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Nonstandard convergence
gives bounds on jumps

Henry Towsner

Abstract. If we know that some kind of sequence always converges, we
can ask how quickly and how uniformly it converges. Many convergent
sequences converge non-uniformly and, relatedly, have no computable
rate of convergence. However proof-theoretic ideas often guarantee the
existence of a uniform “meta-stable” rate of convergence.

We show that obtaining a stronger bound—a uniform bound on the
number of jumps the sequence makes—is equivalent to being able to
strengthen convergence to occur in the nonstandard numbers. We use
this to obtain bounds on the number of jumps in nonconventional ergodic
averages.
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1. Introduction

Once we have proven that some kind of sequence (an)n∈N converges, a
natural question is to ask how quickly it converges. It is not hard to show
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that there may not be a general rate of convergence1: it might be that in
different situations, this sequence converges at substantially different rates,
so that no rate of convergence suffices in general.

Indeed, this is the typical situation. For example, consider the ergodic
averages. We have a probability space (X,B, µ) and a measurable, measure-
preserving T : X → X. When f is an L1(X) function, one can prove that the

ergodic averages ATNf = 1
N

∑N−1
i=0 f(T ix) converge (in the L2 norm [Neu32]

and pointwise almost everywhere [Bir31]). However it is known that the
rate can be arbitrarily slow [Kre79] and non-computable [AS06].

On the other hand, once we have proven convergence, there must be a
weaker notion, a rate of metastable convergence2 which is both computable
and uniform [AGT10, DI17, AI13, Tao08, KL12, Cho16].

Avigad and Rute have noted [AR15] that we cannot, in general, expect
anything more than a rate of metastable convergence. Kohlenbach and
Safarik identified proof-theoretic features of a proof which make it possible
to extract a notion intermediate between a rate of convergence and a rate
of metastable convergence [KS14]: a uniform, computable bound on the
number of ε-jumps. In this paper, we give an exact criterion for when
this stronger bound can be obtained using nonstandard analysis, and use
it to show the existence of such bounds on certain nonconventional ergodic
averages.

Our criterion will involve taking a sequence (an)n∈N and extending to a
sequence (an̄)n̄∈N∗ over the hypernatural numbers (that is, the nonstandard
natural numbers). In complete generality, this is not possible: there is no
unique choice of hypernatural numbers, and no canonical way to extend a
sequence to the hypernatural numbers.

To fix this, we borrow an insight from Avigad and Iovino [AI13]. When
we prove convergence, we prove it in some theory with a family of models. If
we formulate the theory in a reasonable way, the models will also be closed
under ultraproducts, and so the corresponding sequences will still converge
in these ultraproducts. Furthermore, in any particular ultraproduct, there
is a corresponding canonical choice of the hypernatural numbers, and a
corresponding canonical extension of a sequence to those hyperreals.

Given the extension (an̄)n̄∈N∗ , we can ask whether we obtain a stronger
kind of convergence: whenever I ⊆ N∗ is a cut—an initial segment closed
under successor3—we can ask about convergence in I: is it the case that,
for every (standard real) ε > 0, there is an n̄ ∈ I so that, for all m̄ ∈ I with

1A rate of convergence is a function F : N → N such that, for each E > 0 and any
m > F (E), d(aF (E), am) < 1/E.

2A rate of metastable convergence is a functional R : N × NN → N such that for each
E > 0 and each monotone F : N→ N, d(aR(E,F ), aF (R(E,F ))) < 1/E.

3The term “cut” is sometimes reserved for a stronger notion, adding the requirement
that I be closed under addition. We follow the convention in the models of arithmetic
literature, calling this stronger notion an additive cut.
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m̄ > n̄, d(an̄, am̄) < ε. (Of course, convergence in N is just the usual notion
of convergence.)

Our main result shows that we obtain uniform bounds on the numbers of
ε-jumps exactly when these extensions converge in every I. Formally, after
giving definitions in Section 2, we will show:

Theorem 1.1. Let C be a collection of pairs ((X, d), (an)n∈N) where each
(an) is a sequence of elements in the corresponding metric space (X, d). The
following are equivalent:

• there is a uniform bound on the number of ε-jumps; that is, for
every ε > 0 there is a K so that in every pair ((X, d), (an)n∈N) in
C and every sequence n1 < n2 < · · · < nK , there is a k < K with
d(ank

, ank+1
) < ε,

• whenever U is a nonprincipal ultrafilter on N, and, for each i, the
pair ((Xi, di), (a

i
n)n∈N) ∈ C, in the ultraproduct

∏
U (Xi, di), the ex-

tended sequence (an̄)n̄∈N∗ converges in every cut.

To illustrate this idea, in Section 3 we will show that, with a small modifi-
cation, the original proof of the mean ergodic theorem satisfies the criterion
given by the second equivalent condition in this theorem. (The existence of
a bound on jumps for this sequence already follows from Bishop’s upcrossing
inequalities [Bis68].)

We will then turn to the “nonconventional” ergodic averages

1

N

N∑
n=1

(f1 ◦ Tn1 ) · · · (fk ◦ Tnk ).

These averages were shown to converge by Tao [Tao08]. There are now
several proofs of convergence [Hos09], including a proof using nonstandard
analysis [Tow09]. We will modify Austin’s proof [Aus10] to show:

Theorem 1.2. For every d and every ε > 0, there is a K so that whenever
(X,B, µ) is a probability measure space, T1, . . . , Td : X → X are a sequence
of measurable, measure-preserving transformations, and f1, . . . , fd are func-
tions with each ||fi||L∞ ≤ 1, whenever N1 < N2 < · · · < NK are given, there
is an i < K so that

|| 1

Ni

Ni∑
n=1

(f1 ◦ Tn1 ) · · · (fk ◦ Tnk )− 1

Ni+1

Ni+1∑
n=1

(f1 ◦ Tn1 ) · · · (fk ◦ Tnk )||L2 < ε.

The d = 1 case is the regular ergodic theorem, and for the d = 2 case
stronger variational inequalities are known [Dem07, DOP13].

Finally, in Section 5 we consider a generalization where we only restrict
those jumps where nk and nk+1 are “far apart”, and show that this corre-
sponds to a weaker condition where the extended sequences only converge
in cuts with additional closure properties.
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2. Nonstandard convergence

2.1. Ultraproducts. Throughout, we assume that U is a nonprincipal ul-
trafilter on N; essentially nothing would change if we replaced U with a
nonprincipal, non-countably complete ultrafilter on some larger index set.

We recall the notion of an ultraproduct for metric structures. A detailed
exposition is given in [Ben+08].

Definition 2.1. For each i ∈ N, let ri ∈ R. If there is some B so that
{i | |ri| ≤ B} ∈ U then the ultralimit limU ri is defined to be the unique
r ∈ R such that, for every ε > 0, {i | |ri − r| < ε} ∈ U .

For each i ∈ N, let (Xi, di) be a metric space. The metric ultraproduct∏
U (Xi, di) is a metric space (XU , dU ) given by:

• YU consists of sequences 〈xi〉i∈N where xi ∈ Xi for each i ∈ N,
• we define an equivalence relation ∼U on YU by 〈xi〉i∈N ∼U 〈yi〉 iff

limU di(xi, yi) = 0,
• XU = YU/ ∼U ,
• dU ([〈xi〉i∈N], [〈yi〉i∈N]) = limU di(xi, yi) if this exists and ∞ other-

wise.

Definition 2.2. When U is an ultrafilter, a nonstandard natural number
(relative to U) is an equivalence class of sequences 〈ni〉i∈N where each ni ∈ N,
taking 〈ni〉 ∼U 〈mi〉 iff {i | ni = mi} ∈ U .

When U is clear from context, we write N∗ for the set of nonstandard
natural numbers. The nonstandard integers are defined similarly, and we
sometimes write Z∗ for the nonstandard integers. Recall that N embeds
canonically as an initial segment of N∗ by associating any n ∈ N with the
constant sequence [〈n〉i∈N] ∈ N∗. Of course, N is a proper initial segment;
for instance, [〈i〉i∈N] is larger than any element of (the image of) N.

Definition 2.3. Suppose that, for each i ∈ N, 〈ain〉n∈N is a sequence of
elements of Xi. Then, for any nonstandard natural number n̄ = [〈ni〉], we
define an̄ = [〈aini

〉].

It is easy to see that an̄ is well-defined: if 〈ni〉 and 〈mi〉 represent the
same element of N∗, so {i | ni = mi} ∈ U then {i | di(aini

, aimi
) = 0} ∈ U ,

and therefore [〈aini
〉] = [〈aimi

〉].

Definition 2.4. A cut in N∗ is a subset I ⊆ N∗ which is an initial segment,
and such that whenever n̄ ∈ I, also n̄+ 1 ∈ I.

N and N∗ are the smallest and largest cuts, respectively. For more inter-
esting examples, whenever n̄ ∈ N,

• {m̄ | ∃k ∈ N m̄ < n̄+ k},
• {m̄ | ∃k ∈ N m̄ < k · n̄}, and
• {m̄ | ∃k ∈ N m̄ < n̄k}

are also cuts.
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Definition 2.5. When I is a cut, we say a sequence (an̄)n̄∈N∗ converges in
I if for every real ε > 0, there is an n̄ ∈ I so that, for all m̄ ∈ I with m̄ > n̄,
d(an̄, am̄) < ε.

2.2. Main theorem.

Definition 2.6. Let (an)n∈N be a sequence of elements in some metric space.
For any ε > 0, we say (an) admits K ε-jumps if there are n1 < n2 < · · · < nK
such that, for each k < K, d(ank

, ank+1
) ≥ ε.

Theorem 2.7. Let C be a collection of pairs ((X, d), (an)n∈N) where each
(an) is a sequence of elements in the corresponding metric space (X, d). The
following are equivalent:

• for every ε > 0 there is a K so that, for every ((X, d), (an)n∈N) ∈ C,
the sequence (an)n∈N does not admit K ε-jumps,
• whenever U is a nonprincipal ultrafilter on N, and, for each i, the

pair ((Xi, di), (a
i
n)n∈N) ∈ C, the sequence (an̄)n̄∈N∗ converges in every

cut in (XU , dU ).

Proof. Suppose the former fails: there is some ε > 0 so that, for every K,
there is an ((X, d), (an)n∈N) ∈ C so that (an)n∈N admits K ε-jumps. For
each K, choose such an ((XK , dK), (aKn )n∈N) and choose witnesses nK1 <
nK2 < · · · < nKK so that, for each k < K, d(aK

nK
k
, aK
nK
k+1

) ≥ ε.
Take any nonprincipal ultrafilter U and consider the sequence (an̄)n̄∈N∗ .

For each i ∈ N, take n̄i = [〈nKi 〉K∈N] (where we take nKi = 0 if K < i;
for each i, there are only finitely many such K, so this arbitrary choice
does not affect the value of n̄i). Let I = {m̄ | ∃i m̄ < n̄i}; this is a cut,
since if m̄ < n̄i then m̄+ 1 < n̄i + 1 ≤ n̄i+1. But for each i, dU (an̄i , an̄i+1) =

limU dK(aK
nK
i
, aK
nK
i+1

) ≥ ε. Therefore (an̄)n̄∈N∗ does not converge to within ε/2

in the cut I: given any m̄ ∈ I, we may find some n̄i > m̄ by definition, and
by the triangle inequality, either dU (am̄, n̄i) ≥ ε/2 or dU (am̄, n̄i+1) ≥ ε/2.

Conversely, suppose the former holds, and consider any nonprincipal ul-
trafilter U , any sequence ((Xi, di), (a

i
n)n∈N) of elements of C. Consider some

cut I and some ε > 0. Let K witness the uniform bound for ε/2-jumps.
Choose any n̄1 ∈ I; if n̄1 does not witness convergence in I, there must
be some n̄2 > n̄1 with n̄2 ∈ I and dU (n̄1, n̄2) ≥ ε. We continue choosing
n̄3 > n̄2 in I, and so on. If we find k < K so that n̄k witnesses convergence
in I, we are done. Otherwise, we find n̄1 < n̄2 < · · · < n̄K all in I with
dU (an̄k

, an̄k+1
) ≥ ε for each k < K.

Then, for each k < K, limU di(a
i
ni
k
, ai
ni
k+1

) ≥ ε. In particular, {i |
di(a

i
ni
k
, ai
ni
k+1

) > ε/2} ∈ U . So we may choose a single i so that, for all

k < K simultaneously, di(a
i
ni
k
, ai
ni
k+1

) > ε/2 and ni1 < ni2 < · · · < niK . But

this shows that (ain)n∈N admits K ε/2-jumps, which is a contradiction. So
it must be that, for some k < K, n̄k witnessed convergence in I. �



656 HENRY TOWSNER

2.3. Averages in ultraproducts. We will mostly be considering the case
where we begin with a measurable, measure-preserving action T : Z y
(X,µ) and an f ∈ L2(µ), and generalizations of this case.

It will be essential for our purpose that the ultraproduct lifts T itself
to an action of Z∗ on the compactification XU . The assignment is done
analogously to the other ultraproduct operations:

T [〈ni〉]([〈xi〉]) = [〈Tni(xi)〉].

Since Z∗ is itself a group, this amounts to extending T to an action by this
larger group.

We will also want to consider nonstandard analogs of ergodic averages—
quantities like

1

N̄

N̄∑
n̄=1

f(T n̄x).

The conventional approach to making sense of such notions is to note that
quantities like f(T n̄x) belong to the “nonstandard reals”, and that opera-

tions like
∑N̄

n̄=1 can then be defined on the nonstandard reals.
For the reader unfamiliar with these constructions, it may be more direct

to note that

1

N̄

N̄∑
n̄=1

f(T n̄x) = lim
U

1

Ni

Ni∑
n=1

f(Tnx).

That is, the nonstandard average can be viewed as a short hand for the limit
of a sequence of standard averages.

Another perspective goes through a measure theoretic interpretation.
When N is a standard natural number, we can view the average 1

N

∑N
n=1 cn

as an integral:

1

N

N∑
n=1

c(n) =

∫
c(n) dµN

where µN is the counting measure on [0, N ].
The measures µN lift to the Loeb measure [Loe75] µN̄ , which is a prob-

ability measure on the (uncountably infinite) set [0, N̄ ]. Then we have the
equality4

1

N̄

N̄∑
n̄=1

f(T n̄x) =

∫
f(T n̄x) dµN̄ .

The reader will not be misled by the view that each set [0, N̄ ] has a canonical
probability measure µN̄ , these measures are related in the natural way (for

4There is a technicality here: the value of the average is a nonstandard real, while the
value of the integral is the unique standard real infinitely close to that nonstandard real.
However this distinction is not relevant here, since we are mostly concerned with when
two averages differ by a standard real number ε.
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instance, µN̄+N̄ ([0, N̄ ]) = 1/2), and the nonstandard average 1
N̄

∑N̄
n̄=1 · is

just an evocative notation for the integral
∫
· dµN̄ .

3. The mean ergodic theorem

As a warm up (and to establish our base case), we modify the proof of
the mean ergodic theorem to hold in every cut in an ultraproduct. The
proof does not go through unchanged. Like most proofs, von Neumann’s
proof of the mean ergodic theorem requires a certain amount of arithmetic,
which amounts to saying that it only goes through in “nice enough” cuts.
In this case the condition is mild: von Neumann’s argument needs the cut
to be additive (that is, closed under addition). However, as we will show,
averages always converge in non-additive cuts, so we are able to complete
the proof. (This dichotomy between additive and non-additive cuts should
be compared to the “gap condition” appearing in [KS14].)

We first note that averages always converge in non-additive cuts.

Definition 3.1. A cut I ⊆ N∗ is additive if whenever n̄, m̄ ∈ I, also n̄+m̄ ∈
I.

Lemma 3.2. Let I be a non-additive cut, let (cn̄)n̄∈I be a sequence of ele-

ments of L2(X) with norm bounded by 1, and let aN̄ = 1
N̄

∑N̄
n̄=1 cn̄. Then

the sequence (aN̄ ) converges in I.

Proof. Let ε > 0.
Since I is not additive, we may choose N̄ ∈ I so that b N̄

1−ε/2c 6∈ I. To see

this, since I is not additive, there are n̄, m̄ ∈ I with n̄ + m̄ 6∈ I. Without
loss of generality, n̄ ≥ m̄, so 2n̄ 6∈ I. Let n̄0 = n̄ and n̄i+1 = b n̄i

1−ε/2c. There

is a standard number k (say, k ≤ −2
ln2(1−ε/2)) so that n̄k 6∈ I, so we may take

N̄ = n̄i where n̄i ∈ I but n̄i+1 6∈ I.

For any ε > 0, we choose N̄ ∈ I so that b N̄
1−ε/2c 6∈ I; such a N̄ exists

because I is not additive. Then whenever M̄ > N̄ belongs to I, we have

M̄ < N̄
1−ε/2 and therefore

||aN̄ − aM̄ ||L2 = || 1
N̄

N̄∑
n̄=1

cn̄ −
1

M̄

M̄∑
m̄=1

cm̄||L2

=
M̄ − N̄
M̄N̄

||
N̄∑
n̄=1

cn̄||L2 +
1

M̄
||

M̄∑
m̄=N̄+1

cm̄||L2

= 2
M̄ − N̄
M̄

< ε.

�
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Definition 3.3. Let (X,µ) be a probability measure space and T : Z y
(X,µ) a measurable, measure-preserving action. For any f ∈ L1(X), we

define the ergodic average ATNf by (ATNf)(x) = 1
N

∑N
n=1 f(Tnx).

Theorem 3.4. For every ε > 0 there is a K so that whenever (X,µ) be
a probability measure space and T : Z y (X,µ) a measurable, measure-
preserving action and f ∈ L2(µ) with ||f ||L2 ≤ 1, the sequence ATNf does
not admit K ε-jumps in the L2 norm.

Proof. We take C to be the collection of all pairs of the form ((L2(µ), dL2),
(ATNf)N∈N) where dL2(f, g) = ||f − g||L2(µ) and f ∈ L2(µ) with ||f ||L2 ≤
1. Consider an ultraproduct of elements from C; it is the L2 space of a
probability measure space (X,µ) with a measurable, measure-preserving
T : Z∗ y (XU , µU ). Given a function f ∈ L2(µ) with ||f ||L2 ≤ 1, we can
consider the sequence (AT

N̄
f)N̄∈N∗ .

Consider a cut I. If I is not additive, convergence follows from the pre-
vious lemma, so assume I is additive. Then whenever C ∈ N and n̄ ∈ I,
Cn̄ ∈ I.

Consider the space N ⊆ L2(µ) spanned by functions of the form f−f ◦T n̄
for n̄ ∈ I. Whenever g ∈ N , for any ε > 0 we may write g =

∑k
i=0 ci(f −

f ◦ T n̄i) + g− where ||g−||L2 < ε/2, k ∈ N, and each ci ∈ R. Whenever

M̄ >
4
∑k

i=0 |ci|n̄i

ε we have

||ATM̄g||L2 = || 1

M̄

M̄∑
m̄=1

k∑
i=0

ci(f ◦ T m̄ − f ◦ T n̄i+m̄) +ATM̄g
−||L2

<
k∑
i=0

|ci| · ||
1

M̄

M̄∑
m̄=1

(f ◦ T m̄ − f ◦ T n̄i+m̄)||L2 + ε/2

≤
k∑
i=0

|ci|
2n̄i
M̄
||f ||L2 + ε/2

≤ ε.

In particular, since d4
∑k

i=0 |ci|n̄i

ε e ∈ I, for g ∈ N , AT
N̄
g converges to 0 in I.

There is a projection f0 = E(f | N ). Let f− = f − f0. For any n̄ ∈ I,
observe that, using the invariance of T n̄,

||f− − f− ◦ T n̄||2L2 = 〈f−, f−〉 − 2〈f−, f− ◦ T n̄〉+ 〈f− ◦ T n̄, f− ◦ T n̄〉
= 2(〈f−, f−〉 − 〈f−, f− ◦ T n̄〉)
= 2〈f−, f− − f− ◦ T n̄〉
= 0

because f− − f− ◦ T n̄ ∈ N . Therefore

||ATM̄f − f
−||L2 = ||ATM̄ (f0 + f−)− f−||L2 ≤ ||ATM̄f0||L2 + ||ATM̄f

− − f−||L2
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approaches 0 as M̄ gets large in I. In particular, AT
M̄
f converges to f− in

the cut I.
By Theorem 2.7, we obtain uniform bounds on ε-jumps. �

4. Nonconventional ergodic averages

4.1. Preliminaries.

Definition 4.1. When I is a cut in N∗, we write Z(I) for {z ∈ Z∗ | |z| ∈ I}.
Let (X,µ) be a probability measure space and T : Z(I)d y (X,µ) a

measurable, measure-preserving action. We write T n̄i : XU → XU for the

action T (0,...,n̄,...,0) with the n̄ in the i-th position and abbreviate f ◦ T n̄i by
T−n̄i f .

We define

ATN̄ (f1, . . . , fd) =
1

N̄

N̄∑
n̄=1

∏
1≤i≤d

T−n̄i fi.

Of course, we are primarily interested in the case where I = N. The
average appearing in the ergodic theorem is then the case where d = 1.

Definition 4.2. When a sequence of functions fN̄ converges in I in the L2

norm, we write limN̄→I fN̄ for the L2-limit of these functions.

We observe that the van der Corput trick holds in any additive cut, fol-
lowing the standard proof without change.

Lemma 4.3 (van der Corput). Suppose that an̄ ∈ L2(XU ) with L2 norm
bounded by 1 for all n̄ ∈ I where I is an additive cut. If

lim
H→I

lim sup
N̄→I

1

H̄

H̄∑
h̄=1

∣∣∣∣∣∣ 1

N̄

N̄∑
n̄=1

∫
an̄+h̄an̄ dµ

∣∣∣∣∣∣ = 0

then

lim
N̄→I

∣∣∣∣∣∣ 1

N̄

N̄∑
n̄=1

an̄

∣∣∣∣∣∣ = 0.

Following Austin’s proof [Aus10] that the averages ATN (f1, . . . , fd) con-
verge, we proceed by induction on d. The case d = 1 is the mean ergodic
theorem discussed above.

Lemma 4.4. Let I be an additive cut and let T : Z(I)d y (X,µ) be measure-
preserving.

Whenever f1 ∈ L2(X) and f2, . . . , fd ∈ L∞(X), the averages

ATN̄ (f1, . . . , fd)

converge in I.
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Proof. We proceed by induction on d. The d = 1 case is shown in Theorem
3.4, so we assume d > 1 and the claim holds for d − 1. Let f1, . . . , fd be
given.

We will repeatedly need the averages

ÂN̄ (g) = ATN̄ (g, f2, . . . , fd).

Claim 1. For every g, the function

ug = lim
H̄→I

1

H̄

H̄∑
h̄=1

lim
S̄→I

1

S̄

S̄∑
s̄=1

T−h̄1 g
∏

1<i≤d
(T−1

1 Ti)
−s̄(fiT

−h̄
i fi)

exists.

Proof. We define functions

ug,H̄ =
1

H̄

H̄∑
h̄=1

T−h̄1 g lim
S̄→I

1

S̄

S̄∑
s̄=1

∏
1<i≤d

(T−1
1 Ti)

−s̄(fiT
−h̄
i fi).

For each h̄, we can show that the limit exists using the inductive hy-
pothesis applied to the transformation U : Z(I)d−1 y (XU , µ) given by
Ui = T−1

1 Ti+1.
We now use the inductive hypothesis to show that this sequence of func-

tions also converges for each g ∈ L2(XU ). We use a modified version of the
Furstenberg self-joining. We define a measure µ⊕d,I on Xd

U by setting

µ⊕d,I(
∏

1≤i≤d
Bi) =

∫
χB1 lim

S̄→I

1

S̄

S̄∑
s̄=1

∏
1<i≤d

(T−1
1 Ti)

−s̄χBi dµ.

The inductive hypothesis guarantees that this limit exists. We define T̃ :
Z(I)d y (Xd

U , µ
⊕d,I) by T̃1(x1, . . . , xd) = (T1x1, T2x2, . . . , Tdxd) and, for

1 < i ≤ d, T̃i(x1, . . . , xd) = (Tix1, . . . , Tixd). Since T is measure-preserving,
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T̃ is as well; for T̃i with 1 < i, this is immediate. To see that T̃1 is measure-
preserving, observe that

µ⊕d,I(T−n̄1

∏
1≤i≤d

Bi) =

∫
χB1(T n̄1 x) lim

S̄→I

1

S̄

S̄∑
s̄=1

∏
1<i≤d

(T−1
1 Ti)

−s̄χBi(T
n̄
i x) dµ

=

∫
χB1(T n̄1 x) lim

S̄→I

1

S̄

S̄∑
s̄=1

∏
1<i≤d

(T−1
1 Ti)

−s̄−n̄χBi(T
n̄
1 x) dµ

=

∫
χB1(x) lim

S̄→I

1

S̄

S̄∑
s̄=1

∏
1<i≤d

(T−1
1 Ti)

−s̄−n̄χBi(x) dµ

=

∫
χB1(x) lim

S̄→I

1

S̄

S̄∑
s̄=1

∏
1<i≤d

(T−1
1 Ti)

−s̄χBi(x) dµ.

Note that the last step uses the fact that I is additive.
Consider the function g̃(x1, . . . , xd) = g(x1)

∏
1<i≤d fi(xi). By Theo-

rem 3.4, the averages AT̃1
N̄

(g̃) converge in I. Observe that this also shows

that the sequence AT̃1
N̄

(g̃)f̃ converges in I. Consider the projection onto

the first coordinate (defined up to L2 norm) given by P(
∏

1≤i≤dBi)(x) =

χB1(x) limS̄→I
1
S̄

∑S̄
s̄=1

∏
1<i≤d(T

−1
1 Ti)

−s̄χBi(x).

P(AT̃1
H̄

(g̃)f̃)(x) = P(
1

H̄

H̄∑
h̄=1

g(T h̄1 x1)
∏

1<i≤d
fi(T

h̄
i xi)fi(xi))

=
1

H̄

H̄∑
h̄=1

g(T h̄1 x) lim
S̄→I

1

S̄

S̄∑
s̄=1

∏
1<i≤d

fi(T
h̄+s̄
i x)fi(T

s̄
i x)

= ug,H̄ .

Since P is a contraction from L2(Xd
U ) to L2(XU ) and the sequence AT̃1

H̄
(g̃)f̃

converges, the sequence ug,H̄ also converges.
a

We let N be the linear subspace of L2(XU ) generated by functions of the
form ug.

Claim 2. For g ∈ N , ÂN̄ (g) converges in I.

Proof. It suffices to show that every ÂN̄ (ug) converges. To see this, we
again compare to a corresponding sequence in the self-joining.
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First, observe that

ÂN̄ (ug) =
1

N̄

N̄∑
n̄=1

lim
H̄→I

1

H̄

H̄∑
h̄=1

lim
S̄→I

1

S̄

S̄∑
s̄=1

T−h̄−n̄1 g
∏

1<i≤d
T−n̄i fi

·
∏

1<i≤d
T−n̄i (T−1

1 Ti)
−s̄(fiT

−h̄
i fi)

=
1

N̄

N̄∑
n̄=1

lim
H̄→I

1

H̄

H̄∑
h̄=1

lim
S̄→I

1

S̄

S̄∑
s̄=1

T−h̄−n̄1 g
∏

1<i≤d
T−n̄i fi

·
∏

1<i≤d
(T−1

1 Ti)
−s̄(T−n̄i fiT

−h̄−n̄
i fi)

Define f̃1(x1, . . . , xd) = limH̄→I
1
H̄

∑H̄
h̄=1 T̃

−h̄
1 g̃ and, for 1 < i ≤ d let

f̃i(x1, . . . , xd) = fi(x1)fi(xd). Observe that, since f̃1 is T̃1-invariant, we

have AT̃
N̄

(f̃1, . . . , f̃d) = f̃1A
T̃
N̄

(1, f2, . . . , fd) which converges by the inductive
hypothesis.

By choosing H̄ large enough, ||AT̃1
H̄

(g̃)− f̃1||L2(Xd
U ) is small, and therefore

lim
H̄→I

||AN̄ (AT̃1
H̄

(g̃), f̃2, . . . , f̃d)−AN̄ ′(A
T̃1
H̄

(g̃), f̃2, . . . , f̃d)||L2(Xd
U )

= ||AN̄ (f̃1, . . . , f̃d)−AN̄ ′(f̃1, . . . , f̃d)||L2(Xd
U )

uniformly in N̄ .
Since

lim
H̄→I

P(AN̄ (AT̃1
H̄

(g̃), f̃2, . . . , f̃d))

= lim
H̄→I

P(
1

N̄

N̄∑
n̄=1

1

H̄

H̄∑
h̄=1

g(T h̄+n̄
1 x1)

∏
1<i≤d

fi(T
h̄+n̄
i xi)fi(T

n̄
i x1)fi(T

n̄
i xi))

=
1

N̄

N̄∑
n̄=1

lim
H̄→I

1

H̄

H̄∑
h̄=1

lim
S̄→I

1

S̄

S̄∑
s̄=1

T−h̄−n̄1 gT−n̄i fi

·
∏

1<i≤d
(T−1

1 Ti)
−s̄(T−n̄i fiT

−h̄−n̄fi)

= ÂN̄ (ug),

also ÂN̄ (ug) converges.
a

Now consider the function f1. We write f− = f1 − E(f1 | N ). Suppose

ÂN̄ (f−) does not converge to 0; then by van der Corput, there is an ε > 0
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so that we may find sufficiently large H̄ so that

ε2 < lim sup
S̄→I

∣∣∣∣∣∣
∫

1

H̄

H̄∑
h̄=1

1

S̄

S̄∑
s̄=1

T−h̄−s̄1 f−T−s̄1 f−
∏

1<i≤d
T−h̄−s̄i fiT

−s̄
i fidµ

∣∣∣∣∣∣ .
Shifting each term by T s̄1 ,

ε2 < lim sup
S̄→I

∣∣∣∣∣∣
∫
f−

1

H̄

H̄∑
h̄=1

1

S̄

S̄∑
s̄=1

T−h̄1 f−
∏

1<i≤d
(T−1

1 Ti)
−s̄(fiT

−h̄
i fi)dµ

∣∣∣∣∣∣ .
Since this holds for sufficiently large H̄, |

∫
f−uf−dµ| > 0. But this contra-

dicts the fact that E(f− | N ) = 0.
So

ÂN̄ (f1) = ÂN̄ (f−) + ÂN̄ (E(f1 | N ))→ lim
N̄→I

E(f1 | N ).

�

Combining this with Lemma 3.2 and Theorem 2.7, we obtain:

Theorem 4.5. For every ε > 0 there is a K so that whenever T : Zd y
(X,µ) is measure-preserving, ||f1||L2 ≤ 1, and ||fi||L∞ ≤ 1 for 1 < i ≤ d,
the sequence ATN (f1, . . . , fd) does not admit K ε-jumps.

5. Bounded jumps over long distances

One might think that, in the previous two sections, we were fortunate
that the nature of averages gives convergence in non-additive cuts: the true
underlying arguments by von Neumann and Austin only pertained to addi-
tive cuts, and it was an incidental feature that we could handle non-additive
cuts by another means.

A natural generalization of convergence in all cuts is to consider conver-
gence only in cuts with suitable closure properties—say, only additive cuts,
or only cuts closed under exponentiation. This corresponds to a variant
of bounding the number of jumps where we only consider jumps between
elements which are sufficiently far apart.

Definition 5.1. Let (an)n∈N be a sequence of elements in some metric space
and let h : N → N be a weakly increasing function with n < h(n) for all
n. For any ε > 0, we say (an) admits K ε-jumps of distance h if there
are n1 < n2 < · · · < nK such that, for each k < K, h(nk) ≤ nk+1 and
d(ank

, ank+1
) ≥ ε.

Although phrased differently, failing to admit K ε-jumps of distance h is
essentially Kohlenbach and Safarik’s notion of effective learnability [KS14].
Admitting K ε-jumps is the same as taking h(n) = n+ 1.

Considering only jumps of distance h allows for the situation where a
sequence can have brief windows with many oscillations, but other than
these windows has only boundedly many jumps. It is known that some
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cases exist with bounds of this more general kind which cannot be improved
to a bound on jumps [Neu15].

Definition 5.2. If h : N→ N, we write h̄ : N∗ → N∗ for the function given
by h̄([〈ni〉]) = 〈h(ni)〉.

We say a cut I ⊆ N∗ is closed under h if for every n̄ ∈ I, h̄(n̄) ∈ I.

Theorem 5.3. Let C be a collection of pairs ((X, d), (an)n∈N) where each
(an) is a sequence of elements in the corresponding metric space (X, d). For
any weakly increasing function h : N → N with n < h(n) for all n, the
following are equivalent:

• for every ε > 0 there is a K so that for every ((X, d), (an)n∈N) ∈ C,
the sequence (an)n∈N does not admit K ε-jumps of distance h,
• whenever U is a nonprincipal ultrafilter on N, and, for each i, the

pair ((Xi, di), (a
i
n)n∈N) ∈ C, the sequence (an̄)n̄∈N∗ converges in every

cut in (XU , dU ) closed under h.

For instance, considering only additive cuts is considering the case where
h(n) = 2n—that is, the case where a sequence has only boundedly many
functions spaced out by a multiplicative function.

Proof. Suppose the former fails: there is some ε > 0 so that, for every
K there is an ((X, d), (an)n∈N) ∈ C so that (an)n∈N admits K ε-jumps of
distance h. For each K, r, choose such an ((XK , dK), (aKn )n∈N) and choose
witnesses nK1 < nK2 < · · · < nKK so that, for each k < K, nKk+1 ≥ h(nKk ) and

d(aK
nK
k
, aK
nK
k+1

) ≥ ε.
As above, take any nonprincipal ultrafilter U and consider the sequence

(an̄)n̄∈N∗ . For each i ∈ N, take n̄i = [〈nKi 〉K∈N] and let I = {m̄ | ∃i m̄ < n̄i}.
For any m̄ ∈ I, we have m̄ < n̄i for some i, and therefore h̄(m̄) ≤ h̄(n̄i) ≤
n̄i+1 ∈ I, so I is closed under h. The remainder of the proof is as in the
proof of Theorem 2.7.

Conversely, suppose the former holds, and consider any nonprincipal ul-
trafilter U , any sequence ((Xi, di), (a

i
n)n∈N) of elements of C. Consider

some cut I closed under h and some ε > 0. Let K witness the uniform
bound for ε/4-jumps. Choose any n̄1 ∈ I; then h̄(n̄1) ∈ I, and if h̄(n̄1)
does not witnesses convergence to within ε, there is some n2 ≥ h̄(n1) with
dU (n̄1, n̄2) ≥ ε/2. We continue, choosing n̄3 ≥ h̄(n̄2) in I and so on, and
finish as in the proof of Theorem 2.7. �

6. Directions

Avigad and Rute [AR15] ask whether bounds for fluctuations exist for
Walsh’s generalization [Wal12] of Tao’s nonconventional averages to poly-
nomial actions of nilpotent groups. Similar methods to those in the previous
section might apply, particularly to Austin’s proof [Aus15] of the result.

Although we only considered L2 convergence, the same criterion gives
bounds on upcrossings from pointwise convergence in all cuts. Various
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papers [FLW12, CF12, El14, Ass10, HSY14] have studied pointwise con-
vergence of various nonconventional ergodic averages. Any of these re-
sults might be adapted to nonstandard cuts, thereby obtaining upcrossing
bounds.

It would be interesting to explicitly compare Kohlenbach and Safarik’s
result [KS14] about existence of bounds on fluctuations to ours. In par-
ticular, investigation of why their conditions imply convergence in all cuts
might yield some insight on the relationship between provability in restricted
systems and analogous results in nonstandard analysis.
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