New York Journal of Mathematics

New York J. Math. 25 (2019) 195–197.

Corrigendum to "Topology and arithmetic of resultants, I", New York J. Math. 22 (2016), 801–821

Benson Farb and Jesse Wolfson

ABSTRACT. This note is meant to correct a mistake in [1]. A corrected version of [1] can be found on the archive: arXiv:1506.02713.

In Step 2 of Theorem 1.2 on page 808 of [1], we claimed that the map of Equation (3.3) (the map Ψ in Equation (1) below) is an isomorphism. This is not true, as pointed out to us by H. Spink and D. Tseng. However, we will see below that it is a bijective morphism. This has the effect that one needs to add the assumption that $\operatorname{char}(K) = 0$ in Theorem 1.2, Corollary 1.3, and Theorem 1.7 of [1]. The corresponding point counts over \mathbb{F}_q still hold.

Step 2 of Theorem 1.2. As to the proof of Theorem 1.2 on page 808 of [1], the entirety of Step 2 should be deleted and replaced by the following. Let $k \ge 0$. Define a morphism

$$\overline{\Psi}: \mathbb{A}^{m(d-nk)} \times \mathbb{A}^k \to \mathbb{A}^{md}$$

by

$$\overline{\Psi}(f_1,\ldots,f_m,g) := (f_1g^n,\ldots,f_mg^n).$$

The restriction of $\overline{\Psi}$ to $Poly_n^{d-kn,m}\times \mathbb{A}^k$ gives a morphism

$$\Psi: Poly_n^{d-kn,m} \times \mathbb{A}^k \to R_{n,k}^{d,m} - R_{n,k+1}^{d,m}$$
(1)

where the target is the space of *m*-tuples of degree *d* polynomials with a common *n*-fold factor of degree equal to *k*, with no other common *n*-fold factors. We think of the map Ψ^{-1} as the (non-algebraic) map that extracts a common *n*-fold factor from a tuple of polynomials. We claim that:

- (i) For any field k the morphism Ψ is bijective.
- (ii) For $k = \mathbb{C}$, the map Ψ is a homeomorphism in the classical topology.

Received February 1, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary: 55R80; secondary: 14N20.

Key words and phrases. 0-cycles, rational maps.

B.F. is supported in part by NSF Grant Nos. DMS-1105643 and DMS-1406209. J.W. is supported in part by NSF Grant No. DMS-1400349.

These facts will allow us to analyze $Poly_n^{d,m}$ recursively. Note that the case k = 0 follows by definition:

$$Poly_n^{d,m} := R_{n,0}^{d,m} - R_{n,1}^{d,m}$$

To see (i): It is clear from the definitions that Ψ is surjective. The map Ψ is injective because there is a unique *n*-fold degree k factor in each $f_i g^n$, so if $f_i g^n = u_i v^n$ then this implies g = v and so $f_i = u_i$.

To see (ii): First note that the spaces of polynomials in the range and domain of $\overline{\Psi}$ have Galois covers given by the corresponding spaces of (all possible orderings of) roots, with deck group the appropriate product of symmetric groups. The map $\overline{\Psi}$ lifts to a map between these spaces of roots:

$$\Phi: \mathbb{A}^{m(d-nk)} \times \mathbb{A}^k \to \mathbb{A}^{md}$$

given by

$$\Phi((\vec{r}_1, \dots, \vec{r}_m), \vec{s})) := ((\vec{r}_1, (\vec{s})^n), \dots, (\vec{r}_m, (\vec{s})^n))$$

where $\vec{r_i}$ is the vector of d roots of f_i ; the vector of roots of g is denoted \vec{s} ; and where $(\vec{s})^n$ denotes the vector $(\vec{s}, \ldots, \vec{s})$, where \vec{s} is repeated n times. It follows that the map Φ is closed, and hence the map $\overline{\Psi}$ is closed, and hence the map Ψ is closed. Since Ψ is bijective, it follows that Ψ is a homeomorphism.

Step 3 of Theorem 1.2. In Step 3 on page 808, one should insert the following after Equation (3.6).

We now claim that, when char(K) = 0 then

$$[Poly_n^{d-kn,m}] \cdot \mathbb{L}^k = [R_{n,k}^{d,m}] - [R_{n,k+1}^{d,m}]$$
(2)

To see this, first note that we proved in Step 2 that the map Ψ in (1) is a bijective morphism on K-points for all fields K. It is known (see, e.g., Remark 4.1 of [2]) that if char(K) = 0 then a bijective morphism of K-varieties induces an equality [X] = [Y] in the Grothendieck ring of K-varieties.

The line "Plugging in the expression from Equation (3.3) into Equation (3.6)" should now read: "Plugging in the expression from Equation (2) into Equation 3.6"

References

- FARB, BENSON; WOLFSON, JESSE. Topology and arithmetic of resultants, I, New York Jour. of Math. 22 (2016), 801–821. arXiv:1506.02713, MR3548124, Zbl 1379.55016. 195
- [2] GÖTTSCHE, LOTHAR. On the motive of the Hilbert scheme of points on a surface, *Math. Res. Lett.* 8 (2001), no. 5-6, 613–627. arXiv:math/0007043v3, doi:10.4310/MRL.2001.v8.n5.a3, MR1879805, Zbl 1079.14500. 196

(Benson Farb) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, 5734 S. UNIVERSITY AVENUE, CHICAGO, IL 60637, USA. farb@math.uchicago.edu

(Jesse Wolfson) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT IRVINE, IRVINE, CA 92697, USA. wolfson@uci.edu

This paper is available via http://nyjm.albany.edu/j/2019/25-10.html.