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The arithmetic of diophantine
approximation groups I: linear theory

T.M. Gendron

Abstract. A paradigm for a global algebraic number theory of the
reals is formulated with the purpose of providing a unified setting for al-
gebraic and transcendental number theory. This is achieved through the
study of subgroups of nonstandard models of Dedekind domains called
diophantine approximation groups. The arithmetic of diophantine ap-
proximation groups is defined in a way which extends the ideal-theoretic
arithmetic of algebraic number theory, using the structure of an approx-
imate ideal: a bifiltration by subgroups along which partial products
may be performed.
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Introduction

This is the first paper in a series of two introducing a paradigm within
which a global algebraic number theory for R may be formulated, in such a
way as to make possible the synthesis of algebraic and transcendental number
theory into a coherent whole. This synthesis is made possible by passing to
nonstandard models of well known arithmetic objects, and while no deep
model theory is brought to bear, it indicates the utility of model theoretic
constructions in the advancement of certain mathematical ideas.

Algebraic number theory is based upon the arithmetic of ideals in Dedekind
domains; we incorporate transcendental number theory into this theory by
introducing a generalized notion of ideal which we call a diophantine ap-
proximation group. Diophantine approximation groups occur as subgroups
of nonstandard models of classical Dedekind domains and their relatives. In
particular, to θ ∈ R we may associate various Diophantine approximation
groups depending on how one approximates θ – by rational integers, by al-
gebraic integers, by polynomials. In this paper we will consider diophantine
approximation groups of the first two varieties, which together make up the
linear theory.

Diophantine approximation groups come with natural filtrations – called
approximate ideal structures – along which one can partially define products:
the study of which gives rise to an arithmetic extending the usual arithmetic
of ideals. The heart of this paper then consists of an extensive investigation
as to how the arithmetic of diophantine approximation groups

• reflects the class of the real number θ with respect to the linear clas-
sification: rational, badly approximable, (very) well approximable
and Liouville,
• introduces invariants which make possible finer distinctions amongst
real numbers and
• allows one to merge transcendental number theory within the theo-
retical framework of algebraic number theory.

In the sequel [11] we consider diophantine approximation groups consisting of
polynomials and study their arithmetic according to the nonlinear (Mahler)
classification.

We now give a more detailed accounting of what is to be found here. Fix
u ⊂ 2N a nonprincipal ultrafilter on N and denote the ultrapower

∗Z := ZN/u.

By definition, ∗Z consists of equivalence classes of sequences in Z, where
sequences are identified if they agree on subsequences indexed by some X ∈
u. The ring ∗Z is a model of Z in the sense that its first order theory agrees
with that of Z, see §1.

Given θ ∈ R, the diophantine approximation group
∗Z(θ) ⊂ ∗Z
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is the subgroup of ∗n ∈ ∗Z for which there exists ∗n⊥ ∈ ∗Z such that
∗nθ− ∗n⊥ ' 0,

where ' is the relation of being asymptotic to 0 (infinitesimal) in the field
∗R := RN/u. The dual element ∗n⊥ is uniquely determined by ∗n and we
refer to (∗n⊥, ∗n) as a “numerator denominator pair”, denoting it here using
a suggestive pseudo fractional notation

∗n⊥

∗̃n
.

When θ = a/b ∈ Q then
- ∗Z(θ) = ∗(b) = the ultrapower of the ideal (b).
- For every ∗n ∈ ∗(b), ∗n⊥/∗n = a/b.

Otherwise, if θ 6∈ Q, ∗Z(θ) is only a group and ∗Z(θ) ∩ Z = 0: that is, to
“observe” θ by way of Z it is essential that we leave the standard model.

The group ∗Z(θ) was first introduced in [8, 9] where it appears as a gen-
eralized fundamental group for the Kronecker foliation of slope θ; in this
manifestation, it plays a central role in the definition of the quantum mod-
ular invariant [4]. In [10], variants of ∗Z(θ) are considered, in which Z is
replaced by the ring of integers O of a finite extension K/Q or by the poly-
nomial ring Z[X], or θ is replaced by a real matrix Θ. The focus of that
study is the relationship between diophantine approximation groups, Kro-
necker foliations and linear/algebraic independence. In this paper we turn
to the issue of arithmetic, motivated by a desire to answer the following

Question. Let θ,η ∈ R and
∗m⊥

∗̃m
,

∗n⊥

∗̃n

be numerator denominator pairs associated to ∗m ∈ ∗Z(θ), ∗n ∈ ∗Z(η). Un-
der what conditions can they be manipulated as ring elements via fractional
arithmetic: that is, when do
∗m⊥

∗̃m
·
∗n⊥

∗̃n
:=

∗m⊥ · ∗n⊥
˜∗m · ∗n

,
∗m⊥

∗̃m
±
∗n⊥

∗̃n
:=

(∗m∗n⊥ ± ∗m⊥∗n)
˜∗m · ∗n

define numerator denominator pairs corresponding to diophantine approxi-
mations of

θη, θ± η?

As it turns out, our response to this question is closely related to the prob-
lem of determining conditions under which we may form a partial product
of diophantine approximation groups in a way which generalizes the product
of ideals in algebraic number theory.

There are two quantitative measures of a diophantine approximation ∗n ∈
∗Z(θ) that have defined the field of Diophantine Approximation since the
time of Dirichlet and Liouville:
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1. The growth of the denominator ∗n.
2. The decay of the error term

ε(∗n) := θ∗n− ∗n⊥ ∈ ∗Rε
where ∗Rε is the subgroup of infinitesimals in ∗R.

We measure these in the following way. Let

〈·〉 : ∗R −→ ◦PR := ∗R/∗R×fin

be the Krull valuation on ∗R associated to the local subring ∗Rfin ⊂ ∗R of
bounded nonstandard reals. The ordered valuation group ◦PR is a tropical
semi ring with respect to operations ·,+ induced from their counterparts on
∗R, the growth-decay semi ring, §2.

For ∗n ∈ ∗Z(θ) we define its growth to be

µ(∗n) := 〈∗n−1〉
and its decay to be

ν(∗n) := 〈ε(∗n)〉.
Then for each pair µ,ν ∈ ◦PRε = the infinitesimal part of ◦PR,

∗Zµν(θ) = {∗n ∈ ∗Z(θ) | µ < µ(∗n), ν(∗n) ≤ ν}
is a subgroup of ∗Z(θ). The bi-filtered group

∗Z(θ) = {∗Zµν(θ)}
is referred to as an approximate ideal.

The concept of an approximate ideal generalizes naturally that of ideal as
follows. If we consider just the growth filtration ∗Z = {∗Zν} where ∗Zν =
{∗n| ν < µ(∗n)} then for each µ,ν ∈ ◦PRε,

∗Zν · ∗Zµν(θ) ⊂ ∗Zµ·ν(θ).

See Proposition 6.1, §6. By forgetting the indices one recovers the usual
definition of an ideal.

Determining when the subgroup ∗Zµν(θ) is non trivial is the first problem
which must be addressed. The nonvanishing spectrum of θ is

Spec(θ) = {(µ,ν)| ∗Zµν(θ) 6= 0},
a PGL2(Z) invariant of θ. In §4, we characterize the linear classification
of the reals – rational, badly approximable, (very) well approximable and
Liouville – in terms of their nonvanishing spectra, see Figure 1 of §4. The
intersection Specflat(θ) of Spec(θ) with the line µ = ν represents a critical
divide called the flat spectrum, whose study is taken up in §5. The flat
spectrum reflects properties of the partial fraction decomposition of θ rather
than its exponent.

The Question posed above is answered in §6 using the approximate ideal
structure: there is a bilinear map

∗Zµν(θ)× ∗Zνµ(η) −→ ∗Zµ·ν(θη) ∩ ∗Zµ·ν(θ+ η) ∩ ∗Zµ·ν(θ− η) (1)
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defined by the ordinary product in ∗Z. This means that whenever ∗m ∈
∗Zµν(θ) and ∗n ∈ ∗Zνµ(η), then their numerator denominator pairs may be
multiplied and added/subtracted exactly as formulated in the Question.
When θ = a/b, η = c/d ∈ Q, (1) reduces to the product map

∗(b)× ∗(d) −→ ∗(bd)

of the principal ideals generated by the denominators.
For µ ≥ ν we define the composability relation

θµ?ν η

whenever the groups appearing in the product (1) are nontrivial i.e. for
(µ,ν) ∈ Spec(θ), (ν,µ) ∈ Spec(η). The remainder of §6 is devoted to ana-
lyzing this relation with respect to the linear classification of real numbers.
Roughly speaking, composability increases as one progresses from the badly
approximable numbers to the Liouville numbers.

In this connection a new phenomenon emerges: the existence of an-
tiprimes – classes of numbers for which the relation µ?ν is empty for all
possible growth-decay parameters. The unique maximal antiprime set is the
set

B = {badly approximable numbers}.
There is a “splitting” theory for antiprimality not unlike that for primes when
one passes to an algebraic extension, which is described further below.

Approximate ideal arithmetic in the case of the flat product, which amounts
to the consideration of the flat relation µ?µ, does not parse along the linear
classification and properties relating to the combinatorics of the continued
fraction representation

θ = [a1a2...]

must be used to study composability. The classification is transverse to
the linear classification e.g. there exist Liouville numbers which are not flat
composable with any other number, see §7.

In the field of Diophantine Approximation, one frequently restricts atten-
tion to diophantine approximations with error dominated by some function

ψ : ∗Z→ ∗R

i.e. in our language this means studying the set
∗Z(θ|ψ) = {0 6= ∗n ∈ ∗Z(θ)| |ε(∗n)| < |ψ(∗n)|} ∪ {0}.

When ψ(x) = x−1, ∗Z(θ|x−1) is the set of elements of bounded θ-norm

|∗n|θ := (|∗n| · |ε(∗n)|)1/2 mod ∗Rε.

In §8 we show that ∗Z(θ|x−1) has the structure of an approximate group:
with respect to the growth-decay grading ∗Z(θ|x−1) = {∗Zµν(θ|x−1)} there
is a sum

∗Zµν(θ|x−1) + ∗Zνµ(θ|x−1) ⊂ ∗Zµ−ν(θ|x−1) (2)
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where µ− ν = min(µ,ν), see Theorem 8.1 of §8.
There is an important further refinement of the above approximate group

defined by the set of symmetric diophantine approximations

∗Zsym(θ) = {∗n ∈ ∗Z(θ)| 0 < |∗n|θ <∞} ∪ {0} ⊂ ∗Z(θ|x−1).

We show that ∗Zsym(θ) is non trivial, and has the structure of a uni-indexed
approximate group, see Theorem 8.8 of §8. In the case of θ = ϕ = the golden
mean, we give an explicit description of the elements of ∗Zsym(ϕ) using the
Zeckendorf representations of natural numbers. The latter may be useful in
the consideration of the Littlewood conjecture:

lim inf
n
n‖nθ‖‖nη‖ = 0, θ,η ∈ B,

(where ‖ · ‖ = distance to the nearest integer) which is implied by the state-
ment

∗Zsym(θ) ∩ ∗Z(η) 6= ∅ or ∗Zsym(η) ∩ ∗Z(θ) 6= ∅, θ,η ∈ B.

The restriction of | · |θ to ∗Zsym(θ) is not subadditive: rather, it satisfies
the reverse triangle inequality, due to the fact that it most naturally arises
from a Lorentzian bilinear pairing of signature (1, 1) on ∗Zsym(θ). Thus, if
we view diophantine approximations as “material particles departing from
θ” then |∗n|θ is nothing more than the initial speed; for badly approximable
numbers, we have Heisenberg’s uncertainty principle

|∗n|θ > Cθ

where Cθ is the corresponding element of the Lagrange spectrum. See §10.
The remaining sections concern the integration of the above theory with

classical algebraic number theory. Before embarking on this road, we will
need the analogue of diophantine approximation groups for matrices. Given
Θ a real r× s matrix (or in the classical language: a family of r linear forms
in s variables), the matrix approximate ideal

∗Zs(Θ) = {(∗Zs)µν(Θ)}

is the subject of §11. The approximate ideal product derives from a frac-
tional arithmetic on the set of all real matrices M̃(R) based on the Kronecker
product, as well as an arithmetic based on the Kronecker sum of matrices on
the subset M(R) ⊂ M̃(R) of square matrices. The classes of badly approx-
imable, (very) well approximable and Liouville matrices are characterized
(or rather defined) by the shape of their associated nonvanishing spectra. In
the special case of a single form the dual groups give rise to an arithmetic of
nonprincipal approximate ideals.

Let K/Q be a finite extension, O the ring of K-integers and

K ∼= Rd
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the Minkowski space ofK. In §12 we consider the diophantine approximation
group of z ∈ K, which has the structure of an approximate ideal

∗O(z) = {∗Oµν(z)}.

These K-approximate ideals may be multiplied according to an obvious ana-
logue of (1). If K/Q is Galois, then the action of Gal(K/Q) on K extends to
an action on growth-decay indices so that the growth-decay product becomes
Galois natural, c.f. Theorem 12.5. For K/Q finite degree and θ ∈ R ⊂ K, the
associated trace map TrK : ∗O(θ)→ ∗Z(θ) respects growth-decay structure,
see Proposition 12.8. Not surprisingly, the situation with norm maps is more
complicated; however when K/Q is quadratic the norm map is defined and
respects growth-decay structure, see Proposition 12.7. The K-nonvanishing
spectrum SpecK(z) may be used to define the nontrivial classes of K-badly
approximable, K-(very) well approximable and K-Liouville elements of K.
One observes the phenomenon of antiprime splitting, where a Q-badly ap-
proximable number θ loses its antiprime status upon diagonal inclusion in
K: this happens for quadratic Pisot-Vijayaraghavan numbers, see Theorem
12.2.

The last section, §13, is devoted to the approximate ideal generalization
of ideal class group. The approximate ideal class of ∗O(z) is defined by the
decoupled approximate ideal

∗[O](z) := ∗O(z) + ∗O(z)⊥,

where
∗O(z)⊥ := {∗α⊥| ∗α ∈ ∗O(z)}.

The set of decoupled approximate ideals Cl(K) extends the usual ideal class
group Cl(K) of K/Q: if

a = (α,β), a′ = (α′,β′) ⊂ O

are classical ideals and γ = α/β,γ′ = α′/β′ then
∗[O](γ) = ∗[O](γ′)⇐⇒ [a] = [a′] (equality of ideal classes).

There is a canonical surjective map

PGL2(O)\K −→ Cl(K)

which extends the bijection PGL2(O)\K ↔ Cl(K) and which is conjecturally
a bijection as well. WhenK = Q, PGL2(Z)\R is the moduli space of quantum
tori.

While the product of decoupled approximate ideals extends the usual
product of ideal classes, the result may not belong to Cl(K): indeed, there
are nilpotent decoupled approximate ideals e.g. ∗[Z](θ)2 = 0 for θ badly
approximable. To retrieve these lost products, we introduce for each finite
set {z1, . . . ,zk} ⊂ K the correlator decoupled approximate ideal

∗[O](z1| · · · |zk),
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by definition the group generated by any approximate ideal admissible prod-
uct of the ∗[O](zi), i = 1, . . . , k. The set of all such correlator decoupled
approximate ideals forms a monoid with nullity Cl∞(K) ⊃ Cl(K). In the
case K = Q we conjecture that for θ well-approximable of exponent κ, the
decoupled approximate ideal ∗[Z](θ) is bκ+2c-step nilpotent, and that if θ is
Liouville, we conjecture that ∗[Z](θ) is neither nilpotent nor of finite order.

Acknowledgment. This paper was supported in part by the CONACyT
grant 058537 as well as the PAPIIT grant IN103708.

1. Nonstandard structures

This brief section contains all the reader will need to know about non-
standard structures [5], [12].

Let I be a set. A filter on I is a subset f ⊂ 2I satisfying
- If X,Y ∈ f then X ∩ Y ∈ f.
- If X ∈ f and X ⊂ Y then Y ∈ f.
- ∅ 6∈ f.

Any set F ⊂ 2I satisfying the finite intersection property generates a filter,
denoted 〈F〉. A maximal filter u is called an ultrafilter. Equivalently, a
filter u is an ultrafilter ⇔ for all X ∈ 2I , X ∈ u or I −X ∈ u. An ultrafilter
u is principal if it contains a finite set F : equivalently u = 〈F 〉. Otherwise it
is nonprincipal. By Zorn’s lemma, every filter is contained in an ultrafilter.

Now let {Gi}i∈I be a family of algebraic structures of a fixed type: for
our purposes, they will be groups, rings, fields. Let u be an ultrafilter on I.
The quotient ∏

i∈I
Gi/ ∼u, (gi) ∼u (g′i)⇐⇒ {i| gi = g′i} ∈ u

is called the ultraproduct of the Gi with respect to u. By the Fundamental
Theorem of Ultraproducts (Łoś’s Theorem) [5], the ultraproduct is also a
group/ring/field according to the case. If Gi = G for all i the ultraproduct
is called an ultrapower and is denoted

∗G = ∗Gu.

Elements of ∗G will be denoted
∗g = ∗{gi}.

The canonical inclusion G ↪→ ∗G given by constants g 7→ ∗{gi = g} is a
monomorphism. If u is nonprincipal, this map is not onto and again by
Łoś, exhibits ∗G as an elementary extension of G. In particular, ∗G is a
nonstandard model of G: the set of sentences in first order logic satisfied
by ∗G coincides with that of G.

If I = N and u is a nonprincipal ultrafilter on N we denote by
∗Z ⊂ ∗Q ⊂ ∗R ⊂ ∗C
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corresponding ultrapowers of Z ⊂ Q ⊂ R ⊂ C. The field ∗R is totally ordered
and the absolute value | · | extends to a map | · | : ∗R→ ∗R+∪{0}. We define
the local subring of bounded elements

∗Rfin := {∗r ∈ ∗R| ∃M ∈ R+ such that |∗r| < M}

whose maximal ideal is the ideal of infinitesimals
∗Rε := {∗r ∈ ∗Rfin| ∀M ∈ R+, |∗r| < M}.

Then ∗R is the field of fractions of ∗Rfin and the residue class field is
∗Rfin/

∗Rε ∼= R.

2. Tropical growth-decay semi-ring

Let

(∗Rfin)×+ = the group of positive units in the ring ∗Rfin.

Thus (∗Rfin)×+ is the multiplicative subgroup of noninfinitesimal, noninfinite
elements in ∗R+. Consider the multiplicative quotient group

◦PR := ∗R+/(
∗Rfin)×+,

whose elements will be written

µ = ∗x · (∗Rfin)×+.

We denote the product in ◦PR by “·”.

Proposition 2.1. Every element µ ∈ ◦PR may be written in the form
∗nε · (∗Rfin)×+

where ∗n ∈ ∗Z+ − Z+ or ∗n = 1, and ε = ±1.

Proof. Every element of ◦PR is the class of 1, the class of an infinite element
or the class of an infinitesimal element. If µ is the class of ∗r infinite, then
there exists ∗r̄ ∈ [0, 1) = {∗x| 0 ≤ ∗x < 1} and ∗n ∈ ∗Z+ for which ∗r =
∗n + ∗r̄ = ∗n · ((∗n + ∗r̄)/∗n). But (∗n + ∗r̄)/∗n = 1 + ∗r̄/∗n ∈ (∗Rfin)×+,
so µ = ∗n · (∗Rfin)×+. Likewise, when µ represents an infinitesimal class,
µ = ∗n−1 · (∗Rfin)×+ for some ∗n ∈ ∗Z+ − Z+. �

Proposition 2.2. ◦PR is a densely ordered group.

Proof. The order is defined by declaring that µ < µ′ in ◦PR if for any pair
of representatives ∗x ∈ µ, ∗x′ ∈ µ′ we have ∗x < ∗x′, evidently a dense order
without endpoints. The left-multiplication action of ∗R+ on ◦PR preserves
this order, therefore so does the product: if µ < ν then for all ξ ∈ ◦PR,
ξ · µ < ξ · ν. �
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We introduce the maximum of a pair of elements in ◦PR as a formal binary
operation:

µ+ ν := max(µ,ν).

The operation + is clearly commutative and associative. The following
Proposition says that + is the quotient of the operation + of ∗R×+.

Proposition 2.3. Let µ = ∗x · (∗Rfin)×+, µ′ = ∗x′ · (∗Rfin)×+. Then

(∗x+ ∗x′) · (∗Rfin)×+ = µ+ µ′.

Proof. Note that ∗x+∗x′ ∈ ∗R+ and ∗x+∗x′ ∈ max(µ,µ′). Indeed, suppose
first that µ 6= µ′, say µ < µ′. Then there exists ∗ε infinitesimal for which
∗x = ∗ε∗x′, and we have ∗x′+∗x = ∗x′(1+∗ε) ∈ µ′. If µ = µ′ then ∗x′ = ∗r∗x
for ∗r ∈ ∗R×+ and (∗x+ ∗x′) · (∗Rfin)×+ = ∗x(1 + ∗r) · (∗Rfin)×+ = µ = µ+µ. �

Proposition 2.4. Let ∗r, ∗s ∈ ∗R+ and µ,ν,ν′ ∈ ◦PR. Then
1. µ · (ν+ ν′) = (µ · ν) + (µ · ν′).
2. ∗r · (ν+ ν′) = (∗r · ν) + (∗r · ν′).
3. (∗r + ∗s) · µ = (∗r · µ) + (∗s · µ).

Proof. 1. It is enough to check the equality in the case ν′ > ν. Then
µ · (ν + ν′) = µ · ν′. But the latter is equal to (µ · ν) + (µ · ν′) since the
product preserves the order. The proof of 2. is identical, where we use the
fact that the multiplicative action by ∗R+ preserves the order. Item 3. is
trivial. �

It will be convenient to add the class −∞ of the element 0 ∈ ∗R to the
space ◦PR: in other words, we will reconsider ◦PR as the quotient (∗R+ ∪
{0})/(∗Rfin)×+. Note that we have for all µ ∈ ◦PR

−∞+ µ = µ, −∞ · µ = −∞.
In particular, −∞ is the neutral element for the operation +. Thus, by
Proposition 2.4:

Theorem 2.5. ◦PR is an abstract (multiplicative) tropical semi-ring: that
is, a max-times semi ring.

We will refer to ◦PR as the growth-decay semi-ring. Let ◦PRε ⊂ ◦PR be
the image of the (∗Rfin)×+-invariant multiplicatively closed set (∗Rε)+. With
the operations ·,+, ◦PRε is a sub tropical semi-ring: the decay semi-ring.

If we forget the tropical addition, considering ◦PR as a linearly ordered
multiplicative group, then the map

〈·〉 : ∗R→ ◦PR, 〈∗x〉 = |∗x| · (∗Rfin)×+,

is the Krull valuation associated to the local ring ∗Rfin (see for example [23]).
The restriction of 〈·〉 to R is just the trivial valuation, so that 〈·〉 cannot be
equivalent to the usual valuation | · | on ∗R induced from the euclidean norm.
Note also that 〈·〉 is nonarchimedean. We refer to 〈·〉 as the growth-decay
valuation.
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Advice to the Reader. The remainder of this section describes the Frobenius
growth-decay semi-ring which, while central to [11], appears in this paper
only in Corollary 4.10 and Note 4, and so may be skipped in a casual reading.

There is a natural “Frobenius action” of the multiplicative group R×+ on
◦PR: for µ ∈ ◦PRε and ∗x ∈ µ define

Φr(µ) = µr := ∗xr · (∗Rfin)×+

for each r ∈ R×+. Note that this action does not depend on the choice of
representative ∗x. We may extend the Frobenius action to (∗Rfin)×+ as follows.
For ∗r = ∗{ri} ∈ (∗Rfin)×+ and µ ∈ ◦PR represented by ∗x = ∗{xi} ∈ ∗R+

define

Φ∗r(µ) = µ
∗r := ∗{xrii } · (

∗Rfin)×+,

which is again well-defined. Note that it is not the case that if ∗r ' r ∈ R+

that µ∗r = µr.

Theorem 2.6. The map Φ∗r : ◦PR → ◦PR is a tropical automorphism for
each ∗r ∈ (∗Rfin)×+ and defines a faithful representation

Φ : (∗Rfin)×+ −→ Aut(◦PR).

Proof. Φ∗r is clearly multiplicative. Moreover: (µ+ν)
∗r = (max(µ,ν))

∗r =
µ
∗r + ν

∗r. �

We denote by µ̄ the orbit of µ by (∗Rfin)×+ with respect to Φ. Note that
by Theorem 2.6:

- µ̄ is a sub tropical semi-ring of ◦PR.
- The quotient of ◦PR by Φ, denoted ◦PR, is a tropical semi-ring.

For all µ̄, ν̄ ∈ ◦PR, we write µ̄ < ν̄ ⇔ for all µ ∈ µ̄, ν ∈ ν̄, µ < ν.

Proposition 2.7. ◦PR is a dense linear order.

Proof. If µ̄ 6< ν̄ and µ̄ 6> ν̄ then it follows that there exist representatives
µ ∈ µ̄, ν ∈ ν̄ for which µ < ν and µ∗r > ν for ∗r ∈ (∗Rfin)×+. We may
assume without loss of generality that both µ,ν represent infinite classes
so that ∗r > 1. Representing ∗x = ∗{xi} ∈ µ and ∗y = ∗{yi} ∈ ν, let
∗s = ∗{si} where si is the unique positive real satisfying xsii = yi. Then
∗s ∈ [1, ∗r] ⊂ (∗Rfin)×+, µ

∗s = ν and therefore µ̄ = ν̄. Thus ◦PR is a linear
order. On the other hand, if µ̄ < ν̄, then choosing representatives ∗x, ∗y as
above, we have ∗x∗s = ∗y for ∗s infinite. If we let µ′ be the class of ∗x

√
∗s,

then µ̄ < µ̄′ < ν̄. �

We call ◦PR the Frobenius growth-decay semi-ring.
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3. Growth-decay filtration

As in the previous section, ◦PRε ⊂ ◦PR denotes the decay semi-ring. We
will measure growth of an infinite element of ∗Z in terms of the decay of its
reciprocal: this has the advantage of allowing us to make the vital comparison
of denominator growth with error decay of a diophantine approximation in
a single, unambiguous setting.

For each 0 6= ∗n ∈ ∗Z define its growth by

µ(∗n) := 〈|∗n−1|〉 ∈ ◦PRε ∪ {1};

note that µ(∗n) = 1 ⇔ ∗n = n ∈ Z. For each µ ∈ ◦PRε denote by
∗Zµ = {0 6= ∗n ∈ ∗Z| µ(∗n) > µ} ∪ {0} = {∗n ∈ ∗Z| |∗n| · µ ∈ ◦PRε} .

Note that ∗Zµ is a well-defined subgroup of ∗Z. If µ < µ′ then
∗Zµ ⊃ ∗Zµ′ . (3)

The collection {∗Zµ} forms an order-reversing filtration of ∗Z by subgroups,
called the growth filtration. Notice that

∗Zµ · Zµ′ ⊂ Zµ·µ
′

so that ∗Z has the structure of a filtered ring with respect to the growth
filtration.

It will be useful to introduce the following subordinate filtration to the
growth filtration. Fix µ ∈ ◦PRε and for each ι ∈ ◦PRε define

∗Zµ[ι] := {∗n| |∗n| · µ < ι} .

Then ∗Zµ[ι] is a group since by Proposition 2.4, item 3.,

|∗m+ ∗n| · µ ≤ |∗m| · µ+ |∗n| · µ < ι.

Note that if ι < λ then ∗Zµ[ι] ⊂ ∗Zµ[λ]. We call this the fine growth
bi-filtration. The fine growth bi-filtration makes of ∗Z a bi-filtered ring:

∗Zµ[ι] · Zµ′[ι′] ⊂ Zµ·µ
′[ι·ι′].

For θ ∈ R, recall (see §2 of [10]) that by a diophantine approximation
we mean an element ∗n ∈ ∗Z such that the error satisfies

ε(∗n) := ∗nθ− ∗n⊥ ∈ ∗Rε
for some

∗n⊥ = ∗n⊥θ ∈ ∗Z,
called the θ-dual or simply the dual of ∗n if θ is understood. The dio-
phantine approximation group is then

∗Z(θ) = {∗n ∈ ∗Z| ∗n is a diophantine approximation of θ} ⊂ ∗Z. (4)

Write
∗Zµ(θ) = ∗Zµ ∩ ∗Z(θ) and ∗Zµ[ι](θ) = ∗Zµ[ι] ∩ ∗Z(θ).
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We now introduce a second filtration which is only available for the groups
∗Z(θ). Let ν ∈ ◦PRε. For each ∗n ∈ ∗Z(θ) write

ν(∗n) := 〈|ε(∗n)|〉 ∈ ◦PRε,

which we call the decay of ∗n. We define
∗Zν(θ) = {∗n ∈ ∗Z(θ)| ν(∗n) ≤ ν}

which is a subgroup of ∗Z(θ): for ∗n, ∗n′ ∈ ∗Zν(θ), |ε(∗n+ ∗n′)| ≤ |ε(∗n)|+
|ε(∗n)| and therefore ν(∗n+ ∗n′) ≤ ν. Note that if ν < ν′,

∗Zν(θ) ⊂ ∗Zν′(θ) (5)

which produces an order-preserving filtration of ∗Z(θ) called the decay fil-
tration. Finally we denote the intersection subgroup

∗Zµν(θ) = ∗Zµ(θ) ∩ ∗Zν(θ),

the collection of which we refer to as the growth-decay bi-filtration of
∗Z(θ). In addition we have the fine growth-decay tri-filtration, given by
the collection of subgroups ∗Zµ[ι]

ν (θ).

Aside. The reader may wonder why we have chosen to use a strict inequality
to define the growth filtration and yet a non strict inequality to define the
decay filtration. The strict inequality in the growth filtration is required in
the formulation of the approximate ideal product (see Theorem 6.3). The
non strict inequality in the decay filtration is used in order to take into
account the fact that the strict inequality present in Dirichlet’s Theorem
may become non strict upon passage to the growth-decay semi ring ◦PR: see
for example the proof of Theorem 4.2.

Proposition 3.1. For all µ,ν, ι ∈ ◦PRε, ν 6= −∞, ∗Zµ[ι](θ) and ∗Zν(θ) are
nontrivial and uncountable. For ν = −∞, Z−∞(θ) is non trivial ⇔ θ ∈ Q.

Proof. Let µ, ν and ι be represented by sequences of positive real numbers
{rk}, {sk} and {ik} converging to 0. Let ∗n ∈ ∗Z(θ) be represented by the
sequence of integers {nk}. We may choose ∗n so that nkrk → 0; in fact,
so that |nkrk| < ik. The sequence {nk} may then be used to construct
uncountably many elements of ∗Zµ[ι](θ). Similarly, we may find a class ∗m ∈
∗Z(θ) represented by {mk} so that |mkθ−m⊥k | ≤ sk, and the sequence {mk}
may then be used to construct uncountably many elements of ∗Zν(θ). The
last claim in the statement of the Proposition follows from the fact that
θ ∈ R admits 0 6= ∗n ∈ ∗Z(θ) with ε(∗n) = 0 ⇔ θ ∈ Q.

�

Note that the duality map ∗n 7→ ∗n⊥ defines an isomorphism

⊥: ∗Z(θ) −→ ∗Z(θ−1) (6)

for all θ 6= 0.
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Proposition 3.2. Let θ 6= 0. Then the duality isomorphism (6) respects the
fine growth-decay tri-filtration:

∗Zµ[ι]
ν (θ)⊥ := {∗n⊥ ∈ ∗Z| ∗n ∈ ∗Zµ[ι]

ν (θ)} = ∗Zµ[ι]
ν (θ−1)

Proof. Note that
∗n · µ < ι⇔ ∗n⊥ · µ < ι (7)

which implies that duality respects the fine growth bi-filtration. On the other
hand, ε(∗n⊥) = −θ−1ε(∗n) so the decay filtration is preserved as well. �

Recall [15] that θ is projective linear equivalent to η if there exists A ∈
PGL2(Z) such that A(θ) = η. The relation of projective linear equivalence
is denoted in this paper by:

θ m η.

Theorem 3.3. If θ m η by A ∈ PGL2(Z), then A induces an isomorphism

A : ∗Z(θ)
∼=−→ ∗Z(η)

preserving the fine growth-decay tri-filtration.

Proof. The isomorphism is induced by the matrix action of a linear represen-

tative A =

(
a b
c d

)
on pairs (∗n⊥, ∗n) where ∗n ∈ ∗Z(θ) and θ · ∗n ' ∗n⊥.

That is,

A(∗n) = c∗n⊥ + d∗n and A(∗n⊥) = a∗n⊥ + b∗n.

By (7), ∗n ∈ ∗Zµ[ι] ⇔ ∗n⊥ ∈ ∗Zµ[ι]. It follows then that ∗n ∈ ∗Zµ[ι] ⇔
A(∗n) ∈ ∗Zµ[ι]. On the other hand,

η ·A(∗n)−A(∗n⊥) =
1

cθ+ d

[
(aθ+ b)

(
c∗n⊥ + d∗n

)
−(cθ+ d)

(
a∗n⊥ + b∗n

)]
=

1

cθ+ d

(
θ∗n− ∗n⊥

)
=
ε(∗n)

cθ+ d
.

Therefore: ∗n ∈ ∗Zν(θ) ⇔ A(∗n) ∈ ∗Zν(η). �

4. Nonvanishing spectra

The nontriviality of the group ∗Zµν(θ) for specific indices µ,ν ∈ ◦PRε de-
pends intimately on the type of θ. We define the nonvanishing spectrum
to be the subset

Spec(θ) = {(µ,ν)| ∗Zµν(θ) 6= 0} ⊂ ◦PR2
ε.

In this section, we will characterize the spectra of a real number according to
its “linear classification” (rational, badly approximable, well approximable,
Liouville). We begin with some very general results.
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Proposition 4.1. If θ m η then Spec(θ) = Spec(η).

Proof. This follows immediately from Theorem 3.3. �

Theorem 4.2. For all θ ∈ R and µ < ν, ∗Zµν(θ) 6= 0.

Proof. By Proposition 2.2, we may find ρ with µ < ρ < ν; and by Propo-
sition 2.1, ρ = 〈∗N−1〉 for some ∗N ∈ ∗Z+ − Z+. By the Uniform Dirichlet
Theorem1 there is ∗n ∈ ∗Z(θ) such that |ε(∗n)| < ∗N−1 where ∗n < ∗N .
Therefore, |ν(∗n)| ≤ ν. On the other hand ∗n · µ ≤ ∗N · µ ∈ ◦PRε since
µ < ρ, so ∗n ∈ ∗Zµ(θ) �

The set
{(µ,ν)| µ < ν} ⊂ Spec(θ)

is called the slow component.
For θ ∈ R, denote by {ai = ai(θ)}, i = 0, 1, . . . , the sequence of its partial

quotients [15]: an infinite sequence ⇔ θ 6∈ Q. As is the custom, we write

θ = [a0a1 . . . ].

The sequence
{qi}

of best denominators of θ is defined recursively by the formula

qi+1 = ai+1qi + qi−1, q0 = 1, q1 = a1.

Similarly, the sequence
{pi}

of best numerators is defined

pi+1 = ai+1pi + pi−1, p0 = a0, p1 = a1a0 + 1.

We have (e.g. see Theorem 5 of Chapter I of [15])

qi|qiθ− pi| < q−1
i . (8)

The sequence of quotients
{pi/qi}

is called the sequence of best approximations (or principal convergents)
of θ: by (8) they satisfy pi/qi → θ. See [3], [15], [18].

Consider now a sequence {qni} in which qni is the nith best denominator
of θ, where ni ≤ ni+1 for all i and ni →∞. By (8) the associated sequence
class defines an element

∗q̂ := ∗{qni} ∈ ∗Z(θ)

called a best denominator class, and the classes

µ̂ := µ(∗q̂), resp. ν̂ := ν(∗q̂)

1For any real number N > 1, there exist p, q ∈ Z with 1 ≤ q < N such that |qθ− p| <
1/N . See [21].
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will be referred to as the associated best growth resp. best decay of ∗q̂.
We will denote by

∗q̂+ resp. ∗q̂−

the classes of the successor and predecessor sequences ∗{qni+1} resp. ∗{qni−1},
with a similar notation employed for the associated best growth and best de-
cay classes e.g.

µ̂+ = the growth class of ∗q̂+.

The above terminology applies without change to the corresponding se-
quence of best numerators {pni}, yielding the associated best numerator
class ∗p̂ and its best growth.

Warning. The ordinary index shift on sequences, {ni} 7→ {n′i := ni+1},
does not induce a well-defined map of ∗Z e.g. an element ∗m may have two
representative sequences {mi}, {m̃i} for which the shifts {m+

i = mi+1},
{m̃+

i = m̃i+1} are no longer equivalent with respect to the ultrafilter defin-
ing ∗Z. The definitions of successor and predecessor above implicitly use the
fact that a best class ∗q is associated to a subsequence {qni} of the “mother
sequence” {q1, q2, . . . }, and the successor operation is defined by shifting in-
dices by 1 in the latter, not in the former. That is, on the level of sequences,
the successor of {qni} is defined to be {qni+1} = the shift of the subsequence
{qni} in the mother sequence (which may have empty intersection with the
original sequence), not {qni+1} = the index shift of {qni} within itself. In par-
ticular, the successor operation on ∗q̂ does not depend on the representative
sequence of best denominators used to define it.

Note 1. As the notation suggests, ∗q̂+ is indeed the order successor of ∗q̂
in the set of best denominator classes, so the best denominator classes are
discretely ordered. On the other hand, when passing to best growths/decays,
we have the reversed and not necessarily strict equalities

µ̂+ ≤ µ̂ and ν̂+ ≤ ν̂.
Thus the set of best growths resp. best decays need not be discretely ordered.

Proposition 4.3. Let ∗q̂ be a best denominator class, ∗p̂ the corresponding
best numerator class. Then

∗q̂⊥ = ∗p̂ ∈ ∗Z(θ−1).

In particular, the best growth µ̂ of ∗q̂ is also the best growth of ∗p̂.

Proof. That ∗q̂⊥ = ∗p̂ follows from (8). Since ∗q̂θ − ∗p̂ = ε(∗q̂), the best
growth class of ∗p̂ coincides with that of ∗q̂. �

Note 2. When θ = p/q ∈ Q, the sequence of best approximations is finite
and terminates in θ, so every best approximation class ∗q̂ is standard and
equal q. In this case, every best growth is µ̂ = 1 and every best decay is
ν̂ = −∞.

For θ ∈ R− Q, we denote by:
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- ∗Zb(θ) the set of best denominator classes.
- ◦PRbg

ε (θ) (◦PRbd
ε (θ)) the set of best growths (best decays) of best

denominator classes.

Proposition 4.4. For θ ∈ R− Q, ◦PRbg
ε (θ) is closed in the order topology.

Proof. If ◦PRbg
ε (θ) = ◦PRε we are done, so suppose otherwise. Given µ ∈

◦PRε − ◦PRbg
ε (θ), we will construct an interval (µ′,µ′′) 3 µ containing no

elements of ◦PRbg
ε (θ). Let ∗x ∈ µ−1. Then there exists a largest ∗q̂ for which

∗x > ∗q̂: indeed, if we choose {xi} ∈ ∗x non-decreasing and let qni be the
largest member of {qi} which is less than xi, then ∗q̂ = ∗{qni} works. Since
µ 6∈ ◦PRbg

ε (θ), there exists ∗r infinite with ∗r · ∗q̂ = ∗x. Now let ∗s ∈ ∗R+

be such that both ∗s and ∗r/∗s are infinite, and let ∗y = (∗r/∗s) · ∗q̂. If we
denote by µ′ the class of ∗y−1 then µ̂ > µ′ > µ and [µ,µ′] ∩ ◦PRbg

ε (θ) = ∅.
In the same way, we may produce µ′′ < µ with [µ′′,µ]∩ ◦PRbg

ε (θ) = ∅. Thus
(µ′′,µ′) is the sought after interval. �

The following result is our first vanishing theorem: a straightforward rein-
terpretation of the quality of being a best denominator class in terms of the
growth-decay bi-filtration.

Theorem 4.5. Let θ ∈ R−Q and let ∗q̂ be any best denominator class with
associated growth and decay µ̂, ν̂. Then for all µ ≥ µ̂ and ν < ν̂, ∗Zµν(θ) = 0.

Proof. For µ ≥ µ̂ and ν < ν̂, suppose there exists a non-zero ∗n ∈ ∗Zµν(θ),
which we may assume is positive. Then ∗n · µ̂ ≤ ∗n · µ ∈ ◦PRε implies that
∗n < ∗q̂. In turn, the latter implies, since ∗q̂ is the class of a non decreasing
sequence of best denominators of θ, that

|ε(∗n)| = |θ∗n− ∗n⊥| ≥ |θ∗q̂ − ∗q̂⊥| = |ε(∗q̂)|.

From this we derive ν(∗n) ≥ ν̂ > ν, contradiction. �

In the (µ,ν)-plane the coordinates belonging to the right-infinite horizon-
tal strip

R̂ = {(µ,ν)| µ ≥ µ̂, ν < ν̂}

give parameters where the groups ∗Zµν(θ) vanish. We call R̂ a vanishing
strip. See the graph labeled “generic irrational” in Figure 1.

We now give a spectral characterization of the linear classification of real
numbers.

Proposition 4.6. θ ∈ Q ⇔ Spec(θ) = ◦PR2
ε.

Proof. If θ ∈ Q then for all ν, ∗Zν(θ) = ∗Z−∞(θ) = ∗Z(θ), so ∗Zµν(θ) =
∗Zµ(θ) 6= 0 for all µ,ν. On the other hand, if θ ∈ R − Q then by Theorem
4.5, Spec(θ) ( ◦PR2

ε. �
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Recall that θ ∈ R− Q is badly approximable if

lim
n→∞

inf n‖nθ‖ > 0,

where ‖ · ‖ is the distance-to-the-nearest-integer function. Or equivalently, if
there exists a real number C > 0 such that for all 0 6= ∗n ∈ ∗Z(θ),

|∗n| · |ε(∗n)| ≥ C.
The set

B = {badly approximable numbers}
has cardinality the continuum [18].

Theorem 4.7. The following statements are equivalent:
i. θ ∈ B.
ii. ∗Zµν(θ) = 0 for all µ ≥ ν.
iii. ◦PRbg

ε (θ) = ◦PRε. In particular, for all µ̂ ∈ ◦PRbg
ε (θ),

µ̂+ = µ̂.

iv. µ̂ = ν̂ for every best growth decay pair. In particular,
◦PRbg

ε (θ) = ◦PRbd
ε (θ).

Proof. i. ⇒ ii. If θ ∈ B then for all non-zero ∗n ∈ ∗Z(θ) we have |∗n| ·
|ε(∗n)| ≥ C. If there exists µ ≥ ν with 0 6= ∗n ∈ ∗Zµν(θ) then in ◦PRε,

|∗n| · µ ≥ |∗n| · ν ≥ |∗n| · ν(∗n) ≥ 1 = the ◦PR-class of C,

implying that |∗n| · µ 6∈ ◦PRε and ∗n 6∈ ∗Zµ. ii. ⇒ i. If ∗Zµν(θ) = 0 for all
µ ≥ ν, then for each ∗n ∈ ∗Z(θ), |∗n| · |ε(∗n)| ≥ δ > 0 where δ ∈ R. We
can choose delta uniformly: if not, then by a diagonal sequence argument we
could produce an element ∗Z(θ) for which |∗n| · ε(∗n) is infinitesimal (i.e. we
could produce a non trivial element of ∗Zν(∗n)

ν(∗n)(θ)) violating the hypothesis.
i. ⇒ iii. θ ∈ B ⇔ the partial quotients ai are uniformly bounded ⇔ the
successive ratios of best denominators qi+1/qi are uniformly bounded. Now
given µ ∈ ◦PRε let {ni} ⊂ N+ represent µ−1. For each i let qki be the largest
best denominator with qki ≤ ni so that ni < qki+1. By hypothesis there
exists a constant B > 1 so that qki+1 < Bqki . It follows that we may choose
ni so that ni = biqki with 1 ≤ bi < B. Then the growth of the class ∗q̂
is equal to µ. iii. ⇒ i. If θ 6∈ B, choose µ̂ so that if {qni} represents µ̂−1

then qni+1/qni is monotone and unbounded. Then the successor sequence
{q+
ni

= qni+1} defines a distinct element µ̂+ ∈ ◦PRbg
ε (θ) with µ̂+ < µ̂. It

follows that ◦PRbg
ε (θ) 6= ◦PRε. i. ⇔ iv. From Dirichlet’s Theorem and the

definition of B, µ̂ = ν̂ for every best growth decay pair⇔ 1 > |∗q̂|·ε(∗q̂) ≥ C
for every best denominator class for some uniform C > 0 ⇔ θ ∈ B. �

Recall that θ ∈ R − Q which is not badly approximable is called well
approximable: that is,

lim
n→∞

inf n‖nθ‖ = 0.
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We denote the set of well approximable numbers by

W = R− (Q ∪B).

Theorem 4.8. Let θ ∈ R− Q. The following statements are equivalent:
i. θ ∈W.
ii. There exists µ ∈ ◦PRε such that ∗Zµµ(θ) 6= 0.
iii. There exists µ̂ ∈ ◦PRbg

ε (θ) such that µ̂+ < µ̂. In particular, ◦PRbg
ε (θ)

is not a dense order.
iv. µ̂ > ν̂ for some best growth best decay pair.

Proof. i.⇔ ii. By Theorem 4.7, θ ∈ B⇒ ∗Zµµ(θ) = 0 for all µ. On the other
hand if θ ∈W⇒ there exists µ ≥ ν with ∗Zµν(θ) 6= 0. By the order-reversing
property of the growth filtration, the latter implies that ∗Zνν(θ) 6= 0. i.⇔ iii.
If θ ∈W then there exists a best denominator sequence {qni} for which the
sucessor {q+

ni
= qni+1} satisfies q+

ni
/qni → ∞. The other direction follows

from Theorem 4.7. iii. ⇔ iv. Immediate from Theorem 4.7. �

Let κ ≥ 1. Recall [1] that θ is κ-approximable if the set of n ∈ N for
which ‖nθ‖ < n−κ has infinite cardinality i.e.

lim
n→∞

inf nκ‖nθ‖ < 1. (9)

The set of κ-approximable numbers is denoted

Wκ.

By Dirichlet’s Theorem
W1 = R− Q.

If θ is κ-approximable for κ > 1 then we say that θ is very well approx-
imable; the set of such numbers is denoted

W>1 =
⋃
κ>1

Wκ.

The inclusion W>1 ⊂W is proper and we write

W1+ = W−W>1

for the set of well but not very well approximable numbers. For
θ ∈W>1 its exponent2 is

κ(θ) := sup
θ∈Wκ

κ ∈ (1,∞].

It is not necessarily the case that θ is κ(θ)-approximable. We say that the
exponent κ = κ(θ) of θ ∈W>1 is excellent if

lim
n→∞

inf nκ‖nθ‖ = 0.

2Equal to the asymptotic irrationality exponent defined in [21].
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In particular, if the exponent κ of θ is excellent then θ ∈Wκ. If the exponent
is not excellent, we will say that it is bad and say that θ is κ-bad.

Theorem 4.9. Let θ ∈W>1. The following statements are equivalent:
i. θ has (excellent) exponent κ > 1.
ii. The following conditions hold:

a. For all κ′ > κ, ∗Zµ
µκ
′ (θ) = 0.

b.
⋂
λ∈[1,κ)

∗Zµ
µλ

(θ) 6= 0 (∗Zµµκ(θ) 6= 0). In particular,
∗Zνν(θ) ⊃ ∗Zµν(θ) 6= 0

for all µ ≥ ν > µκ.
iii. The following conditions hold:

a. For all κ′ > κ and for every best growth decay pair (µ̂, ν̂),

µ̂κ
′ ≤ ν̂.

b. There exists a best growth decay pair (µ̂, ν̂) such that

µ̂λ > ν̂ (µ̂κ > ν̂)

for all 1 ≤ λ < κ.

Proof. i. ⇒ ii. θ has exponent κ > 1 ⇔
a’. For all ∗m ∈ ∗Z(θ) and all κ′ > κ, ν(∗m) > µ(∗m)κ

′ .
b’. there exists ∗n ∈ ∗Z(θ) such that ν(∗n) < µ(∗n)λ for all 1 ≤ λ < κ.

Properties a’., b’. together are equivalent to properties a., b. of ii. Indeed,
the vanishing ∗Zµ

µκ
′ (θ) = 0 for all κ′ > κ is equivalent to a’. Assuming

b’.: since ◦PRε is a dense linear order, we may find µ ∈ ◦PRε such that
ν(∗n) < µλ < µ(∗n)λ for all 1 ≤ λ < κ. Then µ < µ(∗n) and therefore

∗n ∈ ∗Zµ
ν(∗n)(θ) ⊂

⋂
λ∈[1,κ)

∗Zµ
µλ

(θ). (10)

On the other hand, the existence of ∗n satisfying (10) implies b’..
i. ⇒ iii. We show that a’., b’. ⇔ a., b. of iii. Assuming a’., b’. Let ∗m

be as in a’. and let ∗q̂ be the largest best denominator class ≤ ∗m. If ∗m is
itself a best denominator class we are done, so assume otherwise. Then

µ̂λ ≥ µ(∗m)λ > ν(∗m) ≥ ν̂.
We leave the excellent versions to the reader. �

The Liouville numbers are those which are very well approximable for
every exponent κ > 1; they are denoted

W∞.

For any µ ∈ ◦PRε, write

(µ∞,µ] =
⋃
κ>1

(µκ,µ].
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The next result follows immediately from Theorem 4.9: we recall from §2
that µ̄ is the orbit of µ with respect to the Frobenius action of (∗Rfin)×+.
For µ̂, ν̂ a best growth-decay pair, the corresponding Frobenius orbits are
denoted ̂̄µ, ̂̄ν.
Corollary 4.10. Let θ ∈ R− Q. The following statements are equivalent:

i. θ ∈W∞.
ii. There exists µ ∈ ◦PRε such that⋂

λ∈[1,∞)

∗Zµ
µλ

(θ) 6= 0.

In particular, ∗Zνν(θ) 6= 0 for all ν ∈ (µ∞,µ].
iii. ̂̄µ > ̂̄ν for some best growth decay pair.

5. Flat spectra

The line µ = ν represents a critical divide whose intersection with Spec(θ)
gives a new invariant of θ which is strongly influenced by patterns found in
the sequence of partial quotients; as opposed to the full spectrum which is
essentially determined by the exponent.

We define the flat spectrum of θ to be the set

Specflat(θ) =
{
µ ∈ ◦PRε | ∗Zµµ(θ) 6= 0

}
.

By Proposition 4.6, Specflat(θ) = ◦PRε for all θ ∈ Q, and by Theorem 4.7,
Specflat(θ) = ∅ for all θ ∈ B. Therefore we will restrict attention in this
section to θ ∈W = the set of well approximable numbers.

Suppose that ∗m ∈ ∗Z(θ) can be factored
∗m = ∗x · ∗n

for ∗x ∈ ∗Z and ∗n ∈ ∗Z(θ). If ν = ν(∗n) and ∗x ∈ ∗Zν then it follows that

ε(∗m) = ∗x · ε(∗n), i.e. ν(∗m) = |∗x| · ν.
In this case we refer to

∗m = ∗x · ∗n
as an approximate ideal factorization and speak of ∗m as being an ap-
proximate ideal multiple of ∗n. Note that in this case

∗m⊥ = ∗x · ∗n⊥.
Conversely, the action

∗Zν × ∗Zν(θ)→ ∗Z(θ), (∗x, ∗n) 7→ ∗x · ∗n,
has image consisting of approximate ideal multiples. There may be factor-
izations of ∗m which are not of this form.

Call ∗m ∈ ∗Z(θ) amultiplebest denominator if there is an approximate
ideal factorization

∗m = ∗x · ∗q̂
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for some best denominator ∗q̂. We have

ν̂ ≤ ν(∗m) = ∗x · ν̂, µ(∗m) = ∗x−1 · µ̂ ≤ µ̂. (11)

Recall that if ∗q̂ is the class of {qni}, we denote by ∗q̂+ the successor class
∗{qni+1} and by ∗q̂− the predecessor class ∗{qni−1}. Then if ∗a denotes the
class of {ani+1} (the corresponding sequence of partial quotients), we have

∗q̂+ = ∗a · ∗q̂ + ∗q̂−.

We say that ∗q̂ has infinite partial quotient, abbreviated ∞ p.q., if
∗a ∈ ∗N− N.

Note that ∗q̂ has ∞ p.q. ⇔ µ̂+ < µ̂. We apply the same terminology to
a multiplebest class ∗m = ∗x · ∗q̂ if ∗q̂ has ∞ p.q.. An element θ ∈ W
will possess best classes ∗q̂ having finite partial quotient precisely when the
sequence {ai} of partial quotients has an infinite bounded subsequence e.g.
when θ = e = [2, 1, 2, 1, 1, 4, 1, 1, 6, . . . ].

The set of standard best denominators is not closed with respect to the
sum. Remarkably, the set of nonstandard multiplebest denominators is
closed with respect to the sum, as the following theorem shows.

Theorem 5.1. Let θ ∈W. Then

∗Zµµ(θ) =

{
∗m multiplebest with ∞ p.q.

∣∣∣∣ ν(∗m) ≤ µ < µ(∗m)

}
. (12)

Note 3. By definition, ∗m ∈ ∗Zµµ(θ) if and only if

ν(∗m) ≤ µ < µ(∗m). (13)

Thus the Theorem says that any element satisfying (13) must in fact be a
multiple best denominator.

Proof. We may assume without loss of generality that θ > 0. Clearly the
set on the right hand side of (12) is contained in ∗Zµµ(θ). Suppose now that
0 6= ∗m ∈ ∗Zµµ(θ), which we may assume to be positive. Then we may find
monotone representatives {si} of µ and {mi} of ∗m for which misi → 0 and
‖miθ‖ ≤ si. From the first fact we get si < m−1

i so that we may write

‖miθ‖ ≤ si < m−1
i . (14)

In particular, if {m⊥i } is a representative of the dual ∗m⊥ then

|θ− (m⊥i /mi)| < m−2
i .

By Grace’s Theorem (Theorem 10 of Chapter I of [15]), the m⊥i /mi are
(intermediate) convergents of θ: that is, for each i there exists n = ni,
r = ri nonnegative integers with mi/m

⊥
i = pn,r/qn,r, where

pn,r := rpn+1 + pn, qn,r := rqn+1 + qn,

{pi}, {qi} are the sequences of numerators and denominators of the principal
convergents (best approximations) of θ and 0 ≤ r ≤ an+2 − 1. Moreover,
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Grace’s Theorem further affirms that the possible values of r in this case are
r = 0, 1 or an+2 − 1. If we denote by ∗q̂ the class of {qni}, ∗q̂+ the class of
{qni+1} and by ∗r the class of {ri} then writing

∗q̂∗r := ∗r∗q̂+ + ∗q̂, ∗p̂∗r := ∗r∗p̂+ + ∗p̂ (15)

we have
∗m = ∗x · ∗q̂∗r, ∗m⊥ = ∗x · ∗p̂∗r.

Note that the factorization ∗m = ∗x · ∗q̂∗r is an approximate ideal factoriza-
tion: for

ε(∗m) = ∗mθ− ∗m⊥ = ∗x · (∗q̂∗rθ− ∗p̂∗r) = ∗x · ε(∗q̂∗r)
implying (since ε(∗m) ∈ ∗Rε) that ∗x ∈ ∗Zν for ν = ν(∗q̂∗r).

We now show that ∗m is multiplebest having ∞ p.q. i.e. that ∗r = 0 and
∗q̂∗r = ∗q̂ has ∞ p.q. To do this we will make use of a closed expression for
the error term ε(∗q̂∗r) of the convergent ∗q̂∗r. First, let ∗a+ be the sequence
class of {ani+2}; thus the possibilities afforded by Grace’s Theorem are ∗r =
0, 1, ∗a+− 1. Now for any n we define θn by the formula θ = [a1 . . . an−1θn].
In particular,

θn = [anan+1...] = an + θ−1
n+1.

Let ∗θ be the class of {θni+2} and note that
∗θ = ∗a+ + (∗θ+)−1 (16)

where ∗θ+ is the class of {θni+3}. Then the Lemma of Chapter I, §4 of [15]
yields

|ε(∗q̂∗r)| =
∗θ− ∗r

∗θ∗q̂+ + ∗q̂
. (17)

and therefore
|ε(∗m)| = ∗x · (∗θ− ∗r)/(∗θ∗q̂+ + ∗q̂).

Case 1: ∗r = 0 . Since
ν(∗m) ≤ µ < µ(∗m),

the multiplebest inequalities (11) imply that ν̂ ≤ µ < µ̂ and hence ν̂ < µ̂ .
Since ∗θ ≥ 1, we have by (17)

ν̂ =

〈 ∗θ
∗θ∗q̂+ + ∗q̂

〉
=
〈∗q̂+ + (∗q̂/∗θ)

〉−1
=
〈∗q̂+

〉−1
= µ̂+. (18)

In particular, µ̂+ < µ̂ and therefore ∗q̂ has ∞ p.q. . In other words, this
case comprises precisely the multiplebest denominators ∗m having ∞ p.q.,
for which ν(∗m) ≤ µ < µ(∗m): the right hand side of (12). It thus remains
to show that the other two cases cannot occur.

Case 2: ∗r = 1 . Then by (15), ν(∗q̂∗r) = µ(∗q̂∗r) = µ̂+, which contradicts
(13), in view of the approximate factorization ∗m = ∗x · ∗q̂∗r. Indeed,
ν(∗m) < µ(∗m) implies that ∗x · µ̂+ < ∗x−1 · µ̂+ or 〈∗x2〉 < 1, impossi-
ble since ∗x, being a sequence class of integers, cannot be infinitesimal.
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Case 3: ∗r = ∗a+ − 1 . Then by (16) ∗θ− ∗r = 1+(∗θ+)−1 > 1, which is also
bounded from above as ∗θ+ ≥ 1. Thus ∗θ and ∗r define the same class in
◦PR, and so by (15), (16) and (17),

ν(∗q̂∗r) = µ(∗q̂∗r) = 〈∗a+q̂+〉−1 = (∗a+)−1 · µ̂+.

Therefore, by the same argument used in Case 2 , we cannot have ν(∗m) <
µ(∗m).

�

We record for later use the following consequence of (18)

Corollary 5.2. If ∗q̂ is a best denominator, then ν̂ = µ̂+.

Let
∗Z∞b (θ)

be the set of best denominators having ∞ p.q. and let
∗Z∞mb(θ) ⊃ ∗Z∞b (θ)

be the set of multiplebest denominators having ∞ p.q. .

Corollary 5.3. Let θ ∈W. Then

Specflat(θ) =
⋃

∗m∈∗Z∞mb(θ)

[
ν(∗m),µ(∗m)

)
=

⋃
∗q̂∈∗Z∞b (θ)

[
ν̂, µ̂

)
. (19)

In particular, Specflat(θ) has interior.

Proof. The first equality follows immediately from Theorem 5.1. If ∗m =
∗x · ∗q̂ then [

ν(∗m),µ(∗m)
)
⊂
[
ν̂, µ̂

)
giving the second equality. �

An interval [
ν̂, µ̂

)
appearing in (19) is called a best interval. These have been indicated in
the portrait of “generic irrational” found in Figure 1.

Note 4. As specified in Theorem 4.9 and Corollary 4.10, for θ ∈ W>1,
Specflat(θ) contains power intervals of the form

[
µ̂λ, µ̂

)
, λ > 1, and for

θ ∈ W∞, Specflat(θ) contains Frobenius rays Φ(1,∞)(µ̂). If θ ∈ W1+ , then
Corollary 5.3 says that although Specflat(θ) contains no intervals of the form[
µ̂λ, µ̂

)
, it nevertheless has interior. We can summarize this trichotomy by

saying that the flat spectrum of elements of θ in W1+ , W>1 or W∞ contains
components having subpolynomial, polynomial or exponential connectivity,
respectively.
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We will show that for θ ∈ R − Q, Specflat(θ) is a proper subset of ◦PRε.
Let µ ∈ ◦PRε, which we assume can be represented by a sequence {si} of
positive reals monotonically tending to 0. We say that µ is shift invariant
if we may choose {si} so that there exists M > 0 with si/si+1 < M for all i
i.e.

si+1 < si < Msi+1

for all i. If {s′i} is another monotone sequence representing µ then there
exists a constant C > 0, C ∈ R, for which

∗s− C∗s′ ' 0.

Therefore any other monotone representative sequence will have the shift
invariant property if {si} does, so being shift invariant is independent of
the selected representative sequence. If µ is shift invariant and {si} is a
monotone representative then

〈∗{si+1}〉 = 〈∗{si}〉 = µ,

hence the terminology. Let
◦PRsh

ε

be the set of shift invariant elements of ◦PRε. In what follows

X{ := Y −X

denotes the complement of a set X ⊂ Y .

Proposition 5.4. ◦PRsh
ε is clopen in ◦PRε.

Proof. Suppose that µ ∈ (◦PRsh
ε ){ = ◦PRε − ◦PRsh

ε , represent it by ∗s =
∗{si} with si/si+1 → ∞. Let 0 < ∗ε ∈ ∗Rε be such that εisi/si+1 → ∞.
Define ∗r = ∗ε∗s and µ′ = 〈∗r〉. Notice that µ′ 6∈ ◦PRsh

ε and µ′ < µ. Let
ν ∈ (µ′,µ) be represented by {xi} monotone and tending to 0 in which
ri < xi < si for all i. Then

xi
xi+1

>
ri
si+1

=
εisi
si+1

−→∞.

Thus (µ′,µ) ⊂ (◦PRsh
ε ){. Now let ∗M = ∗{Mi} ∈ ∗N − N tend to infinity

sufficiently slowly, so that

Mi
si+1

si
−→ 0,

and is shift invariant in the sense that Mi < Mi+1 < CMi for some C > 0.
Notice that these conditions imply that ∗M∗s ∈ ◦PRε:

Mi+1si+1 < CMi
si+1

si
si −→ 0.

Then
Misi

Mi+1si+1
−→∞,
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so µ′′ = 〈∗M∗s〉 ∈ (◦PRsh
ε ){. Now let ν ∈ (µ,µ′′) be represented by {yi}

monotone and tending to 0 in which si < yi < Misi for all i. Then
yi
yi+1

>
si

Mi+1si+1
>

1

CMi

si
si+1

−→∞.

Thus µ ∈ (µ′,µ′′) ⊂ (◦PRsh
ε ){, so ◦PRsh

ε is closed. On the other hand, let
µ ∈ ◦PRsh

ε be represented by {si} with si/si+1 < M for all i. Choose
0 < ∗ε ∈ ∗Rε such that εi/εi+1 < N for all i, let ∗r = ∗ε∗s and µ′ = 〈∗r〉.
Let ν ∈ (µ′,µ) be represented by {xi} monotone and tending to 0. Then
we may write xi = Miri with Mi →∞. Then xi/xi+1 < MN for all i since
Mi/Mi+1 < 1, and thus (µ′,µ) ⊂ ◦PRsh

ε . Now let µ′′ > µ be any element:
then there exists Mi → ∞ such that Misi → 0 and µ′′ = 〈∗M∗s〉. Since
Misi/Mi+1si+1 < si/si+1 < M , µ′′ ∈ ◦PRsh

ε . Thus the open ray (µ′, 1) 3 µ
is contained in ◦PRsh

ε , so ◦PRsh
ε is open as well. �

Theorem 5.5. Let θ ∈ R− Q. Then
◦PRsh

ε ⊂ Specflat(θ){.

In particular,
Specflat(θ) $ ◦PRε.

Proof. If θ is badly approximable the result follows trivially from Theorem
4.7. So we assume θ is well approximable. Now suppose that 0 6= ∗m ∈
∗Zµµ(θ) where µ ∈ ◦PRsh

ε . Then we may find monotone representatives {si}
of µ and {mi} of ∗m for which misi → 0 and for which there exists M such
that si/si+1 < M for all i. In particular, the first fact says that there exists
an infinite sequence {Ri} such that si = (Rimi)

−1. On the other hand, by
Theorem 5.1, ∗m ∈ ∗Z∞mb(θ). Thus if ∗m = ∗x ·∗q̂ and we represent q̂ = {qni}
then qni+1/qni →∞. It follows that for any representative {xi} of ∗x

si
si+1

=
Ri+1xi+1qni+1

Rixiqni

−→∞

(since |xi| ≥ 1 as ∗x ∈ ∗Z) contradicting the shift invariance of µ. �

Note 5. The shift invariant set ◦PRsh
ε is greater (in the order <) than its

complement in ◦PRε; its elements may be characterized as the classes of
“slow” infinitesimals. Theorem 5.5 says that the flat spectrum of θ irrational
contains no slow indices.

6. The arithmetic of approximate ideals

In this section we use the growth-decay filtration to provide the diophan-
tine approximation groups with a partially defined multiplicative structure
subject to matching conditions along the growth-decay indices. We begin
with a result which describes the sense in which diophantine approximation
groups generalize ideals.
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Proposition 6.1. Let θ ∈ R. For all µ,ν, ι, λ ∈ ◦PRε there exists an action

∗Zν[ι] × ∗Zµ[λ]
ν (θ) −→ ∗Zµ·ν[ι·λ]

ι (θ), (∗a, ∗n) 7→ ∗a∗n

in which (∗a∗n)⊥ = ∗a∗n⊥.

Proof. For ∗a ∈ Zν, ∗a∗nθ = ∗a∗n⊥ + ∗aε(∗n). Since ∗a · ν < ι ∈ ◦PRε,
∗aε(∗n) ∈ ∗Rε and ∗a∗n ∈ ∗Zµ·ν[ι·λ]

ι (θ). �

A (fine) approximate ideal of ∗Z is a subgroup

a ⊂ ∗Z

equipped with a filtration by subgroups a = {aν} indexed by ν ∈ ◦PRε for
which

∗Zν · aµν ⊂ aµ·ν (∗Zν[ι] · aµ[λ]
ν ⊂ a

µ·ν[ι·λ]
ι )

for all µ,ν ∈ ◦PRε (for all µ,ν, ι, λ ∈ ◦PRε), where aµν = aν ∩ ∗Zµ (where
a
µ[λ]
ν = aν ∩ ∗Zµ[λ]). If one forgets the filtrations, what is left is the usual

notion of ideal. By Proposition 6.1, diophantine approximation groups are
fine approximate ideals.

More generally, one can define a (fine) approximate module (over ∗Z)
as a bi-filtered abelian group

M = {Mµ
ν }

(a tri-filtered abelian group M = {Mµ[λ]
ν }) in which there is an action

∗Zν ·Mµ
ν ⊂Mµ·ν (∗Zν[ι] ·Mµ[λ]

ν ⊂Mµ·ν[ι·λ]
ι ).

A homomorphism
f : M → N

between (fine) approximate modules is called a (fine) approximate mod-
ule homomorphism if

MH1 it is filtered: f(Mµ
ν ) ⊂ Nµ

ν for all µ,ν ∈ ◦PRε (f(M
µ[λ]
ν ) ⊂ N

µ[λ]
ν for

all µ,ν, λ ∈ ◦PRε) .
MH2 it respects the ∗Z action: for all µ,ν ∈ ◦PRε, ∗m ∈ ∗Zν and x ∈Mµ

ν

f(∗m · x) = ∗m · f(x).

If we set ∗Zν := ∗Zν then ∗Z is an approximate module over itself, and any
approximate ideal is an approximate module.

Proposition 6.2. Let θ,η ∈ R. If θ m η by A ∈ PGL2(Z) then the induced
isomorphism

A : ∗Z(θ)
∼=−→ ∗Z(η)

is a fine approximate module isomorphism.
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Proof. By Theorem 3.3 we already know that θ m η by A ∈ PGL2(Z)
induces a tri-filtered isomorphism i.e. satisfies MH1. If ∗m ∈ ∗Zν, ∗n ∈ ∗Zµν
then MH2 follows from:

A(∗m · ∗n) = c(∗m · ∗n)⊥ + d(∗m · ∗n) = c∗m · ∗n⊥ + d∗m · ∗n = ∗m ·A(∗n).

�

The following result forms the basis of approximate ideal arithmetic.

Theorem 6.3 (Approximate Ideal Arithmetic). Let θ,η ∈ R. Then
∗Zµ[ι]
ν (θ) · ∗Zν[λ]

µ (η) ⊂
⋂

ξ=θη,θ±η

∗Zµ·ν[ι·λ]
ι+λ (ξ) (20)

In particular,
∗Zµν(θ) · ∗Zνµ(η) ⊂ ∗Zµ·ν(θη) ∩ ∗Zµ·ν(θ+ η) ∩ ∗Zµ·ν(θ− η).

Moreover, for ∗m ∈ ∗Zµν(θ) and ∗n ∈ ∗Zνµ(η)

(∗m · ∗n)⊥θη =∗m⊥θ · ∗n⊥η (21)

(∗m · ∗n)⊥θ±η =∗m⊥θ · ∗n± ∗m · ∗n⊥η

Proof. We will first prove that the left-hand side of the relation (20) is
contained in ∗Zµ·ν[ι·λ]

ι+λ (θη). In what follows, we will omit subindices occurring
in the duality symbol ⊥, as the context should be clear which real number
is defining a given dual. Given ∗m ∈ ∗Zµ[ι]

ν (θ) and ∗n ∈ ∗Zν[λ]
µ (η),

θη(∗m∗n) = ∗m⊥∗n⊥ + ε(∗m)ε(∗n) + ε(∗m)∗n⊥ + ε(∗n)∗m⊥. (22)

By hypothesis, the cross terms on the right hand side of (22), ε(∗m)∗n⊥

and ε(∗n)∗m⊥, are infinitesimals: here we are using (7). Thus θη(∗m∗n)
is infinitesimal to ∗m⊥∗n⊥ and ∗m∗n ∈ ∗Z(θη). In particular, (∗m∗n)⊥ =
∗m⊥∗n⊥, giving the product duality in (21). Moreover,

(∗m∗n) · (µ · ν) = (∗m · µ) · (∗n · ν) < ι · λ

so that ∗m∗n ∈ ∗Zµ·ν[ι·λ](θη). By (7) again, ∗m⊥ · ν(∗n) ≤ ∗m⊥ · µ < ι,
∗n⊥ · ν(∗m) ≤ ∗n⊥ · ν < λ. Thus ν(∗m∗n) satisfies the bound

ν(∗m∗n) ≤ (µ · ν) + ι+ λ.

Since ∗n is infinite, ∗n·ν < λ implies that ν < λ and therefore µ·ν < µ·λ < λ.
Hence (µ · ν) + ι+ λ = ι+ λ, and ∗m∗n ∈ ∗Zι+λ(θη) as claimed. As for the
inclusion into ∗Zµ·ν[ι·λ]

ι+λ (θ± η), this follows from the additive analog of (22),

(θ± η)(∗m∗n) = ∗m⊥∗n± ∗m∗n⊥ + ε(∗m)∗n± ε(∗n)∗m.

�

The product defined by (20) will be referred to as the approximate ideal
or growth-decay product.
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Note 6. While the approximate ideal product has image in ∗Z(θη), it is
not the case that it has image in ∗Z(θη−1): in contrast with the additive
situation, in which the image of (20) is contained in both ∗Z(θ+η) and ∗Z(θ−
η). That the approximate ideal product yields diophantine approximations
of the product, sum and difference has to do with the fact that it is essentially
the precursor of the product of associated “two generator” approximate ideals
(generated by “decoupled” numerators and denominators). This will be taken
up in §13.

Note 7. By definition of the growth-decay trifiltration, µ < ι, ν < λ so that
µ · ν < ι+ λ. Thus the image of the product (20) is contained in the groups
indexed by the slow components of Spec(θη), Spec(θ± η).

Note 8. As the argument in the proof of Theorem 6.3 clearly shows, for any
pair of growth-decay indices (µ1[ι1],ν1), (µ2[ι2],ν2) for which

ν1 ≤ µ2, ν2 ≤ µ1

we have the product
∗Zµ1[ι1]
ν1 (θ) · ∗Zµ2[ι2]

ν2 (η) ⊂
⋂

ξ=θη,θ±η

∗Zµ1·µ2[ι1·ι2]
ι1+ι2 (ξ) (23)

However for such indices with say µ1 ≥ ν1 we have
∗Zµ2[ι2]
ν2 (η) ⊂ ∗Zν1[ι2]

µ1 (η)

so the product (23) is subsumed by that of (20).

There is no harm in stating the obvious: the formulas (21) for the additive
and multiplicative duals are just the formulas for the numerators of fractional
sum and product:

∗m⊥θ

∗m
·
∗n⊥η

∗n
=

(∗m∗n)⊥θη

∗m∗n
,

∗m⊥θ

∗m
±
∗n⊥η

∗n
=
∗m⊥θ∗n± ∗m∗n⊥η

∗m∗n
=

(∗m∗n)⊥θ±η

∗m∗n
,

formulas which are compatible with their standard parts: the product and
sum/difference of θ and η. When θ,η ∈ Q the growth decay product is just
the product on the fine growth filtration:

∗Zµ[ι](θ) · ∗Zν[λ](η) ⊂ ∗Zµ·ν[ι·λ](θη) ∩ ∗Zµ·ν[ι·λ](θ± η)

which reduces upon restriction to standard parts to Z(θ) · Z(η) = Z(θη) ∩
Z(θ±η). This is in keeping with the fact that the diophantine approximation
group of an element of a/b ∈ Q is the ideal ∗(b) generated by its denominator.

Let us compare approximate ideal arithmetic with ideal arithmetic in Z.
For a ∈ Z, denote ∗(a) = the ideal generated by a in ∗Z. Note then that

∗Z(a) = ∗Z and ∗Z(a)⊥ = ∗(a).
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In addition, for a, b ∈ Z, we have ∗Z(a+b)⊥ = ∗(a+b), ∗Z(ab)⊥ = ∗(ab). The
map (20) induces on the level of dual groups a pair of bilinear maps corre-
sponding to the sum and the product of generators. The map corresponding
to the product is clearly onto
∗Z(a)⊥ × ∗Z(b)⊥ −→ ∗Z(ab)⊥, (∗m · a, ∗n · b) 7→ (∗m∗n)⊥ab = ∗m∗n · ab,

and corresponds exactly to the usual product of ideals.
Let µ ≥ ν. We define the relation ? between real numbers θ,η

θµ?ν η,
(
θµ[ι]?ν[λ] η

)
(24)

whenever both of ∗Zµν(θ), ∗Zνµ(η) (both of ∗Zµ[ι]
ν (θ), ∗Zν[λ]

µ (η)) are non-zero,
so that the growth-decay product is non-trivial.

When µ > ν strictly, then θµ?ν η exactly when ∗Zµν(θ) is non-trivial, by
Theorem 4.2. In particular, for µ > ν, θµ?νη implies that θµ′?ν′ η whenever
µ ≥ µ′ > ν′ ≥ ν. The relation µ?ν is not symmetric (commutative) i.e. (24)
does not imply that ηµ?ν θ; in fact, as we will see below, (24) does not even
imply that ηµ′?ν′ θ for some pair (µ′,ν′) ∈ ◦PRε with µ′ ≥ ν′.

In view of Theorem 6.3, only the tri-filtered relation µ[ι]?ν[λ] can be iter-
ated, and in view of Note 7, iterated compositions move to the left. More
precisely the iterated relation

ξµ′[ι′]?ν′[λ′]
(
θµ[ι]?ν[λ] η

)
is defined provided ι+ λ ≤ µ′, ν′ ≤ µ ·ν and λ′ ≥ ι · λ. What it means is the
following:

(1) There is an inclusion

∗Zµ[ι]
ν (θ) · ∗Zν[λ]

µ (η) ⊂ ∗Zν
′[λ′]
µ′ (θη).

(2) The group ∗Zµ
′[ι′]
ν′ (ξ) is non trivial.

In particular, the iterated product

∗Zµ
′[ι′]
ν′ (ξ) ·

(
∗Zµ[ι]
ν (θ) · ∗Zν[λ]

µ (η)
)

may be performed, having values in ∗Z(ξθη). The issue of associativity
is moot since only the right-to-left iterated compositions may be defined.
Intuitively, as one continues to iterate, the nonvanishing spectrum of the
real number appearing on the left should become progressively larger.

The approximate ideal product is natural with respect to multiplication
and the duality/reciprocal maps: (∗m·∗n)⊥θη = ∗m⊥θ ·∗n⊥η for ∗m ∈ ∗Zµν(θ)
and ∗n ∈ ∗Zνµ(η). That is, in terms of the growth-decay bi-filtration,

∗Zµν(θ)× ∗Zνµ(η)
·−−−−→ ∗Zµ·ν(θη)

⊥×⊥
y∼= ∼=

y⊥
∗Zµν(θ−1)× ∗Zνµ(η−1)

·−−−−→ ∗Zµ·ν((θη)−1)
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with a similar diagram for the fine growth-decay tri-filtration. If we fix
∗m ∈ ∗Zµν(θ) then multiplication by ∗m, ∗n 7→ ∗m · ∗n, defines a linear map
from ∗Zνµ(η) onto its image in ∗Zµ·ν(θη).

For the remainder of this section we will regard the growth-decay product
as defining a bilinear map to the product approximation group

∗Zµ[ι]
ν (θ) · ∗Zν[λ]

µ (η) −→ ∗Zµ·ν[ι·λ]
ι+λ (θη).

All statements which follow will have a corresponding additive counterpart,
obtained by replacing the word “divisor” by “summand”.

Let ω = θη and suppose that θµ?ν η for µ > ν. We say that θ is a
µ/ν-fast divisor of ω (η is a ν/µ-slow divisor of ω) and we write

θ µ⇑ν ω (η µ⇓ν ω).

In addition, we write θ ⇑ ω (η ⇓ ω) to mean that θ µ⇑ν ω (η µ⇓ν ω)
for some µ > ν. Fast divisors (slow divisors) have error terms which
tend to zero more rapidly (slowly) than their denominators tend to infinity.
These designations are not symmetric, and we will see below that the badly
approximable numbers are never fast divisors.

Proposition 6.4. θ µ⇑ν ω for all µ > ν ⇔ θ ∈ Q.

Proof. ∗Zµν(θ) is nontrivial for all µ > ν ⇔ θ ∈ Q. �

If θµ?µ η, we say that both θ and η are µ-flat divisors of ω and write

θ 8ω = θ 8µ ω , η 8ω = η 8µ ω.

Thus θ 8ω ⇔ Specflat(θ) ∩ Specflat(η) 6= ∅. If θ ⇓ ω, θ ⇑ ω we will write
θ m ω and say that θ is an elastic divisor; if θ is elastic and θ 8ω as well
then we will write θm̄ω say that θ is a strong elastic divisor of ω. Note
that if θm̄ω and η = ω/θ then ηm̄ω as well.

Proposition 6.5. θµ⇑ν ω, θµ ⇓ν ω and θ mµ ω for all µ ≥ ν ⇔ θ,ω ∈ Q.

Proof. Trivial. �

If ω = θη but θ 6⇑ ω, θ 6 ⇓ ω and θ 6 8ω we say that θ is an antidivisor
and write

θ ω.
Note that if θ ω and η = ω/θ it is not necessarily the case that η ω (c.f.
Theorem 6.6, c. below). If on the other hand for any ω, θ is a divisor (of
some speed: fast, slow or flat) we say that θ is an omnidivisor.

We now examine the notions of divisibility described above with regard
to the classes B, W1+ , W>1 and W∞.

Theorem 6.6. Let ω ∈ R.
a. For all θ ∈ B, θ 6⇑ ω, θ 68ω.
b. For all θ ∈W1+, θ 6⇑ ω.
c. If ω = θη, θ ∈ B and η ∈ B ∪W1+ then θ ω.
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d. If ω = θη, θ,η ∈ W>1 then θ,η m ω. If moreover θ m η then
θ,η m̄ω.

Proof. a. & b. The spectrum of any element of B (of W1+) consists exactly
of pairs µ < ν (consists of pairs which satisfy µ ≤ ν), so flat or fast composi-
tion (fast composition) with θ is not possible. c. This follows trivially from
the definitions. d. For any θ ∈ W>1 there exists a pair µ > ν in Spec(θ)
so θµ?ν η. Switching the roles of θ and η, for appropriate µ > ν, ηµ?ν θ as
well. Thus θ,η m ω. If θ and η are equivalent then Specflat(θ) = Specflat(η)
implying θ,η m̄ω. �

Corollary 6.7. The set of omnidivisors is precisely W>1.

Proof. By Theorem 6.6, parts a., b., the set of omnidivisors is contained in
W>1; by part d., every element of θ ∈W>1 is an omnidivisor. �

A subset X ⊂ R is called an antiprime set if for all θ1, θ2 ∈ X, θ1, θ2 ω
where ω = θ1θ2.

Proposition 6.8. B is the unique maximal antiprime set in R.

Proof. Note that B is an anti-prime set: θ1, θ2 θ1θ2 for all θ1, θ2 ∈ B.
Moreover, if we add another element η 6∈ B we lose the defining property
since for such η, η 8 η2. On the other hand, any θ ∈ R −B is composable
with itself since θ 8 θ2, so there are no antiprime sets containing elements
not in B. �

Thus we shall refer to B as the antiprimes of approximate ideal arith-
metic. We say that ω has an antiprime decomposition if ω = θη for
θ,η ∈ B. For example, every q ∈ Q which is not a square has the antiprime
decomposition q =

√
q
√
q. Antiprime decompositions are outside the realm

of the version of approximate ideal arithmetic presented here, to analyze
them requires the finer arithmetic of symmetric diophantine approximations,
the subject of §8.

Theorem 6.9. Every non zero real number admits an antiprime decompo-
sition.

Proof. Let
F (n) = {θ ∈ B| ∀i ai(θ) ≤ n},

where ai(θ) is the ith element of the continued fraction expansion of θ. By
[13], every real number r > 1 is a product r = θη of elements of F (4). Since
B is closed under inversion, the claim follows. �

A set X is said to be (strongly) approximately generated by X0 ⊂ X
if for all ω ∈ X, there exist θ1, θ2 ∈ X0 such that θ1θ2 = ω with θ1, θ2 m ω
(θ1, θ2m̄ω).

Corollary 6.10. The set of Liouville numbers W∞ approximately generates
R.
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Proof. By [6] every real number ω may be written as a product of θ1, θ2 ∈
W∞ and clearly θ1, θ2 m ω. �

In the next section we will show that there are pairs of Liouville numbers
which cannot be flat composed with each other for any choice of parameter
µ. So it is not at all obvious that W∞ strongly approximately generates R.

7. Flat arithmetic

In this section we consider the commutative relation µ?µ, which is best
understood using the sequence of partial quotients θ = [a0a1 . . . ]. As alluded
to at the beginning of §5, this makes the determination of the flat product
somewhat transverse to the linear classification: Q, B, Wκ, W∞. Since
elements of B cannot be involved in flat products, all reals considered in
this section are assumed to belong to W.

Given θ ∈ W, the basic problem is to determine the set of η ∈ W which
have a flat product with θ:

Ω(θ) = {η ∈W| θµ?µ η for some µ ∈ Specflat(θ)} .

It is clear that Ω(θ) is a projective linear invariant:

Proposition 7.1. If θ m η then Ω(θ) = Ω(η) and

Ω(θ) ⊃ {A(θ)| A ∈ PGL2(Z)}.

Proof. Immediate from Proposition 4.1. �

The following Lemma gives a simple criterion in terms of best classes for
when flat products are defined.

Lemma 7.2. Let θ,η ∈ W. Then there exists µ ∈ ◦PRε such that θµ?µ η
⇔ there exist best classes ∗q̂ ∈ ∗Z(θ), ∗q̂′ ∈ ∗Z(η) having ∞ p.q. such that
either

µ̂+ ≤ (µ̂′)+ < µ̂ or (µ̂′)+ ≤ µ̂+ < µ̂′. (25)

Proof. By Corollary 5.3, a flat composition is defined ⇔ there exists best
classes having ∞ p.q. ∗q̂ ∈ ∗Z∞b (θ), ∗q̂′ ∈ ∗Z∞b (η) for which the associated
best intervals intersect:

[ν̂, µ̂) ∩ [ν̂′, µ̂′) 6= ∅. (26)

Because ∗q̂ ∈ ∗Z(θ) has ∞ p.q., ν̂ = µ̂+ = 〈∗q̂+〉−1 < µ̂ = 〈∗q̂〉−1, since (see
(18))

ν̂ =

〈 ∗θ
∗θ∗q̂+ + ∗q̂

〉
= 〈∗q̂+〉−1 = µ̂+.

Thus (26) is equivalent to [µ̂+, µ̂)∩ [(µ̂′)+, µ̂′) 6= ∅ which in turn is equivalent
to (25). �
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We introduce now a class of numbers for which flat products are manifestly
always defined:

θ = [a0a1 . . . ] ∈W

is called resolute if lim ai =∞ (i.e. there are no bounded subsequences). For
example, θ = [1, 2, 3, . . . ] is resolute whereas e = [2, 1, 2, 1, 1, 4, 1, 1, 6, . . . ] is
not. It is fairly easy to produce Liouville numbers which are resolute and
Liouville numbers which are not:

Example 1. Let θ = [a0a1 . . . ] be defined inductively by taking a0 = a1 = 1
and an+1 = qn−1

n for n ≥ 1, where qn is as usual the nth best denominator.
Then ‖qnθ‖ < q−1

n+1 < q−nn so that θ is a resolute Liouville number. If instead
we define an = qnn−1 for n even and an = 1 for n odd, then for n odd, we
have ‖qnθ‖ < q−1

n+1 < qn+1
n so that θ is Liouville but irresolute. The Liouville

number

L(m) =

∞∑
j=0

m−(j+1)!

is irresolute for all m > 1 since 1 occurs infinitely often in its sequence of
partial quotients [20].

Define the relation
θ3µ η

if θµ?µ η and there exists ∗q̂ ∈ ∗Zµµ(θ), ∗q̂′ ∈ ∗Zµµ(η) with µ̂+ ≤ (µ̂′)+ < µ̂.

Theorem 7.3. If θ ∈ W is resolute then for all η ∈ W there exists µ ∈
Specflat(θ) with θ3µ η.

Proof. For θ ∈W resolute every best class ∗q̂ has∞ p.q. . Now let ∗q̂′ be a
best class for η with ∞ p.q. , represented by the sequence {q′ni

}. For each i
choose qni so that qni ≤ q′ni+1 ≤ qni+1. Then denoting ∗q̂ = ∗{qni}, we have
∗q̂ ≤ (∗q̂′)+ ≤ q̂+. Since ∗q̂ has ∞ p.q. we must have either 〈∗q̂〉 < 〈(∗q̂′)+〉
or 〈(∗q̂′)+〉 < 〈∗q̂+〉. If the former is true, this implies the first inequality in
(25). If not, 〈∗q̂〉 = 〈(∗q̂′)+〉; then replace ∗q̂ by ∗q̂− = ∗{qni−1} to get the
desired inequality. �

With Lemma 7.2 this gives:

Corollary 7.4. If θ ∈W is resolute, Ω(θ) = R−B.

For any class C of real numbers, we denote by Cres the resolute members.
For example, Bres = ∅ and Wres

∞ $ W∞.

Corollary 7.5. If θ,η ∈ Wres
>1 and ω = θη then θ,η m̄ω. In particular,

Wres
>1 strongly approximately generates Wres

>1 ·Wres
>1.

We now consider the other extreme: pairs of real numbers which may not
be flat composed at all. Finding such pairs amounts to finding real numbers
which have large gaps in their flat spectra, and as we shall see, this means
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real numbers having increasingly long blocks of partial quotients all of whose
members are uniformly bounded.

More precisely we say that θ = [a0a1 . . . ] has a bound chasm if there
exist a sequence of pairwise disjoint blocks of consecutive partial quotients

G = {Bn}, Bn = {ain , ain+1 . . . , ain+kn}

such that
• There exists a constant M > 0 in which for all Bn,

ain , ain+1 . . . , ain+kn < M.

• The block lengths kn →∞.
For example: a resolute number has no bound chasm; neither does e, al-
though it is irresolute, and the same is true for the Liouville number L(m)
[20]. Thus the set of real numbers having a bound chasm is a strict subset
of the irresolute real numbers. On the other hand, one can easily create
Liouville numbers which have a bound chasm following a procedure similar
to that used in Note 1.

Proposition 7.6. θ ∈W has a bound chasm ⇔ Specflat(θ) is disconnected.

Proof. ⇒ Suppose θ has a bound chasm. Then we may find a best class
∗q̂ for which each element of the bi-infinite sequence of predecessors and
successors

· · · ∗q̂−− < ∗q̂− < ∗q̂ < ∗q̂+ < ∗q̂++ < · · · (27)

defines the same element of ◦PR. In particular, by Corollary 5.2, we have
equality of the associated sequence of best growths and decays

· · · = ν̂− = µ̂− = ν̂ = µ̂ = ν̂+ = µ̂+ = · · · .

We claim that µ̂ 6∈ Specflat(θ). Indeed, by Corollary 5.3, it will be enough to
show that there exists no best denominator class ∗r̂ with ∞ p.q. such that

µ̂ ∈
[
ν(∗r̂),µ(∗r̂)

)
.

Suppose otherwise: since

· · · = µ̂+ = µ̂ = µ̂− = · · · < µ(∗r),

it follows that
∗r̂ � · · · < ∗q̂− < ∗q̂ < ∗q̂+ < · · · (28)

where � means the inequality remains strict upon passage to ◦PR. Since ∗r̂
has ∞ p.q., by Corollary 5.2,

ν(∗r̂) = µ(∗r̂+) < µ(∗r̂).

If ν(∗r̂) ≤ µ̂, then in fact we must have ν(∗r̂) = µ̂, since ν(∗r̂) = µ(∗r̂+) < µ̂
would imply

∗r̂ � · · · < ∗q̂− < ∗q̂ < ∗q̂+ < · · · � ∗r̂+
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which is absurd. But then, if µ(∗r̂+) = µ̂, ∗r̂+ would have to be an element
of the sequence (27), which would in turn imply that ∗r̂ is as well. But
this contradicts µ̂ < µ(∗r). Thus, µ̂ 6∈ Specflat(θ) as claimed. On the other
hand, since θ ∈ W, there exist best classes ∗q̂1,

∗q̂2 with ∞ p.q. for which
ν̂1 < ν̂ = µ̂ < ν̂2, which implies that Specflat(θ) is disconnected.
⇐ If θ is has no bound chasm, then any best class ∗q̂ which has bounded par-
tial quotient is finitely many successors as well as finitely many predecessors
away from a best class with infinite bounded quotient. This implies that the
common growth and decay class of ∗q̂, µ̂ = ν̂, belongs to Specflat(θ) since
it occurs as the right and left endpoint of a pair of adjacent best intervals
[ν̂′, µ̂′), [ν̂′′, µ̂′′) corresponding to neighboring best classes with∞ p.q. Thus
Specflat(θ) is connected. �

We have the following strengthening of Corollary 7.4.

Theorem 7.7. If θ has no bound chasm, then for any η ∈ R−B,

Specflat(η) ⊂ Specflat(θ).

In particular, Ω(θ) = R−B.

Proof. Let η ∈ R −B and let ∗q̂′ ∈ ∗Z(η) be a best class with ∞ p.q. for
η. There exist best classes ∗q̂1,

∗q̂2 with ∞ p.q. for θ such that ∗q̂1 <
∗q̂′ <

(∗q̂′)+ < ∗q̂2. By the connectivity of Specflat(θ), [ν̂′, µ̂′) ⊂ Specflat(θ). �

Corollary 7.8. If θ ∈ R −B (θ ∈ W>1 ∪ Q) has no bound chasm, θ 8 ω
(θm̄ω) for all ω ∈ R with θ−1ω 6∈ B.

Corollary 7.9. If θ,η have no bound chasm, then Specflat(η) = Specflat(θ).

We call this common connected set of Corollary 7.9 the flat interval
◦PRflat. In particular, ◦PRε − ◦PRflat is disjoint from all flat spectra and
includes the shift invariant elements. Note also that it is clear that there
exist bound chasmless θ, η which are not equivalent yet their flat spectra
coincide: so Specflat(θ) is not a complete invariant of θ. A bound chasmless
number θ is an omniflatdivisor: an element θ ∈W in which θ 8ω for all
ω ∈ R with θ−1ω 6∈ B.

The next result shows that the set Ω(θ) need not be equal to R−B.

Theorem 7.10. There exist θ,η ∈ W, each with bound chasm, such that
θµ?µ η is undefined for all µ. In fact, one can find such a pair in which
θ ∈Wκ, η ∈Wκ′ for any κ, κ′ ∈ [1,∞].

Proof. We construct θ, η by way of partial fractions. We begin by specifying
the initial partial fractional segment [11am1 ] of θ, where 11 is a large block
of ones of size m1−1. Let qm1 = am1qm1−1 +qm1−2 be the best denominator
corresponding to am1 . Now specify the initial segment for η, [1′1bn1 ] so that
for N1, n1 fixed integers with 2N1 < n1, there are
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i. N1 best denominators associated to the 1’s of 1′1 that are less than
qm1 i.e.

q′1, . . . , q
′
N1

< qm1 .

If necessary we go back and choose m1 larger so that this can be
done.

ii. N1 best denominators associated to the 1’s of 1′1 which are greater
than qm1 :

q′n1−1, . . . , q
′
n1−1−N1

> qm1 .

The next step is to select M2 > N1 so that if 12 is a block of 1′s having at
least 2M2 elements then at leastM2 of the new best denominators associated
to the augmented sequence [11am1+112] are less than q′n1

i.e.

qm1+1, . . . , qm1+M2 < q′n1
.

We can ensure this by adding more 1′s to 1′1, if necessary. Then choose
m2 > 2M2 so that if 12 has m2−1 elements than at leastM2 of the new best
denominators associated to the augmented sequence [11am112] are greater
than q′n1

:

qm1+m2 , . . . , qm1+m2−M2 > q′n1
.

Let am1+m2 > am1 and consider [11am112am1+m2 ], applying the same pro-
cedure to specify [1′1bn11′2bn1+n2 ], where bn1 < bn1+n2 . Inductively we build
the sequence of partial quotients of θ and η in this way, arranging that the
non 1 partial quotients

am1+···+mk
, bn1+···+nk

,

as well as the Mk, Nk, tend to ∞. See Figure 2.
Consider the sequences

{qm1+···+mk−1}∞k=1, {q′n1+···+nk−1}∞k=1 (29)

and let ∗q̂, ∗q̂′ be best classes for θ, η having ∞ p.q. By construction of
the partial fraction sequences, ∗q̂, ∗q̂′ must be classes of subsequences of the
corresponding sequences of (29), for otherwise they would not have ∞ p.q.
Moreover, our choices of blocks of 1’s in the partial quotients of θ and η
ensure that

- (∗q̂′)+ 6∈ [∗q̂, ∗q̂+] and that (∗q̂′)+, ∗q̂, ∗q̂+ define distinct classes in
◦PR.

- ∗q̂+ 6∈ [∗q̂′, (∗q̂′)+] and that ∗q̂+, ∗q̂′, (∗q̂′)+ define distinct classes in
◦PR.

This implies that the growth decay interval [µ̂+, µ̂) corresponding to ∗q̂ can-
not contain the decay (µ̂′)+ of ∗q̂′, and vice verca. By Lemma 7.2, θµ?µ η
is undefined for all µ. By choosing the non 1 partial fractions appropriately
we can ensure that θ ∈Wκ, η ∈Wκ′ for any fixed κ, κ′ ∈ [1,∞]. �
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Figure 2. Construction of θ, η.

It follows that the problems of determining Ω(θ) and flat composability
are non trivial. Nevertheless, it seems plausible that the techniques in [20]
can be extended to show that the Liouville numbers occurring in the sum
and product representations [6] are bound chasmless.

Conjecture 7.11. W∞ strongly approximately generates R.

8. Symmetric diophantine approximations

The study of special approximations in which the the error term is dom-
inated by a function ψ : Z − {0} → R has held, from the very beginning, a
distinguished position in the subject of Diophantine Approximation. Clas-
sically, for a fixed ψ, one looks for conditions on θ which guarantee the
existence of infinitely many solutions to the inequality |nθ−m| < |ψ(n)|−1,
or equivalently, in the language of this paper, a single solution to

|ε(∗n)| = |∗nθ− ∗n⊥| < |ψ(∗n)|, ∗n ∈ ∗Z(θ). (30)

The Theorems of Dirichlet, Liouville and Roth all fall under this head-
ing. More generally, if one only specifies convergence properties of the sum∑
ψ(n), one seeks (e.g. Khintchine’s Theorem) to measure the size of the

set of real numbers having solutions to (30).
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In this section, we will shift the emphasis from one of existence to a
qualitative study of the solution set:
∗Z(θ|ψ) := {0 6= ∗n ∈ ∗Z(θ)| ∃ C ∈ R+ such that |ε(∗n)| < C|ψ(∗n)|} ∪ {0},

focusing on the extent to which the set ∗Z(θ|ψ) has interesting arithmetic
structure.

We begin by fixing the choice

ψ(x) = x−1 :

note then that
∗Z
(
θ|x−1

)
= {∗n ∈ ∗Z(θ)|ν(∗n) ≤ µ(∗n)} , (31)

a set which is closed under the operation of taking additive inverses.
It turns out that the same hypothesis used to describe the approximate

ideal product structure of the ∗Z(θ) can be used to deduce an additive struc-
ture in ∗Z

(
θ|x−1

)
. To this end, denote
∗Zµν

(
θ|x−1

)
:= ∗Zµν

(
θ) ∩ ∗Z(θ|x−1

)
.

Note that the defining condition ν(∗n) ≤ µ(∗n) in (31) does not imply that
∗Zµν

(
θ|x−1

)
= 0 for µ < ν. We define tropical subtraction in ◦PR by

µ− ν := min(µ,ν).

Theorem 8.1. Let µ,ν, ι, λ ∈ ◦PRε. Then
∗Zµ[ι]
ν

(
θ
∣∣x−1

)
+ ∗Zν[λ]

µ

(
θ
∣∣x−1

)
⊂ ∗Zµ−ν[ι+λ]

(
θ
∣∣x−1

)
.

In particular,
∗Zµν

(
θ
∣∣x−1

)
+ ∗Zνµ

(
θ
∣∣x−1

)
⊂ ∗Zµ−ν

(
θ
∣∣x−1

)
.

Proof. Let ∗m ∈ ∗Zµ[ι]
ν

(
θ|x−1

)
, ∗n ∈ ∗Zν[λ]

µ

(
θ|x−1

)
. Then∣∣(∗m+ ∗n)2θ− (∗m+ ∗n)(∗m⊥+ ∗n⊥)

∣∣ ≤ C+
∣∣2∗m∗nθ− (∗m∗n⊥+ ∗m⊥∗n)

∣∣
for some constant C. But ∣∣∣2∗m∗nθ− (∗m∗n⊥ + ∗m⊥∗n)

∣∣∣ =

θ−1
∣∣∣(∗mθ− ∗m⊥)(∗nθ− ∗n⊥) + (∗m∗nθ2 − ∗m⊥∗n⊥)

∣∣∣ =

θ−1 |ε(∗m) · ε(∗n) + ε(∗m∗n)| .

which is infinitesimal (here we are using Theorem 6.3 to conclude that
ε(∗m∗n) = ∗m∗nθ2 − ∗m⊥∗n⊥ is the error term of a diophantine approx-
imation, hence is infinitesimal). Thus ∗m+ ∗n ∈ ∗Z

(
θ
∣∣x−1

)
. Finally we note

that
(∗m+ ∗n) · (µ− ν) ≤ ∗m · (µ− ν) + ∗n · (µ− ν) < ι+ λ.

Thus ∗m+ ∗n ∈ ∗Zµ−ν[ι+λ]
(
θ
∣∣x−1

)
. �
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With its sum partially defined along the growth-decay filtration, we refer
to ∗Z

(
θ
∣∣x−1

)
as an approximate group; the sum is referred to as the

growth-decay sum or approximate group sum.

Corollary 8.2. Let θ ∈ R− Q. Then ∗Z
(
θ
∣∣x−1

)
has no non-trivial approx-

imate group sums ⇔ θ ∈ B.

Proof. ⇐ Immediate from Theorem 4.7. ⇒ If θ ∈ W there exists µ for
which ∗Zµµ

(
θ|x−1

)
6= 0. In this case we have the non-trivial growth-decay

sum
∗Zµµ

(
θ|x−1

)
+ ∗Zµµ

(
θ|x−1

)
⊂ ∗Zµ

(
θ|x−1

)
.

�

Recall [10] the real vector space
•R := ∗R/∗Rε ⊃ R

of extended reals (not considered here as a topological vector space). We
define a function

| · |θ : ∗Z→ •R+ (32)

by
|∗n|θ :=

(
|∗n| · ‖∗nθ‖

)1/2
mod ∗Rε.

Note that when ∗n ∈ ∗Z(θ), ‖∗nθ‖ = |ε(∗n)|. By definition, |∗n|θ ∈ R+ for
all ∗n ∈ ∗Z

(
θ|x−1

)
. Somewhat abusively, we refer to | · |θ as the θ-norm;

while it is technically not a norm, it may be viewed as a generalized norm
in a sense which will soon be made clear. We have immediately:

Proposition 8.3. | · |θ ≡ 0 on ∗Zµν
(
θ|x−1

)
for µ ≥ ν.

Note 9. For each θ ∈ B, let Cθ > 0 be the supremum of constants C for
which ‖nθ‖ < Cx−1 has only finitely many solutions. The set of such Cθ
as one ranges over θ ∈ B is called the Lagrange spectrum [18]. Note that if
θ ∈ B and Cθ > 0 is the associated element of the Lagrange spectrum then
for all 0 6= ∗n ∈ ∗Z

(
θ|x−1

)
|∗n|θ ≥ C

1/2
θ .

Thus for badly approximable numbers, the θ-norm is always positive on non
0 elements.

For arbitrary θ ∈ R− Q, do there exist any ∗n ∈ ∗Z
(
θ|x−1

)
for which

0 < |∗n|θ <∞?

If there exists such an ∗n then there are positive real constants c < C such
that some representative sequence {ni} satisfies the inequality

c

ni
≤ |niθ− n⊥i | ≤

C

ni
(33)

i.e. 〈|∗n| · |ε(∗n)|〉 = 〈|∗n|〉 · ν(∗n) = 1 , or equivalently,

µ(∗n) = ν(∗n).
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We call such a class ∗n a symmetric diophantine approximation, the
set of which union 0 is denoted

∗Zsym(θ) := | · |−1
θ (0,∞) ∪ {0} ⊂ ∗Z

(
θ|x−1

)
.

We have trivially that ∗n ∈ ∗Zsym(θ)⇔ N · ∗n ∈ ∗Zsym(θ) for N ∈ Z−{0}.
We will show that ∗Zsym(θ) 6= 0 for all θ ∈ R − Q. For each ν ∈ ◦PRε,

write
∗Zsym
ν (θ) = {∗n ∈ ∗Zsym(θ)| ν(∗n) = ν},

so ∗Zsym(θ) =
⋃
ν
∗Zsym
ν (θ). The following proposition identifies ∗Zsym

ν (θ)
as the part of ∗Zν(θ) inhabiting the narrow space between the intersection
of the slow diophantine approximations of decay ν and the flat diophantine
approximations of decay ν.

Proposition 8.4. Let θ ∈ R. Then

∗Zsym
ν (θ) =

(( ⋂
µ<ν

∗Zµν(θ)

)
\∗Zνν(θ)

)
∪ {0}.

Proof. 0 6= ∗n ∈ ∗Zsym
ν (θ) ⇔ ∗n · ν = ∗n · ν(∗n) = 1 in ◦PR ⇔ ∗n 6∈ ∗Zνν(θ)

and ∗n ∈ ∗Zµν(θ) for all µ < ν. �

Corollary 8.5. If θ ∈ B then
∗Zsym
ν (θ) =

⋂
µ<ν

∗Zµν(θ).

In particular, ∗Zsym
ν (θ) is a subgroup of ∗Zν(θ).

It is not known at this writing whether ∗Zsym
ν (θ) is a group for arbitrary

θ ∈ R. Thus, here is an instance of a diophantine approximation structure
for which the badly approximable numbers enjoy at least as much, if not
more, algebraic structure than their well approximable counterparts.

Recall (see §4) the set of best growths ◦PRbg
ε ⊂ ◦PRε.

Theorem 8.6. If θ ∈ B then ∗Zsym
ν (θ) 6= 0 for all ν ∈ ◦PRε. More generally,

for all θ ∈ R− Q, ∗Zsym(θ) 6= 0.

Proof. For θ ∈ B the result is obviously true: any best class ∗q̂ belongs to
∗Zsym(θ), and moreover, we may realize any growth index ν as a best growth
by Theorem 4.7. Now assume that θ 6∈ B∪Q. Let θ = [a1a2 . . . ]. By Grace’s
Theorem (Theorem 10, page 16 of [15]), the intermediate best denominator
(= denominator of the intermediate convergent) qn,r = rqn+1 + qn, where
0 ≤ r < an+2, satisfies

1 < |qn,r| · ‖qn,rθ‖
for all r 6= 0, 1, an+2 − 1. Notice that for infinitely many n, such r are avail-
able, since θ 6∈ B implies that there are arbitrarily large partial convergents
an. For any infinite sequence of such intermediate convergents we take c = 1



280 T.M. GENDRON

in (33). On the other hand (the Lemma on page 16 of [15]), we have for any
intermediate convergent

|qn,r| · ‖qn,rθ‖ =
qn,r(θn+2 − r)
θn+2qn+1 + qn

=
(rqn+1 + qn)(θn+2 − r)

θn+2qn+1 + qn

where (as in Theorem 5.1) θi is defined by the equation θ = [a1 . . . ai−1θi].
We note that r < an+2 < θn+2. Dividing out numerator and denominator
by the dominant term θn+2qn+1 gives

|qn,r| · ‖qn,rθ‖ =

((
r/θn+2

)
+
(
qn
/

(θn+2qn+1)
))(

θn+2 − r
)

1 +
(
qn
/

(θn+2qn+1)
)

< r +
qn
qn+1

− r
(

r

θn+2
+

qn
θn+2qn+1

)

< r + 1.

Then if we choose ri bounded and 6= 0, 1, ani+2 − 1, the class ∗n = ∗{qni,ri}
will be symmetric. It follows that for any best class ∗q̂ there is a symmetric
class ∗n such that µ(∗q̂) = µ(∗n). �

Corollary 8.7. If θ ∈ B then ∗Zsym(θ) contains both the best denominator
classes as well as the intermediate best denominator classes.

Proof. From the proof of Theorem 8.6, we know that the intermediate best
denominators of the form ∗n = ∗{qni,ri}, where ri 6= 0, 1, ani+2 − 1 and is
uniformly bounded, belong to ∗Zsym(θ). On the other hand, since θ ∈ B,
the best denominators (which occur for ri = 0) as well as the consecutive
sum and difference ∗q̂+ ± ∗q̂ (which occur for ri = 1, ani+2 − 1) belong to
∗Zsym(θ). �

Note 10. As the above paragraphs show, the function | · |θ is nontrivial for
all θ ∈ R− Q. We take a moment to contrast it with its rational and p-adic
analogs.

i. If θ = q = a/b ∈ Q then | · |q ≡ 0 on ∗Z(θ) = ∗Z(θ|x−1). For ∗n ∈ ∗Z
arbitrary, |∗n|q = c · |∗n| where c = a′/b for some a′ < b. In fact, | · |q
induces a function

| · |q : ∗Z/∗Z(θ) ∼= Z/bZ −→ ∗Q/∗Z ∼= Q/Z.

ii. If ξ ∈ Qp = p-adic numbers and we use the p-adic absolute value to
define the distance-to-the-nearest-integer function ‖ · ‖, then ‖ · ‖ ≡ 0
on ∗Z(ξ) = ∗Z(ξ|x−1). Therefore, for ∗n ∈ ∗Z arbitrary, |∗n|ξ ≤ |ξ|p
= the p-adic absolute value; if ξ ∈ Ẑp then | · |ξ ≡ 0.
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We turn to the general arithmetic structure of the symmetric diophantine
approximations, describing

∗Zsym(θ) = {∗Zsym
ν (θ)}

as a subapproximate group of ∗Z(θ|x−1). For every sign pair σ ∈ {±}2, let
∗Z(θ)σ be the monoid consisting of 0 and those diophantine approximations
∗n ∈ ∗Z(θ) for which (sign(∗n), sign(ε(∗n))) = σ. Let

∗Zsym
ν (θ)σ = ∗Zsym

ν (θ) ∩ ∗Z(θ)σ.

Theorem 8.8. Let θ ∈ R.
1. ∗Zsym(θ) = {∗Zsym

ν (θ)} satisfies
∗Zsym
ν (θ) + ∗Zsym

ν (θ) ⊂ ∗Z
(
θ|x−1

)
.

2. For σ = (+,+) or (−,−) and ν ∈ ◦PRε, ∗Z
sym
ν (θ)σ is a monoid:

∗Zsym
ν (θ)σ + ∗Zsym

ν (θ)σ ⊂ ∗Zsym
ν (θ)σ.

Proof. The first assertion is a consequence of the inequality

|∗m+ ∗n| · |ε(∗m+ ∗n)| ≤M + |∗n||ε(∗m)|+ |∗m||ε(∗n)| :
as the terms |∗n||ε(∗m)|, |∗m||ε(∗n)| are bounded. The second assertion
follows by noting that for ∗m, ∗n ∈ ∗Zsym

ν (θ)σ we have

〈|∗m+ ∗n|〉 = 〈|∗m|〉+ 〈|∗n|〉 = ν−1

and
〈|ε(∗m+ ∗n)|〉 = 〈|ε(∗m)|〉+ 〈|ε(∗n)|〉 = ν.

�

Corollary 8.9. If θ ∈ B then ∗Zsym(θ) = {∗Zsym
ν (θ)} is a family of groups

satisfying
∗Zν[ι] · ∗Zsym

ν (θ) ⊂ ∗Zν2ι (θ). (34)

Proof. If θ ∈ B then ∗Z
(
θ|x−1

)
= ∗Zsym(θ). By 1. of Theorem 8.8,

∗Zsym
ν (θ) is a group for all ν ∈ ◦PRε. The property (34) follows immedi-

ately from the definitions. �

The symmetric set ∗Zsym
ν (θ) has, in addition, a fractional addition / mul-

tiplication law which generalizes the approximate ideal product of Theorem
6.3, and which is nontrivial even for θ ∈ B. To formulate it it is necessary
to work with numerator denominator pairs rather than just denominators.
Thus let

∗Z1,1(θ) = {(∗n⊥, ∗n)| ∗n ∈ ∗Z(θ)}
= {(∗m, ∗n) ∈ ∗Z2| 〈|∗nθ− ∗m|〉 < 1} ⊂ ∗Z2

be the associated group of numerator denominator pairs of diophantine ap-
proximations. The canonical isomorphism ∗Z1,1(θ) ∼= ∗Z(θ) induces the
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growth-decay filtration ∗Z1,1(θ) = {(∗Z1,1)µν(θ)}. The set of symmetric nu-
merator denominator pairs is denoted

(∗Z1,1)sym
ν (θ) ⊂ (∗Z1,1)ν(θ).

Now define
∗Z̊1,1(θ) = {(∗m, ∗n) ∈ ∗Z2| 〈|∗nθ− ∗m|〉 ≤ 1} % ∗Z1,1(θ),

elements of which we refer to as quasi diophantine approximations. Note
that Z2 ⊂ ∗Z̊1,1(θ), and if (∗m, ∗n) ∈ ∗Z̊1,1(θ)−Z2 then both ∗m and ∗n are
infinite. In addition, for all infinite (∗m, ∗n) ∈ ∗Z̊1,1(θ), ∗m/∗n ' θ in ∗R. If
we form the quotient group

∗Z
1,1

(θ) := ∗Z̊1,1(θ)/Z2

then every class ∗n̄ ∈ ∗Z := ∗Z/Z (= the group of universes in ∗Z, a densely
ordered group) determines a unique numerator ∗m̄ ∈ ∗Z for which (∗m̄, ∗n̄) ∈
∗Z

1,1
(θ) and we write ∗n̄⊥ = ∗m̄.

Since elements of ∗Z1,1(θ) are already uniquely determined by their de-
nominator, there is an induced inclusion

∗Z1,1(θ) ↪→ ∗Z
1,1

(θ).

For (∗n̄⊥, ∗n̄) ∈ ∗Z1,1
(θ) write

ν(∗n̄) :=

{
ν(∗n) if ∗n ∈ ∗n̄ belongs to ∗Z(θ),
1 otherwise.

In addition, write µ(∗n̄) = 〈∗n−1〉 for any ∗n ∈ ∗n̄, which is evidently inde-
pendent of the choice of representative.

Let
◦PR≤1 = ◦PRε ∪ {1}

be the associated tropical ring of quasi decays. Now for µ ∈ ◦PRε,ν ∈
◦PR≤1 define

(∗Z
1,1

)µν(θ) = {(∗m̄, ∗n̄)| ∗n̄ · µ ∈ ◦PRε,ν(∗n̄) ≤ ν}.

Note that for all ν < 1, (∗Z
1,1

)µν(θ) = (∗Z1,1)µν(θ) ∼= ∗Zµν(θ). The proof of the
following Theorem is left to the reader, who will note that it is available for
elements of B, providing the latter with a weak form of approximate ideal
arithmetic.

Theorem 8.10 (Symmetric Approximate Ideal Arithmetic). For any θ,η ∈
R and all ν ∈ ◦PRε, there are maps

·,± : (∗Z1,1)sym
ν (θ)× (∗Z1,1)sym

ν (η) −→ (∗Z
1,1

)ν
2

1 (θη), (∗Z
1,1

)ν
2

1 (θ± η)

given by fractional product, sum and difference of pairs.
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9. Symmetric diophantine approximations and the
Littlewood conjecture

Recall [17] that the Littlewood conjecture asserts that for any pair θ,η ∈ B,

lim
n→∞

inf |n|‖nθ‖‖nη‖ = 0,

where ‖ · ‖ is the distance-to-the-nearest-integer function.

Observation. Given θ,η ∈ B, suppose that ∃ν ∈ ◦PRε such that

{0} $ ∗Zsym
ν (θ) ∩ ∗Zν(η) or {0} $ ∗Zν(θ) ∩ ∗Zsym

ν (η).

Then the Littlewood conjecture holds for the pair θ,η.

In view of the Observation, it would be of interest to find an explicit
description of ∗Zsym(θ). When θ = ϕ = (

√
5 + 1)/2 is the golden mean

there are many symmetric diophantine approximations which are composed
neither of intermediate nor principle convergents; we characterize them now.
Recall [24] that every natural number has a unique Zeckendorf representation

N = Fi1 + · · ·+ Fik (35)

where Fk = the kth Fibonacci number, and the sequence i1 < · · · < ik
consists of non consecutive integers ≥ 2. Using Binet’s formula [16]

Fk =
ϕk − (−1)kϕ−k√

5

one can show that
Fkϕ− Fk+1 = (−1)k+1ϕ−k

(see equation (3) on page 1020 of [4]), so that ‖Fkϕ‖ = ϕ−k. More generally,
for N sufficiently large, the integer N⊥ closest to Nϕ is

N⊥ = F⊥i1 + · · ·+ F⊥ik = Fi1+1 + · · ·+ Fik+1

and thus

ε(N) := Nϕ−N⊥ = (−1)i1+1ϕ−i1 + · · ·+ (−1)ik+1ϕ−ik . (36)

Given N , let i1(N) = i1 denote the smallest index occurring in (35); for
∗N = ∗{Ni} ∈ ∗Z, i1(∗N) is defined to be the sequence class of {i1(|Ni|)}.

Proposition 9.1. ∗N ∈ ∗Z is in ∗Z(ϕ) ⇔ i1(∗N) ∈ ∗N− N.

Proof. Let N ∈ N have the Zeckendorf representation (35). Then Lemma 1
of [4] says that ‖Nϕ‖ < ϕ−n ⇔ one of the following two conditions holds:

• i1 ≥ n+ 1 or
• i1 = n and i2 − i1 is odd and ≥ 3.

From this, the statement in the Proposition follows immediately. �
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Define the Zeckendorf degree of the representation (35) to be

Z-deg(N) := ik − i1.

For ∗N = ∗{Ni} ∈ ∗Z the Zeckendorf degree Z-deg(∗N) is defined to be the
sequence class of {Z-deg(|Ni|)} is an element of ∗N.

Theorem 9.2. Let ϕ be the golden mean. Then
∗Zsym(ϕ) = {∗N ∈ ∗Z(ϕ)| Z-deg(∗N) <∞}.

Proof. Let ∗N = ∗{Ni}; without loss of generality, we may assume ∗N ∈ ∗N.
Let M = Z-deg(∗N) <∞: then we may write

∗N = F∗n + F∗n+j1 + · · ·+ F∗n+jk + F∗n+M

where F∗n = ∗{Fni} for some ∗n ∈ ∗N and where 1 < j1 < · · · < jk are
nonconsecutive elements of N. If ∗N ∈ ∗Z(ϕ), then ∗n ∈ ∗N − N. Using
Binet’s formula, we may write

∗N =
F (ϕ)√

5
ϕ
∗n + ∗δ

where F (X) := 1 + Xj1 + · · · + XM and ∗δ ∈ ∗Rε. On the other hand, by
(36),

|ε(∗N)| ≤ F (ϕ−1)

ϕ
∗n

Thus,
|∗N | · |ε(∗N)| ≤ C

for C > 0 a constant that depends only on ϕ. In particular, ∗N ∈ ∗Zsym(ϕ).
On the other hand, suppose that ∗N ∈ ∗Z(ϕ) with ∗M = Z-deg(∗N) ∈ ∗N−N
say

∗N = F∗n + · · ·+ F∗n+∗M =
∗F (ϕ)√

5
ϕ
∗n + ∗δ

where now
∗F (X) = 1 + · · ·+X

∗M = ∗{Fi(X)}
is a nonstandard polynomial of infinite degree ∗M , all of whose coefficients
belong to {0, 1}. In addition, we have

ε(∗N) =
∗G(ϕ−1)

ϕ
∗n

where
∗G(X) = ±1± · · · ±X∗M = ∗{Gi(X)}

is a nonstandard polynomial of infinite degree ∗M , which differs from ∗F
only in the signs of coefficients indexed by ∗i even (which is a consequence
of (36)). Then

|∗N | · |ε(∗N)| =
∗F (ϕ)|∗G(ϕ−1)|√

5
.
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However ∗F (ϕ) is infinite yet |∗G(ϕ−1)| is not infinitesimal: for any i,

|Gi(ϕ)| ≥ 1−ϕ−2 −ϕ−4 − · · · = 1− 1

ϕ2 − 1
= 1− 1

ϕ
> 0.

Thus ∗N 6∈ ∗Zsym(ϕ). �

Let
ZD[ϕ] ⊂ Z[ϕ]

be the set of Q(
√

5)-integers of the form

ϕI := ϕi1 + · · ·+ϕik

with I = (i1, · · · , ik) a sequence of increasing, non consecutive integers,
i1 ≥ 2 and ik − i1 < D.

Conjecture 9.3. Let θ ∈ B, θ 6∈ Q(
√

5). Then there exists D such that{
‖ϕIθ‖

∣∣ ϕI ∈ ZD[ϕ]
}

is dense in [0, 1/2).

Note 11. If D = 1 in Conjecture 9.3, we obtain Chowla’s conjecture for the
golden mean [17]. Conjecture 9.3 verified would imply the Observation, and
hence the Littlewood conjecture for the pair (ϕ, θ).

10. Lorentzian structure

In this section we make precise the extent to which we may regard | · |θ,
described in §8, as a generalized norm. The following result suggests that
we may view | · |θ as a pseudo-norm on the approximate group ∗Z

(
θ|x−1

)
.

Theorem 10.1. The restriction of the function | · |θ to ∗Z(θ|x−1) obeys the
non-archimedean triangle inequality for all defined (i.e. approximate group)
sums.

Proof. Let ∗n1 ∈ ∗Zµν
(
θ|x−1

)
, ∗n2 ∈ ∗Zνµ

(
θ|x−1

)
so that the sum ∗n1 + ∗n2

is defined. Then

|∗n1 + ∗n2|2θ ≤ (|∗n1|+ |∗n2|)(|ε(∗n1)|+ |ε(∗n2)|) mod ∗Rε.

By hypothesis we have that the elements |∗n1| · |ε(∗n2)|, |∗n2| · |ε(∗n1)| are
infinitesimal, so that

|∗n1 + ∗n2|2θ ≤ |∗n1|2θ + |∗n2|2θ.
However by Proposition 8.3, for µ ≥ ν, |∗n1|2θ = 0, implying |∗n1 + ∗n2|θ ≤
max(|∗n1|θ, |∗n2|θ). �

Since at least one of the elements of any defined approximate group sum
already has θ-norm 0, Theorem 10.1 is somewhat unsatisfying. A more inter-
esting norm-theoretic interpretation of | · |θ may be obtained by restricting to
∗Zsym
ν (θ). As it turns out, it is more natural to contemplate a Minkowskian

formulation of | · |θ.
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Given ∗m, ∗n ∈ ∗Zsym
ν (θ), consider the following symmetric function in

two-variables:

[∗m, ∗n]θ :=
1

2
(∗mε(∗n) + ∗nε(∗m)) mod ∗Rε ∈ R

and write [∗m]θ := [∗m, ∗m]
1
2
θ so that |∗m|θ = |[∗m]θ|. In particular, [ · ]θ is

the “Minkowski norm” associated to [·, ·]θ. We say that ∗m is time-like if
[∗m]2θ > 0 and space-like if [∗m]2θ < 0. The time-like elements correspond
to the signs σ = (+,+), (−,−) and the space-like elements correspond to
the signs σ = (+,−), (−,+). We say that time-like elements point in the
same direction if their sign σ is the same: the elements with sign (+,+) are
interpreted as future pointing.

The function [·, ·]θ extends by the same formula to all of ∗Z(θ|x−1) =
{∗Zµν(θ|x−1)}. We call an element ∗m ∈ ∗Z(θ|x−1) light-like if [∗m]θ =
0 e.g. if ∗m ∈ ∗Zµν(θ|x−1) for some µ ≥ ν. The time-like and space-like
elements of ∗Z(θ|x−1) are exactly the elements of ∗Zsym(θ). When θ ∈ B,
we have the “Heisenberg uncertainty" inequality

|[∗m]|2θ ≥ Cθ (37)

where Cθ is the corresponding element of the Lagrange spectrum.

Theorem 10.2. For all ∗m1,
∗m2 ∈ ∗Zsym

ν (θ),

[∗m1 + ∗m2,
∗n]θ = [∗m1,

∗n]θ + [∗m2,
∗n]θ.

If moreover ∗m1,
∗m2 are time-like and point in the same direction, then they

satisfy the reverse triangle inequality:

[∗m1 + ∗m2]θ ≥ [∗m1]θ + [∗m2]θ.

Proof. The first statement is immediate. To prove the second it will suffice
to prove the following reverse Cauchy inequality:

[∗m, ∗n]θ ≥ [∗m1]θ[
∗m2]θ.

Indeed, suppose the latter is true, and ∗m1,
∗m2 are time-like of the same

sign, then immediately:

[∗m1 + ∗m2]
2
θ = (∗m1 + ∗m2)(ε(∗m1) + ε(∗m2))

= [∗m1]
2
θ + [∗m2]

2
θ + 2[∗m1,

∗m2]θ

≥ ([∗m1]θ + [∗m2]θ)
2.

But the reverse Cauchy inequality follows from:

[∗m1,
∗m2]

2
θ − [∗m1]

2
θ[
∗m2]

2
θ =

1

4
(∗m1ε(

∗m2)− ∗m2ε(
∗m1))2 ≥ 0.

�

We call ∗Zsym(θ) = {∗Zsym
ν (θ)} equipped with the Minkowskian pairing

[·, ·]θ a Lorentzian approximate group. The Minkowskian norm has the
following compatibility with the symmetric approximate ideal product:
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Proposition 10.3. Suppose that ∗m ∈ ∗Zsym
ν (θ), ∗n ∈ ∗Zsym

ν (η) are either
both time-like or both space-like. Then |[∗m∗n]θη| =∞ so that

|[∗m∗n]θη| > [∗m]θ[
∗n]η.

Proof. First note that ε(∗m∗n) = ∗nε(∗m) + ∗mε(∗n) + ε(∗m)ε(∗n) and
by hypothesis ∗nε(∗m) ' r, ∗nε(∗m) ' s with r, s non-zero reals. These
non-zero reals will be of the same sign if ∗m, ∗n are either both time-like or
both space-like: in this event, |ε(∗m∗n)| ' |r|+ |s| > 0, hence |[∗m∗n]θη| is
infinite and the result is trivially true. �

Theorem 10.4. The group PGL2(Z) acts by Lorentzian isometries: that is,
for all ∗m, ∗n ∈ ∗Zsym

ν (θ),

[∗m, ∗n]θ = [A(∗m), A(∗n)]A(θ).

In particular, if θ m η then ∗Zsym(θ) ∼= ∗Zsym(η) as Lorentzian approximate
groups.

Proof. If A =

(
a b
c d

)
then as was seen in Theorem 3.3, A(∗m) = c∗m⊥+

d∗m and ε(A(∗m)) = (cθ+ d)−1ε(∗m), with similar formulas for A(∗n) and
ε(A(∗n)). Thus

A(∗m)ε(A(∗m)) =
c∗m⊥ + d∗m

cθ+ d
ε(∗m)

=
c(∗m⊥/∗m) + d

cθ+ d
∗mε(∗m)

' ∗mε(∗m)

and the result follows. �

We now define a family of norms indexed by general exponents. For each
κ > 1 consider the function x−κ and the set ∗Z(θ|x−κ) ⊂ ∗Z(θ|x−1) with its
associated “norm” function

|∗m|θ,κ = |∗mκε(∗n)| mod ∗Rε ∈ R.

Much of the discussion developed above for the case κ = 1 extends to
κ > 1. We summarize the situation for κ > 1 leaving the straightforward
verifications to the reader.

a. The set of κ -symmetric diophantine approximations, defined
∗Zsym
κ (θ) = {∗Zsym

ν,κ (θ)} := | · |−1
θ,κ(0,∞) ⊂ ∗Z(θ|x−1),

satisfies the obvious analogue of Theorem 8.8.
b. If κ 6= κ′ then ∗Zsym

κ (θ) ∩ ∗Zsym
κ′ (θ) = {0}.

c. If θ is κ-bad then ∗Zsym
κ (θ) = ∗Z(θ|x−κ) is a family of groups, and

∗Zsym
κ′ (θ) = 0 for all κ′ > κ.

d. If θ m η by A ∈ PGL2(Z) then we have the following analogue of
Theorem 10.4: for all ∗m ∈ ∗Z(θ|x−κ), |A(∗m)|A(θ),κ = |∗m|θ,κ.
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We may also consider nonstandard exponents: for any ∗κ ∈ ∗R+, ∗κ > 1,
we may define in the obvious way

∗Z(θ|x−∗κ) ⊂
⋂

∗κ>κ>1

∗Z(θ|x−κ),

equipped with its associated norm function | · |θ,∗κ with which we may define
the ∗κ symmetric diophantine approximations ∗Zsym

∗κ (θ) = {∗Zsym
ν,∗κ(θ)}. Note

that if θ 6∈W∞ then ∗Zsym
∗κ (θ) = 0 for all ∗κ infinite nonstandard. In general

we have
∗Z(θ|x−1) =

⋃
∗κ>1

∗Zsym
∗κ (θ).

We refer to ∗Z(θ), with the family {(∗Z(θ|x−∗κ), | · |θ,∗κ)} as a Frechet
Lorentzian approximate group: for any ∗m ∈ ∗Z(θ), |∗m|θ,∗κ = 0 for all
∗κ ⇔ ∗m = 0. We call a approximate module homomorphism

f : ∗Z(θ)→ ∗Z(η)

a Frechet Lorentzian isometry or simply an isometry if it preserves the
Frechet Lorentzian norms.

Theorem 10.5. θ m η ⇒ ∗Z(θ) ∼= ∗Z(η) by isometric approximate module
isomorphism.

Proof. The proof of Theorem 10.4 follows through identically to show that
A ∈ PGL2Z acts by Frechet Lorentzian isometries. �

Conjecture 10.6. θ m η ⇔ ∗Z(θ) ∼= ∗Z(η) by an isometric approximate
module isomorphism.

11. Matrix approximate ideal arithmetic

Let Θ be a real matrix of size r×s. In [10] we defined the inhomogeneous
diophantine approximation group of Θ to be

∗Zs(Θ) = {∗n ∈ ∗Zs| ∃∗n⊥ ∈ ∗Zr s.t. ε(∗n) := Θ∗n− ∗n⊥ ∈ ∗Rrε}.
The corresponding homogeneous diophantine approximation group
is defined by

∗Z̃s(Θ) = Ker(⊥) = {∗n ∈ ∗Zs(Θ)| Θ∗n ∈ ∗Rrε} < ∗Zs(Θ).

Thus, if ∗Zr(Θ)⊥ denotes the group of duals then ∗Zs(Θ)/∗Z̃s(Θ) ∼= ∗Zr(Θ)⊥.
Note that if Θ is square invertible then ∗Z̃s(Θ) = 0.

In this section we will develop approximate ideal arithmetic for the groups
∗Zs(Θ). First, for ∗n = (∗n1, . . . ,

∗ns) ∈ ∗Zs, the house norm is defined

|∗n| := max
j=1,...,s

|∗nj | (38)

and for ∗n 6= 0 write µ(∗n) := 〈|∗n|〉−1 ∈ ◦PR. Then for µ ∈ ◦PRε the set

(∗Zs)µ =
{∗n 6= 0

∣∣ µ1/s < µ(∗n)
}
∪ {0} =

{∗n∣∣ |∗n| · µ1/s ∈ ◦PRε
}
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forms a group: for ∗m, ∗n ∈ (∗Zs)µ,

|∗m + ∗n| · µ1/s ≤
(
|∗m|+ |∗n|

)
· µ1/s ∈ ◦PRε.

The set (∗Zs)µ[ι] of elements of (∗Zs)µ which in addition satisfy |∗n| ·µ1/s < ι
forms a subgroup.

For ∗ε = (∗ε1, . . . ,
∗εr) ∈ ∗Rrε, define |∗ε| as in (38). Given ∗n ∈ ∗Zs(Θ)

denote by ν(∗n) = 〈|ε(∗n)|〉: then

(∗Zs)ν(Θ) = {∗n ∈ ∗Zs(Θ)| ν(∗n) ≤ ν1/r}

is also a group. We have thus defined the matrix approximate ideal
∗Zs(Θ) = {(∗Zs)µν(Θ)} = {(∗Zs)µ[ι]

ν (Θ)}.

In general, the dual group (∗Zr)(Θ)⊥ admits a filtration by growth only,
{(∗Zr)µ(Θ)⊥}, except when ∗Z̃s(Θ) = 0 e.g. when Θ is square invertible.
Nevertheless, we have

Lemma 11.1. Let ∗n ∈ (∗Zs)µ[λ](Θ). Then

|∗n⊥| · µ1/s < λ,

that is, ∗n⊥ ∈ (∗Zr)µ
r/s[λ]. If Θ is invertible of dimension r × r then ∗n ∈

(∗Zr)µ[λ](Θ)⇔ ∗n⊥ ∈ (∗Zr)µ[λ](Θ)⊥.

Proof. We must show that 〈|∗n⊥|〉 · (µr/s)1/r = 〈|∗n⊥|〉 · µ1/s ∈ ◦PRε. But
this follows immediately from:

|∗n⊥| = |Θ∗n| = max
i=1,...,r

|
s∑
j=1

Θij
∗nj | ≤ s|Θ| · |∗n|

where |Θ| = maxij |Θij |. The last statement follows from symmetry of argu-
ment. �

The relevant arithmetic operations for matrix approximate ideal arith-
metic derive from the Kronecker product and sum [14]. Let Θ, Θ′ be real
matrices of dimensions r× s, r′ × s′. Denote by Θ⊗Θ′ the Kronecker (or
tensor) product i.e. the rr′ × ss′ block matrix

Θ⊗Θ′ =

 θ11Θ
′ · · · θ1sΘ

′

...
. . .

...
θr1Θ

′ · · · θrsΘ
′


where Θ = (θij). If r = s and r′ = s′ the Kronecker sum and Kronecker
difference are the rr′ × rr′ matrices

Θ⊕Θ′ = Θ⊗ Ir′ + Ir ⊗Θ′, Θ	Θ′ = Θ⊗ Ir′ − Ir ⊗Θ′.

Neither the Kronecker product nor the Kronecker sum/difference are com-
mutative, nor do they satisfy the distributive law. If we assume Θ,Θ′ are
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square and denote by σ(Θ), σ(Θ′) their spectra then σ(Θ⊗Θ′) = σ(Θ)·σ(Θ′),
σ(Θ⊕Θ′) = σ(Θ) + σ(Θ′) and σ(Θ	Θ′) = σ(Θ)− σ(Θ′).

Denote by M̃(R) the monoid of all real matrices with respect to the Kro-
necker product, and by M(R) the submonoid of square matrices, equipped
further with the Kronecker sum/difference. Note that there is a monomor-
phism (R,+,×) ↪→ (M(R),⊕,⊗). Observe that if m, n are vectors of size s
resp. s′ then

(Θ⊗Θ′)(m⊗ n) = Θ(m)⊗Θ′(n); (39)

if r = s and r′ = s′ and m, n are vectors of size r resp. r′ then

(Θ⊕Θ′)(m⊗ n) = Θ(m)⊗ n + m⊗Θ′(n), (40)

with a similar formula for the Kronecker difference. If we think of (Θm,m)
as a “vector numerator denominator pair”, then (39) is the formula for the
numerator of the product and (40) is the formula for the numerator of the
sum.

Theorem 11.2 (Matrix Approximate Ideal Arithmetic). Let Θ, Θ′ be real
matrices of dimensions r × s, r′ × s′. Then there is a well-defined bilinear
pairing:

⊗ : (∗Zs)µ
s[ι]
νr (Θ)× (∗Zs

′
)
νs
′
[λ]

µr
′ (Θ′) −→ (∗Zss

′
)
µss
′ ·νss′ [ι·λ]

ι+λ (Θ⊗Θ′) (41)

defined by the Kronecker product of vectors. If r = s and r′ = s′ then the
Kronecker product also defines a pairing

⊗ : (∗Zr)µ
r[ι]
νr (Θ)× (∗Zr

′
)
νr
′
[λ]

µr
′ (Θ′) −→

⋂
Ξ

(∗Zrr
′
)
µrr
′ ·νrr′ [ι·λ]

ι+λ (Ξ) (42)

where the intersection in (42) runs over Ξ = Θ ⊗ Θ′,Θ ⊕ Θ′,Θ 	 Θ′. In
particular, when r = r′ = s = s′ = 1 we recover Theorem 6.3.

Proof. We will prove (41); the proof of (42) is similar and is left to the
reader. The argument amounts to replacing scalar product by tensor product
in the calculations found in Theorem 6.3, taking into account the dimensional
normalizations used to define the filtrations. Let ∗m ∈ (∗Zs)µ

s[ι]
νr (Θ), ∗n ∈

(∗Zs
′
)
νs
′
[λ]

µr
′ (Θ′). First observe that

µ(∗m⊗ ∗n) = µ(∗m) · µ(∗n) > µ · ν = (µss
′ · νss′)1/ss′

which implies ∗m⊗∗n ∈ (∗Zss
′
)µ

ss′ ·νss′ [ι·λ]. Denote by Θi the ith row of Θ, Θ′j
the jth row of Θ′ and by � the dot product. The rr′ vector Θ⊗Θ′(∗m⊗∗n)
has coordinates indexed by (i, j) ∈ I × J where the latter is given the linear
dictionary order. The (i, j) coordinate is given by

(Θi � ∗m) · (Θj � ∗n) = (∗m⊥i + ε(∗m)i) · (∗n⊥j + ε(∗n)j)

= ∗m⊥i
∗n⊥j + ε(∗m)i

∗n⊥j + ∗m⊥i ε(
∗n)j + ε(∗m)iε(

∗n)j
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i.e.

Θ⊗Θ′(∗m⊗ ∗n)− ∗m⊥ ⊗ ∗n⊥

= ε(∗m)⊗ ∗n⊥ + ∗m⊥ ⊗ ε(∗n) + ε(∗m)⊗ ε(∗n). (43)

The term ε(∗m)⊗ε(∗n) can be disregarded because upon passage to ◦PRε it
is strictly less than the absolute values of the images of the other two terms
on the right hand side of (43). Now

〈|ε(∗m)⊗ ∗n⊥|〉 = |∗n⊥| · ν(∗m) ≤ |∗n⊥| · ν < λ,

where we have used Lemma 11.1. Similarly one shows that 〈|∗m⊥ ⊗ ε(∗n)|〉 <
ι so that ∗m⊗ ∗n ∈ (∗Zss

′
)ι+λ(Θ⊗Θ′) as claimed. �

The characterization of classes of real numbers in terms of the nonvan-
ishing spectrum found in §4 can be generalized to real matrices using the
nonvanishing spectrum

Spec(Θ) = {(µ,ν)| (∗Zs)µν(Θ) 6= 0}.
By viewing Θ as the family of linear forms {Θi}ri=1 in s variables, we will
obtain the familiar correspondence between the geometry of Spec(Θ) and
approximation classes.

We say that Θ is rational if there exists a vector m ∈ Zs such that
Θ(m) ∈ Zr; otherwise we say that Θ is irrational. Denote the set of
rational real matrices by Q̃(R) and by Q(R) the subset of square rational real
matrices. Then both Q̃(R) and by Q(R) are closed with respect to ⊗, and
Q(R) is closed with respect to ⊕,	 as well. Of course, the restriction of the
monomorphism R ↪→M(R) to Q lies in Q(R).

Proposition 11.3. For all Θ ∈ M̃(R), Spec(Θ) ⊃ {(µ,ν)|µ < ν}. If Θ ∈
Q̃(R) then Spec(Θ) = ◦PR2

ε.

Proof. For Θ ∈ M̃− Q̃(R), this is an straightforward adaptation of the proof
of Theorem 4.2 using Schmidt’s “Dirichlet Theorem” for families of linear
forms (Theorem 3A on page 36 of [18]). If Θ ∈ Q̃(R) then (∗Zs)−∞(Θ) 6= 0
from which we get Spec(Θ) = ◦PR2

ε. �

A matrix Θ is badly approximable if there exists a constant C > 0 such
that for all ∗n ∈ ∗Zs(Θ),

|∗n|s · |ε(∗n)|r > C.

This definition is equivalent to the definition given in [18] in terms of the
family of linear forms {Θi}ri=1. In what follows, Specflat(Θ) = the intersection
of Spec(Θ) with the diagonal.

Theorem 11.4. Θ ∈ M̃(R) − Q̃(R) is badly approximable ⇔ Spec(Θ) =
{(µ,ν)|µ < ν} ⇔ Specflat(Θ) = ∅.
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Proof. This follows directly from the definition of being badly approximable.
�

Denote by B̃(R) ⊃ B the set of badly approximable real matrices, by
W̃(R) = M̃(R)− (B̃(R) ∪ Q̃(R)) ⊃W the set of well approximable matrices.
In addition, we have the notion of very well approximable matrices
W̃κ(R)r,s of exponent κ > s: those for which

(1) there exists ∗n such that for any λ ∈ (s, κ)

|∗n|λ · |ε(∗n)|r ' 0.

(2) The infinitesimal equation

|∗n|κ
′
· |ε(∗n)|r ' 0

has no solution.
Write W̃>s(R)r,s for the set of very well approximable matrices of size r× s.
When κ = ∞ we get the Liouville matrices W̃∞(R)r,s. In addition, let
B̃(R)r,s denote the space of badly approximable matrices of size r × s.

Theorem 11.5. Let C̃(R)r,s be any of the classes

B̃(R)r,s, W̃>s(R)r,s, W̃∞(R)r,s

described in the previous paragraph. Then

C̃(R)Tr,s :=
{
ΘT
∣∣ Θ ∈ C̃(R)r,s

}
= C̃(R)s,r.

Proof. This follows from the Khintchine Transference Principle (Theorem
5C of §4.5 of [18]). �

We now introduce a generalized notion of projective linear equivalence
appropriate to the matrix setting. Let GLr,s(Z) := GLr+s(Z) be the group
of (r + s)× (r + s) integral invertible matrices, partitioned in the following
way

M =

(
A B
C D

)
=

(
Ar×r Br×s
Cs×r Ds×s

)
(44)

(where the block subindices indicate the dimension). Note that the product
of matrices M,M ′ ∈ GLr,s(Z) viewed in block form follows the familiar
formula for 2× 2 matrix multiplication e.g.

M ′M =

(
A′ B′

C ′ D′

)(
A B
C D

)
=

(
A′A+B′C A′B +B′D
C ′A+D′C C ′B +D′D

)
. (45)

If M ′ = M−1 then A′A + B′C = Ir, C ′B + D′D = Is, A′B + B′D = Or,s
and C ′A+D′C = Os,r, where Ir is the r×r identity matrix, Or,s is the r×s
zero matrix, etc.

Let Θ,Θ′ be r × s real matrices. We write

Θ mr,s Θ
′
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if there exists M ∈ GLr,s(Z) with

(AΘ+B) = Θ′(CΘ+D),

or equivalently, if

M

(
Θ
Is

)
=

(
Θ′

Is

)(
CΘ+D

)
. (46)

Note that m1,1 is just m, the usual relation of projective linear equivalence
for scalars.

Theorem 11.6. mr,s is an equivalence relation.

Proof. We begin with transitivity. Suppose that Θ mr,s Θ′ and Θ′ mr,s Θ′′
by matrices M,M ′. Then Θ′(CΘ + D) = (AΘ + B) and Θ′′(C ′Θ′ + D′) =
(A′Θ′ + B′). We want to show that Θ mr,s Θ′′ via M ′M . By the product
formula (45), this amounts to showing

Θ′′
((
C ′A+D′C

)
Θ+

(
C ′B +D′D

))
=
(
A′A+B′C

)
Θ+

(
A′B +B′D

)
.

However this follows from:

Θ′′
((
C ′A+D′C

)
Θ+

(
C ′B +D′D

))
= Θ′′

(
C ′
(
AΘ+B

)
+D′

(
CΘ+D

))
= Θ′′

(
C ′Θ′ +D′

)(
CΘ+D

)
=
(
A′Θ′ +B′

)(
CΘ+D

)
= A′

(
AΘ+B

)
+B′

(
CΘ+D

)
=
(
A′A+B′C

)
Θ+

(
A′B +B′D

)
.

As for symmetry: suppose that Θ mr,s Θ′ by M , understood in the sense of
(46). Let M ′ = M−1; we want to show that

M ′
(
Θ′

Is

)
=

(
Θ
Is

)(
C ′Θ′ +D′

)
.

Multiplying both sides of (46) by M ′ gives(
Θ
Is

)
= M ′

(
Θ′

Is

)(
CΘ+D

)
.

Therefore we must show that (CΘ+D)(C ′Θ′ +D′) = Is: in fact, it suffices
to show that (C ′Θ′ +D′)(CΘ+D) = Is. This follows from:

(C ′Θ′ +D′)(CΘ+D) =C ′(AΘ+B) +D′(CΘ+D)

=(C ′A+D′C)Θ+ (C ′B +D′D)

=Os,rΘ+ Is = Is.

�
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The matrix M implying Θ mr,s Θ′ is clearly a projective invariant; by
abuse of notation we will sometimes write M(Θ) = Θ′. We have therefore
produced a partially defined action of PGLr,s(Z) on M̃(R)r,s generalizing the
projective linear action of PGL2(Z) on R: M acts on Θ provided there exists
Θ′ for which Θ mr,s Θ′ via M .

Consider the group of vector numerator denominator pairs
∗Zr,s(Θ) = {(∗m⊥, ∗m)| ∗m ∈ ∗Zs(Θ)}.

Theorem 11.7. Suppose that M ∈ PGLr,s(Z) acts on Θ ∈ M̃(R)r,s. Then
the map

(∗m⊥, ∗m) 7−→ (∗n⊥, ∗n) := (A∗m⊥ +B∗m, C∗m⊥ +D∗m) (47)

defines an isomorphism of groups of numerator denominator pairs ∗Zr,s(Θ) ∼=
∗Zr,s(M(Θ)). In particular,

(∗Zs)µ[ι]
ν (Θ) ∼= (∗Zs)µ[ι]

ν (M(Θ))

for all µ,ν, ι ∈ ◦PRε.

Proof. Suppose that Θ(∗m) = ∗m⊥ + ε(∗m). Then we may write

(∗n⊥, ∗n) = (A(Θ(∗m)− ε(∗m)) +B∗m, C(Θ(∗m)− ε(∗m)) +D∗m).

Therefore,

Θ′∗n ' Θ′(CΘ+D)∗m

= (AΘ+B)∗m

' ∗n⊥.

We leave the proof that (47) is invertible and respects growth-decay param-
eters to the reader. �

Define the relation
Θµ?ν Θ′

when the groups occurring in (41) (with their dimensional normalizations of
µ, ν) are nontrivial. The extent to which elements of M̃(R) are involved in
approximate ideal factorizations can be delineated according to class e.g. the
elements of B̃(R) are anti prime, the elements of W̃>s(R)r,s are the omnidi-
visors etc. We leave it to the reader to formulate the matrix analogue of the
divisibility discussion found at the end of §6.

Corollary 11.8. Let Θ,Θ′ ∈ M̃(R) − Q̃(R) be real matrices. If M ∈
PGLr,s(Z), N ∈ PGLr′,s′(Z) act on Θ,Θ′ then Θµ?ν Θ′ ⇔ M(Θ)µ?νN(Θ′).

We end this section with a few notes regarding the possible further devel-
opment of the matrix theory along the lines of the scalar theory:
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(1) A theory of flat matrix arithmetic would appear to be, for the mo-
ment, out of reach since we do not have yet at our disposable a matrix
continued fraction algorithm yielding a good notion of best approxi-
mations (in the sense of satisfying the matrix analogue of Dirichlet’s
Theorem), see for example [19].

(2) One may define on ∗Zs(Θ) the Minkowskian norm [∗m]Θ := |∗m|s ·
|ε(∗m)|r as well as the set of symmetric diophantine approximations

(∗Zs)sym(Θ) = {∗m ∈ ∗Zs(Θ)| 0 < [∗m]Θ <∞} ∪ {0}.

For Θ ∈ B̃(R), (∗Zs)sym(Θ) is non trivial; again, due to the lack of a
good notion of matrix best approximations, we can only conjecture
that for general Θ ∈ M̃(R), (∗Zs)sym(Θ) 6= 0.

12. Approximate ideal arithmetic of O-approximation groups

Let K/Q be a finite extension of degree d with ring of integers O. Since
K possesses d places τ : K ↪→ C we index the coordinates of z = (zτ) ∈ Cd

using the places of K. Let

K := {z = (zτ) ∈ Cd| z̄τ = zτ̄} ∼= Rr × Cs ∼= Rd

be the Minkowski space: the archimedean part of the K-adeles, a finite-
dimensional R-algebra. K ⊂ Cd receives the restriction of the hermitian
metric on Cd, and we regard R ⊂ K via the diagonal embedding. If K/Q
is Galois then the Galois group Gal(K/Q) acts on K via σ(z) = (zσ·τ),
where σ · τ := τ ◦ σ−1 for σ ∈ Gal(K/Q). In particular, Gal(K/Q) acts
via hermitian isometries on K since its action is by coordinate permutation;
moreover, it acts trivially on R = the Minkowski space of Q. Therefore, the
induced action on ∗K is bicontinuous. Denote by N : ∗K→ ∗R the norm map:
∗z = (∗zi) 7→ N(∗z) = ∗z1 · · · ∗zd.

12.1. K-Tropical Semi-ring. Consider the ring ∗Kfin ⊂ ∗K of elements all
of whose coordinates are bounded. The group of units is the subgroup ∗K×fin
of elements all of whose coordinates are non-infinitesimal and non-infinite.
The multiplicative quotient

◦PK = ∗K/∗K×fin

is partially ordered and directed along the coordinates. We will denote ele-
ments of ◦PK by µ. There is a diagonal inclusion ◦PR ↪→ ◦PK; the image of
µ will be denoted µ (not bold).

As in the case of K = Q, ◦PK has the structure of a tropical semi-ring
with respect to the induced product, and the sum defined

µ+ µ′ = (µ1 + µ′1, . . . ,µd + µ′d).

Note that µ + µ′ is the least element greater than or equal to µ,µ′. The
neutral element for + is −∞ = (−∞, . . . ,−∞). Elements of ∗K act by
multiplication on the left of ◦PK, respecting in the style of Proposition 2.4
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the tropical structure. The norm (product of coordinates) map induces a
multiplicative map N : ◦PK→ ◦PR.

Note that ◦PC := ∗C/∗C×fin is isomorphic to ◦PR since ∗C×fin ⊃ S1. Thus
the non archimedean valuation 〈·〉 : ∗R→ ◦PR, extended in the obvious way
to ∗C, takes values in ◦PR. We have

◦PK ∼= (◦PR)r × (◦PC)s ∼= ◦PRr+s,

so that every element µ may be written in the reduced coordinate form
(µ1, . . . ,µr+s).

Let 〈·〉 : ∗K → ◦PK be the canonical projection. Let ∗Kε ⊂ ∗Kfin be the
(neither maximal nor prime) ideal of elements all of whose coordinates are
infinitesimal and denote ◦PKε = ∗Kε/∗K

×
fin. Define also

◦PKN(ε) = {µ ∈ ◦PK| N(µ) ∈ ◦PRε} ⊃ ◦PKε.

While ◦PKN(ε) is not closed with respect to +, it is downwardly closed with
respect to the partial order (µ ∈ ◦PKN(ε) and µ′ < µ implies µ′ ∈ ◦PKN(ε))
and moreover, each interval [−∞,µ] = {µ′| µ′ ≤ µ} ⊂ ◦PKN(ε) is a sub
tropical semi ring (w/o unit). Note that if we define

◦PKTr(ε) = {µ ∈ ◦PK| Tr(µ) := µ1 + · · ·+ µr+s = max(µi) ∈ ◦PRε},
then ◦PKTr(ε) = ◦PKε.

Let 〈〈·〉〉 : ◦PK → ◦PR be the map induced by composing the euclidean
norm ‖ · ‖ on ∗K (valued in ∗R+) with 〈·〉: in other words, 〈〈·〉〉 = 〈‖ · ‖〉. In
particular, If µ is represented by (∗x1, . . . ,

∗xr+s), we have

〈〈µ〉〉 =

〈√
∗x2

1 + · · ·+ ∗x2
r+s

〉
=
√
〈∗x2

1 + · · ·+ ∗x2
r+s〉

=
√

max(µ2
i ) = µ1 + · · ·+ µr+s = Tr(µ).

12.2. K-approximate ideals. Let z ∈ K. Define the O-module of O-
diophantine approximations as

∗O(z) = {∗α ∈ ∗O| ∃∗α⊥ s.t. ∗αz − ∗α⊥ ∈ ◦PKε},
which was first introduced in [10].
For each µ ∈ ◦PKN(ε) define

∗Oµ = {∗α ∈ ∗O| ∗α · µ ∈ ◦PKε} ⊂ ∗O.

If µ < µ′ then ∗Oµ ⊃ ∗Oµ′ however if µ and µ′ are unrelated by the order, the
associated modules are unrelated by inclusion. The fine growth subfiltration
∗Oµ[ι] is defined by ∗α · µ < ι where ι ∈ ◦PKε, a submodule of ∗Oµ.

The use of elements µ ∈ ◦PKN(ε) to index growth is required as there exist
nonstandard integers ∗α ∈ ∗O having K-coordinates (∗α1, . . . ,

∗αd) exhibiting
inhomogeneous growth. For example, if α is a Salem number, the class of
the sequence {αi} has a bounded coordinate lying on ∗S1, an infinitesimal
coordinate and an infinite coordinate.
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Now given z ∈ K and ν ∈ ◦PKε we define ∗Oν(z) ⊂ ∗O(z) as the submod-
ule of ∗α for which 〈ε(∗α)〉 ≤ ν, where ε(∗α) = ∗αz − ∗α⊥. We have

〈ε(∗α+ ∗α′)〉 ≤ 〈ε(∗α)〉+ 〈ε(∗α′)〉 ≤ ν
so ∗Oν(z) is an O-module. Here we note that we can extend the definition
of ∗Oν(z) to indices ν ∈ ◦PKN(ε), also obtaining a module, since [−∞,ν)
is a sub tropical semi-ring. We have thus defined the K-approximate ideal
structure

∗O(z) =
{
∗O
µ[ι]
ν (z)

}
, ∗O

µ[ι]
ν (z) = ∗Oµ[ι] ∩ ∗Oν(z)

for z ∈ K and µ,ν, ι ∈ ◦PKN(ε). In particular, ∗O(z) is a ∗O-approximate
module, and we may speak of approximate module homomorphisms between
such K-approximate ideals. Note the compatibility ∗Zµν(θ) ⊂ ∗Oµν(θ).

12.3. K-Nonvanishing Spectra. The K-nonvanishing spectrum is

SpecK(z) = {(µ,ν)| ∗Oµν(z) 6= 0} ⊂ ◦PK2
N(ε).

Note first that trivially

Proposition 12.1. Let θ ∈ R. If µ < ν ∈ ◦PKε then ∗Oµν(θ) 6= 0. If
z = γ ∈ K (diagonally embedded in K) then SpecK(γ) = ◦PK2

N(ε).

Proof. Let µ < ν ∈ ◦PRε be such that µ < µ < ν < ν . Then 0 6= ∗Zµν(θ) ⊂
∗Oµν(θ) ⊂ ∗Oµν(θ). The second statement is obvious. �

Recall that θ ∈ R is called a Pisot-Vijayaraghavan number if it is a real
algebraic integer greater than 1 for which all of its conjugates have absolute
value < 1. In what follows, we denote PK,θ(X) =

∏
(X − θτ) ∈ Z[X] where

the product is over the archimedean places τ of the field K and θτ := τ(θ).
If K/Q is Galois and θ ∈ K − Q, for any growth decay indices we have
∗Oµν(θ) 6= 0. When K/Q is not Galois, we have the following result.

Theorem 12.2. Let θ ∈ R be a Pisot-Vijayaraghavan number with θ ∈ τ(O)
for some place τ and for which PK,θ(X) is the minimal polynomial of θ.
Then there exists µ ∈ ◦PKε such that ∗Oµµ(θ) 6= 0.

Proof. Let ϑ ∈ O be such that ϑτ1 = θ, so that |ϑτi | < 1 for i = 2, . . . d.
Let ∗α ∈ ∗O be the class associated to the sequence ϑ, ϑ2, ϑ3, . . . and let
∗α⊥ = ϑ∗α ∈ ∗O. Then ∗α ∈ ∗O(θ) with dual ∗α⊥: indeed ∗αθ− ∗α⊥ is the
class of the vector sequence{(

0, ϑnτ2(θ− ϑτ2), . . . , ϑnτd(θ− ϑτd)
)}∞

n=1

which is infinitesimal since |ϑτi | < 1 for i = 2, . . . d. Let µ ∈ ◦PKε be the
class of ∗αθ− ∗α⊥. Then

∗α · µ = (0, ∗ατ2 · µ2, . . . ,
∗ατd · µd) ∈

◦PKε

since the components ∗ατ2 , . . . , ∗ατd are themselves infinitesimal. Therefore,
∗Oµµ(θ) 6= 0. �



298 T.M. GENDRON

Theorem 12.2 reveals that there are infinitely many antiprimes θ (qua-
dratic Pisot Vijayaraghavan numbers) which possess a non-trivial flat spec-
tra provided that we expand the field of approximants to one minimally
containing θ. In particular, such a θ ceases to be antiprime, a phenomenon
which may be described as the “splitting” of the nonvanishing spectrum c.f.
the K-Classification subsection below.

12.4. K-Approximate Ideal Arithmetic. We have the following exact
analogue of Theorem 6.3:

Theorem 12.3 (K-Approximate Ideal Arithmetic). Let z,w ∈ K. Then
∗O
µ[ι]
ν (z) · ∗Oν[λ]

µ (w) ⊂
⋂

ξ=zw,z±w

∗O
µ·ν[ι·λ]
ι+λ (ξ) (48)

Proof. If ∗α ∈ ∗Oµ[ι]
ν (z) and ∗β ∈ ∗Oν[λ]

µ (w) then
∗α∗β · zw = (∗α1

∗β1z1w1, . . . ,
∗αd
∗βdzdwd).

The proof proceeds as in that of Theorem 6.3, implemented along the coor-
dinates of ∗K. �

The remarks following Theorem 6.3 apply just as well to K-approximate
ideal arithmetic. Here however non principal ideals are absent, not surprising
since the definition of O-diophantine approximation groups is made with re-
gard to single elements of K. In §13 we will produce the analogues of (classes)
of two generator ideals by “decoupling” numerator denominator pairs. Non
principal ideals also appear naturally as dual diophantine approximations of
vectors, see §11.

For z,w ∈ K, we write

zµ O νw (49)

when the groups ∗Oµν(z), ∗Oνµ(w) are nontrivial. Thus when O = Z, Z = ?.
The symbol

∗α µzw ν
∗β

will indicate that the product ∗α∗β is defined as one of diophantine approxi-
mations, subject to the condition that ∗α ∈ ∗Oµν(z) resp. ∗β ∈ ∗Oνµ(w). The
notions of O-fast, O-slow and O-flat divisors are defined as in §6. When µ
and ν are not related by the order, we say that the factors are oscillatory
divisors.

Let PGL2(O) be the projective linear group with entries in O. Then
PGL2(O) partially3 acts on K and we write

z mK z′

if there exists A ∈ PGL2(O) such that A(z) = z′.

3Or rather acts fully on a suitable compactification of K. In any case, PGL2(O) acts
fully on K−K.
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Theorem 12.4. If z mK z′ by A ∈ PGL2(O) then A induces an approximate
module isomorphism

A : ∗O(z) −→ ∗O(z′).

If in addition we have w ∈ K and B ∈ PGL2(O) then

zµ O νw ⇐⇒ A(z)µ O νB(w).

Proof. Same idea as the proof of Theorem 3.3, implemented along place
coordinates. �

Theorem 12.5. Suppose that K/Q is Galois and σ ∈ Gal(K/Q). Then

σ

(
∗O
µ[ι]
ν (z)

)
= ∗O

σ(µ)[σ(ι)]
σ(ν)

(
σ(z)

)
.

In particular,
zµ O νw ⇐⇒ σ(z)σ(µ) O σ(ν)σ(w)

and
∗α µzwν

∗β ⇐⇒ σ
(∗α)σ(µ) σ(z)σ(w)σ(ν)σ

(∗β).
Therefore an element’s status as an O-fast, O-slow, O-flat or O-oscillatory
divisor is preserved by the action of σ ∈ Gal(K/Q).

Proof. Let σ ∈ Gal(K/Q), then

σ

(
∗O
µ[ι]
ν (z)

)
= ∗O

σ(µ)[σ(ι)]
σ(ν)

(
σ(z)

)
.

It follows immediately that σ respects the K-approximate ideal product as
indicated in the statement of the Proposition. �

If we take if z = θ = (θ, . . . ,θ) then the trace map Tr : K → R defines a
well-defined homomorphism of groups Tr : ∗O(θ) → ∗Z(θ). In addition, we
have a well-defined map of projective classes

Tr : ◦PKε −→ ◦PRε

so that
Tr

(
∗Oν(θ)

)
⊂ ∗ZTr(ν)(θ).

Note that the trace map does not map ∗Oµ(θ) to ∗ZTr(µ)(θ).
On the other hand, the norm map, as we have seen, induces

N : ◦PKN(ε) −→ ◦PRε,

however it does not define a map from ∗Oν(θ) to ∗ZN(ν)(θ). Instead it yields
a map of fine growth filtrations

N : ∗Oµ[ι] −→ ∗ZN(µ)[N(ι)].

As an immediate corollary, we may deduce that for µ to be a growth index for
a nonstandard integer ∗α ∈ ∗O, the product of the infinitesimal coordinates
of µ must dominate the product of the non infinitesimal coordinates of µ:
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Proposition 12.6. If µ ∈ ◦PK and ∗Oµ 6= 0 then µ ∈ ◦PRN(ε).

Proof. No element of ∗Z is infinitesimal, so N(∗α) · N(µ) ∈ ◦PRε can only
occur if N(µ) is infinitesimal. �

From the above paragraphs, we deduce the following broad principle:
Growth is multiplicative but not additive. Decay is additive
but not multiplicative.

In general, if we seek to return to the ground ring ∗Z using either the
norm or the trace, one of the growth-decay parameters must be sacrificed.
Nevertheless, there exist specific situations when the anomalous parameter
can be controlled.

Proposition 12.7. Let K/Q be of degree 2 and let σ be the nontrivial element
of its Galois group. Then for any z ∈ K,

N

(
∗O
µ[ι]
σ(µ)(z)

)
⊂ ∗ZN(µ)[N(ι)]

Tr(ι)

(
N(z)

)
.

Proof. Let ∗α ∈ ∗Oµ[ι]
σ(µ)(z). Write ∗α = (∗α1,

∗α2), ∗α⊥ = (∗α⊥1 ,
∗α⊥2 ) as

well as ε(∗α) = (ε(∗α1), ε(∗α2)). It is immediate that N(∗α) = ∗α1
∗α2 ∈

∗ZN(µ)[N(ι)]. On the other hand,

N(∗α) ·N(z)−N(∗α⊥) = N(ε(∗α))+∗α⊥1 (∗α2z2 − ∗α⊥2 )+∗α⊥2 (∗α1z1 − ∗α⊥1 )

= N(ε(∗α)) + ∗α⊥1 · ε(∗α2) + ∗α⊥2 · ε(∗α1). (50)

Since ∗α ∈ ∗Oσ(µ)(z), the image of (50) by 〈·〉 belongs to ◦PRε. Since

〈N(ε(∗α))〉 < 〈∗α⊥1 · ε(∗α2)〉, 〈∗α⊥2 · ε(∗α1)〉

we may disregard 〈N(ε(∗α))〉, and therefore the image of (50) by 〈·〉 is
bounded by Tr(ι). �

Note 12. In view of the nature of the image growth-decay indices occurring
in Proposition 12.7, we cannot use the norm to push products down of the
form presented in Theorem 12.3.

There is a similar sort of result for the trace. Given µ ∈ ◦PK, define the
lower trace to be

tr(µ) := minµi.

Note that if µ ∈ ◦PR then tr(µ) = Tr(µ) = µ.

Proposition 12.8. Let K/Q be of degree d. Then for any θ ∈ R,

Tr

(
∗O
µ[ι]
ν (θ)

)
⊂ ∗Ztr(µ)[Tr(ι)]

Tr(ν) (θ).

If ν = −∞, the result is valid for θ replaced by γ ∈ K ⊂ K.
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Proof. We have already observed that the trace map preserves decay for
θ ∈ R. If the decay is −∞ then the trace map preserves the decay for
γ ∈ K. On the other hand, the inequality ∗α · µ < ι may be rewritten
(∗α1 · µ1, · · · , ∗αd · µd) < (ι1, . . . , ιd). It follows that

Tr(∗α) · tr(µ) = (α1 + · · ·+ αd) ·min(µi) < ι1 + · · ·+ ιd = Tr(ι).

�

Corollary 12.9. If µ,ν ∈ ◦PRε, θ,η ∈ R and ∗α µ θη ν
∗β then

Tr(∗α) µ θη νTr(∗β).

If ν = −∞ the result holds for γ, δ ∈ K.

Thus the trace map respects the approximate ideal arithmetic of classical
(principal) ideals.

12.5. K-Classification. Diophantine approximation by the K-integers O,
as formulated in [10], is global, since it is performed with respect to all the
archimedean places at once – in contrast to the classical notion of Diophan-
tine approximation by elements of K [2], which is local, framed with respect
to a fixed archimedean place. It is therefore reasonable to define K-versions
of the usual linear classification of the reals as described in §4. Note that
the classification theory of Koksma, though based on approximations by al-
gebraic numbers, is not field specific, and is therefore not relevant to the
considerations of this section.

We say that z ∈ K−K is
- K-badly approximable if ∗Oµµ(z) = 0 for all µ ∈ ◦PKε.
- K-well approximable if it is not K-badly approximable.
- K-very well approximable of exponent κ if there exists µ ∈
◦PKε such that ∗Oµ

µκ
′ (z) = 0 for all κ′ > κ and⋂
λ∈[1,κ)

∗Oµ
µλ

(z) 6= 0.

- K-Liouville if it is K-very well approximable of exponent κ for all
κ > 1.

Denote these classes by B(K), W(K), Wκ(K) and W∞(K), any one of
which is denoted

C(K);

the K = Q counterpart is simply denoted C. Note that for any class C
there exists θ ∈ C such that θ 6∈ σ(K) for every archimedean place σ of
K. Identifying R ⊂ K via the diagonal embedding, we have the following
inclusions:

B(K) ∩ R ⊂ B, W(K) ∩ R ⊃W
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which follow directly from the definitions. In particular, we have W(K) 6= ∅.
Similarly, Wκ(K) 6= ∅, W∞(K) 6= ∅. As of this writing, it is not known if
there exist K-badly approximable numbers.

Conjecture 12.10. B(K) 6= ∅.

The K-classes defined above are Galois natural:

Theorem 12.11. If K/Q is a Galois extension, then for any K-class C(K)
and σ ∈ Gal(K/Q),

σ(C(K)) = C(K).

Proof. This follows from Theorem 12.5 and the continuity of the Galois
action on ◦PK. �

If θ ∈ C but θ 6∈ C(K) then we say that θ splits in K. For exam-
ple,Theorem 12.2 says that any quadratic Pisot-Vijayaraghavan number θ
with a conjugate in K splits in K. The factorization symbols

⇑K , ⇓K , mK and 8K
have the expected meanings in the K-context, are Galois natural, and give
rise to notions of K-antiprimes K-omnidivisors, etc. The treatment of these
and more advanced topics (such asK-flat arithmetic) will have to be deferred
to another study.

The O-approximation theory may be merged with the matrix theory in
the more or less expected way. Given K/Q a finite extension of degree d,
consider the sets

M̃(K) ⊃M(K)

of matrices and square matrices with entries in K, equipped with the Kro-
necker product as well as the Kronecker sum in the square case. For Θ ∈
M̃(K) of dimension r × s, the diophantine approximation group is denoted

∗Os(Θ)

(see [10]).
If ∗α = (∗α1, . . . ,

∗αs) ∈ Os, let ∗αi ∈ K have place-indexed coordinates
∗αi = (∗αi,τ1 , . . . ,

∗αi,τd)

and define

|∗α| = ( max
i=1,...,s

|∗αi,τ1 |, . . . , max
i=1,...,s

|∗αi,τd |) ∈
∗Rd+.

Write µ(∗α) = 〈|∗α|〉−1 (well-defined provided ∗α is not the zero vector) and
similarly ν(∗α) = |ε(∗α)|. With these definitions we obtain the approximate
ideal

∗Os(Θ) = {(∗Os)µ[ι]
ν (Θ)}.

Approximate ideal arithmetic in this setting takes the anticipated form upon
combining Theorems 12.3 and 11.2.
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Restrict to the case of row vectors: let θ = (θ1, . . . ,θs) ∈ Ks, so that
∗Os(θ) = {∗α ∈ Os| ∃∗α⊥ ∈ ∗O s.t. θ� ∗α ' ∗α⊥ ∈ ∗O}

where � is the dot product. The dual group
∗O(θ)⊥ = {∗α⊥| ∃∗α ∈ ∗Os s.t. θ� ∗α ' ∗α⊥} ⊂ ∗O

is the nonprincipal diophantine approximation group generated by
the coordinates of θ. Note that if γ = (γ1,γ2) for γ1,γ2 ∈ O then ∗O(γ)⊥

is the ideal
∗(γ1,γ2) ⊂ ∗O.

If the Kronecker product ∗α ⊗ ∗β for ∗α ∈ ∗Os(θ), ∗β ∈ ∗Os′(η) defines
via approximate ideal arithmetic an element of ∗Oss′(θ⊗ η) then the corre-
sponding duals multiply as elements of ∗O:

(∗α⊗ ∗β)⊥θ⊗η = ∗α⊥θ∗β⊥η .

In particular, if we restrict to vectors whose entries belong to K we recover
the multiplicative arithmetic of ideals:

- If γ ∈ Ks then ∗O(γ)⊥ is the ideal generated by the coordinates of γ.
Thus there exists an element γ0 ∈ K2 such that ∗O(γ)⊥ = ∗O(γ0)⊥.

- The approximate ideal arithmetic of the Kronecker product, on the
level of dual groups, is the pairing

∗O(γ)⊥ × ∗O(γ′)⊥
·−→ ∗O((γ⊗ γ′)0)⊥.

defined by the ordinary product in ∗O.

13. The approximate ideal class monoid

In this section we introduce the decoupled approximate ideals, the set of
which extends the classical ideal class group. The development offered is
preliminary, intended primarily to provide structural harmony in these clos-
ing pages, relating approximate ideal arithmetic with the classical product
of (nonprincipal) ideals.

Let K/Q be of finite degree, K the associated Minkowski space. For z ∈ K
define the decoupled diophantine approximation group by

∗[O](z) := ∗O(z) + ∗O(z)⊥ ⊂ ∗O.
If z ∈ K is invertible then

∗[O](z) = ∗[O](z−1) = ∗[O](z) + ∗[O](z−1) ⊂ ∗O(z, z−1)⊥,

where the latter is the nonprincipal diophantine approximation group de-
fined at the end of the previous section. As the name suggests, one may
regard ∗[O](z) as the outcome of “decoupling” (making independent) numer-
ator denominator pairs associated to z. Note that ∗[O](z) has a natural
approximate ideal structure defined by the subgroups

∗[O]
µ[ι]
ν (z) = {∗α+ ∗β⊥|∗α, ∗β ∈ ∗Oµ[ι]

ν (z)}. (51)



304 T.M. GENDRON

For γ = α/β ∈ K, α,β ∈ O, ∗[O](γ) is an ideal and
∗K ⊃ ∗(γ, 1) ⊃ ∗[O](γ) ⊃ ∗(α,β) = ∗O(α,β)⊥. (52)

(In the above, ∗(x, y) is the ultrapower of the fractional ideal (x, y): the
∗O-module generated by x, y.) Note that for α ∈ O,

∗[O](α) = ∗O,

so that the construction ∗[O](·) already identifies the ultrapowers of classical
principal ideals with the identity ideal ∗(1) = ∗O. Moreover, the association
∗(α,β) 7→ ∗[O](α/β) is a projective invariant: if x ∈ O then ∗(xα, xβ) is
assigned the ideal ∗[O](α/β) as well.

Theorem 13.1. For θ ∈ R− Q,

∗Z(θ, θ−1)⊥ =

{ ∗Z if θ2 6∈ Q
∗Z(bθ) if θ2 = a/b. .

If θ is a quadratic irrationality then ∗[Z](θ) $ ∗Z.

Proof. The first statement is a consequence of Kronecker’s Theorem, which
in our setting, implies that given ∗w ∈ ∗R and η ∈ R − Q, the infinitesimal
equation

η∗n− ∗n⊥ ' ∗w
has a solution for ∗n, ∗n⊥ ∈ ∗Z. Recall that
∗Z(θ, θ−1) = {∗N ∈ ∗Z| ∃∗m1,

∗m2 ∈ ∗Z with ∗N ' θ∗m1 + θ−1∗m2}.
Now given any ∗N ∈ ∗Z, we seek ∗m1,

∗m2 satisfying ∗Nθ ' θ2∗m1 + ∗m2

which is solvable by Kronecker’s Theorem, provided θ2 6∈ Q. If θ2 = a/b,
then ∗Nbθ is infinitesimal to an element of ∗Z i.e. ∗N ∈ ∗Z(bθ); conversely,
any element of the latter defines an element of ∗Z(θ, θ−1)⊥. As for the second
statement in the Theorem, suppose that cθ2 = aθ + b, with a, b, c ∈ Z. We
claim that there is no solution to the equation N = ∗m + ∗n⊥, 0 6= N ∈ Z.
If there were a solution, then

cθN = cθ∗m+ cθ∗n⊥

' c∗m⊥ + cθ2∗n

' c∗m⊥ + a∗n⊥ + b∗n ∈ ∗Z.
Since the left hand side is bounded, so is the right hand side, which means
that the latter is contained in Z, implying cθN ∈ Z, which is absurd. �

For example, if θ = ϕ is the golden mean, then ∗Z(ϕ) = ∗Z(ϕ−1), so that
in this case

∗[Z](ϕ) = ∗Z(ϕ).

In sum: Theorem 13.1 does not rule out the possibility of equality of groups
∗[Z](θ) = ∗Z when θ ∈ R − Q is not quadratic. But if this were the case,
it would not imply equality of approximate ideals i.e. it is not the case that
∗[Z]µν(θ) = ∗Zµ for all µ,ν. Indeed, if (µ,ν) 6∈ Spec(θ) then ∗[Z]µν(θ) = 0.
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In general, for z, z′ ∈ K, if Spec(z) 6= Spec(z′) then ∗[O](z) 6= ∗[O](z′) as
approximate ideals.

Denote by Cl(K) the ideal class group of K. Recall [7] that ideals a =
(α,β), a′ = (α′,β′) ⊂ O define the same ideal class ⇔ there exists A ∈
PGL2(O) with A(γ) = γ′ where γ = α/β and γ′ = α′/β′. That is, if we
denote PK = K ∪ {∞} then there is a bijection

Cl(K)←→ PGL2(O)\PK
where [1]↔∞.

Proposition 13.2. For z, z′ ∈ K, z mK z′ ⇒ ∗[O](z) = ∗[O](z′) as approx-
imate ideals. For γ,γ′ ∈ K, γ mK γ′ ⇔ ∗[O](γ) = ∗[O](γ′) as ideals.

Proof. Suppose that z′ = A(z) with A =

(
a b
c d

)
for a, b, c, d ∈ O. Then

every element of ∗[O](z′) is of the form

(c∗α⊥ + d∗α) + (a∗β⊥ + b∗β) = (d∗α+ b∗β) + (c∗α+ a∗β)⊥ ∈ ∗[O](z)

for some ∗α, ∗β ∈ ∗[O](z). Thus ∗[O](z) = ∗[O](z′) as groups. If moreover
(c∗α⊥ + d∗α) ∈ O

µ
ν(z′) then this implies that ∗α ∈ O

µ
ν(z). Similarly, ∗β ∈

O
µ
ν(z) from which it follows that (d∗α+b∗β) ∈ O

µ
ν(z). By a similar argument

(c∗α + a∗β)⊥ ∈ O
µ
ν(z−1) and the first claim follows. For γ,γ′ ∈ K with

∗[O](γ) = ∗[O](γ′), the latter is an ultrapower of a standard ideal a ⊂ O. If
γ = α/β,γ′ = α′/β′ then the ideals a ⊃ (α,β), (α′,β′) differ by multiples
of elements of O and hence define the same ideal class. From this it follows
that γ,γ′ differ by the action of an element of PGL2(O). �

We define the decoupled approximate ideal class set as

Cl(K) = {[O](z)| z ∈ K} .
By Proposition 13.2, there is a surjective function PGL2(O)\PK → Cl(K)
where PK = K ∪ {∞}.

Conjecture 13.3. If ∗[O](z) = ∗[O](z′) as approximate ideals then z mK z′.
In particular, PGL2(O)\PK↔ Cl(K).

By Proposition 13.2 we have

Cl(K) ↪→ Cl(K), [a] 7→ ∗[O](γ)

where a = (α,β) and γ = α/β. The image ∗[O](γ) is of course a class
with slightly more structure: the trivial “growth only” approximate ideal
{∗[O]µ[ι](γ)}.

We now introduce the approximate ideal product of decoupled approxi-
mate ideals associated to invertible elements of K:

Theorem 13.4 (Decoupled Approximate Ideal Product). Let z,w ∈ K×.
There exists a bilinear map

∗[O]
µ[ι]
ν (z)× ∗[O]

ν[λ]
µ (w)

·−→ ∗[O]
µ·ν[ι·λ]
ι+λ (z ·w) + ∗[O]

µ·ν[ι·λ]
ι+λ (z ·w−1)
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given by the ordinary product in ∗O, whose restriction to Cl(K) with the
choices µ = ν = −∞ coincides with the ideal (class) product.

Proof. Let ∗α1 + ∗β⊥1 ∈ ∗[O]
µ[ι]
ν (z), ∗α2 + ∗β⊥2 ∈ ∗[O]

ν[λ]
µ (w). Then

∗α1
∗α2 + ∗β⊥1

∗β⊥2 = ∗α1
∗α2 + (∗β1

∗β2)⊥ ∈ ∗[O]
µ·ν[ι·λ]
[ι+λ] (z ·w).

On the other hand, since
∗[O]

ν[ι]
µ (z)⊥ = ∗[O]

ν[ι]
µ (z−1), ∗[O]

ν[λ]
µ (w)⊥ = ∗[O]

ν[λ]
µ (w−1),

we have as well
∗α1
∗β⊥2 + ∗β⊥1

∗α2 = ∗α1
∗β⊥2 + (∗β1

∗α⊥2 )⊥ ∈ ∗[O]
µ·ν[ι·λ]
[ι+λ] (z ·w−1).

Now if γ1, γ2 ∈ K then ∗[O]
−∞[ιi]
−∞ (γi) = ∗ai for any ιi > −∞ where ai =

(αi,βi) and γ1 = α1/β1, γ2 = α2/β2. The image of the product
∗[O]

−∞[ι1]
−∞ (γ1) · ∗[O]

−∞[ι2]
−∞ (γ2)

is an ideal, generated by

α1α2, β1β2, α1β2, β1α2,

and so is equal to ∗a1 · ∗a2. �

In fact, we will consider approximate ideal products of decoupled groups
corresponding to the approximate ideal index pair ((µ1[ι1],ν1), (µ2[ι2],ν2))
in the same sense of Note 8. Note in this case that the approximate ideal
product is defined when µ2 ≥ ν1, ν2 ≤ µ1, in which case the product
belongs to the group(s) with index (µ1µ2[ι1ι2], ι1 + ι2): that is

∗[O]
µ2[ι2]
ν2 (z)× ∗[O]

µ1[ι1]
ν1 (w)

·−→
∗[O]

µ2·µ1[ι2·ι1]
[ι2+ι1] (z ·w) + ∗[O]

µ2·µ1[ι2·ι1]
[ι2+ι1] (z ·w−1). (53)

If θ,η ∈ B are badly approximable then any product of the form (53) has
at least one factor 0, giving a trivial product.

Although it would be obviously desirable to assert that the decoupled
product gives rise to a product in Cl(K), we will see shortly that it is not
true that for any z,w ∈ K× there exists some x ∈ K satisfying ∗[O]µν(z) ·
∗[O]νµ(w) ⊂ ∗[O]µ·ν(x). In order to sidestep this complication, we make the
following definition. Let

∗[O](z|w) ⊂ ∗[O](z ·w) + ∗[O](z ·w−1)

be the group generated by the images of the maps in (53) as one ranges over
all growth-decay parameters: the 2-correlator decoupled diophantine
approximation group associated to z,w. We endow ∗[O](z|w) with the
approximate ideal structure coming from its parts: that is, ∗[O]

µ[ι]
ν (z|w) is

the group generated by the images of the maps in (53) which belong to
∗[O]

µ[ι]
ν (z ·w) + ∗[O]

µ[ι]
ν (z ·w−1)
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Proposition 13.5. (1) For all z,w ∈ K×, ∗[O](z|w) = ∗[O](w|z).
(2) For all z ∈ K×

∗[O]
µ[ι]
ν (z|1) = ∗[O]

µ[ι]
ν (1|z) = ∗[O]

µ[ι]
ν (z).

(3) If θ,η ∈ B are badly approximable then there exists no ω ∈ R with
∗[Z](θ|η) = ∗[Z](ω).

(4) ∗[O](z|w) is invariant under the action of PGL2(O) in each of its
arguments:

∗[O](A(z)|B(w)) = ∗[O](z|w)

for all A,B ∈ PGL2(O).

Proof. Item (1) follows immediately from the definitions. (N.B. The relation
µ?ν is not commutative because of the insistence that its first argument
satisfies the condition µ ≥ ν. The definition of the 2-correlator group does
not impose this condition.) Item (2) follows from the fact that 1 ∈ [O]

µ[ι]
ν (1)

for any choice of growth-decay indices. For θ,η ∈ B, ∗[Z](θ|η) = 0 = the
zero approximate ideal. Note that the zero approximate ideal is not equal
to ∗[Z](0) = ∗Z: this gives an example of a 2-corrrelator approximate ideal
which is not equal to the decoupled approximate ideal of some element in R.
Item (4) follows essentially the same proof as Proposition 13.2. �

The definition of the 2-correlator decoupled diophantine approximation
group can be extended to give meaning to an n-correlator decoupled
diophantine approximation group. Fix (zn, . . . ,z1) ∈ Kn and consider
a sequence of fine growth-decay parameters

(~µ[~ι], ~ν[~λ]) := (µn[ιn],νn[λn]), . . . , (µ1[ι1],ν1[λ1])

for which some iterated derived product (association of products) of the
corresponding ordinary diophantine approximation groups can be performed.
Forming the corresponding iterated product of decoupled groups produces a
subset of the sum of decoupled approximate ideals∑

σn,...,σ1∈{±1}

∗[O](zσnn · · · z
σ1
1 ).

The group generated by the images of all such iterated products is denoted
∗[O](zn| · · · |z1),

endowed with an approximate ideal structure coming from its parts. As
in the case of the 2-correlator approximate ideal, the effect of an insertion
of 1 anywhere in (zn, . . . ,z1) produces the same approximate ideal. The n-
correlator decoupled approximate ideal is invariant by the action of PGL2(O)
in each of its arguments; we denote by Cln(K) the set of n-correlator decou-
pled approximate ideals.
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The approximate ideal product between such general correlator decoupled
groups

∗[O]
µ[λ]
ν (zn| · · · |z1) · ∗[O]

µ′[λ′]
ν′ (wm| · · · |w1)

⊂ ∗[O](zn| · · · |z1|wm| · · · |w1) (54)

is defined, approximate ideal structures permitting. It is clear that as one
varies over all possible sequential parameters (~µ[~λ], ~ν), (~µ′[~λ

′
], ~ν′) the set of

images of the product (54) generates the group ∗[O](zn| · · · |z1|wm| · · · |w1).
We symbolize this state of affairs by writing

∗[O](zn| · · · |z1)� ∗[O](wm| · · · |w1) = ∗[O](zn| · · · |z1|wm| · · · |w1).

If we write ∗[O](∅) := (0) = the zero approximate ideal and

Cl∞(K) =
∞⋃
n=0

⋃
zn,...,z1∈PK

∗[O](zn| · · · |z1)

then the approximate ideal product as defined above gives rise to an asso-
ciative binary operation

� : Cl∞(K)× Cl∞(K) −→ Cl∞(K),

making of Cl∞(K) a monoid with unit ∗[O](1) and nullity ∗[O](∅) : the cor-
relator approximate ideal class monoid.

Note 13. There is a surjective function

C̃ln(K) := Kn/PGL2(O)n −→ Cln(K)

for each n ≥ 0 (when n = 0, C̃l0(K) := ∗ maps to ∗[O](∅)). In addition, each
insertion of 1 gives an embedding C̃ln(K) ↪→ C̃ln+1(K) so that taking limits
gives a surjection

C̃l∞(K) := lim
−→

C̃ln(K) −→ Cl∞(K).

We end with a few remarks on nilpotency and annihilation in Cl∞(K).

Theorem 13.6. Let θ, θ′ ∈ B, η ∈W1+. Then
∗[O](θ)� ∗[O](θ′) = ∗[O](∅) = ∗[O](θ)� ∗[O](η).

Proof. Immediate since all possible approximate ideal products have a zero
factor. �

Conjecture 13.7. Let θ ∈ R be of exponent κ. Then ∗[O](θ) is bκ+ 2c-step
nilpotent. If θ ∈W∞, ∗[O](θ) is not nilpotent and is of infinite order.

To prove the nilpotency statements in the conjecture, we need to have
a better understanding of the efficiency of the growth decay filtrations. In
particular, the following questions must be addressed:
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Question 1 (Decay Efficiency). Let θ ∈ R − Q, and suppose that we have
µ,ν and ν′ < ν with ∗Zµν′(θ) 6= 0. Is it the case that

∗Zµν(θ)− ∗Zµν′(θ) 6= ∅ ?

If we switch the roles of growth and decay in the above question, we
obtain a corresponding question for the efficiency of growth indices. Notice
that this growth efficiency question has a positive response for the choice
µ′ = ν, by Theorem 8.6 of §8 and the definition of symmetric diophantine
approximations:

∗Zsym
ν (θ) ⊂ ∗Zµν(θ)− ∗Zνν(θ).

Question 2 (Fine Growth Efficiency). Given µ,ν with ∗Zµν(θ) 6= 0, do all
values of ι > µ yield ∗Zµ[ι]

ν (θ) 6= 0? For ι > ι′ > µ, is it the case that
∗Zµ[ι]
ν (θ)− ∗Zµ[ι′]

ν (θ) 6= ∅ ?

Question 2 is of interest in that it may be relevant to the following

Question 3 (Product Efficiency). Given a nontrivial growth decay product,
∗Zµ1[ι1]
ν1 (θ) · ∗Zµ2[ι2]

ν2 (η) ⊂ ∗Zµ1µ2[ι1ι2]
ι1+ι2 (θη)

is it the case that for all ν < ι1 + ι2,
∗Zµ1[ι1]
ν1 (θ) · ∗Zµ2[ι2]

ν2 (η) 6⊂ ∗Zµ1µ2[ι1ι2]
ν (θη) ?

For example, consider
θ ∈W1+ ,

which has exponent κ = 1. Let us suppose that the answer to Question 1 is
positive. Then the only nontrivial approximate ideal products that we may
form are flat. If the answer to Question 3 is also positive, then the image
of any non zero (flat) product belongs strictly to a growth-decay group with
slow indices, so no further non zero products can be performed. This implies
that ∗[Z](θ) is 3-step nilpotent.
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W̃∞(R)r,s = Liouville r × s matrices, page 292.
B(K) = K-badly approximable numbers, page 301.
W(K) = K-well approximable numbers, page 301.
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Operations.
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Φr = Frobenius action, page 248.
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