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Interactions and dynamical systems
of type (n,m) - a case study

Ruy Exel

Abstract. In this paper we prove that the C∗-algebra of the universal
(n,m)-dynamical system may be obtained, up to Morita-Rieffel equiva-
lence, as the crossed-product relative to an interaction on a commutative
C∗-algebra. The interaction involved is shown not to be part of an in-
teraction group.
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1. Introduction.

The notion of interactions was introduced in [11] in order to provide a
common generalization for endomorphisms of C∗-algebras and their transfer
operators. One of the main results in [11], namely Theorem 6.3, is the proof
of the existence of a covariant representation for any given interaction, but
no consistent notion of crossed product was introduced.

In reality, in the last section of [11], an admittedly experimental attempt
was made to provide some sort of crossed product in terms of a certain
generalization of the Cuntz-Pimsner algebra to a context in which the cor-
respondence is replaced by a generalized correspondence [11, Definition 7.1].
However, no nontrivial examples were provided so the theory was not put
through any significant test.

The notion of interactions was later given a (non-equivalent) alternative
form in [12] (see also [13]), the catch-word being interaction groups, and a
well developed notion of crossed product was introduced. Several examples
were later exhibited in [15], including the case of the multi-valued map z 7→
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z2/3 on the circle, which has not received a lot of attention in the literature,
except for the paper [3] by Arzumanian and Renault (which was in fact
slightly rectified by [15]) and some recent work by Arzumanian [2] and by
Cuntz and Vershik [5].

In a very rough sense, interactions are related to partial isometries, while
interaction groups are related to power partial isometries, meaning partial
isometries whose powers are still partial isometries. Since partial isometries
not satisfying the latter property are hard to study objects, I eventually
developed the impression that interactions should be likewise considered.

Roughly five years after the appearance of [11], I was involved in a seem-
ingly unrelated joint project with P. Ara and T. Katsura [1], where we
introduced the notion of (n,m)-dynamical systems and their accompanying
C∗-algebras, denoted On,m, which turned out to be a generalization of the
Cuntz algebras. The method used to study On,m was based on partial ac-
tions and in no moment did it occur to us to study it from the point of view
of interactions.

By an (n,m)-dynamical system we mean two compact spaces X and Y ,
with maps

h1, . . . , hn, v1, . . . , vm : Y → X,

which are homeomorphisms onto their ranges, and such that

X =

n⋃
i=1

hi (Y ) =

n⋃
j=1

vj (Y ) ,

both unions being disjoint unions. Given such a system, one may consider
a local homeomorphism α : X → Y , defined to coincide with h−1i on the
range of each hi. One might consider α as some version of Bernoulli’s shift,
for which the hi’s are the inverse branches.

Replacing the hi by the vj , one may similarly define another local home-
omorphism, say β : X → Y , having vj as inverse branches.

Evidently neither α nor β are invertible (unless n or m = 1), but we may
view the multi-valued map

L : y 7→ {h1 (y) , . . . , hn (y)} ,

as playing the role of the inverse of α. Likewise

M : y 7→ {v1 (y) , . . . , vm (y)}
may be considered as some sort of inverse for β. Playing in a totally careless
way with these maps, one may define

V ,H : X → X,

by V = Mα, and H = Lβ, and argue that

V −1 = α−1M−1 = Lβ = H.

Evidently all of this is nonsense, but the notion of interactions may give
it a precise and meaningful treatment. The main idea is that, when a map
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is multivalued, it defines a (singly valued) map on the algebra of continuous
functions by averaging over the multiple values. In the present case, this
leads us to defining maps V and H on the algebra C(X) by

(†) V (f) |x =
1

m

m∑
j=1

f(vj (α (x))), and H (f) |x =
1

n

n∑
i=1

f (hj (β (x)))

for all f ∈ C (X), and all x ∈ X.
The interesting fact is that the pair (V,H) turns out to be an interaction

and, moreover, the experimental notion of crossed product introduced in
[11] fits like a glove in the present situation, producing the expected result,
namely the full hereditary subalgebra ofOn,m associated to the characteristic
function on X.

Besides briefly recalling the necessary background, the content of this pa-
per is precisely to prove the isomorphism of the crossed product C(X)oV,HN
with the hereditary subalgebra of On,m mentioned above.

Another question that we discuss is the possibility of fitting the theory of
interaction groups to On,m but we unfortunately find in (3.11) that this is
not possible.

Before we actually begin, we should say that the description of V and H
given in (†), above, is not quite the one we use below, as we have chosen to
emphasize the algebraic aspects of On,m over its dynamical picture. How-
ever, without too much effort, the reader may use the results in [1] to show
that (†) agrees with the definitions of V and H given in (3.7), below.

2. Interactions.

In this section we will give a brief overview of the notions of interactions
and the corresponding crossed product. For more information the reader is
referred to [11].
I From now on we will let A be a fixed unital C∗-algebra.

Definition 2.1. [11, Definition 3.1] A pair (V,H) of maps

V,H : A→ A

will be called an interaction over A, if

(i) V and H are positive, bounded, unital linear maps,
(ii) VHV = V,
(iii) HVH =H,
(iv) V (xy) = V (x)V (y) , if either x or y belong to H (A),
(v) H (xy) = H (x)H (y), if either x or y belong to V(A).

I Let us assume, for the remainder of this section, that (V,H) is a fixed
interaction over A.

Definition 2.2. [11, Definition 3.5] A covariant representation of (V,H)
in a given unital C∗-algebra B is a pair (π, s), where π is a unital ∗-
homomorphism of A into B, and s is a partial isometry in B such that
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(i) sπ (a) s∗ = π (V (a)) ss∗, and
(ii) s∗π (a) s = π (H (a)) s∗s,

for every a in A.

Definition 2.3. We will denote by T (A,V,H) the universal unital1 C∗-
algebra generated by a copy of A and a partial isometry š, subject to the
relations

(i) šaš∗ = V (a) šš∗, and
(ii) š∗aš = H (a) š∗š,

for every a in A. The canonical mapping from A to T (A,V,H) will be
denoted by π̌.

It is readily seen that (π̌, š) is a covariant representation of (V,H) in
T (A,V ,H). In addition, T (A,V,H) is clearly the universal C∗-algebra for
covariant representations of (V,H) in the sense that any covariant represen-
tation factors through T (A,V,H).

We should remark that, as we are working in the category of unital C∗-
algebras and morphisms, the natural inclusion π̌ of A in T (A,V,H) is a
unital map and, in particular,

(2.4) π̌ (1) š = šπ̌ (1) = š.

Quite likely is also possible to develop a similar theory for non-unital
algebras but, given the examples we have in mind, we have decided to con-
centrate on the unital case here.

Proposition 2.5. [11] The closed linear span of π̌ (A) šπ̌ (A), henceforth
denoted by X , is a ternary ring of operators [16], meaning that it satisfies

XX ∗X ⊆ X .

Proof. For all a, b, c, d, e, f ∈ A, we have

(π̌ (a) šπ̌ (b)) (π̌ (c) šπ̌ (d))∗ (π̌ (e) šπ̌ (f)) = π̌ (a) šπ̌ (bd∗) š∗π̌ (c∗e) šπ̌ (f)
= π̌ (a) π̌ (V (bd∗)) š∗šπ̌ (H (c∗e)) π̌ (f) = π̌ (aV (bd∗)) šπ̌ (H (c∗e) f) ∈ X .

�

From the above result it follows that

KV := spanXX ∗

as well as
KH := spanX ∗X

are closed ∗-subalgebras of T (A,V,H). It also follows that

KVX ⊆ X , and XKH ⊆ X ,

1When we say “universal unital” we mean that we are working in the category of unital
C∗-algebras and hence all algebras and morphisms involved in its universal properties are
supposed to be unital.
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and hence that X is a KV − KH−bimodule. On the other hand it is easily
seen that X is an A−A−bimodule.

Definition 2.6. [11]

(a) A left [resp. right-] redundancy is a pair (a, k) in A × KV [resp.
A×KH] such that

π̌ (a)x = kx [resp. xπ̌ (a) = xk], ∀x ∈ X .

(b) The redundancy ideal is the closed two-sided ideal of A generated
by the set

{π̌ (a)− k : (a, k) is a left-redundancy}
∪ {π̌ (a)− k : (a, k) is a right-redundancy} .

(c) The quotient of T (A,V,H) by the redundancy ideal will be called
the covariance algebra or the crossed product for the interaction
(V,H), and will be denoted by AoV,H N .

(d) Letting

q : T (A,V,H)→ AoV,H N

be the quotient map, we will let π̂ = q ◦ π̌, and ŝ = q (š).

Again we have that (π̂, ŝ) is a covariant representation of (V,H) in AoV,H
N .

The following is an elementary result which slightly simplifies some com-
putations involving redundancies:

Proposition 2.7. A pair (a, k) in A × KV [resp. A × KH] is a left- [resp.
right-] redundancy if and only if

π̌ (a) π̌ (b) š = kπ̌ (b) š [resp. šπ̌ (b) π̌ (a) = šπ̌ (b) k], ∀a ∈ A.

Proof. This follows immediately from 2.4 and the density of π̌ (A) šπ̌ (A)
in X . �

3. Brief description of On,m.

Let us now introduce the algebra On,m which will play a prominent role
in our main result below. For further details on the properties and structure
of On,m the reader is referred to [1].



92 RUY EXEL

Definition 3.1. Given integers n,m ≥ 1, the Leavitt C∗-algebra of type
(n,m), henceforth denoted by Ln,m, is the universal unital C∗-algebra gen-
erated by partial isometries s1, . . . , sn, t1, . . . , tm satisfying the relations

s∗i sk = 0, for i 6= k,

t∗j tl = 0, for j 6= l,

s∗i si = t∗j tj =: q,
n∑

i=1

sis
∗
i =

m∑
j=1

tjt
∗
j =: p,

pq = 0, p+ q = 1.

As observed in [1, Section 2], when n,m > 1, the partial isometries si
and tj in Ln,m do not form a tame set, in the sense that the multiplicative
subsemigroup of Ln,m generated by

{s1, . . . , sn, s∗1, . . . , s∗n, t1, . . . , tm, t∗1, . . . , t∗m}

does not consist of partial isometries. In order to fix this, we consider the
ideal J ELn,m generated by all elements of the form xx∗x−x, where x runs
in the above mentioned semigroup.

Definition 3.2. On,m is the quotient of Ln,m by the ideal J described above.

From now on we will concentrate our attention on On,m, whereas Ln,m

will not play any further role in this work. We will therefore not bother to
introduce any new notation for the images of the si and tj in On,m, denoting
them again by si and tj , as no confusion will arise.

Definition 3.3. The multiplicative subsemigroup of On,m generated by all
the si, all the tj, as well as their adjoints, will be denoted by Sn,m·

It is then clear that Sn,m is formed by partial isometries, and hence it is
an inverse semigroup. Its idempotent semi-lattice, namely

E(Sn,m) = {ss∗ : s ∈ Sn,m} = {e ∈ Sn,m : e2 = e}
is a set of commuting projections and therefore generates an abelian sub-
C∗-algebra of On,m, which we will denote by A. Sections (2) and (4) of [1]
give two different descriptions of the spectrum of A.

Evidently p and q are complementary (central) projections in A, so A
admits a decomposition as a direct sum of two ideals:

A = Ap ⊕Aq,

where Ap = pA, and Aq = qA. Observing that

(3.4) si = psiq, and tj = ptjq,
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for all i and j, we see that the ideals generated by either p or q in On,m coin-
cide with the whole of On,m, which is to say that p and q are full projections.
Consequently the subalgebras of On,m given by

Op
n,m := p(On,m)p, and Oq

n,m := q(On,m)q

are both full corners, and hence Morita-Rieffel equivalent [4, Theorem 1.1]
to On,m·

Proposition 3.5. For every i ≤ n, and j ≤ m, the correspondences

αi : a 7→ sias
∗
i , and βj : a 7→ tjat

∗
j

give well defined ∗-homomorphisms from Aq to Ap, and the same is true
with respect to

α :=
n∑

i=1

αi, and β :=
m∑
j=1

βj.

Moreover α and β are unital.

Proof. Left to the reader. �

The ∗-homomorphisms αi and βj above are closely related to a partial
action of the free group Fn+m on A which contains enough information to
reconstruct On,m in the sense that On,m is isomorphic to the crossed product
Ao Fn+m· See [1] for more information on this.

Another easy consequence of the relations defining On,m above is in order.

Proposition 3.6. Define maps L,M : Ap → Aq by

L (f) =
1

n

n∑
i=1

s∗i fsi, and M (f) =
1

m

m∑
j=1

t∗jftj.

Then L and M are unital positive linear maps and moreover

(i) Lα and Mβ coincide with the identity of Aq.
(ii) L(α(g)f) = gL(f), for all g ∈ Aq, and f ∈ Ap.
(iii) M(β(g)f) = gM(f), for all g ∈ Aq, and f ∈ Ap.

Proof. It is clear that L and M are positive linear maps. Observing that p
is the unit of Ap, we have that

L (p) =
1

n

n∑
i=1

n∑
j=1

s∗i sjs
∗
jsi =

1

n

n∑
i=1

s∗i si = q,

which is the unit of Aq. Therefore L is indeed a unital map, and a similar
argument applies to prove that M is also unital. In order to prove (ii), let
g ∈ Aq, and f ∈ Ap. Then

L (α (g) f) =
1

n

n∑
i=1

n∑
j=1

s∗i sjgs
∗
jfsi =

1

n

n∑
i=1

s∗i sigs
∗
i fsi =

1

n

n∑
i=1

gs∗i fsi = gL (f) .
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The proof of (iii) follows along similar lines and, finally, (i) follows from (ii)
and (iii) upon plugging f = 1. �

Notice that equations (3.6.ii-iii) bear a close similarity with the axioms
defining transfer operators in [10].

Proposition 3.7. Let V and H be the linear operators on Ap defined by

V = αM, and H = βL.

Then (V,H) is an interaction over Ap.

Proof. It is clear that V and H are bounded positive linear maps. In order
to prove (2.1.ii), we have by (3.6) that

VHV = αMβLαM = αM = V.

The proof of (2.1.iii) is similar. As for (2.1.v), let f1,f2 ∈ Ap, with f1 ∈
V (Ap). Then there is k ∈ Ap such that

f1 = V (k) = α (M (k)) = α (g) ,

where g = M (k) ∈ Aq. We then have by (3.6) that

H (f1f2) = β (L (α (g) f2)) = β (gL (f2))

= β (g)β (L (f2)) = β (M (k))H (f2) = · · ·

Noticing that H (f1) = βLαM (k) = β (M (k)) , the above equals

· · · = H (f1)H (f2) ,

proving (2.1.v). The proof of (2.1.iv) is similar. �

Our next goal will be to produce a covariant representation of (V,H) in
Op

n,m· The partial isometry involved will actually be produced in terms of
two other partial isometries, as follows:

Proposition 3.8. Let

S =
1√
n

n∑
i=1

si, and T =
1√
m

m∑
j=1

tj.

Then S∗S = T ∗T = q. Consequently S and T are partial isometries. In
addition

R := ST ∗

is a partial isometry belonging to Op
n,m, which satisfies RR∗ = SS∗ and

R∗R = TT ∗.

Proof. We have

S∗S =
1

n

n∑
i=1

n∑
j=1

s∗i sj =
1

n

n∑
i=1

s∗i si = q,
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and similarly T ∗T = q. This shows that S and T are partial isometries. In
order to show that R is also a partial isometry we compute

RR∗R = ST ∗TS∗ST ∗ = SqT ∗ = SqT ∗ = ST ∗ = R.

By 3.4 we have that S = pS, and T = pT , so

R = ST ∗ = pST ∗p ∈ Op
n,m.

�

The partial isometries S and T above have a close relationship with the
maps α, β, L and M studied above, as we shall now see.

Proposition 3.9. For every f ∈ Ap, and for every g ∈ Aq, one has that

(i) S∗fS = L(f),
(ii) T ∗fT = M(f),
(iii) Sg = α(g)S,
(iv) Tg = β(g)T .

Proof. For f ∈ Ap, and i 6= j, one has that

s∗i fsj = s∗i sis
∗
i fsj = s∗i fsis

∗
i sj = 0.

Therefore

S∗fS =
1

n

n∑
i=1

n∑
j=1

s∗i fsj =
1

n

n∑
i=1

s∗i fsi = L (f) ,

proving (i). A similar argument proves (ii). Given g ∈ Aq, we have that

α (g)S =

n∑
i=1

sigs
∗
i

1√
n

n∑
j=1

sj =
1√
n

n∑
i=1

n∑
j=1

sigs
∗
i sj =

1√
n

n∑
i=1

sigq = Sg.

proving (iii). A similar computation proves (iv). �

The similarity of (3.9.i-iv) with the axioms defining covariant represen-
tations in the context of endomorphisms and transfer operators [10] should
again be noticed.

The covariant representation announced above may now be presented.

Proposition 3.10. Let ι denote the inclusion of Ap into Op
n,m. Then (ι, R)

is a covariant representation of the interaction (V,H) in Op
n,m. Therefore

there is a ∗-homomorphism

Φ : T (Ap,V,H)→ Op
n,m

satisfying Φ (π̌ (a)) = a, for all a in Ap, and such that Φ (š) = R.

Proof. Given f ∈ Ap, we have by (3.9) that

RfR∗ = ST ∗fTS∗ = SM (f)S∗ = α (M (f))SS∗ = V (f)RR∗.

while

R∗ fR = TS∗ fST ∗ = TL (f)T ∗ = β (L (f))TT ∗ = H (f)R∗R.
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This shows that (ι, R) is indeed a covariant representation. The last sentence
of the statement now follows immediately from the universal property of
T (Ap,V,H). �

Let us make a short pause to compare the representation above with the
representations arising from the theory of interaction groups [12]. Observe
that the partial isometries vg of [12, Definition 4.1] lie in the range of a ∗-
partial representation. Moreover, by [8, Proposition 2.4.iii], any two partial
isometries belonging to the range of the same partial representation must
have commuting range projections. In particular, every such partial isome-
try is necessarily a power partial isometry, meaning that its powers are still
partial isometries.

Proposition 3.11. If n and m are both greater or equal to 2, the partial
isometry R introduced in (3.8) is not a power partial isometry. More pre-
cisely, R2 is not a partial isometry.

Proof. It is well known (see e.g. [9, Lemma 5.3]) that the product of two
partial isometries u and v is a partial isometry if and only if the source
projection of u commutes with the range projection of v. Thus, R2 is a
partial isometry if and only if R∗R commutes with RR∗. In view of the last
sentence of (3.8), we must check whether or not SS∗ commutes with TT ∗.
We have

SS∗TT ∗ =
1

nm

n∑
i,k=1

m∑
j,l=1

sis
∗
ktjt

∗
l ,

while

TT ∗SS∗ =
1

nm

m∑
j,l=1

n∑
i,k=1

tjt
∗
l sis

∗
k.

Using the description of On,m as a partial crossed product [1, 2.5], and also
the fact that the crossed product may be defined [14, Section 2] as the cross
sectional C∗-algebra of the semi-direct product Fell bundle [6, Definition
2.8], we deduce that On,m is a cross sectional algebra for a Fell bundle over
the free group Fn+m.

Moreover, if the generators of Fn+m are denoted a1, ..., an, b1, ..., bm, each
summand sis

∗
ktjt

∗
l in the expression for SS∗TT ∗ above lie in the homoge-

neous space associated to the group element aia
−1
k bjb

−1
l , and a similar fact

holds for the terms tjt
∗
l sis

∗
k in the expression for TT ∗SS∗. Should SS∗ com-

mute with TT ∗, the Fourier coefficient [7, Definition 2.7] of SS∗TT ∗ relative
to the group element a1a

−1
2 b1b

−1 would be zero, as this is clearly the case
for TT ∗SS∗. This means that s1s

∗
2t1t

∗
2 = 0, a contradiction. �

As already discussed before the statement of the Proposition above, the
fact that R is not a power partial isometry says that it is impossible to
view the covariant representation given by (3.10) as part of some interaction
group.
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Our next task will be to show that Φ vanishes on the redundancy ideal
of T (Ap,V,H). The following technical result initiates our preparations for
this.

Proposition 3.12. Let y ∈ Op
n,m.

(i) If yApR = {0}, then y = 0.
(ii) If yApR

∗ = {0}, then y = 0.

Proof. (i) For any given k ≤ n, notice that sks
∗
k ∈ Ap, so

0 = ysks
∗
kR = ysks

∗
kST

∗ = ysks
∗
k

( 1√
nm

n∑
i=1

m∑
j=1

sit
∗
j

)
=

1√
nm

n∑
i=1

m∑
j=1

ysks
∗
ksit

∗
j =

1√
nm

m∑
j=1

yskt
∗
j .

Multiplying this on the right by t1, we deduce that

0 =
m∑
j=1

yskt
∗
j t1 = yskt

∗
1t1 = yskq = ysk.

Therefore

yp =
n∑

k=1

ysks
∗
k = 0.

Since y ∈ Op
n,m by hypothesis, we have that y = yp = 0. The proof of (ii) is

similar. �

We may now show the existence of natural a ∗-homomorphism from
Ap oV,H N to Op

n,m.

Proposition 3.13. The map Φ of (3.10) vanishes on the redundancy ideal
of T (Ap,V,H). Consequently there exists a ∗-homomorphism

Ψ : Ap oV,H N→ Op
n,m,

such that Ψ (π̂ (a)) = a, for all a ∈ Ap, and Ψ (ŝ) = R.

Proof. Let (a, k) ∈ Ap ×KV be a left-redundancy. Then, taking (2.7) into
account, for every b ∈ Ap, we have that

0 = (π̌ (a)− k) π̌ (b) š.

Applying Φ to this leads to

0 = (a− Φ (k)) bR.

In other words, we have that (a− Φ (k))ApR = 0, and hence by (3.12) we
conclude that

0 = a− Φ (k) = Φ (π̌ (a)− k) .

In the same way we may prove that (†) holds for right-redundancies, hence
concluding the proof. �
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Recall from (3.3) that Sn,m is the multiplicative subsemigroup of On,m

generated by all the si, all the tj , as well as their adjoints. In addition to
Sn,m, we wish to introduce the following subsets of Sn,m:

Definition 3.14.

(a) We shall denote by G the subset of Sn,m given by

G = {s1, . . . , sn, t1, . . . , tm} .

(b) We shall denote by F the subset of Sn,m given by

F =
{
sit
∗
j : i ≤ n, j ≤ m

}
.

(c) The subsemigroup of Sn,m generated by F ∪F ∗ will be denoted by
Rn,m.

Observe that, since Sn,m is an inverse semigroup and since the generating
set of Rn,m is self-adjoint, one has that Rn,m is itself an inverse semigroup.

Proposition 3.15.

(i) Op
n,m is generated as a C∗-algebra by F .

(ii) Ap is generated as a C∗-algebra by E (Rn,m), the idempotent semi-
lattice of Rn,m.

Proof. In order to prove (i), let us temporarily denote by B the closed
∗-subalgebra of On,m generated by F . By (3.4) we have that

(3.16) sit
∗
j = psit

∗
jp ∈ Op

n,m,

and hence B ⊆ Op
n,m· In order to prove the reverse inclusion it is clearly

enough to prove that
z := px1 . . . xrp ∈ B,

whenever xk ∈ G ∪ G∗, for every k ≤ r. If r = 0, that is, if z = p, then

z = p =

n∑
i=1

sis
∗
i =

n∑
i=1

siqs
∗
i =

n∑
i=1

sit
∗
1t1s

∗
i =

n∑
i=1

sit
∗
1 (sit

∗
1)
∗ ∈ B.

In case r > 0, we claim that, unless z = 0, the xk’s above must:

(a) start with an element from G,
(b) end in an element from G∗, and
(c) alternate elements from G and G∗.

In order to prove (a), suppose by contradiction that x1 ∈ G∗. Then
x∗1 = px∗1q, by (3.4), so px1 = pqx1p = 0, and we would have that z = 0.
A similar reasoning proves (c). As for (b), if two consecutive terms, say xk
and xk+i, both lie in G, then, again by (3.4), we would have that xkxk+1 =
pxkqpxk+1q = 0, and again z = 0.

This said, we may rewrite z as

z = pu1v
∗
1 · · ·ulv∗l p,
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where uk, vk ∈ G (as opposed to G ∪G∗) . Therefore it suffices to prove that
each ukv

∗
k ∈ B.

Since uk and vk may be chosen among the si’s or the tj ’s, we are left with
the task of proving that

sit
∗
j , tjs

∗
i , sis

∗
j , tit

∗
j ∈ B.

It is evident that the first two terms above do lie in B, while

sis
∗
j = siqs

∗
j = sit

∗
1t1s

∗
j = sit

∗
1 (sjt

∗
1)
∗ ∈ B.

A similar argument proves that tit
∗
j ∈ B.

Focusing now on (ii), let C be the closed ∗-subalgebra of On,m generated
by E (Rn,m). Given any element e ∈ E (Rn,m), choose z ∈ Rn,m, such that
e = zz∗. Then clearly e ∈ E (Sn,m), and hence a ∈ A. Since z ∈ Rn,m,
equation 3.16 implies that z = pz, so e = pe, and hence e ∈ pA = Ap. This
shows that C ⊆ Ap.

Recall that A is generated by E (Sn,m), and consequently Ap (= pA) is
generated by pE (Sn,m). In order to prove that Ap ⊆ C, it is therefore
enough to prove that

pe ∈ C, ∀e ∈ E (Sn,m) .

Write e = zz∗, for some z ∈ Sn,m, and further write z = x1 . . . xr, where
xk ∈ G ∪ G∗, for every k ≤ r. Summarizing, we must prove that

f := px1 . . . xrx
∗
r . . . x

∗
1p ∈ C,

observing that the extra p on the right-hand side above may be added be-
cause E (S) is commutative. Excluding the trivial case in which f = 0, we
have already seen that (a)–(c) above must hold. Depending on whether r is
even or odd, we therefore have two alternatives:

(3.17) f = p u1v
∗
1 . . . ul−1v

∗
l−1 ulv

∗
l vlu

∗
l vl−1u

∗
l−1 . . . v1u

∗
1 p,

or

(3.18) f = p u1v
∗
1 . . . ul−1v

∗
l−1 ul u∗l vl−1u

∗
l−1 . . . v1u

∗
1 p,

where uk, vk ∈ G. However (3.18) may easily be reduced to (3.17) , by
plugging vl = ul, so we may assume (3.17). In order to conclude the proof,
it is now enough to show that ukv

∗
k ∈ Rn,m, for all k, which we do by

observing that
sit
∗
j ∈ Rn,m,

tjs
∗
i ∈ Rn,m,

sis
∗
j = sit

∗
1t1s

∗
j ∈ Rn,m,

tit
∗
j = tis

∗
1s1t

∗
j ∈ Rn,m,

and the proof is concluded. �

Proposition 3.19. For every i ≤ n, and j ≤ m, let

pi = sis
∗
i , qj = tjt

∗
j , p̂i = π̂ (pi) , q̂j = π̂ (qj) , and ri,j =

√
nm p̂iŝq̂j.
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Then Ψ (ri,j) = sit
∗
j . Consequently Ψ is surjective.

Proof. Given i and j, we have

Ψ (ri,j) =
√
nm ψ (π̂ (pi) ŝπ̂ (qj)) =

√
nm piST

∗qj =

n∑
k=1

m∑
l=1

piskt
∗
l qj = sit

∗
j .

The last sentence in the statement then follows from (3.15.i). �

4. Mapping Op
n,m into Ap oV,H N

Our main goal is to prove that Ψ is in fact an isomorphism. In order to
accomplish this we will find a representation of the generators and relations
defining On,m within the algebra of 2 × 2 matrices over ApoV,HN, and then
we will employ the universal property of On,m to construct an inverse for Ψ.
Let us begin by proving some useful algebraic relations.

Proposition 4.1. For every i ≤ n, j ≤ m, and f ∈ Ap, one has

(i) M (qj) = 1
mq,

(ii) L (pi) = 1
nq,

(iii) V (qj) = 1
mp,

(iv) H (pi) = 1
np,

(v) piV (H (pif)) = 1
npif,

(vi) qjH (V (qjf)) = 1
mqjf,

(vii) p̂iŝŝ
∗p̂i = 1

n p̂i,

(viii) q̂j ŝŝ
∗q̂j = 1

m q̂j .

Proof. In order to prove (i), we compute:

M (qj) =
1

m

m∑
k=1

t∗kqjtk =
1

m

m∑
k=1

t∗ktjt
∗
j tk =

1

m
t∗j tj =

1

m
q,

while (ii) follows similarly. As for (iii), we have

V (qj) = α (M (qj))
(i)
=

1

m
α (q) =

1

m

n∑
i=1

siqs
∗
i =

1

m

n∑
i=1

sis
∗
i =

1

m
p,

proving (iii), and a similar argument proves (iv). As for (v), we have

V (H (pif)) = αMβL (pif) = αL (pif) .

Notice that

L (pif) =
1

n

n∑
k=1

s∗kpifsk =
1

n
s∗i sis

∗
i fsi =

1

n
s∗i fsi.
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So

α (L (pif)) =
1

n
α (s∗i fsi) =

1

n

n∑
k=1

sks
∗
i fsis

∗
k,

and consequently

piα (L (pif)) =
1

n

n∑
k=1

pisks
∗
i fsis

∗
k =

1

n
sis
∗
i sis

∗
i fsis

∗
i =

1

n
pif ,

thus proving (v), while (vi) follows from a similar argument.
Focusing on (vii), and letting p̌i = π̌ (pi), we claim that ( 1

npi, p̌išš
∗p̌i) is

a left-redundancy. To see this, again taking (2.7) into account, pick f ∈ Ap·
Then

p̌išš
∗p̌iπ̌ (f) š = π̌ (pi) šš

∗π̌ (pif) š = π̌ (pi) π̌ (V (H (pif))) š

= π̌ (piV (H (pif))) š
(v)
=

1

n
π̌ (pif) š = π̌(

1

n
pi)π̌ (f) š,

proving the claim, and hence that 1
n p̌i = p̌išš

∗p̌i, in Ap oV,H N. The last
point is proved similarly. �

We next present some important algebraic relations among the elements
ri,j introduced in (3.19).

Lemma 4.2. For every i, k ≤ n, and every j, l ≤ m, one has that

(i) ri,jr
∗
k,l = 0, if j 6= l,

(ii) r∗i,jrk.l = 0, if i 6= k,

(iii) ri,jr
∗
i,j = p̂i,

(iv) r∗i,jri,j = q̂j,

Proof. Point (i) follows from the fact that the q̂j are pairwise orthogonal
projections, while (ii) follows from a similar assertion about the p̂i· As for
(iii), notice that

ri,jr
∗
i,j = nmp̂iŝq̂j ŝ

∗p̂i = nmp̂iŝπ̂ (qj) ŝ
∗p̂i =

= nmp̂iπ̂ (V (qj)) ŝŝ
∗p̂i

(4.1 vii)
= np̂iπ̂ (p) ŝŝ∗p̂i = np̂iŝŝ

∗p̂i
(4.1 vii)

= p̂i,

proving (iii). The proof of (iv) is similar. �

We will now describe a representation of the generators and relations
defining On,m within the algebra of 2 × 2 matrices over Ap oV,H N .

Proposition 4.3. For every i ≤ n, and j ≤ m, consider the following
elements of M2(Ap oV,H N).

σi =

(
0 0

ri,1r
∗
1,1 0

)
= ri,1r

∗
1,1 ⊗ e2,1

and

τj =

(
0 0
r∗1,j 0

)
= r∗1,j ⊗ e2,1.
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Then, using brackets to denote Boolean value, we have

(i) σ∗i σj = [i = j] p̂1 ⊗ e1,1, for all i, j ≤ n,
(ii) τ∗i τj = [i = j] p̂1 ⊗ e1,1, for all i, j ≤ m,
(iii) σiσ

∗
i = p̂i ⊗ e2,2, for all i ≤ n,

(iv) τjτ
∗
j = q̂j ⊗ e2,2, for all j ≤ m.

Proof.

(i)

σ∗i σj = r1,1r
∗
i,1rj,1r

∗
1,1 ⊗ e1,1

(4.2.ii)
= [i = j] r1,1r

∗
i,1ri,1r

∗
1,1 ⊗ e1,1

(4.2.iv)
= [i = j] r1,1q̂1r

∗
1,1 ⊗ e1,1 = [i = j] r1,1r

∗
1,1 ⊗ e1,1

(4.2.iii)
= [i = j] p̂1 ⊗ e1,1.

(ii)

τ∗i τj = r1,ir
∗
1,j ⊗ e1,1

(4.2.i)
= [i = j] r1,ir

∗
1,i ⊗ e1,1

(4.2.iii)
= [i = j] p̂1 ⊗ e1,1.

(iii)

σiσ
∗
i = ri,1r

∗
1,1r1,1r

∗
i,1⊗e2,2

(4.2.iv)
= ri,1q̂1r

∗
i,1⊗e2,2 = ri,1r

∗
i,1⊗e2,2

(4.2.iii)
= p̂i⊗e2,2.

(iv)

τjτ
∗
j = r∗1,jr1,j ⊗ e2,2

(4.2.iv)
= q̂j ⊗ e2,2.

�

As a consequence we see that the σi and the τj satisfy the relations in
(3.1), with the role of q and p being played, respectively, by p̂i ⊗ e1,1, and
p̂⊗ e2,2, where

p̂ :=
n∑

i=1

p̂i =
m∑
j=1

q̂j = π̂ (p) .

We should remark that the validity of the equation “p+q = 1”, appearing
in (3.1), is guaranteed by the fact that the σi and the τj lie in the corner of
M2(Ap oV,H N) determined by the projection

p̂1 ⊗ e1,1 + p̂⊗ e2,2 =

(
p̂1 ⊗ e1,1 0

0 p̂⊗ e2,2

)
.

The universal property of On,m therefore yields:

Corollary 4.4. There exists a (not necessarily unital) ∗-homomorphism

Γ : On,m →M2 (Ap oV,H N)

such that

(4.5) Γ (si) = σi, and Γ (ti) = τj,

for all i ≤ n, and all j ≤ m.
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Since we are mostly interested in the subalgebra Op
n,m of On,m, it is useful

to understand the behavior of Γ on this subalgebra.

Proposition 4.6. For all i ≤ n, and all j ≤ m, one has that

Γ
(
sit
∗
j

)
= ri,j ⊗ e2,2.

Consequently the image of Op
n,m under Γ is contained in the corner of

M2 (Ap oV,H N) determined by e2,2.

Proof. By equation 4.5, we have that

Γ
(
sit
∗
j

)
= σiτ

∗
j = ri,1r

∗
1,1r1,j ⊗ e2,2.

We must therefore compute

ri,1r
∗
1,1r1,j = (nm)3/2 p̂iŝq̂1ŝ

∗p̂1ŝq̂j = (nm)3/2 π̂ (pi) ŝπ̂ (q1) ŝ
∗π̂ (p1) ŝπ̂ (qj)

= (nm)3/2 π̂ (piV (q1)) ŝπ̂ (H (p1) qj)

(4.1.iii & iv)
= (nm)3/2−1 π̂ (pi) ŝπ̂ (qj) =

√
nm p̂iŝq̂j = ri,j ,

concluding the calculation of Γ(sit
∗
j ). The last assertion in the statement

now follows from (3.15.i). �

Observing that the corner of M2(ApoVHN) determined by e2,2 is naturally
isomorphic to Ap oV,H N , we deduce from the above that:

Corollary 4.7. There exists a ∗-homomorphism

Λ : Op
n,m → Ap oV,H N,

such that Λ(sit
∗
j ) = ri,j. Moreover,

Γ(a) = Λ (a)⊗ e2,2, ∀a ∈ Op
n,m.

We are now ready for our main result.

Theorem 4.8. The homomorphism Λ of the Corollary above is the inverse
of the homomorphisms Ψ of (3.13), and hence Op

n,m is ∗-isomorphic to
Ap oV,H N.

Proof. By (3.19) we have that Ψ (ri,j) = sit
∗
j , and, as seen above, Λ(sit

∗
j ) =

ri,j . Therefore Ψ ◦ Λ acts like the identity on the sit
∗
j , and hence

(4.9) Ψ ◦ Λ = idOp
n,m

,

by (3.15.i).
The proof will then be concluded once we prove that Λ is surjective. With

this goal in mind, we first claim that the ri,j normalize Âp := π̂ (Ap), in the
sense that

ri,jÂpr
∗
i,j ⊆ Âp, and r∗i,jÂpri,j ⊆ Âp.
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To see this, let f ∈ Ap and observe that

ri,j π̂ (f) r∗i,j = nmp̂iŝq̂j π̂ (f) q̂j ŝ
∗p̂i = nmp̂iπ̂ (V (qjfqj)) ŝŝ

∗p̂i =

= nmπ̂ (V (qjf)) p̂iŝŝ
∗p̂i

(4.1.vii)
= mπ̂ (V (qjf)) p̂i ∈ Âp,

and similarly that r∗i,j π̂ (f) ri,j ∈ Âp. As a consequence we deduce that any
element of Ap oV,H N, which is a product of some ri,j and their adjoints,

also normalizes Âp. For any z in the semigroup Rn,m introduced in (3.14.c),
we have that Λ (z) is such a product, so it follows that

Λ (z) ÂpΛ (z)∗ ⊆ Âp,

and, in particular, that

Λ (z) Λ (z)∗ = Λ (zz∗) ∈ Âp.

Consequently, the idempotent semi-lattice of Rn,m is mapped into Âp by Λ.
By (3.15.ii), we then conclude that

(4.10) Λ(Ap) ⊆ Âp.

By (3.13), we have that Ψ (π̂ (a)) = a, for all a ∈ Ap, and hence Ψ(Âp) ⊆
Ap. Suitably restricted, we may therefore view Ψ and Λ as maps

Λ|Ap : Ap → Âp, and Ψ|Âp
: Âp → Ap.

By (4.9) it is clear that

(4.11) Ψ|Ap ◦ Λ|Ap = idAp .

On the other hand, again by (3.13), we have that

(4.12) Ψ|Ap ◦ π̂ = idAp .

Viewing π̂ as a map

π̂ : Ap → Âp,

notice that (4.12) implies that π̂ is injective, but since it is also clearly

surjective, we deduce that π̂ is an isomorphism from Ap onto Âp. Once more
employing (4.12), we conclude that Ψ|Âp

is the inverse of π̂, and hence it is

also an isomorphism. Using (4.11) then implies that Λ|Ap is an isomorphism
as well and, in particular, that (4.10) is in fact an equality of sets.

This said we therefore see that Âp is contained in the range of Λ. Since

Ap oV,HN is generated by Âp and ŝ, in order to prove our stated goal that
Λ is surjective, it now suffices to check that ŝ lies in the range of Λ. But
this follows easily from the fact that p is the unit of Ap and hence that

ŝ = π̂ (p) ŝπ̂ (p) =
n∑

i=1

m∑
j=1

p̂iŝq̂j =
1√
nm

n∑
i=1

m∑
j=1

ri,j

=
1√
nm

n∑
i=1

m∑
j=1

Λ
(
sit
∗
j

)
∈ Λ

(
Op

n,m

)
.
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