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On L-space knots obtained from
unknotting arcs in alternating diagrams

Andrew Donald, Duncan McCoy
and Faramarz Vafaee

Abstract. Let D be a diagram of an alternating knot with unknotting
number one. The branched double cover of S3 branched over D is an
L-space obtained by half integral surgery on a knot KD. We denote the
set of all such knots KD by D. We characterize when KD ∈ D is a torus
knot, a satellite knot or a hyperbolic knot. In a different direction, we
show that for a given n > 0, there are only finitely many L-space knots
in D with genus less than n.
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1. Introduction

A knot K ⊂ S3 is an L-space knot if it admits a positive Dehn surgery to
an L-space.1 Examples include torus knots, and more broadly, Berge knots
in S3 [Ber18]. In recent years, work by many researchers provided insight
on the fiberedness [Ni07, Ghi08], positivity [Hed10], and various notions of
simplicity of L-space knots [OS05b, Hed11, Krc18]. For more examples of
L-space knots, see [Hom11, Hom16, HomLV14, Mot16, MotT14, Vaf15].
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Figure 1. A nugatory crossing.

Since the double branched cover of an alternating knot is an L-space
[OS05c], the Montesinos trick allows us to construct a knot with an L-space
surgery for every alternating knot with unknotting number one [Mon73,
OS05a]. The primary focus of this paper is to study the family of L-space
knots arising in the branched double cover of alternating knots with unknot-
ting number one.

Let (D, c) be an alternating knot diagram D with an unknotting crossing
c. By cutting out the interior of a small ball containing c and taking the
branched double cover we obtain the complement of a knot in S3. We call
this K(D,c), or KD if we implicitly assume that an unknotting crossing has
been chosen. We also call the arc connecting the two arcs of the unknotting
crossing c of D the unknotting arc.

Let D denote the set of K(D,c) obtained by considering all reduced altern-
ating diagrams with unknotting number one. Here, a diagram is reduced if
it does not contain any nugatory crossings (see Figure 1).

Remark 1.1. It is worth noting that a diagram with unknotting number one
is not enough to determine a knot in D on its own, and one really does need
to specify the unknotting crossing. For example, any alternating diagram for
the knot 813 possesses both a positive and a negative unknotting crossing.
These give rise to different knots in D, namely the torus knots T2,7 and
T3,−5.

By the work of Thurston [Thu82], any knot in S3 is precisely one of a torus
knot, a satellite knot or a hyperbolic knot. In this paper, we characterize
when each of these knot types arise in D. When KD is a satellite knot,
its exterior S3 \ ν(KD) contains an incompressible, non-boundary parallel
torus. (Here, ν(KD) indicates an open tubular neighborhood of KD in S3.)
Correspondingly, there will be a Conway sphere C in D.

Definition 1.2. Let (D, c) be an alternating diagram with an unknotting
crossing c. Let C be a visible2 Conway sphere in D, disjoint from the
unknotting arc specified by c. We will call the component of S3\C containing
c the interior of C. We will call the other component the exterior. We say
that C is substantial if the interior of C contains more than one crossing and
the exterior is not a rational tangle.

2A Conway sphere is visible in a diagram if it intersects the plane of the diagram in
a single simple closed curve. A Conway sphere that is not visible, is hidden (cf. [Thi91,
Section 3]).
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Remark 1.3. A substantial Conway sphere can be non-essential, since the
interior may be a rational tangle.

We may now state the main result of the paper.

Theorem 1.4. Let (D, c) be an alternating diagram with an unknotting
crossing c. The following are equivalent:

(i) KD is a satellite,
(ii) D contains a substantial Conway sphere.

If D is a 2-bridge knot diagram, then we show that KD is a torus knot.
Conversely, it turns out that this is the only way that torus knots arise in
D. See [KanM86, Theorem 1] for a characterization of 2–bridge knots with
unknotting number one.

Proposition 1.5. The knot KD is a torus knot if and only if D is a diagram
of a 2-bridge knot.

Combining Proposition 1.5 and Theorem 1.4 allows us to determine for
which diagrams KD is a hyperbolic knot. (See also [GL04, GL06] for relevant
results.)

Corollary 1.6. Let (D, c) be an alternating diagram with an unknotting
crossing c. Then KD is a hyperbolic knot if and only if D is not a 2-bridge
knot diagram and D does not contain a substantial Conway sphere.

Conjecturally, there are only finitely many L-space knots in S3 with a
given genus ([HedW18, Conjecture 6.7] and [BakM15, Conjecture 1.2]). As
a final result, we verify this conjecture for knots in D.

Proposition 1.7. For a given n > 0 there are finitely many knots in D
with genus less than n.

Proof. Let KD ∈ D correspond to a diagram (D, c). Using Montesinos
trick [Mon73], we have S3

d
2

(KD) ∼= Σ(D), for some d with |d| = detD. Thus,

by [McC17b, Theorem 1.1], we have detD/2 ≤ 4g(KD) + 3. The result
follows since there are finitely many alternating knots of a given determinant
and each alternating knot has finitely many reduced alternating diagrams
up to planar isotopy. �

The rest of the paper is organized as follows. In Section 2, we state
Tsukamoto’s theorem [Tsu09, Theorem 5] that gives a set of three moves
(flype, tongue, and twirl) enabling us to go from a clasp diagram (Figure 3)
to any diagram (D, c). We also determine the corresponding effect of these
moves to the knots in D. Theorem 1.4 and Proposition 1.5 are proved in
Section 3.

Acknowledgements. We would like to thank Ken Baker, Josh Greene,
Matt Hedden, John Luecke and Tom Mark for helpful conversations. We
are also grateful to an anonymous referee for their detailed feedback.
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2. Almost alternating diagrams of the unknot

Recall that a diagram D is said to be almost alternating if it is non-trivial,
non-alternating and can be changed into an alternating diagram by changing
a single crossing. Given an almost alternating diagram we call a crossing
which can be changed to obtain an alternating diagram a dealternator. We
will refer to the crossing arc of a dealternator as a dealternating arc.

As the following remark shows, for every diagram (D, c) there is a refor-
mulation of K(D,c) in terms of dealternating arcs. We will sometimes find it
convenient to use this alternative approach.

Remark 2.1. Given an alternating diagram with an unknotting crossing

(D, c), let D̃ be the almost alternating diagram of the unknot obtained

by changing c. Since D̃ is unknotted, taking the double branched cover lifts
its dealternating arc to a knot in S3, which can easily seen to be K(D,c).

Figure 2. Flyped tongues. In both pictures the dealtern-
ator is the top central crossing.

Tsukamoto has studied the structure of almost alternating diagrams of
the unknot. The key result we require shows that most almost alternating
diagrams of the unknot contain a flyped tongue, where a flyped tongue is a
region appearing as in Figure 2 [Tsu09, Theorem 4].

Theorem 2.2 (Tsukamoto). Any reduced almost alternating diagram of the
unknot which is not an unknotted clasp diagram (see Figure 3) contains a
flyped tongue.

. . .

Figure 3. An unknotted clasp diagram

We recall some conventions on tangles. For the purposes of this paper a
tangle is a pair of unoriented arcs properly embedded in B3 with the end
points are mapped to four marked points on ∂B3. We consider tangles up
to isotopy fixing ∂B3. These will usually arise as the intersection of a knot
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diagram with a ball bounded by a visible Conway sphere. In this setting,
a tangle is said to be crossingless if the region of the diagram contained in
the ball is without crossings, as shown in Figure 4. We call a tangle which
is equivalent to a crossingless tangle a trivial tangle. If a tangle can be
isotoped to a trivial tangle by an isotopy of B3 (with no requirement that
∂B3 is fixed), then we call it a rational tangle.

Figure 4. A crossingless tangle

A reduced almost alternating diagram which contains a flyped tongue
can be isotoped to an almost alternating diagram with fewer crossings by
twisting the two tangles so that the outermost two crossings are removed
from the diagram. If the result of this isotopy is not reduced, then we can
further perform a Reidemeister I move to obtain a reduced diagram. Given
an almost alternating diagram of the unknot, Theorem 2.2 then allows us
to carry out a sequence of such isotopies. Carrying out this argument more
carefully allows one to show that all reduced alternating diagrams with an
unknotting crossing can be built up by a sequence of simple local moves.
The following is immediate from [Tsu09, Theorem 5] (see also [McC17a,
Theorem 2]).

Theorem 2.3 (Tsukamoto). Let (D, c) be a reduced alternating diagram
with an unknotting crossing. Then there are a sequence of reduced alternat-
ing diagrams Di with unknotting crossings ci,

(D1, c1)→ · · · → (Dp, cp) = (D, c),

such that (D1, c1) is a clasp diagram (see Figure 3), and for each i, (Di, ci)
is obtained from (Di−1, ci−1) by either a flype fixing ci−1, a twirl move, or
a tongue move (see Figure 6).

2.1. The corresponding operations in D. In this section, we turn our
focus to the moves, used in Theorem 2.3, that allow us to build up any
alternating diagram with unknotting number one. In principle, by studying
the effect of these moves on the knots in D, one should be able to obtain an
understanding of the knots arising in D. In practice, however, this approach
is not particularly straightforward to carry out. As we will see, the effects
of a twirl move can be understood easily enough, but the effects of a tongue
move are much more subtle.

The diagrams from which Theorem 2.3 allows us to build all other altern-
ating knots with unknotting number one are the clasp diagrams. According
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Figure 5. A flype move

Figure 6. Up to reflection, the tongue move (top) and a
twirl move (bottom). In each case the new unknotting cross-
ing is marked by the red circle.

. . . . . .

Figure 7. A clasp diagram (left) and the rational tangle
obtained by excising a ball containing an unknotting crossing
(right).

to the following proposition, the clasp diagrams are precisely those which
give rise to the unknot in D.

Proposition 2.4. KD is the unknot if and only if D is a clasp diagram.

Proof. For any odd integer d, the manifold S3
d/2(U) is homeomorphic to

the lens space L(d, 2). Thus if KD = U , then D must be a clasp dia-
gram [HodR85, Corollary 4.12]. Conversely, as shown in Figure 7, when
a ball containing an unknotting crossing is cut out, we obtain a rational
tangle. Thus if D is a clasp diagram then the complement of KD is a solid
torus and hence KD is the unknot. �
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Remark 2.5. Note that as the flypes in Theorem 2.3 can be chosen to fix
the unknotting crossing, they will clearly leave the knot KD unchanged.

A twirl move corresponds to a cabling operation. It is a special case of
a more general operation for producing satellite knots in D studied in the
following section.

Proposition 2.6. If (D′, c′) is obtained from (D, c) by a twirl move, then
KD′ is obtained from KD by taking a cable with winding number two.

Proof. This can be seen from Figure 8 which shows how the dealternating
arc changes under introducing a twirl.3 After performing the isotopy to
remove the twirl it is clear that the blue arc can be isotoped onto the sphere
S whose intersection with the plane is the circle around the crossing. This
shows that after taking the double branched cover, K ′D can be isotoped to
lie on the torus obtained by taking the double branched cover of S. As the
lift of S is the boundary of a tubular neighborhood of KD, this shows that
K ′D is a cable of KD. It is straightforward to see that the winding number
of this cable is two by considering a curve on S which lifts to a meridian of
KD. �

Figure 8. The diagram on the left is obtained from a twirl
move on the right one. The blue arc shows how the unknot-
ting arc in D′ appears in D after reversing the twirl move.

Finally we turn our attention to the tongue move. As we will see this
corresponds to a band sum operation in D. In certain cases, it can be
described precisely what the band sum is, however, in general, different
tongue moves on the same diagram will result in different knots in D. For
example, if D is an alternating diagram of 814 there is an unknotting crossing
for which KD = T3,5. There is a tongue move to a ten-crossing diagram D′

with KD′ = T4,7 and a tongue move to a different ten-crossing diagram D′′

for which KD′′ is a positive braid with braid index equal to six.

3We may construct KD from (D, c) as follows. First, we change the crossing c in
D, and isotope the resulting diagram to obtain the unknot, while we keep track of the
unknotting arc throughout the isotopies. Second, we double the resulting arc to obtain
KD. See [HodR85], for instance.
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Proposition 2.7. If (D′, c′) is obtained from (D, c) by a tongue move, then
KD′ is obtained by taking a band sum of KD with another knot.

Proof. This follows from Figure 9. It is clear that the lift of the new
dealternating arc is obtained by taking a band sum of knots obtained by
lifting the blue and red arcs to the double branched cover. Note that the
lift of the blue arc is KD. �

Figure 9. A tongue move corresponds to a band sum oper-
ation in D.

3. The geometry of knots in D
In this section we study which types of L-space knots arise in D. Precisely,

we show when KD is a torus knot, a satellite knot or a hyperbolic knot.

3.1. Torus knots in D. We have already seen from Proposition 2.4 when
the unknot arises in D. We now generalize this to show that torus knots
correspond to 2-bridge knots with unknotting number one.

Proposition 3.1. The knot KD is a torus knot if and only if D is a diagram
of a 2-bridge knot.

Proof. If S3
d/2(Tr,s)

∼= Σ(L) is the double branched cover of an alternating

knot L, then d = 2rs ± 1 [McC17b]. In particular, Σ(L) must be the lens
space L(2rs ± 1, 2r2) [Mos71]. Since the only knots in S3 with lens space
branched double covers are the 2-bridge knots [HodR85, Corollary 4.12], this
shows that if KD is a torus knot, then D is a diagram of a 2-bridge knot.

Conversely, if D is an alternating diagram of a 2-bridge knot, then there
is a Conway sphere C passing through the unknotting crossing, such that
the both components of D in S3 \ C are rational tangles (cf. Figure 10).
Consider the diagram of the unknot obtained by changing the unknotting
crossing in C. Since both sides of C contain a rational tangle, we see that
C lifts to an unknotted torus in S3 (it bounds a solid torus on both sides)
upon taking the double branched cover. Since the unknotting arc in D can
be isotoped to lie on C, KD must lie on an unknotted torus in S3. In
particular, it is a torus knot, as required. �

Remark 3.2. One can also appeal to the Cyclic Surgery Theorem [CGLS87]
and [KanM86, Theorem 1] to show that a 2-bridge diagram yields a torus
knot.
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A

B

Figure 10. An unknotting number one 2-bridge diagram
with a Conway sphere (marked in red) onto which the un-
knotting arc can be isotoped. Both A and B are rational.

Remark 3.3. By exhibiting a 2-bridge diagram along with an unknotting
crossing for each torus knot, it can be proved that all torus knots are in D.

3.2. Constructing satellite knots in D. Now we turn our attention to
the satellite knots in D. In this section we give a general construction for
producing alternating diagrams with an unknotting crossing for which the
resulting knot in D is a satellite knot. For this construction we need the
following definition.

Definition 3.4. Let T be an alternating tangle which does not admit any
Reidemeister I moves reducing the crossing number. We say that T is an
alternating unknotting tangle if there is a distinguished crossing cT such
that after changing cT we obtain a tangle that is isotopic, relative to the
boundary, to a single crossing. Moreover, we require that the crossings
connected by an arc to the boundary appear as in Figure 11.

Figure 11. The left picture is a diagram of an alternating
unknotting tangle showing only the crossings connected by
an arc to the boundary. The right picture shows the tangle
obtained by changing the distinguished crossing.

Note that an alternating unknotting tangle T is defined in such a way
that if we replace the unknotting crossing of (D, c) with T to obtain a new
alternating diagram, then this alternating diagram will be reduced and have
unknotting number one with the distinguished crossing cT as an unknotting
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crossing. This observation allows us to make the following construction
possible.

Construction 3.5. Let D be a reduced alternating diagram with an unknot-
ting crossing c, which is not a clasp diagram. Let (T, cT ) be an alternating
unknotting tangle with more than one crossing. Replace c with T to obtain
an alternating diagram (D′, cT ) with unknotting number one.

Note that the diagram resulting from this construction is always reduced.
This is a consequence of the assumption that the original diagram D is
reduced and that the tangle T cannot be simplified by any Reidemeister I
moves. An example of this construction is given by the twirl move which
replaces the unknotting crossing with an alternating unknotting tangle with
four crossings. Proposition 2.6 shows that the twirl move corresponds to a
cabling operation in D. Similarly Construction 3.5 corresponds to taking
satellites in D.

Lemma 3.6. If (D′, c′) is an alternating diagram with an unknotting cross-
ing obtained by Construction 3.5, then KD′ is a satellite knot.

Proof. Let (D′, c′) be obtained by Construction 3.5 from an alternating
diagram D and an alternating unknotting tangle (T, cT ). Recall that, by
definition, the knot complement S3 \ ν(KD′) is obtained by removing a ball
containing the unknotting crossing cT and taking the double branched cover.
Let C be the Conway sphere bounding the alternating unknotting tangle T
in D′. The sphere C lifts to a torus R in the knot complement S3 \ ν(KD′).
On the side of R that is branched over the exterior of C, we have the knot
complement S3 \ ν(KD). As we are assuming D is not a clasp diagram,
Lemma 2.4 shows that KD is not the unknot and, as a result, S3 \ ν(KD) is
not a solid torus: the unknot is the only knot whose complement is a solid
torus. On the side of R obtained by branching over the interior of C, we
have XT , the space obtained by taking the branched double cover over T
after excising a ball containing cT . Since changing cT in T results in a tangle
isotopic to one with a single crossing, XT is the complement of a knot κT
in S1 × D2. Moreover, as we are considering KD and KD′ as knots in S3,
the identification of XT as a knot complement in S1 ×D2 is such that the
boundary of a disk in S1 ×D2 corresponds to a meridian of KD in R.

Thus KD′ is obtained by a satellite operation with companion KD and
pattern κT (for some choice of longitude of S1×D2). It remains to show that
the satellite operation is not trivial. That is, the torus R is incompressible
and not boundary-parallel in S3 \ ν(KD′). Equivalently, we need to show
that the knot κT cannot be isotoped to lie in a ball in S1 ×D2 and is not
isotopic to the core of S1 ×D2.

Consider the sequence of alternating diagrams constructed by iterating
Construction 3.5 with the tangle T . That is, let D0 = D and for each
n let Dn be the alternating diagram obtained by replacing the unknotting
crossing in Dn−1 with a copy of T .
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T2

C

T3

T1

Figure 12. A diagram with a Conway sphere which does not
satisfy the conditions of Definition 3.7. By twisting either T1
or T2, we can flype to move a crossing from the exterior of C
to the interior.

Since T is assumed to contain more than just a single crossing, the crossing
number of Dn is monotonically increasing with n and, by construction, all
of these diagrams are reduced. Hence we have that detDn →∞ as n→∞.
By combining the Montesinos trick [Mon73] with [McC17b, Theorem 1.1] as
in the proof of Proposition 1.7 we obtain the bound

detDn ≤ 8g(KDn) + 6.

This shows that the genera g(KDn) are unbounded.
By the discussion from the start of the proof, KDn is obtained by taking

a satellite with companion KDn−1 and pattern κT . If κT were isotopic to

the core of S1 ×D2, then we would have KDn = KD for all n. If κT could
be isotoped to lie in a ball in S1 × D2, then for all n ≥ 1 we have KDn is
isotopic to κT considered as a knot in S3. In either case the genera g(KDn)
would be bounded, which we have already shown to be impossible. Thus
KD′ is a satellite knot as required.

�

The following lemma will be useful for finding alternating unknotting
tangles inside an alternating diagram with unknotting number one. For this
lemma we need to know what it means for the exterior of a Conway sphere
to be reduced.

Definition 3.7. Given a reduced alternating diagram with unknotting cross-
ing c in the interior of a visible Conway sphere C, we say that the exterior
of C is reduced if there is no flype which decreases the number of crossings
in the exterior of C.

An example to illustrate Definition 3.7 is given in Figure 12.

Remark 3.8. There is a more general notion of a reduced tangle due to
Thistlethwaite [Thi91, Definition 2.2], which includes the definition we are
using here.
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Lemma 3.9. Let D be an alternating diagram with unknotting crossing c
in the interior of a visible Conway sphere C. If the exterior of C is reduced
and contains at least one crossing, then the interior of C is an alternating
unknotting tangle with the distinguished crossing given by c.

Proof. As the details of this proof are somewhat technical, we give an over-
view of the strategy before we begin. We will prove the lemma by induction
on the number of crossings in the interior of C. When the interior of C con-
tains only a single crossing there is nothing to prove. So we can assume that
the interior of C contains more than just the unknotting crossing. Let D′

be the almost-alternating diagram obtained by changing c. The inductive
step will be achieved by finding an isotopy fixing the exterior of C which
produces a reduced almost-alternating diagram D′′ with fewer crossings in
the interior of C. By Theorem 2.2 there is a flyped tongue in D′. Let E
be a simple closed curve surrounding the flyped tongue which intersects the
diagram in two points and two crossings as shown in Figure 13. By carefully
considering how C can intersect with D′ and E, we will show that either C
is contained in one of the tangles T1 or T2 or C contains E in its interior.
The details of this step take up the first two claims of the proof. Once we
understand how C sits inside D′ we produce the desired isotopy by flyping
the tangles T1 and T2 before performing either an untongue move or an un-
twirl move. The details of this are contained in the final claim of the proof.
We finish the proof by describing how this isotopy allows us to complete the
inductive step.

First note that the conditions on C guarantee that D is not a clasp dia-
gram: whenever we have a visible Conway sphere in a clasp diagram with
at least one crossing in its exterior, we can always find a flype which carries
one of the crossings into interior.

It is convenient to give the diagram D′ a checkerboard coloring. We may
shade the diagram so that it appears as in Figure 13 near the flyped tongue.

T2

E

T1

Figure 13. The flyped tongue in D′.

Observe that since D′ does not contain any nugatory crossings the four
regions of D′ through which E passes are all distinct.

Observe also that C intersects four shaded regions of D′. Clearly, two of
these regions must be white and two must be black. We see also that these



530 ANDREW DONALD, DUNCAN MCCOY AND FARAMARZ VAFAEE

four regions must all be distinct. If C were to intersect the same region
twice, then, up to choice of coloring, the exterior of D′ would appear as in
Figure 14. As D is alternating reduced with an unknotting crossing, it is a
prime diagram, implying that both of the boxed tangles in Figure 14 must
be unknotted arcs. This would contradict the assumption that the exterior
of C contains at least one crossing.

Figure 14. C must intersect four distinct regions.

Claim. There is a choice of E which is disjoint from C.

Proof of Claim. Suppose that the intersection between C and E is non-
empty. The intersection points between C and E divides the intersection
of C with the plane of the diagram into a collection of embedded arcs
γ1, . . . , γ2n each disjoint from E except at its endpoints.

First, let γi be an arc which does not intersect D′. Such a γi must lie
within a single shaded region of D′. The end points of γi cut E into two arcs,
one of which lies entirely in a single region of D′. If we replace an neigh-
bourhood of the arc of E lying entirely in one region with an appropriate
push-off of γi, then we can obtain a new simple closed curve E′ containing
the flyped tongue, but no longer intersecting γi (see Figure 15). By iterating
this construction, we are free to assume that every arc γi intersects D′ at
least once. This implies that there is at least one intersection between C
and D′ that is not in the interior E, and, in particular, there are at most
three points of intersections between C and D′ in the interior of E.

Now suppose that γi is an arc lying in the interior of E which forms a
triangle with D′ and E, i.e we have an arrangement as shown in the second
row of Figure 15. We can obtain a new curve E′ containing the flyped
tongue by replacing the segment of E forming a side of the triangle with an
appropriate pushed-off copy of the other two sides, as shown in Figure 15.
Note that no arc γj passes through the side of this triangle given by D′,
as this would violate the condition that C intersects four distinct shaded
regions. Thus, E′ does not intersect C in any more points than E did. Note
that if γi intersected D′ only once, then it will not intersect D′ in the interior
of E′. In this case we may modify E′ as before to obtain E′′ for which γi
is disjoint from the interior. By iterating this construction we may assume
that E is chosen so that every γi intersects D′ at least once and that γi, E
and D does not form a triangle in the interior of E.
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E

E′
γi

D′

E
γi

E′

Figure 15. Modifying E to eliminate arcs disjoint from D′

(top) and triangles (bottom).

This ‘no triangles’ condition implies that every arc γi in the interior of E
intersects D′ in at least two points. Thus we can conclude that there are
precisely two arcs, γ1 and γ2, and that the arc in the interior of E, which we
will choose to be γ1 intersects D′ in two or three points. By the symmetry
of the the flyped tongue we may assume that γ1 intersect one of the white
regions.

Altogether this leaves a highly constrained number of possibilities. It
turns out that γ1 is essentially determined by the regions where it meets
E. This leads to the five possibilities which we display in Figures 16(i)-(v).
Note that in Figures 16(ii)-(v) we are using the primality of D′ to allow us to
draw γ1 as not passing through either of the tangles T1 or T2. Four of these
possibilities, the ones in Figures 16(i)-(iv), can immediately discounted as
the exterior of C is reduced. For the remaining possibility, Figure 16(v), the
arc γ2 forms an arc connecting the endpoints of γ1 and intersecting D′ once.
Using again the primality of D′ to show tangle contained between E and
γ2 be unknotted, this must appear as depicted in Figure 16(v). As we are
assuming that the interior of C contains more than just a single crossing,
this possibility can also be ruled out. This completes the proof of the claim.

�

Assume now that E is disjoint from C.

Claim. If C is contained in the interior of E, then it is contained in one
of the tangles T1 or T2.

Proof of Claim. Suppose that C is contained entirely in the interior of E.
If C does not intersect the strand of D′ running vertically through the centre
of the interior of E, then it can clearly be assumed to lie in the interior of
T1 or T2. Now consider how C can intersect this vertical strand. Since
C must pass through four distinct regions we see that a crossing must lie
between any two intersection points. This implies that C can intersect this
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(i) (ii)

(iii) (iv)

(v)

Figure 16. The five possibilities for γ1. Figure (v) also
shows γ2.

vertical strand only twice. Furthermore, as C intersects D′ in only four
points, one of these intersection points must lie between the two crossings
with the other lying between one of the crossings and E. By considering
how these intersection points can be joined up and using the primality of D′,
this implies that C is a Conway sphere enclosing one of the two crossings on
this central strand. In one case, C contains a single crossing in its interior
and in the other, the exterior of C is not reduced. Thus we can rule out C
intersecting this central strand. �

We now produce the desired isotopy.

Claim. There is an isotopy, fixing the exterior of C, which carries D′ to a
reduced almost-alternating diagram D′′ which reduces the number of cross-
ings in the interior of C. Moreover, this isotopy can be obtained by flypes
followed by an untongue or untwirl move.

Proof of Claim. By the two preceding claims, we may assume that E is
contained in the interior of C or C is contained in one of the tangles T1
or T2. In any case, this means there are flypes fixing the exterior of C
to a diagram which admits an untongue move in the interior of C. By
performing this untongue move we obtain an almost-alternating diagram of
the unknot D′′ with fewer crossings in the interior of C. If this new diagram
is reduced, then there is nothing further to check. So it remains to consider
the ways in which the untongue move could introduce a nugatory crossing
in D′′. Consider the shadings of this diagram before and after the tongue
move as shown in Figure 17. Note that a crossing is nugatory if and only
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if it is not incident to four distinct shaded regions. As the colourings are
unchanged by the untongue move outside of the depicted region, the only
crossings which can be nugatory are the two visible in Figure 17. Now
observe that the dealternator in D′′ cannot be nugatory. If it were, then the
alternating diagram obtained by changing it would also be unknotted. As
every crossing is nugatory in an alternating diagram of the unknot [Ban30],
this would imply that every crossing in the exterior of C is nugatory.

Thus, using the labels for regions as shown in Figure 17, we see the
untongue move creates a nugatory crossing only if the the region labelled
as a is the same as c or if b is the same as d. By the symmetry of the
diagram we may assume that a and c are the same. This means D′′ must
appear as in Figure 18 around region b. As D′ is prime, however, we see that
the boxed tangle Figure 18 can contain no crossings. Thus, the nugatory
crossing can be removed by Reidemeister I move. Note that this untongue
move followed by a Reidemeister I move is precisely an untwirl move. Since
C must intersect four distinct shaded regions, C must not pass through
region b. Thus, region b must lie entirely in the interior of C. This means
that the Reidemeister I move leaves the exterior of C fixed. �

a

b

d

c

Figure 17. Checkerboard colourings before and after a
tongue move.

We are now ready to finish the inductive proof. By the last claim there is
an isotopy, fixing the exterior of C, to a reduced almost-alternating diagram

D′′ with fewer crossings in the interior of C. Let D̃ be the alternating

b

da = c

Figure 18. The local picture when D′′ contains a nugatory crossing.
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T

Figure 19. Inserting an alternating unknotting tangle to
obtain a new alternating diagram with unknotting number
one. Note that the exterior of T is reduced.

diagram obtained by changing the dealternator of D′′. Since C has the

same exterior in both D and D̃, we see that D̃ satisfies the conditions of the

lemma. As D̃ has fewer crossings in the interior of C, we may assume by
the inductive hypothesis that the interior of C is an alternating unknotting
tangle (with distinguished crossing corresponding to the dealternator in D′′).
Since there is an isotopy between the interiors of C in D′ and D′′, this shows
that interior of C in D is also an alternating unknotting tangle. �

The final claim in the proof of Lemma 3.9 shows that if the exterior of a
Conway sphere in D is reduced then the interior is an alternating unknotting
tangle which can be built up from a single crossing by a sequence of flypes,
tongue moves and twirl moves. As any alternating unknotting tangle can
be inserted into an alternating diagram so that its exterior is reduced, this
shows that an analogue of Theorem 2.3 holds for alternating unknotting
tangles.

Corollary 3.10. Any alternating unknotting tangle can be built up from a
single crossing by a sequence of flypes, tongue moves and twirl moves.

3.3. Substantial Conway spheres. A satellite knot KD in D generated
by Construction 3.5 corresponds to an alternating knot diagram (D, c) con-
taining a Conway sphere. The goal of this subsection is to detect when the
converse is true, that is, for what types of Conway spheres in (D, c) the
knot KD is a satellite knot. Recall from Section 1 that a Conway sphere
C in (D, c) is called substantial if it is visible, the interior of C (i.e. the
component of S3 \C containing c) contains more than one crossing and the
exterior of C is not a rational tangle.

Proposition 3.11. Let (D, c) be an alternating diagram with an unknotting
crossing c containing a substantial Conway sphere. Then the corresponding
knot KD in D is a satellite knot with companion also in D.

Proof. Let C be the substantial Conway sphere in D. We may perform a
sequence of flype moves on D to obtain a diagram D′ that maximizes the
number of crossings in the interior of C. Since the exterior of C in D is
not rational, the exterior of C in D′ will also not be rational. In particular,
this D′ satisfies the hypotheses of Lemma 3.9. It follows that D′ arises by
Construction 3.5. Consequently, KD = KD′ is a satellite in D. �
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Lemma 3.12. Let KD ∈ D arise from the diagram (D, c). If KD is a
satellite knot, then D contains a Conway sphere C satisfying either

(1) C is substantial or
(2) C is hidden and, moreover, the tangle in the exterior of C is not rational.

Remark 3.13. By construction, KD is strongly invertible, that is, there is an
involution on the knot exterior S3 \ ν(KD) that fixes a pair of arcs meeting
the boundary torus transversally in four points.

Lemma 3.12 is proven by first finding an incompressible, non-boundary
parallel torus in the exterior of KD (not necessarily the one we get from
the assumption that KD is a satellite knot). Given the strong inversion of
S3 \ ν(KD), we quotient the torus to get a Conway sphere C. By carefully
exploring C we see that the only possibilities are the ones stated in the
lemma. For the first part of the argument (i.e. finding the torus), we appeal
to the following theorem that we state without proof. The theorem follows
directly from [Hol91, Corollary 4.6].

Theorem 3.14 (Holzmann). Let M be an orientable, irreducible three-
manifold with an involution ι. Suppose that M contains an incompressible
torus, and that M is not an orientable Seifert fiber space over the 2-sphere
with four exceptional fibers. Then there is an incompressible torus R ⊂ M̊ ,
transverse to the fix point set of ι, with either ι(R) ∩R = ∅ or ι(R) = R.

Proof of Lemma 3.12. Let D̂ ⊂ S3 \ (B̊3) be the diagram obtained by
cutting out a small ball containing the unknotting crossing c. The double

branched cover over D̂ is the knot exterior S3\ν(KD). Since KD is a satellite
knot, S3 \ ν(KD) contains an incompressible torus R′. If ι is the covering
involution on S3 \ ν(KD) (c.f. Remark 3.13), then, using Theorem 3.14,
we get that S3 \ ν(KD) contains an incompressible torus R, transverse to
the fixed set of ι, such that either ι(R) = R or ι(R) ∩ R = ∅. Moreover,
since we can also apply Theorem 3.14 to any non-integer Dehn filling of
S3 \ ν(KD) and, in particular, all those in which R′ remains incompressible,
we can assume that R is not boundary parallel. Here we are using that a
non-integer surgery on satellite knot is not an orientable Seifert fiber space
over the 2-sphere with four exceptional fibers [MiM97, Corollary 1.3]. An
Euler characteristic argument shows that the quotient of R by the involution

is either a torus disjoint from D̂ or a Conway sphere (corresponding to
either ι(R) ∩ R = ∅ or ι(R) = R, respectively). We remind the reader that
prime alternating knots are not satellites knots [Men84, Corollary 1], and in
particular, the exterior of D cannot contain an incompressible non-boundary
parallel torus. Thus the possibility that the quotient of R be a torus does
not occur. Therefore, we get a Conway sphere C in (D, c) which does not
intersect the unknotting arc specified by c. Since R is incompressible in
S3 \ ν(KD), we see that the exterior of C cannot be a rational tangle. Thus
if C is hidden, we see that (2) of the lemma holds. If C is visible, then the
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interior of C must contain more than one crossing, as otherwise R would
have been boundary parallel in S3 \ ν(KD) contradicting the assumption
that KD is a satellite knot. This shows that if C is visible, it must be
substantial. �

Lemma 3.15. Suppose that (D, c) contains a hidden Conway sphere disjoint
from the unknotting arc specified by c and whose exterior is not rational.
Then D contains a substantial Conway sphere.

Proof. Menasco, in [Men84, Theorem 3], shows that if an alternating dia-
gram D contains a hidden Conway sphere, D must appear as in Figure 20(a).
Moreover there is an isotopy of D into a non-alternating knot diagram, as
depicted in Figure 20(b), in which the image of the hidden Conway sphere
is visible. See [Thi91, Figures 3(ii) and 3(iii)]. We may assume that the
unknotting crossing c is contained in the tangle X. Observe that if any of
Y , Z or W is not rational, then the visible Conway sphere containing it is
a substantial one. Therefore, we may assume that the tangles Y , Z and W
are all rational.

Now consider Figure 20(b). The image of the hidden Conway sphere in
the figure is the visible Conway sphere surrounding X and Y . Since the
tangle contained in the exterior of the Conway sphere is not rational, we see
that both Z and W contain crossings. It follows from the results of [KauL04,
Section 4], that in any alternating diagram of a rational tangle at least one
pair of arcs emerging from the boundary sphere must meet in a crossing.
Thus, if we consider again Figure 20(a), we see that the exterior of the visible
Conway sphere containing X is not rational. Thus if X contains more than
one crossing, the visible Conway sphere surrounding X is substantial. It
remains to consider the case where X consists of a single crossing. We will
show that in this case D is a diagram of a 2-bridge knot, and argue that
this will not happen.

If X only consists of c, then the diagram appears as in Figure 20(c).
After changing the unknotting crossing there is an isotopy to the non-prime
diagram shown in Figure 20(d). Since this is the unknot we see that both
summands must be unknotted. However, note that the summand containing
Y is alternating. Since an alternating diagram of the unknot can contain
only nugatory crossings [Ban30] and D is a reduced diagram, this implies
that Y does not contain any crossings. Since we are assuming that Z and
W are rational, this means that D is a diagram of a 2–bridge knot. This
is a contradiction, as any Conway sphere in the exterior of a 2–bridge knot
divides the knot diagram into two rational tangles [Kaw12, Theorem 3.5.18].

�

This provides the final step required for our main result on satellite knots
in D.

Proof of Theorem 1.4. (ii) ⇒ (i): If D contains a substantial Conway
sphere, then Proposition 3.11 shows that KD is a satellite knot.
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Z X W Y

W

(a)

(b)

Z W Y

(c)

(d)

X Y

Z

Z W Y

Figure 20. (a) Shows the standard form of a diagram con-
taining a hidden Conway sphere. (b) Shows a non-alternating
diagram in which the Conway sphere is visible. (c) Shows the
diagram when X contains only the unknotting crossing. (d)
Shows the non-prime diagram which can be obtained after
changing the unknotting crossing in (c).
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(i)⇒ (ii): IfKD is a satellite, then Lemma 3.12 together with Lemma 3.15
imply that KD contains a substantial Conway sphere. �

References

[BakM15] Baker, Kenneth L.; Motegi, Kimihiko. Twist families of L-space knots,
their genera, and Seifert surgeries. Preprint, 2015. arXiv:1506.04455. 520
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[OS05b] Ozsváth, Peter; Szabó, Zoltán. On knot Floer homology and lens space
surgeries. Topology 44 (2005), no. 6, 1281–1300. MR2168576, Zbl 1077.57012,
arXiv:math/0303017, doi: 10.1016/j.top.2005.05.001. 518
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