz.-Nagy’s dilation theorem.

There was a problem, however. It was the source of Bill’s disappointment.
He really had no way to decide when ϕ(A) is an admissible subalgebra of
B. More accurately, he had no universal way to ensure that there were
any boundary representations at all! Some might argue that in a sense, his
theory was stillborn. To be sure, Subalgebras of C∗-algebras I & II attracted
a lot of attention, but not really for the reasons he had hoped. Bill told me
that he had put the subject matter of those papers aside and gone on to
other things.

That was in 1977. Then, in 1979, Masamichi Hamana made an important
discovery: He showed that the C∗-envelope of an operator algebra always
exists [Ham79]. He did so, however, without showing that any boundary
representations exist. Rather, he showed that there always is a maximal
boundary ideal. As Bill had shown, when the maximal boundary ideal is
zero, the C∗-algebra has the uniqueness property described above. How-
ever, without the boundary representations one is missing a lot of the fine
structure of C∗(A) that Bill had anticipated. I asked Bill for his reaction to
Hamana’s paper. He was very gracious and complimentary, but he felt nev-
ertheless, that Hamana’s was the “wrong” solution to existence of C∗(A):
The existence of boundary representations remained a big problem. Bill
was well into other things at that point, and one might believe that he had
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given up entirely on this existence problem. So it seemed – at least for
another 28 years or so. In February of 2007, however, he posted [Arv08]
on the arXiv. It was written in Bill’s characteristic, low-key, matter-of-fact
style. Nevertheless, as I read it and reflected back on our conversations in
Berkeley, his exultation was palpable. He had settled the existence prob-
lem. Indeed, he showed that every norm-separable operator algebra is an
admissible subalgebra of any C∗-algebra that contains it.

I was delighted that Bill solved the problem and that finally, the central
thesis of [Arv69] had been fully vindicated. Since the appearance of [Arv08],
there has been an uptick in the interest in [Arv69], and I suspect, indeed, I
fervently hope that the program that Bill initiated in it will flourish for years
to come. In addition to being the source of great mathematics, “Subalgebras
of C*-algebras” will serve as a monument to Bill’s unswerving perseverance,
from which we may all draw inspiration.

Figure 8. Bill Arveson in New York (source: Lee Kaskutas)

David R. Pitts7

Most chance meetings are of little consequence. But a few are life-
changing. I first met William Arveson in a laundromat in Berkeley in the
early 1980’s, and in the ensuing conversation, I learned he was a mathemat-
ics professor, and he learned I was a mathematics graduate student. The
circumstances amused us both. Shortly afterward, I remember thinking that
would be a remarkable way to meet a thesis advisor. To my great fortune,
Bill became my Ph.D. supervisor a year or so later.

7David R. Pitts is professor of Mathematics at University of Nebraska-Lincoln. His
email address is dpitts2@math.unl.edu.
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As readers of Arveson’s work know, Bill had an extraordinary ability to
expose mathematics clearly and efficiently. I saw the process first-hand while
a graduate student. I remember once asking Bill a question regarding the
Weyl-von Neumann-Berg Theorem. Bill’s response was, “Let me think.”
A few moments later, he began to write. What flowed from his pen were
several paragraphs clearly outlining the key ideas for the proof. This was far
from unique: in my file cabinet are several of Bill’s extemporaneous writings,
which I still find useful.

During other conversations, Bill taught that a good way to do mathe-
matics is to find some interesting literature, and then “seek to understand
it very deeply.” Bill was masterful at this. I gained some sense of what
he meant by reading a portion of the book, “Theory and applications of
Volterra operators in Hilbert space,” by I. C. Gohberg and M. G. Krein.
In the book, the authors give a characterization of the bounded invertible
operators T on a Hilbert space H which are universally factorizable along
every nest P of projections on H in the following sense: given a nest P,
there exists a bounded invertible operator A on H such that A and A−1

leave invariant every projection P ∈ P and T ∗T = A∗A. I thought I under-
stood the proof, so I showed what I’d learned to Bill. His simple response
left me bewildered. He said, “I don’t understand. Think about it more
and show me again later.” This occured several times. At last, I observed
that it is possible to modify the LDU decomposition of a positive invertible
matrix X ∈Mn(C) to obtain a formula for U which is an idempotent linear
operator on Mn(C); a modification of the formula yields a tool for factoring
certain operators relative to a nest. This time, when I showed what I found
to Bill, his words were, “Ah, now I understand.”

Arveson once told me that he published “when I have something to say.”
It wasn’t until after completing my graduate studies that I began to appreci-
ate the remarkable scope and impact of Arveson’s work. I took Bill’s advice
and went to as many conferences as I could. At these meetings, I’d hear
Arveson’s name attached to an astonishing number of deep and pioneering
results, some related to, but many others far removed, from what I’d studied
as a graduate student. Bill truly had a lot to say!

I, along with many others, have benefited much from Bill’s mathematics,
mathematical leadership, guidance, and generosity. He is greatly missed.

Robert T. Powers8

I have known Bill Arveson all of my mathematical life as I first met him
at the large Baton Rouge Conference in March of 1967 while I was still
a graduate student in Physics, a student of Arthur Wightman working in
quantum field theory. I remember his enthusiasm as we talked of factors,
von Neumann algebras with a trivial center. At that time I was under the

8Robert T. Powers is professor of mathematics at the University of Pennsylvania. His
email address is rpowers@math.upenn.edu.
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Figure 9. Bill Arveson at COSy 2006 (source: Marcelo Laca
and Juliana Erlijman)

illusion that problems of quantum field theory would be settled by applying
the techniques developing in C*-algebras and von Neumann algebras. Over
the years we saw each other many times at Berkeley, Philadelphia and at
conferences all over the world.

I should say at the start that I do not enjoy reading other people’s papers.
I often spend weeks trying to prove a result rather than looking it up and
I tend to ignore work that does not have a direct bearing on what I am
currently working on. For that reason I am not qualified to assess the
impact of Bill’s work on mathematics. But as much as I avoided reading
other people’s papers I could not avoid reading many of Bill’s papers which
I not only read but studied them to the point that Bill’s ideas became
incorporated in my own research. I was frankly jealous of one of his earlier
papers on one parameter automorphism groups that can be implemented
by unitary group with positive spectrum, an idea from Physics expounded
in an early paper by Hans Borchers, in that I was well aware of the ideas
leading up to it but kicked myself for not seeing Bill’s brilliant ideas for
turning these ideas into gold.

Around 1986 I began studying E0-semigroups of B(H), one parameter
semigroups of *- endomorphism of B(H). Soon I lost my NSF support partly
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because my work was “uninteresting” but a few years later Bill came to my
rescue. He developed the theory of product systems and proved the great
result that each product system is associated with an E0-semigroup of B(H).
He later wrote a book, “Noncommutative Dynamics and E-Semigroups,”
Springer-Verlag (2003). Besides proving a number of pivotal results and
providing a mathematical framework for the study of E-semigroups, Bill’s
work made the subject accessible so that other mathematicians such as
Boris Tsirelson, working in Markov processes, could provide new examples
of E0-semigroups. Bill and I never published together. We agreed it would
be more likely for us to be consulted as an impartial referee regarding each
other’s work but I have published repeatedly with two of his students, Alexis
Alevras and Daniel Markiewicz. Since 1990 Bill and I met on almost a yearly
basis to discuss ideas. One of my papers was simply a reply to a question
of Bill’s. At a small informal gathering at the U. S. Naval Academy with
Geoffrey Price and Alexis Alevras, Bill presented an example of a semigroup
of completely positive contractions of the two by two matrices and wondered
what E0-semigroups they produced by Bhat’s dilation result. The race was
on and I went back to Penn and Bill to Berkeley and we produced the same
result (only Bill’s was more general, his for B(H) and mine for B(H) with
H finite dimensional) and the papers were published side by side in the
International Journal of Mathematics.

Intellectually I know Bill died, but I still don’t believe it. I know next
Spring I will think about visiting Bill and Lee in Berkeley or look forward to
hearing that laugh of his regarding some recent development till I remember
the hole that he has left. I only interacted with Bill in a fraction of his
mathematical work and I am sure others can tell similar stories about his
significant influence in different areas of mathematics.

Geoffrey L. Price9

In the late 1970s it was my good fortune to be a graduate student at the
University of Pennsylvania, where Dick Kadison had assembled a stellar cast
of operator algebraists, including Bob Powers, my thesis advisor, and where
Bill and other big names in operator algebras would come to spend their
sabbatical year. Although I was too shy to speak with him it was clear from
a distance that Bill was a different sort of mathematician altogether. He was
the operator algebraist’s answer to Jack Kerouac, or Belmondo, complete
with great hair, bomber jacket, sneakers, cool demeanor and cigarette always
in hand. He had a style of lecturing in the Tuesday functional analysis
seminars that was more conversation than lecture, and the ease with which
he brought so many ideas to bear in his presentations was breathtaking and
more than a little intimidating to a graduate student.

9Geoffrey L.Price is professor of Mathematics at the US Naval Academy, Annapolis.
His email address is glp@usna.edu.
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Figure 10. Bill Arveson at Mendocino, circa 1986 (source:
Lee Kaskutas)

I did not have an opportunity to see Bill again until the late 80s, when he
became interested in the work that Bob Powers was doing on E0-semigroups.
E0-semigroups can be thought of as dynamical systems which can evolve in
one time direction only. As he has often mentioned in his talks, Bob’s first
thought about E0-semigroups was that he could probably knock off their
classification in an afternoon, but he and others have been working on them
ever since. Bill also got hooked on this subject. Part of what was so exciting
was that Bill’s approach differed so significantly from Bob’s. The Powers
approach used the machinery of unbounded derivations, whereas Bill no-
ticed that it would be useful to think about E0-semigroups using continuous
tensor products of Hilbert spaces. In his AMS Memoirs paper, Continuous
analogues of Fock space, Bill showed that all of the so-called completely spa-
tial E0-semigroups are equivalent to the canonical flows on the CAR algebra,
the most basic of all examples. Another of Bill’s important contributions to
the subject came soon after. In his first paper Powers introduced a notion
of a numerical index for E0-semigroups which can be a positive integer or
infinity. He was able to show that the index was subadditive under ten-
sor products, and that it was additive for the CAR-flows. Using product
systems Bill introduced his own notion of index which agreed with the Pow-
ers index for the CAR flows. Bill established that his index was actually
additive under tensor products: dα⊗β = dα + dβ.
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Bill visited the Naval Academy many times, the first being in 1990 when
Bob Powers held a visiting position here. The main draw for Bill was Bob,
who loved to visit Annapolis during his spring breaks with his wife, Mary.
At one of these gatherings Bill and Bob were really intrigued by a result of
Rajarama Bhat that all continuous semigroups of completely positive unital
maps on a type I factor can be dilated to an E0-semigroup on a larger type
I factor. Arveson and Powers were both puzzled about the minimal E0-
semigroup dilation of the simplest nontrivial CP-semigroup that one can
imagine. Within days they came up independently with the answer. The
minimal dilations α had to be CAR flows of index 1. Their results became
the basis of a pair of papers they wrote independently and which appeared
back to back in 1999. It was pleasing to know that these results had their
origin in conversations that took place at the Naval Academy.

Ten years later I had the good fortune to work long distance with Bill on
a couple of projects, one of which involved the behavior of infinite tensor
products of CP-semigroups of the type above. It was a thrill to work with
one of my mathematical heroes. Bill would write to me what he’d thought
about on a given day and would close by saying that it was time for a glass of
wine and, according to him, further inspiration from his Dachshund: “Last
night I dreamed that Schnitzel said ‘Think symmetry stupid!’. So I followed
his advice and I think I found a more manageable invariant”. Bill’s wife,
Lee, has given me his handwritten notes on that paper and I am happy to
have them here beside me.

Figure 11. Bill Arveson in Berkeley, 1997 (source: George
Bergman/Oberwolfach collection.)
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Donald Sarason10

Bill Arveson and I were colleagues and friends in Berkeley for 44 years.
If memory serves, I first met Bill in person in Ann Arbor when he was
a Benjamin Peirce Instructor at Harvard. The occasion was one of Paul
Halmos’s summer operator theory get-togethers.

After Bill’s Harvard position ended, he was hired by Berkeley in 1968 as a
Lecturer in Mathematics, a temporary position. We were lucky he decided to
come to Berkeley, because he had a couple of more substantial offers. It took
some persuasion, mainly by Henry Helson, to get our colleague in charge of
hiring at the time to offer Bill a position at all. Bill in his early research
was focused on creating a theory of non- self-adjoint operator algebras, and
our hiring czar regarded some of Bill’s recommendations to be somewhat
tentative. (It took a while for other operator algebra theorists to appreciate
what Bill was doing.) At any rate, Bill was promoted to Associate Professor,
a tenured position, in 1969. Otherwise we would have lost him, because the
offers he turned down to come to Berkeley as a lecturer were still in force.

Bill and I had many common mathematical interests, but our modus
operandi were different. My attraction was to concrete problems. Bill,
in contrast, always had the global picture in view. Beyond possessing an
intimate grasp of the technical aspects of his specialty, he had an uncanny
insight that led him to intriguing uncharted territory, coupled with the bold-
ness to launch an exploration.

Those who knew Bill are aware that he had a stubborn streak, a ben-
eficial trait for anyone engaged in research. Bill’s stubborness extended
beyond mathematics. As anyone of a certain age will recall, the 1960s and
1970s were tumultuous times, especially on many college campuses, includ-
ing Berkeley’s. One day not long after he came to Berkeley Bill entered
Sproul Plaza, the main campus entrance, while a demonstration of some
kind was in progress. The police were trying to clear demonstrators out,
and kept telling people to move on, move on. When Bill received this order
he replied ”I have a perfect right to be here.” He held his ground until he
was suddenly seized from behind by a very large cop and hustled off to the
local jail. He did not carry enough cash to post bail, but he managed to
contact our chair at the time, John Addison, who got him released. I believe
no charges were pressed. Bill never backed down when he thought he was
in the right.

10Donald E. Sarason is Professor Emeritus of Mathematics at the University of Cali-
fornia, Berkeley. His email address is sarason@math.berkeley.edu.
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Figure 12. From the left: at the back Erling Størmer, and
in the front Marc Rieffel, unidentified person, Bill Arveson
and Astri Rusten (source: Lee Kaskutas).

Erling Størmer11

Among operator algebraists, now in their seventies or eighties, the most
memorable conference they ever attended, was the one in Baton Rouge in
Louisiana in 1967. Then many of us met for the first time and initiated
lifelong friendships. Bill and I were no exceptions. Our friendship grew over
the years, as we regularly met at conferences and their like, and culminated
with my three one semester visits to Berkeley after 1998, when I enjoyed his
hospitality and saw him regularly on and off campus.

While Bill was very social when he was with people, he was basically
more of a loner. He worked very much by himself and mostly at home. Last
time I was in Berkeley, we wrote a little paper together. It was a rather
special collaboration. Our discussions mostly lasted for a few minutes when
he took a little time away from his home, where his charming dachshunds
were waiting for him. I remember, as the highlight, when we spent a full
half hour at one of the coffee shops at Berkeley campus discussing our paper.
But it was really an enjoyable and pleasant collaboration.

Much of his mathematics can be viewed from this point of view. It is
often very original and based on his deep understanding of some topic, often
in an abelian setting, which he extended to the non-abelian case, where they
could be better understood. Thereby he initiated important new research,

11Erling Størmer is professor emeritus, mathematics, at Oslo University, Norway. His
email address is erlings@math.uio.no.
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especially in C*-algebras, where he started new directions. But he also de-
veloped a theory for non-self-adjoint operator algebras. The latter study
arose from his interest in single operator theory and in particular in the the-
ory of non-normal operators. He also considered the problem of computing
spectra of self-adjoint operators from a general point of view. In his own
words, “numerical problems involving infinite dimensional operators require
a reformulation in terms of C*-algebras.”

Very close to his heart were completely positive maps. They are the most
important and nicest positive maps, which in the finite dimensional case
are sums of maps of the form a 7→ V ∗aV for a given operator V . The fa-
mous Arveson’s Extension Theorem is a Hahn-Banach type theorem for such
maps. He also showed how they relate to other problems, among them E0-
semigroups, i.e. some semigroups of endomorphisms of C*-algebras indexed
by the positive reals, a subject on which he made major contributions.

Much more can be said about his huge mathematical production, for
example his work related to mathematical physics, in particular on entan-
glement in quantum information theory. But I stop here, hoping that the
above gives the reader a feeling for the width and depth of his mathematical
contributions.

Masamichi Takesaki12

I first met Bill at the famous first international conference on operator
algebras at LSU, Baton Rouge, in March of 1967. Although I was unable
to speak English well at that time, he patiently discussed mathematics and
other things with me. He was an instructor at Harvard at that time. Bill
was exactly one year younger than me, but started his mathematical career
much later than myself because of his navy service. At any rate, the mathe-
matical bond between us started as a result of his lecture at the first Spring
Quarter Functional Analysis Wednesday Seminar at UCLA arranged by our
common friend, and Bill’s PhD supervisor, Henry A. Dye in the Spring of
1972. He lectured on his constructive proof of Borchers’ result on the quasi
local measurability of an energy operator with positive spectrum in quan-
tum field theory. His proof was based on his new theory of spectral analysis
of a one parameter automorphism group of a von Neumann algebra, which
is called today the Arveson Spectrum. His theory was surprisingly elegant
and simple despite the bad behavior of an operator algebra as a Banach
space on which the usual spectral analysis of operators fails miserably. Af-
ter his lecture, I could not resist the urge to apply his new theory to the
modular automorphism group of a von Neumann algebra. His method was
so powerful that, even though Bill’s talk had been in the first week of the
Spring Quarter, by late April the structure of a von Neumann algebra of
type III was beginning to emerge. In May, I was already able to report

12Masamichi Takesaki is professor of mathematics, emeritus at the University of Cali-
fornia, Los Angeles. His email address is mt@math.ucla.edu.
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Figure 13. Peter Rosenthal, Bill Arveson, James Mingo
(standing), Man-Duen Choi and unidentified person at COSy
2006 (source: Marcelo Laca and Juliana Erlijman)

on the discrete decomposition of a von Neumann algebra of type III with
a periodic state. The story didn’t stop there, as in the Fall of 1972, I was
able to prove the so-called Takesaki duality theorem on the crossed product
of a von Neumann algebra by a locally compact abelian group, and hence
establish the structure theorem for von Neumann algebras of type III. Thus
the whole structure analysis of von Neumann algebras of type III can be
seen as a consequence of Arveson’s spectral analysis.

Bill’s work on the spectral analysis heavily influenced Alain Connes’s
thesis work, which is still quoted often today. In particular, he adapted
and extended Bill’s work to formulate what is now known as the Connes
Spectrum of an action.

Bill’s life was full of unusual incidents. One I remember is the Oakland
Hillside Fire in the fall of 1991 in which he lost his lovely hillside home along
with his personal mathematical library. He mentioned to me that the loss of
his mathematical collection was quite a blow to him. With his permission,
I asked the operator algebra community around the globe to send him their
own available reprints. People responded beautifully, rebuilding his math
library.
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Bill’s working style is very unique, quite different from mine. He, some-
what like Ed Effros, likes to explore a new area of mathematics where nobody
has worked before and create a new field; Bill’s successful implementation
of this approach has lead him to be a very influential and even seminal fig-
ure in many areas of modern analysis. Remarkably, Bill’s publication rate
increased significantly after his retirement. When I expressed my surprise
at this to him, his reply was that life after retirement was wonderful. I as-
sumed after my retirement and move back to my home country Japan that
he would continue his surprisingly creative mathematical life, so I was very
saddened to hear of his declining health and now his death. We have lost an
inspirational mathematical innovator, and a wonderful friend and colleague.

Lee Ann Kaskutas13

Figure 14. Bill holding a kitten at his house on Trask Street
in Oakland (source: Lee Kaskutas)

13Lee Ann Kaskutas is a Senior Scientist at the Alcohol Research Group, and Associate
Adjunct Professor at the School of Public Health, University of California, Berkeley. Her
email address is lkaskutas@arg.org.
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Bill’s Youth. Bill was born in Oakland. His parents divorced when he was
just a year old. In his earliest years, Bill was raised by his grandmother,
who had come here from England. She was the first forewoman at the Levi
Strauss factory in San Francisco, so was gone during the day. They lived
in a house on Trask Street, and his grandmother had a lady come in to be
there when Bill got home from school. Bill would walk to and from the local
public grade school with a neighbor boy, who had a miniature dachshund
that Bill loved to play with. Bill deeply loved his grandmother, and as a
child did not see much of his parents who had, separately, moved to southern
California.

When Bill was in maybe 3rd grade, his father decided that he was being
overly influenced by women, and he arranged for Bill to go to a military
school. He hated the military school and after a year or so, he and a friend
ran away. They went to the circus that was in town. After dark, and after
they had spent all their money, and were hungry, they snuck back into the
military school and were caught. The next day, his mother arrived, and Bill
begged her to please take him out of the school, which she did. He returned
to Trask Street to live with his grandmother, until his mother remarried at
about the time Bill was high-school age.

Bill went to high school at Alhambra High in San Gabriel, in southern
California. He had a part-time job in a gas station, and liked to work on cars,
which he raced, illegally. He did not turn in homework at school, but got
A’s on his final exams, which infuriated many of his teachers. They would
say to him, “Just think how much you could have learned, if you would have
worked harder throughout the year.” Bill would say, “But I aced the final
exam, what is the problem, I obviously learned the material.”

Bill’s parents did not especially encourage him in academic pursuits. Bill’s
high school guidance counselor told him he should become a TV and radio
repairman. Bill would later joke with me about how he would love to have
a little talk now, with that guidance counselor!

From the Navy to CalTech. After graduating from high school, Bill
joined the navy, took a placement test, and was told he could have pretty
much any job he wanted to train for. He chose to study radar technology,
and spent many months at Navy schools, on Treasure Island and also in
Washington State. After his training, he served in the Pacific on an aircraft
carrier in the “CCC,” the Command and Control Center, where he was their
ace repairman. When not repairing the radar equipment, he played bridge,
read, and taught himself how to play the jazz saxophone. (Bill played jazz
piano, too, in his younger days.)

At the end of his 3 years of naval service, Bill took another placement
test at the Navy. Apparently he got the highest score that anyone had
ever gotten. They asked him to stay in the Navy, and enter their training
program for jet fighter pilots. He told me that, had he done that, he would
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Figure 15. Bill Arveson in Yosemite with his beloved
daschunds, Pretzel and Schnitzel (source: Lee Kaskutas).

probably have become an astronaut (and now, he joked, would be an airline
pilot!). He decided instead to leave the Navy, and try to go to college.

Bill went to Pasadena City College for 2 years, then took still another
test, this one to compete for the two slots that are made available each year
for transfers to Cal Tech. Again, his performance on the test was a big
surprise to everyone, including the math professor who had to grade the
math question. It seems the professor did not expect anyone to actually be
able to solve the problem; he just wanted to see how they approached it. Bill
solved the problem, was admitted to Cal Tech, and majored in mathematics,
of course.

I said “of course.” Did he consider other majors? He once said that he
had thought briefly about becoming an engineer, and also had considered
physics.
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From talking with Bill over the dinner table all these years, I realized what
a truly first-rate education he had gotten at Cal Tech. Not just in chemistry,
physics, the hard sciences. But also in literature. He had read all the classics,
Shakespeare’s plays, and remembered characters and recognized quotations
from them. He left Cal Tech understanding how the world worked, and with
a deep respect for scholarly endeavors, which defined him.

Occupations. During summers in college, Bill had various jobs. He was
a meter reader for the gas company; a draftsman for an engineering firm.
The Navy paid his tuition. After college, in 1960, he worked at the Naval
Undersea Research and Development Center in Pasadena, first as a full-time
worker, then part-time while he was in graduate school at UCLA. After he
received his doctorate in 1964, he returned to the NavyLab. One of his
contributions there was a report in which he used stochastic processes and
harmonic analysis to model strategies that a destroyer commander could use
to evade a hostile submarine, after sonar contact had been established, but
before any weapons had been deployed!

One day at the Naval Undersea Research Center, Bill got a call from
his thesis advisor, Henry Dye, who told him to apply for the Benjamin
Peirce Instructor job at Harvard. Bill was shocked. “Me?” he said. “Yes,
you should apply, Bill,” insisted Henry Dye. But Bill was ambivalent, in
large part because the Navy had paid for his education, and he felt that he
owed them. He took the issue to his boss, also a PhD-level mathematician,
who told him that it would be payback enough if Bill were to thrive as an
academic mathematician, training other mathematicians, and doing original
mathematics research. Bills eyes would tear-up when he told me that story,
because he was so grateful, and impressed, by the generosity expressed by
the man.

There is a picture of Bill at Harvard, looking so gloriously young, in this
journal.

Bill joined the Berkeley Mathematics Department in 1968 as a lecturer,
became an Associate Professor in 1969, and a Full Professor 5 years later. He
retired in 2003, and continued doing mathematics research until his death
last November [November 2011–Ed].

Bill Meets Lee. Bill and I met at the Tokyo airport in August 1985, on a
bus that took passengers onto the tarmac to board their planes. There were
two buses, and I almost took the less full one, because I was carrying a huge
stuffed rabbit from Korea. “Did you have to buy a seat for that rabbit?”,
Bill flirted. Later, on the plane, he asked the stewardess to come and get
me, since she wouldn’t let him come up to first class where I was sitting.
“He wants to buy you a drink, and I told him your drinks up here are free.
But he came back twice, asking me to get you for him.”

Bill was sitting way, way in the back of the dark plane. It was more than
half empty. He was coming back from lecturing about mathematics in China
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Figure 16. Bill and Lee at Cliff House, San Francisco, 1985,
Thanksgiving Day (source: Lee Kaskutas)

for 6 weeks, he told me. I later joked with him that he decided to marry
me when, hearing that, I responded that I had majored in math in college.
Bill spread out this suitcase for me – it was full of beautiful trinkets from
China, which he had bought with the Chinese money they had given him for
his lectures. He had a lovely white cloisonné vase; a blue cloisonné dish; a
pair of intricately carved red lacquer vases; a black cloisonné bangle, which
he later gave me as a present–or maybe he gave it to me right then, on the
plane; I forget. There was a little screen that unfolded, with Chinese-style
drawings and writing on the panels; a series of eight blue cloisonné bells,
hanging from a wooden frame made to look like a Chinese gate, which came
with a little wooden pallet, to make the bells sing. All these things, and
more, he showed me on that airplane.

Bill was so handsome, so interesting to talk to, so genuine, so easy to be
with during that long flight to SFO. Getting off the plane, he asked for my
number, and I told him I would be on another trip so not to call for a week.
He didn’t quite believe me, as I was just returning myself from 6 weeks in
the Far East. But, luckily, he did call when I got back. We bought our
house 7 months later, and married a year after that.

Life With Bill. My favorite thing about Bill, is how smart he is. How
smart he was. I was so lucky, so happy, hearing him talk about ideas, and
beliefs, and about how the natural world works. He was the smartest person
I ever have known and ever want to know.

I loved and appreciated his complete generosity. I liked it that he let me
be myself – uncritically. I liked it that he wanted to be with me for dinner;
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Figure 17. Bill Arveson with Schnitzel (source: Lee Kaskutas)

that we didn’t do things separately at night, with other people. Nor did we
go out with other couples. I liked having him to talk to, to tell about my day.
I loved our rituals around our dogs (miniature dachshunds!); the routines of
our daily lives together; going to Sunday matinees. . . His voice, as he joked
when I said something stupid like using a word wrong or pronouncing it
incorrectly: he would then call me Lee Ann instead of Lee, with a tender
playful tone.

Living with Bill was like having Google across from you at the dining
room table. He was just so deep! He did not fool around inside that head
of his. He was absolutely the clearest thinker one could ever know.

But he wasn’t just smart; he also was wise, and warm, and witty. And
he loved our dogs – always miniature dachshunds.

Bill’s Routine. Every day, after breakfast and reading the paper, he would
get out his clipboard and work. He used blue lined paper, and a uniball pen.
He always sat at our dining room table, which is in a room full of light and
has a view of the bay in one direction, and a canyon in the other. When
it was time for lunch, he liked to have a sandwich, and to read a book
for an hour. The book might be “D-Day” by Stephen Ambrose, David
Halberstam’s “The Fifties,” “Blackwater” by Jeremy Scahill; biographies
of Kennedy by Sorensen, Manchester; or something new by Bob Wood-
ward. . . He liked reading books in hardback, and he used a leather book-
weight so the book would stay open as he read. He worked until dinnertime.
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When Bill did his mathematics research, he got excited about his discov-
eries and might write “WOW” in big letters, plus three exclamation points,
and put a box around it. I only discovered this about Bill – that he was alone
but not lonely doing his work – when I went through his papers to choose
something handwritten for one of the collages for his memorial service.

I think mathematicians are a mysterious phenomenon to many. People
often said, when Bill would tell them what he did for a living, “I hate math.
It was my worse subject in school.” That is why I joked with Bill that the
reason he married me was that I did not say that, when we met on that
airplane and he told me what he had been doing in China.

Figure 18. Bill Arveson and some of his Mathematical
Family at the Fields Institute Workshop on Noncommuta-
tive Dynamics and Applications, July 2007 (source: Fields
Institute)

FamilyBill = Mathematical Family. Bill didn’t want to spend time with
hardly anybody but other mathematicians. And me. And the dogs. One of
his greatest pleasures was going to his math conferences, and being invited
to give talks, be it in Chennai, College Station, Urbana, Ireland, Norway,
the US Naval Academy, Banff, Haifa, Samos, GPOTS... the list goes on.
(We spent the first part of our honeymoon at a math conference in Durham,
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where men slept in one dorm, women in another. Naturally, Bill protested,
and got us a room together !)

Bill considered the mathematics community his real family. He said that
all the time: “We are a family.”

I remember vividly the first time I met some of Bill’s students: it was at
LaVal’s, and Marcelo Laca, David Pitts, and Mike Lamoreaux were there.
They told me that they all knew something was up with Bill when he started
dressing better; that he must have met someone. A list of his students is
included in this memorial issue.

Bill was enormously proud of his students. He shared with me, how he
chose his students. He had two rules. They had to have demonstrated that
they would be able to do deep, original mathematical research. But that is
an obvious criterion. The second rule was that he had to like them; that
they had to be nice, good people. He did not take on a new student lightly or
thoughtlessly, and felt it to be a lifelong commitment. Whenever possible,
we would have the student over to dinner at our house when they were
graduating. Bill looked forward to these dinners very much, and afterwards
he loved hearing what I thought of the person, as it was often the first time
we had met. I liked them all, and loved some, as did he.

Beating Cancer. Now I will tell you a bit about Bill’s illness. Bill noticed a
lump in his neck in November 2009, which they removed; a biopsy indicated
it was nothing. Months later, when he still had a lump in his neck, it was
determined that the surgeon had removed the wrong lymph node! An x-ray
of his neck then detected something at the base of his brain that, quoting
our doctor, “shouldn’t be there.” She ordered a brain scan. While Bill was
still in the scanning machine, the technician brought in the radiologist, who
asked Bill if he was feeling ok; had he driven to the clinic; had he been
having headaches? No, he felt fine. The radiologist told him to walk, not
drive, to his doctor’s office right away.

Of course, Bill drove there. She delivered the news that he had a dozen
brain tumors, some quite large. She put him on steroids to reduce the
swelling in his brain from the tumors, and was amazed he could still speak,
still walk, still do mathematics! Two hours later, we were both at the oncol-
ogy radiation department. I remember seeing the sign, “radiation oncology,”
and thinking wow, oncology ; we are going to an oncologist. This was March
15, 2010.

They started radiation on Bill’s precious brain the next day. After 10 days
of full- brain radiation, Bill started chemotherapy. After several rounds of
that, he was scanned again. When we met with the radiation oncologist to
get the results, the doctor sat at his computer screen to look at the scan,
and stopped immediately. He left the room, saying something about how it
must be the wrong patient’s scan that had been loaded onto his computer.
He came back: “No, it is your scan. There is zero evidence of any brain
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tumors, plus no evidence of scarring, no evidence that you ever had those
brain tumors.” He had never before seen that.

Several more rounds of chemo later, Bill was re-scanned, and they found
one small tumor behind his esophagus. His case was twice taken to the
cancer board, because doing radiation was dangerous and probably wouldn’t
work anyway. They decided to try the radiation, 6-weeks worth. And again
came the scary day to get the results of the treatment. The tumor was gone.

The kind of cancer that Bill had is famous for coming back as soon as
chemotherapy is stopped, so they continued the chemo, 21 rounds in all.
He also had many blood transfusions, which would take 7 hours. During
chemo, and during the transfusions, Bill had his MacAir, his clipboard, his
pen. And me; I always wanted to be there with him, at every treatment,
every test, every doctor’s visit.

On September 16, 2011, Bill wrote this email to several colleagues:

You’ve probably noticed that I’ve been keeping a low profile
- because of medical treatments - namely 20 rounds of chemo
five days each, plus 10 days of full brain radiation and six
full weeks of daily radiation focused on my thorax. All this
invasive stuff has been going on for more than a year. Sounds
awful, I know, which is why I haven’t been advertising it - I
didn’t want to have to deal with explanations.

But now the results are in, and they are truly amazing -
as good as could have been hoped for. In fact, the results
couldn’t be better. I started this with stage 4 cancer more
than a year ago and now, it is gone! Explanation: The ra-
diation oncologist tells me that he has NEVER seen such a
positive response to treatment – same from the chemo on-
cologist. The unbelievable part is that, I am cancer-free (no
cancer cells detectable anywhere in my body by way of an
MRI scan). Which means, my cancer is in remission!

So Lee and I are celebrating. We aren’t back up to normal
socializing yet, I am on chemo right now and my energy level
is low. I apologize for that but will make up for it. We are
now planning the rest of our lives – now that we know that
we have a life!

Falling. On Sunday, October 23, five weeks after writing that email, and
on still another round of chemo, he fell at the movie theater, and broke his
hip. It was a minor fracture that could be fixed in 40 minutes with a metal
pin, the surgeon said. He was admitted; it was the first time he would ever
spend the night in a hospital. The next day, when asked whether he wanted
a local or general anesthetic, Bill’s choice was influenced by a bad experience
with local anesthetic that had happened when his appendix was removed
– he had felt them cutting into him. Plus, given his painful broken hip,
the local anesthetic would have been difficult to administer. So Bill chose
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general anesthetic. He had fasted more than the required 24 hours, and had
only had a very light breakfast and half a peanut butter cookie at the movie
the day before, so it seemed straightforward.

But it was day five of chemo – the kind of chemo that kills your small cells,
the very cells that cause your food to digest. According to Bill’s oncologist,
no one had ever had as much chemo of this type as had Bill. When they
started the anesthesia procedure, stomach contents entered his lungs. They
pumped out his lungs, put him on a ventilator. . . This began a downward
spiral, which we were not able to stop.

Bill always said to me, “Lee Ann, life is not fair. . . . Lee Ann, you cannot
control everything.”

A Life Well-Lived and Remembered. A memorial service honoring Bill
was held on February 19, 2012 at the Berkeley Faculty Club. Over 90 peo-
ple were there. Thirteen of Bill’s 29 students from his mathematical family
came to the service from afar, including one flying in from Montevideo,
some driving up from southern California, and others flying from Alabama,
Canada, Arizona, New York, Nebraska, Texas and Washington. Several of
Bill’s closest colleagues made the trip, from UCLA, UC San Diego, Univer-
sity of Iowa, the US Naval Academy. Dozens of fellow professors from UC
Berkeley attended.

At the service, we enjoyed French wine from Bill’s wine cellar, and listened
to a local jazz band play some of Bill’s favorite tunes: All Blues, Corcovado,
Desafinado, Django, Laura, Misty, My Funny Valentine, ‘Round Midnight,
Samba Triste, Smile, Stardust, Tender is the Night, Tenderly, The Nearness
of You, Third Gymnopedie, Time after Time.

During the service, Bill’s students and colleagues shared their memories
and stories about Bill. Colleagues from Europe, Asia and the US who were
unable to make the long trip sent statements to be read during the service.
The stories we heard spoke to the depth and originality and elegance of
Bill’s mathematics, to Bill’s influence on their own mathematics, and to
the impact of Bill’s work in multiple fields of mathematics. His students
talked about Bill’s generosity and his unfailing commitment to them as a
mentor, and about how deeply he had inspired them. And Bill’s warmth
and his sense of humor were emphasized by many of those who shared their
memories of him. Here are some quotations from their stories:

Not just a great mathematician: “I used to think it unfair
that someone could be so supremely talented both techni-
cally and socially.” . . . “So many of us really loved and ad-
mired that man – he was one of the people who convinced me
that mathematicians could be brilliant while being wonderful
human being.” . . . “Bill was a legendary figure to people my
age, but you’d never know it from the way he treated people.
Indeed, I could never decide which part of Bill I respected
the most – amazing math talent or down-to-Earth genuinely
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nice person. But now that I think about it, I respect the
fact that he was both at the same time. What a rare and
beautiful human being.”

Valued by fellow faculty: “What I knew of his field I had
learned in graduate school years ago, and there were in-
evitably times when I needed to know more or to reassemble
what I had forgotten. When this was the case, it was Bill
I would ask. I never had to feel ashamed of my ignorance,
and I could tell that he genuinely loved explaining even the
simple things I needed to know.”

Cherished by students: “It was really great when you hit
on something that Bill really thought was interesting. He
would not be able to stay still, he would ask you to wait a
second and try to get the answer himself, and scribble his
ideas on the board. And if what he guessed was what you
did, or even better, if you surprised him, the reaction was
great. You could tell he wanted to jump in but contained
himself to give you some space, because he respected your
work on your problem.” ... “It is not possible for me to
overestimate the influence Bill had on my training and pro-
fessional development.”

Treasured by his field: “His work on subalgebras of C*-
algebras was probably the single most influential source of
inspiration I have had in my career. I have been studying it
ever since receiving it as a preprint. I often remark that, one
of these days, I hope to understand it. What was so com-
pelling about it, and equally compelling about all of Bill’s
work, was the clarity of his exposition and the depth of the
questions he addressed. He began with very simple ideas
and worked through to deep conclusions. Bill was such a
profound thinker. But he was also a wonderfully warm hu-
man being.” ... “He was a giant in his field, and will have a
lasting impact for generations.” ... “The mathematics com-
munity has lost a giant.”

Something I realized only after he was gone, is that Bill had been a very
happy, and always optimistic, person. He never once complained about
getting cancer, about the chemo, the radiation, the fatigue, the lack of
appetite. He wanted to get better; he was looking forward to attending
GPOTS this year. I hope that they are able to do the GPOTS meeting in
summer 2013 in his honor [Indeed GPOTS 2013 took place in Berkeley in
Arveson’s honor. –Ed].

Bill’s wonderful attitude about life is echoed in the statement that his
radiation oncologist wrote for me to read at the memorial service:
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I met Bill at a time of great stress and fear in his life, as
he began a battle for his life. I’d never known him before,
but into my office he walked, and from the moment I met
him, I thought ”what an incredible, wonderful, witty and
wise man! - the world can’t afford to lose someone like him!”
He was looking in the face of great tragedy, and he managed
to pull off a smile and a laugh that made me want to pull
out all the stops to try and help him. In the months to come
when I would see him, he was never without a kind word,
an optimistic outlook, and a real zest for life. I spend my
working hours in small rooms trying to help people with life-
threatening situations, and I’ve come to realize we all meet
adversity with different faces, strengths and weaknesses. Bill
never seemed to weaken - he took what was sent his way,
and dealt with it serenely and rationally. I looked forward
to those meetings with him and Lee in that small room, and
I always walked away feeling better about the world and our
role in it. That was a gift that Bill left with me, and I hope
that I can pass a little bit of Bill onto everyone whom I meet
going forward.

In closing, we should all remember that one of the many remarkable things
about Bill is that he never expressed any regrets. He loved his life.

Arveson’s Ph.D. Students.

(1) Richard I. Loebl (1973)
(2) Donal P. O’Donovan (1973)
(3) Kenneth Davidson (1976)
(4) Cecelia Laurie Bleecker (1976)
(5) David Larson (1976)
(6) Jon Kraus (1977)
(7) Thomas Fall (1977)
(8) Niels Toft Andersen (1977)
(9) Earl Eugene Kymala (1980 - UC Davis)

(10) Bruce Wagner (1980)
(11) Belisario Ventura (1984)
(12) John Spielberg (1985)
(13) Jack Shaio (1985)
(14) David Pitts (1986)
(15) Richard Baker (1987)
(16) Michael Lamoureux (1988)
(17) Chikaung Pai (1988)
(18) Hung Dinh (1989)
(19) Marcelo Laca (1989)
(20) Keith Manson (1989/informal)
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(21) Neal Fowler (1993)
(22) Frederick Semwogerere (1994)
(23) Alexander Alevras (1995)
(24) Masayasu Aotani (1996)
(25) Dylan SeLegue (1997)
(26) Devin Greene (2001)
(27) Daniel Markiewicz (2002)
(28) Ilan Hirshberg (2003)
(29) Dennis Courtney (2008)
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