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Equivariant formality in K-theory

Chi-Kwong Fok

Abstract. In this note we present an analogue of equivariant formal-
ity in K-theory and show that it is equivalent to equivariant formality
à la Goresky-Kottwitz-MacPherson. We also apply this analogue to
give alternative proofs of equivariant formality of conjugation action on
compact Lie groups, left translation action on generalized flag manifolds,
and compact Lie group actions with maximal rank isotropy subgroups.
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1. Introduction

Equivariant formality, first defined in [GorKM], is a special property of
group actions on topological spaces which allows for easy computation of
their equivariant cohomology. A G-action on a space X is said to be equiv-
ariantly formal if the Leray-Serre spectral sequence for the rational cohomol-
ogy of the fiber bundle X ↪→ X×GEG→ BG collapses on the E2-page. The
latter is also equivalent to H∗G(X;Q) ∼= H∗G(pt;Q)⊗H∗(X;Q) as H∗G(pt;Q)-
modules. There are various examples of interest which are known to be
equivariantly formal, e.g. Hamiltonian group actions on compact symplectic
manifolds and linear algebraic torus actions on smooth complex projective
varieties (cf. [GorKM, Section 1.2 and Theorem 14.1]).

Though equivariant formality was first defined in terms of equivariant
cohomology, in some situations working with analogous notions phrased in
terms of other equivariant cohomology theories may come in handy. The
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notion of equivariant formality in K-theory was introduced and explored by
Harada and Landweber in [HL], where they instead used the term ‘weak
equivariant formality’ and exploited this notion to show equivariant formal-
ity of Hamiltonian actions on compact symplectic manifolds.

Definition 1.1 (cf. [HL, Def. 4.1]). Let k be a commutative ring, G a
compact Lie group and X a G-space. We use K∗(X) (resp. K∗G(X)) to
denote the Z2-graded1 complex (equivariant) K-theory of X, and K∗(X; k)
(resp. K∗G(X; k)) to denote K∗(X)⊗ k (resp. K∗G(X)⊗ k). We denote the
complex representation ring of G by R(G), and write R(G; k) := R(G)⊗ k,
and I(G; k) = I(G)⊗ k, where I(G) is the augmentation ideal of R(G). Let

fG : K∗G(X)→ K∗(X)

be the forgetful map. A G-action on a space X is k-weakly equivariantly
formal if fG induces an isomorphism

K∗G(X; k)⊗R(G;k) k → K∗(X; k)

We simply say the action is weakly equivariantly formal in the case k = Z.

Harada and Landweber settled for weakly equivariant formality as in Defi-
nition 1.1 as the K-theoretic analogue of equivariant formality, instead of the
seemingly obvious candidate K∗G(X) ∼= K∗G(pt)⊗K∗(X), citing the lack of
the Leray-Serre spectral sequence for Atiyah-Segal’s equivariant K-theory.
The term ‘weak’ is in reference to the condition in Definition 1.1 being
weaker than K∗G(X) ∼= K∗G(pt)⊗K∗(X) because of the possible presence of
torsion. We would like to define the following version of K-theoretic equi-
variant formality in exact analogy with another cohomological equivariant
formality condition that the forgetful map H∗G(X)→ H∗(X) be onto.

Definition 1.2. We say that X is a rational K-theoretic equivariantly for-
mal (RKEF for short) G-space if the forgetful map

fG ⊗ IdQ : K∗G(X;Q)→ K∗(X;Q)

is onto.

Recall that K0(X) (resp. K−1(X)) is the Grothendieck group of the
commutative monoid of isomorphism classes of (resp. reduced) complex
vector bundles over X (resp. ΣX) under Whitney sum, and K∗G(X) can
be similarly defined using equivariant vector bundles. The above condition
then admits a natural interpretation in terms of vector bundles: for every
vector bundle V over X and its suspension ΣX, there are natural numbers
p, q such that V ⊕p ⊕ Cq admits an equivariant G-structure.

In this note, we will prove the following theorem, which asserts the equiv-
alence of RKEF and equivariant formality in the classical sense.

1Recall that one can use Z2-grading in defining complex K-theory thanks to Bott
periodicity.
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Theorem 1.3. Let G be a compact and connected Lie group which acts on
a finite CW-complex X. The following are equivalent.

(1) X is a RKEF G-space.
(2) X is an equivariantly formal G-space.
(3) X is a Q-weakly equivariantly formal G-space.

We will also give alternative proofs of equivariant formality of certain
group actions which were proved in cohomological terms. These are conju-
gation action on compact Lie groups, left translation action on generalized
flag manifolds, and compact Lie group actions with maximal rank isotropy
subgroups.

We note that there is an analogue of Theorem 1.3 in the algebro-geometric
setting ([Gr, Theorem 1.1]): it is also an assertion of surjectivity, but of
the forgetful map from the rational Grothendieck group of G-equivariant
coherent sheaves on a G-scheme X to the corresponding Grothendieck group
for ordinary coherent sheaves, where G is a connected reductive algebraic
group. Theorem 1.3 confirms the expectation ([Gr, Introduction]) that the
K-theoretic forgetful map is onto for equivariantly formal topological spaces.

In the remainder of this note, the coefficient ring of any cohomology theory
is always Q.

Acknowledgment. We would like to gratefully acknowledge the anony-
mous referee for the critical comments on the early drafts of this paper and
especially the suggestions for improving Section 3.3. We would like to thank
Ian Agol for answering a question related to the proof of Theorem 3.2.

2. The proof

From now on, unless otherwise specified, X is a finite CW-complex equipped
with an action by a torus T or more generally a compact connected Lie group
G. The following K-theoretic abelianization result enables us to prove K-
theoretic results in this Section in the T -equivariant case first and then
generalize to the G-equivariant case.

Theorem 2.1 (cf. [HLS, Theorem 4.9(ii)]). Let T be a maximal torus of
G and W the Weyl group. The map r∗ : K∗G(X;Q)→ K∗T (X;Q) restricting
the G-action to the T -action is an injective map onto K∗T (X;Q)W . Here if
w ∈ W and V is an equivariant T -vector bundle, w takes V to the same
underlying vector bundle with T -action twisted by w, and this W -action on
the set of isomorphism classes of equivariant T -vector bundles induces the
W -action on K∗T (X).

Definition 2.2. Let H∗∗G (X) be the completion of H∗G(X) as a H∗G(pt)-
module at the augmentation ideal J := H+

G (pt) (cf. the paragraph preceed-
ing [R, Proposition 2.8]).
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The equivariant Chern character for a finite CW-complex with a G-action
is the map

chG : K∗G(X;Q)→ H∗∗G (X)

which is defined by applying the Borel construction to the non-equivariant
Chern character (cf. the discussion before [R, Lemma 3.1]). Like the non-
equivariant Chern character, chG maps K0

G(X;Q) to the even degree part

of H∗∗G (X) and K−1G (X;Q) to the odd degree part. The image of chG lies
in H∗∗G (X) for the following reason which is borrowed from the proof of [R,
Lemma 3.1]: as X is a finite CW-complex, we can choose a1, a2, · · · , am ∈
H∗G(X) which generate H∗G(X) as a H∗G(pt)-module. Let

ai · aj =

m∑
k=1

fkijak

for fkij ∈ H∗G(pt), and c be cG1 (L) for some G-equivariant line bundle L such
that

c =
m∑
i=1

giai

for gi ∈ H∗G(pt). So

chG(L) = ec = 1 +
∑
i

giai +
1

2

∑
i,j,k

gigjf
k
ijak +

1

6

∑
i,j,k,l,p

gigjglf
k
ijf

p
klap + · · · .

Write chG(L) = 1 +
∑m

i=1 piai, where pi are power series in gi and fkij .

Identifying gi and fkij with W -invariant polynomials on t through the iden-

tification H∗G(pt) ∼= H∗T (pt)W ∼= S(t∗)W and using the estimate for pi given
in the proof of [R, Lemma 3.1], we have that pi are in H∗∗G (pt) and hence
chG(L) ∈ H∗∗G (X). The assertion chG(E) ∈ H∗∗G (X) for general equivariant
G-vector bundle E follows from the splitting principle.

Proposition 2.3. Let G be a compact connected Lie group acting on a finite
CW-complex X. Then the equivariant Chern character

chG : K∗G(X;Q)→ H∗∗G (X)

is injective, and ch−1G (J) = I(G;Q) when X is a point.

Proof. By [AS, Theorem 2.1], K∗(X ×G EG) ∼= K∗G(X × EG) is the com-
pletion of K∗G(X) at I(G). The map ι : K∗G(X) → K∗(X ×G EG) induced
by the projection map X × EG → X is injective because the I(G)-adic
topology of the completion is Hausdorff if G is connected (cf. the Note im-
mediately preceding [AH, Section 4.5]). It follows that the rationalized map
ι ⊗ Q : K∗G(X;Q) → K∗(X ×G EG;Q) is injective as well. On the other
hand, let EGn be the Milnor join of n copies of G. Then X ×G EGn is
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compact and the ordinary Chern character map chn : K∗(X ×G EGn;Q)→
H∗(X ×G EGn) is an isomorphism. Note that

K∗(X ×G EG;Q) ∼= lim←−
n

K∗(X ×G EGn;Q)

(see [AS, Corollary 2.4, Proposition 4.1 and proof of Proposition 4.2]). It
follows that the map

ch : K∗(X ×G EG;Q)→ H∗∗G (X)

is the inverse limit of the isomorphisms chn and injective by the left-exactness
of inverse limit. The map chG is the composition of the two injective maps
ι ⊗ Q and ch : K∗(X ×G EG;Q) → H∗∗G (X). Therefore chG is injective.
Next, consider the commutative diagram

R(G;Q) //

chG
��

K∗(pt;Q)

ch
��

H∗∗G (pt) // H∗(pt)

where the two horizontal maps are forgetful maps. Since J is the kernel of
the bottom map and both chG and ch are injective, ch−1G (J) is the kernel of
the top map, which is precisely I(G;Q). �

Under the condition of weak equivariant formality, [HL, Proposition 4.2]
asserts that the kernel of f is I(G) ·K∗G(X). In fact, we also have

Lemma 2.4. Let X be a finite CW-complex which is acted on by a com-
pact connected Lie group G equivariantly formally. Then the kernel of the
forgetful map

fG ⊗ IdQ : K∗G(X;Q)→ K∗(X;Q)

is I(G;Q) ·K∗G(X;Q).

Proof. In the following diagram,

K∗G(X;Q)
fG⊗IdQ//

chG
��

K∗(X;Q)

ch
��

H∗∗G (X)
g̃G⊗IdQ // H∗(X)

(2.1)

where g̃G ⊗ IdQ is the forgetful map, H∗∗G (X) is the completion of H∗G(X)
at the augmentation ideal J of H∗G(pt). Since X is an equivariantly formal
G-space, H∗G(X) is isomorphic to H∗G(pt)⊗H∗(X) as a H∗G(pt)-module, and
the forgetful map

gG ⊗ IdQ : H∗G(X)→ H∗(X)

has J · H∗G(X) as the kernel. Since H∗G(X) is a finitely generated module
over the Noetherian ring H∗G(pt), a simple result on completions (cf. [Ma,
Theorem 55]) implies that H∗∗G (X) ∼= H∗G(X)⊗H∗

G(pt)H
∗∗
G (pt). So the kernel
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of g̃G ⊗ IdQ is J · H∗∗G (X). By Proposition 2.3, the preimage ch−1G (J) is

I(G;Q) and chG is injective. It follows that the kernel of fG⊗IdQ is ch−1G (J ·
H∗∗G (X)) = I(G;Q) ·K∗G(X;Q). �

Proof of Theorem 1.3, (1) ⇐⇒ (2). We first deal with the T -equivariant
case, where T is a maximal torus of G. We claim that, if X is an equivari-
antly formal T -space, we have the following string of (in)equalities.

dimQK
∗(XT ;Q) = rankR(T ;Q)K

∗
T (X;Q)

≤ dim K∗T (X;Q)/I(T ;Q) ·K∗T (X;Q)

≤ dim K∗(X;Q).

Applying Segal’s localization theorem to the case of torus group actions
(cf. [Se, Proposition 4.1]), we have that the restriction map K∗T (X;Q) →
K∗T (XT ;Q) becomes an isomorphism after localizing at the zero prime ideal,
i.e. to the field of fraction of R(T ;Q). So

rankR(T ;Q)K
∗
T (X;Q) = rankR(T ;Q)K

∗
T (XT ;Q).

By [Se, Proposition 2.2], K∗T (XT ;Q) is isomorphic to R(T ;Q)⊗K∗(XT ;Q),
whose rank over R(T ;Q) equals dimQK

∗(XT ;Q). The first equality then
follows. Next, by [Se, Proposition 5.4] and the discussion thereafter, we
have that K∗T (X;Q) is a finite R(T ;Q)-module. After localizing K∗T (X;Q)
at I(T ;Q) and reduction modulo the same ideal, we have that

K∗T (X;Q)I(T ;Q)/I(T ;Q) ·K∗T (X;Q)I(T ;Q)

is a finite dimensional Q-vector space. We let n be the dimension of this
vector space, and x1, · · · , xn ∈ K∗T (X;Q)I(T ;Q)/I(T ;Q) ·K∗T (X;Q)I(T ;Q) be
its basis. Finite generation of K∗T (X;Q) as a module over the Noetherian
ring R(T ;Q) enables us to invoke Nakayama lemma, and have that there
exist lifts x̂1, · · · , x̂n ∈ K∗T (X;Q)I(T ;Q) that generate K∗T (X;Q)I(T ;Q) as a
R(T ;Q)I(T ;Q)-module. It follows, after further localization to the field of
fraction of R(T ;Q), that x̂1, · · · , x̂n span K∗T (X;Q)(0) as a R(T ;Q)(0)-vector
space, and that

dimR(T ;Q)(0)K
∗
T (X;Q)(0) ≤ dimQK

∗
T (X;Q)I(T ;Q)/I(T ;Q) ·K∗T (X;Q)I(T ;Q)

= n.

Noting the isomorphism

K∗T (X;Q)/I(T ;Q) ·K∗T (X;Q) ∼= K∗T (X;Q)I(T ;Q)/I(T ;Q) ·K∗T (X;Q)I(T ;Q),

we arrive at the first inequality. Finally, the last inequality follows from
Lemma 2.4.

If X is an equivariantly formal T -space, then

dimH∗(X) = dimH∗(XT )

(see [Hs, p. 46]). The Chern character isomorphism implies that

dimK∗(XT ;Q) = dimK∗(X;Q)
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which, together with the (in)equalities in the above claim, yields

dimK∗T (X;Q)/I(T ;Q) ·K∗T (X;Q) = dimK∗(X;Q)

or, equivalently, that X is RKEF.
Assume on the other hand that X is RKEF. Consider the commutative

diagram (2.1). Since fT ⊗ IdQ is onto and ch is an isomorphism, g̃T ⊗ IdQ is
onto. By [Ma, Theorem 55], we have that H∗∗T (X) ∼= H∗T (X)⊗H∗

T (pt)H
∗∗
T (pt).

Applying g̃T ⊗ IdQ gives H∗(X) = Im(g̃T ⊗ IdQ) = Im(gT ⊗ IdQ) ⊗Q Q =
Im(gT ⊗ IdQ). Hence X is T -equivariantly formal.

With the equivalence of equivariant formality and RKEF for T -action we
have just proved and the fact that, if T is a maximal torus of G which is com-
pact and connected, T -equivariant formality is equivalent to G-equivariant
formality (cf. [GoeR, Proposition 2.4]), it suffices to show that fT ⊗ IdQ
is onto if and only if fG ⊗ IdQ is onto in order to establish the equivalence
of equivariant formality and RKEF for G-action. One direction is easy: if
fG ⊗ IdQ is onto, so is fT ⊗ IdQ because fG ⊗ IdQ = (fT ⊗ IdQ) ◦ r∗. Con-
versely, suppose that fT ⊗ IdQ is onto. Then any x ∈ K∗(X;Q) admits a lift
x̃ ∈ K∗T (X;Q). Note that for any w ∈ W , (fT ⊗ IdQ)(w · x̃) = x. It follows
that the average

x :=
1

|W |
∑
w∈W

w · x̃

is also a lift of x. Moreover, by Theorem 2.1, x ∈ r∗KG(X;Q). So
(r∗)−1(x) ∈ K∗G(X;Q) is a lift of x and fG ⊗ IdQ is onto as well. �

Proof of Theorem 1.3, (1) ⇐⇒ (3). That Q-weakly equivariant formal-
ity implies RKEF is immediate (cf. [HL, Definition 4.1]). On the other
hand, if X is a RKEF G-space, then by Theorem 1.3, (1) =⇒ (2), X is an
equivariantly formal G-space. The map

K∗G(X;Q)⊗R(G;Q) Q→ K∗(X;Q)

α⊗ z 7→ fG(α)z

is injective by Lemma 2.4 and surjective by RKEF. Hence X is a Q-weakly
equivariantly formal G-space. This completes the proof. �

3. Some applications

In this Section, we shall demonstrate the utility of Theorem 1.3 by giving
alternative proofs of some previous results.

3.1. Conjugation action on compact Lie groups. Let G be a compact
connected Lie group with conjugation action by itself. It is well-known that
this action is equivariantly formal. See, for example, [GS, Sect. 11.9, Item
6]) for a sketch of proof for the case G = U(n), and [J] for an explicit
construction of equivariant extensions of the generators of H∗(G). We will
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show equivariant formality of conjugation action by proving that G is a
RKEF G-space. By [Ho, II, Theorem 2.1],

K∗(G;Q) ∼=
∧∗

Q
(R⊗Q),

where R is the image of the map

δ : R(G)→ K−1(G)

which sends ρ ∈ R(G) to the following complex of vector bundles2

0 −→ G× R× V −→ G× R× V −→ 0

(g, t, v) 7→

{
(g, t,−tρ(g)v), if t ≥ 0,

(g, t, v), if t ≤ 0.

For any ρ, δ(ρ) admits an equivariant lift in K∗G(G) because G×R× V can
be equipped with the G-action given by

g0 · (g, t, v) = (g0gg
−1
0 , t, ρ(g0)v),

with respect to which the middle map of the above complex of vector bundles
is G-equivariant. Thus fG ⊗ IdQ : K∗G(G;Q) → K∗(G;Q) is onto, i.e., G is
a RKEF G-space.

3.2. Left translation action on G/K where rank G = rank K. Let
G be a compact connected Lie group and K a connected Lie subgroup of
the same rank. The left translation action on G/K by G is well-known to be
equivariantly formal, which can be proved by noting that G/K satisfies the
sufficient condition for equivariant formality that its odd cohomology vanish
(cf. [GrHV, Chapter XI, Theorem VII]). Alternatively, by the rationalized
version of [Sn, Theorem 4.2] and the remark following it,

K∗(G/K;Q) ∼= R(K;Q)⊗R(G;Q) Q ∼= R(K;Q)/r∗I(G;Q),

where r∗ : R(G;Q) → R(K;Q) is the restriction map. The forgetful map
fG⊗ IdQ : K∗G(G/K;Q) ∼= R(K;Q)→ K∗(G/K;Q) is simply the projection
map and hence surjective (in fact the forgetful map sends any representation
ρ ∈ R(K) to the K-theory class of the homogeneous vector bundle G×K Vρ,
where Vρ is the underlying complex vector space for ρ). Thus G/K is a
RKEF G-space, and equivalently an equivariantly formal G-space.

Remark 3.1. In the more general case where equality of ranks of G and
K is not assumed, a representation theoretic characterization of equivariant
formality of the left translation action of K on G/K is given by virtue of
RKEF in [CF].

2The map δ, which was defined in [BZ] and corrected in [F], is the same as the map β
defined in [Ho].
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3.3. Actions with connected maximal rank isotropy subgroups. In
this section we will prove the following equivariant formality result.

Theorem 3.2. Let G be a compact connected Lie group and X a finite G-
CW complex. Suppose that the G-action on X has maximal rank connected
isotropy subgroups. Then X is an equivariantly formal G-space.

Remark 3.3. In fact, Theorem 3.2 follows from [GoeR, Corollary 3.5],
where connectedness of isotropy subgroups is not assumed. Though the
space under consideration in [GoeR, Corollary 3.5] is the subset of a com-
pact G-manifold consisting of those points with maximal rank isotropy sub-
groups, its proof does not make use of this assumption and can be easily
adapted to the more general case of G-CW complexes. Indeed the proof
hinges on the observation that for any compact space X with maximal rank
isotropy subgroups and a maximal torus T , the map G ×NG(T ) X

T → X
given by [g, x] 7→ gx is onto and that the fibers of the map are acyclic. This
enables one to assert the isomorphism H∗G(X) ∼= H∗NG(T )(X

T ). The latter,

by abelianization, is H∗T (XT )W , which in turn by a commutative algebra re-
sult ([GoeR, Lemma 2.7]) is a free module over H∗T (pt)W ∼= H∗G(pt). Hence
X is an equivariantly formal G-space.

Remark 3.4. If G in addition satisfies the condition that π1(G) be torsion-
free, then K∗G(X;Q) is a free R(G;Q)-module with rank dimQK

∗(XT ;Q)
([AG, Theorem 1.1]).

We would like to give a different proof of this result by using Theorem
1.3 and induction on the dimension of X. We shall point out that the group
actions considered in Sections 3.1 and 3.2 are examples of group actions we
discuss in this section. However, equivariant formality of left translation
actions on generalized flag manifolds as in Section 3.2 is used in the proof.

Lemma 3.5. Let G be a compact connected Lie group acting on a finite
CW-complex X equivariantly formally. Let V1 and V2 be vector bundles on
X which are isomorphic nonequivariantly. Then there exist positive integers
a and b such that V ⊕a1 ⊕Cb and V ⊕a2 ⊕Cb can be made equivariant G-vector
bundles which are isomorphic equivariantly.

Proof. By Theorem 1.3 and the discussion preceding it, there exists p and q
such that T1 := V ⊕p1 ⊕Cq and T2 := V ⊕p2 ⊕Cq admit equivariant structures.

Let T̃1 and T̃2 denote the corresponding equivariant G-vector bundles. They

then define the equivariant K-theory class [T̃1]− [T̃2] ∈ K∗G(X;Q) which lies
in the kernel of the forgetful map fG ⊗ IdQ. By Lemma 2.4, there exist a
positive integer m, representations ρi1 and ρi2 of G with the same dimension,
and equivariant G-vector bundles Ai and Bi such that

m([T̃1]− [T̃2]) =
∑
i

([ρi1]− [ρi2]) · ([Ai]− [Bi])
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Here, for ρ ∈ R(G) with Vρ being the complex vector space underlying
the representation, ρ means the vector bundle X × Vρ with the diagonal
G-action. By the definition of Grothendieck construction, there exists an
equivariant G-vector bundle C such that we have the following G-vector
bundle isomorphism.

T̃⊕m1 ⊕
⊕
i

(ρi2 ⊗Ai ⊕ ρi1 ⊗Bi)⊕ C ∼= T̃⊕m2 ⊕
⊕
i

(ρi1 ⊗Ai ⊕ ρi2 ⊗Bi)⊕ C.

By [Se, Proposition 2.4], there exists an equivariant G-vector bundle D such
that

⊕
i(ρ

i
2 ⊗ Ai ⊕ ρi1 ⊗Bi)⊕ C ⊕D ∼= ρ0 for some ρ0 ∈ R(G). Taking the

direct sum of both sides with D and forgetting the equivariant structures,
we have

V ⊕pm1 ⊕ Cqm+dimρ0 ∼= V ⊕pm2 ⊕ Cqm+dimρ0 .

Taking a = pm and b = qm+ dimρ0 finishes the proof. �

Proof of Theorem 3.2. Consider the n-skeleton Xn. It is obtained by
gluing the equivariant cells G/Ki × Dn for 1 ≤ i ≤ k and Ki compact,
connected and of maximal rank, to the (n− 1)-skeleton Xn−1 through some
G-equivariant attaching maps. For convenience of exposition and without
loss of generality we will consider the case of attaching one equivariant cell
G/K × Dn. Let

f : G/K × ∂Dn → Xn−1

be the equivariant attaching map and

F : G/K × Dn → Xn

be the inclusion of the equivariant cell into Xn. We also let V be any given
vector bundle over Xn. To prove Proposition 3.2, it suffices, by Theorem 1.3
and the discussion after Definition 1.2, to show that, for some p and q, V ⊕p⊕
Cq admits an equivariant structure, assuming by induction hypothesis that
V0 := V |Xn−1 satisfies the condition that V ⊕p00 ⊕ Cq0 admits an equivariant
structure for some p0 and q0.

Note that V can be obtained by gluing V0 → Xn−1 and W → G/Ki ×
Dn, where W := F ∗V , through the clutching maps, i.e. vector bundle
homomorphism

h : W |G/K×∂Dn → V0

which covers the map f and send fiber to fiber isomorphically. By the dis-
cussion in Section 3.2 and the contractibility of Dn, there exist r and s such
that W⊕r⊕Cs is isomorphic to a certain homogeneous vector bundle which
is obviously G-equivariant. If we take p = LCM(p0, r) and q = max{q0, s}
then both V ⊕p0 ⊕Cq and W⊕p ⊕Cq admit equivariant structures. Consider
the clutching map

j : W⊕p|G/K×∂Dn ⊕ Cq → V ⊕p0 ⊕ Cq
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built from h for the vector bundles W⊕p ⊕ Cq and V ⊕p0 ⊕ Cq. The vector
bundle V ⊕p⊕Cq admits an equivariant structure if j is homotopy equivalent
to another clutching map which is G-equivariant. Now we define the map

α : W⊕p|G/K×∂Dn ⊕ Cq → f∗V ⊕p0 ⊕ Cq

such that j is the composition of α and the natural map

f∗V ⊕p0 ⊕ Cq ∼= f∗(V ⊕p0 ⊕ Cq)→ V ⊕p0 ⊕ Cq

(x, v) 7→ v,

where f(x) = π(v), x ∈ G/K × ∂Dn, v ∈ V ⊕p0 ⊕ Cq. The latter map is obvi-
ously G-equivariant. If the map α is homotopy equivalent to a G-equivariant
map (and hence so is the clutching map j), then V ⊕p⊕Cq, which is obtained

by gluing V ⊕p0 ⊕ Cq and W⊕p ⊕ Cq through the clutching map, admits the

G-equivariant structure inherited from those of V ⊕p0 ⊕Cq and W⊕p⊕Cq. In
fact it suffices to show the following

Claim 3.6. There exist some positive integers l and m such that the map

α⊕m ⊕ IdCl : (W⊕p|G/K×∂Dn ⊕ Cq)⊕m ⊕ Cl → (f∗V ⊕p0 ⊕ Cq)⊕m ⊕ Cl

is homotopy equivalent to a G-equivariant map.

The claim will imply that V ⊕pm⊕Cqm+l admits an equivariant structure
by the above clutching argument. We may then replace p and q with pm
and qm+ l respectively.

We shall prove the above claim. Note that α is a vector bundle iso-
morphism as it covers the identity map on G/K × ∂Dn and send fiber to
fiber isomorphically. Bearing in mind that G/K is an equivariantly for-
mal G-space (cf. Section 3.2) and so is ∂Dn due to the trivial G-action,
G/K×∂Dn is an equivariant formal G-space because it is a product of equi-
variant formal G-spaces. By Lemma 3.5, there exist positive integers a and
b and equivariant G-vector bundle isomorphism

β : (f∗V ⊕p0 ⊕ Cq)⊕a ⊕ Cb → (W⊕p|G/K×∂Dn ⊕ Cq)⊕a ⊕ Cb.

The composition γ := β ◦ (α⊕a ⊕ IdCb) then is a vector bundle auto-

morphism of U := W⊕pa|G/K×∂Dn ⊕ Cqa+b. Let Y be the vector bundle

U×[0, 1]/((u, 0) ∼ (γ(u), 1)) over G/K×∂Dn×S1, which is an equivariantly
formal G-space by the above argument. By Theorem 1.3, G/K × ∂Dn × S1

is RKEF. It follows that for some positive integers c and d, Y ⊕c ⊕ Cd can
be made an equivariant G-vector bundle, and thus γ⊕c ⊕ IdCd is homo-

topy equivalent to some G-equivariant clutching map δ : U⊕c ⊕ IdCd →
U⊕c⊕ IdCd . It follows that α⊕ac⊕ IdCbc+d = ((β)−1)⊕c⊕ IdCd)◦ (γ⊕c⊕ IdCd)

is homotopy equivalent to the equivariant G-vector bundle isomorphism
((β−1)⊕c ⊕ IdCd) ◦ δ. Now taking m = ac and l = bc + d finishes the

proof of the claim.
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We have shown that, by induction on the dimension of X, for any given
vector bundle V → X, V ⊕p ⊕ Cq admits an equivariant structure for some
p and q. The same is true for the suspension ΣX because it is also a G-CW
complex with maximal rank connected isotropy subgroups. It follows that
the G-action on X is equivariantly formal by Theorem 1.3. �
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